ccff80b9440949bc48842c5d8200e233d051564b
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13 #include <rte_alarm.h>
14
15 #include "bnxt.h"
16 #include "bnxt_reps.h"
17 #include "bnxt_ring.h"
18 #include "bnxt_rxr.h"
19 #include "bnxt_rxq.h"
20 #include "hsi_struct_def_dpdk.h"
21 #include "bnxt_hwrm.h"
22
23 #include <bnxt_tf_common.h>
24 #include <ulp_mark_mgr.h>
25
26 /*
27  * RX Ring handling
28  */
29
30 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
31 {
32         struct rte_mbuf *data;
33
34         data = rte_mbuf_raw_alloc(mb);
35
36         return data;
37 }
38
39 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
40                                      struct bnxt_rx_ring_info *rxr,
41                                      uint16_t raw_prod)
42 {
43         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
44         struct rx_prod_pkt_bd *rxbd;
45         struct rte_mbuf **rx_buf;
46         struct rte_mbuf *mbuf;
47
48         rxbd = &rxr->rx_desc_ring[prod];
49         rx_buf = &rxr->rx_buf_ring[prod];
50         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
51         if (!mbuf) {
52                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
53                 return -ENOMEM;
54         }
55
56         *rx_buf = mbuf;
57         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
58
59         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
60
61         return 0;
62 }
63
64 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
65                                      struct bnxt_rx_ring_info *rxr,
66                                      uint16_t raw_prod)
67 {
68         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
69         struct rx_prod_pkt_bd *rxbd;
70         struct rte_mbuf **rx_buf;
71         struct rte_mbuf *mbuf;
72
73         rxbd = &rxr->ag_desc_ring[prod];
74         rx_buf = &rxr->ag_buf_ring[prod];
75         if (rxbd == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
77                 return -EINVAL;
78         }
79
80         if (rx_buf == NULL) {
81                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
82                 return -EINVAL;
83         }
84
85         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
86         if (!mbuf) {
87                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
88                 return -ENOMEM;
89         }
90
91         *rx_buf = mbuf;
92         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
93
94         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
95
96         return 0;
97 }
98
99 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
100                                struct rte_mbuf *mbuf)
101 {
102         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
103         struct rte_mbuf **prod_rx_buf;
104         struct rx_prod_pkt_bd *prod_bd;
105
106         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
107         prod_rx_buf = &rxr->rx_buf_ring[prod];
108
109         RTE_ASSERT(*prod_rx_buf == NULL);
110         RTE_ASSERT(mbuf != NULL);
111
112         *prod_rx_buf = mbuf;
113
114         prod_bd = &rxr->rx_desc_ring[prod];
115
116         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
117
118         rxr->rx_raw_prod = raw_prod;
119 }
120
121 static inline
122 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
123                                      uint16_t cons)
124 {
125         struct rte_mbuf **cons_rx_buf;
126         struct rte_mbuf *mbuf;
127
128         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
129         RTE_ASSERT(*cons_rx_buf != NULL);
130         mbuf = *cons_rx_buf;
131         *cons_rx_buf = NULL;
132
133         return mbuf;
134 }
135
136 static void bnxt_rx_ring_reset(void *arg)
137 {
138         struct bnxt *bp = arg;
139         int i, rc = 0;
140         struct bnxt_rx_queue *rxq;
141
142
143         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
144                 struct bnxt_rx_ring_info *rxr;
145
146                 rxq = bp->rx_queues[i];
147                 if (!rxq || !rxq->in_reset)
148                         continue;
149
150                 rxr = rxq->rx_ring;
151                 /* Disable and flush TPA before resetting the RX ring */
152                 if (rxr->tpa_info)
153                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, false);
154                 rc = bnxt_hwrm_rx_ring_reset(bp, i);
155                 if (rc) {
156                         PMD_DRV_LOG(ERR, "Rx ring%d reset failed\n", i);
157                         continue;
158                 }
159
160                 bnxt_rx_queue_release_mbufs(rxq);
161                 rxr->rx_raw_prod = 0;
162                 rxr->ag_raw_prod = 0;
163                 rxr->rx_next_cons = 0;
164                 bnxt_init_one_rx_ring(rxq);
165                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
166                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
167                 if (rxr->tpa_info)
168                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, true);
169
170                 rxq->in_reset = 0;
171         }
172 }
173
174
175 static void bnxt_sched_ring_reset(struct bnxt_rx_queue *rxq)
176 {
177         rxq->in_reset = 1;
178         rte_eal_alarm_set(1, bnxt_rx_ring_reset, (void *)rxq->bp);
179 }
180
181 static void bnxt_tpa_get_metadata(struct bnxt *bp,
182                                   struct bnxt_tpa_info *tpa_info,
183                                   struct rx_tpa_start_cmpl *tpa_start,
184                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
185 {
186         tpa_info->cfa_code_valid = 0;
187         tpa_info->vlan_valid = 0;
188         tpa_info->hash_valid = 0;
189         tpa_info->l4_csum_valid = 0;
190
191         if (likely(tpa_start->flags_type &
192                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
193                 tpa_info->hash_valid = 1;
194                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
195         }
196
197         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
198                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
199                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
200                         (void *)tpa_start1;
201
202                 if (v2_tpa_start->agg_id &
203                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
204                         tpa_info->vlan_valid = 1;
205                         tpa_info->vlan =
206                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
207                 }
208
209                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
210                         tpa_info->l4_csum_valid = 1;
211
212                 return;
213         }
214
215         tpa_info->cfa_code_valid = 1;
216         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
217         if (tpa_start1->flags2 &
218             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
219                 tpa_info->vlan_valid = 1;
220                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
221         }
222
223         if (likely(tpa_start1->flags2 &
224                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
225                 tpa_info->l4_csum_valid = 1;
226 }
227
228 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
229                            struct rx_tpa_start_cmpl *tpa_start,
230                            struct rx_tpa_start_cmpl_hi *tpa_start1)
231 {
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         uint16_t agg_id;
234         uint16_t data_cons;
235         struct bnxt_tpa_info *tpa_info;
236         struct rte_mbuf *mbuf;
237
238         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
239
240         data_cons = tpa_start->opaque;
241         tpa_info = &rxr->tpa_info[agg_id];
242         if (unlikely(data_cons != rxr->rx_next_cons)) {
243                 PMD_DRV_LOG(ERR, "TPA cons %x, expected cons %x\n",
244                             data_cons, rxr->rx_next_cons);
245                 bnxt_sched_ring_reset(rxq);
246                 return;
247         }
248
249         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
250
251         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
252
253         tpa_info->agg_count = 0;
254         tpa_info->mbuf = mbuf;
255         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
256
257         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
258         mbuf->nb_segs = 1;
259         mbuf->next = NULL;
260         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
261         mbuf->data_len = mbuf->pkt_len;
262         mbuf->port = rxq->port_id;
263         mbuf->ol_flags = PKT_RX_LRO;
264
265         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
266
267         if (likely(tpa_info->hash_valid)) {
268                 mbuf->hash.rss = tpa_info->rss_hash;
269                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
270         } else if (tpa_info->cfa_code_valid) {
271                 mbuf->hash.fdir.id = tpa_info->cfa_code;
272                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
273         }
274
275         if (tpa_info->vlan_valid) {
276                 mbuf->vlan_tci = tpa_info->vlan;
277                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
278         }
279
280         if (likely(tpa_info->l4_csum_valid))
281                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
282
283         /* recycle next mbuf */
284         data_cons = RING_NEXT(data_cons);
285         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
286
287         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct,
288                                      RING_NEXT(data_cons));
289 }
290
291 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
292                 uint8_t agg_bufs, uint32_t raw_cp_cons)
293 {
294         uint16_t last_cp_cons;
295         struct rx_pkt_cmpl *agg_cmpl;
296
297         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
298         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
299         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
300         return bnxt_cpr_cmp_valid(agg_cmpl, raw_cp_cons,
301                                   cpr->cp_ring_struct->ring_size);
302 }
303
304 /* TPA consume agg buffer out of order, allocate connected data only */
305 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
306 {
307         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
308         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
309         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
310
311         /* TODO batch allocation for better performance */
312         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
313                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
314                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
315                                     raw_next);
316                         break;
317                 }
318                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
319                 rxr->ag_raw_prod = raw_next;
320                 raw_next = RING_NEXT(raw_next);
321                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
322         }
323
324         return 0;
325 }
326
327 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
328                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
329                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
330 {
331         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
332         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
333         int i;
334         uint16_t cp_cons, ag_cons;
335         struct rx_pkt_cmpl *rxcmp;
336         struct rte_mbuf *last = mbuf;
337         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
338
339         for (i = 0; i < agg_buf; i++) {
340                 struct rte_mbuf **ag_buf;
341                 struct rte_mbuf *ag_mbuf;
342
343                 if (is_p5_tpa) {
344                         rxcmp = (void *)&tpa_info->agg_arr[i];
345                 } else {
346                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
347                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
348                         rxcmp = (struct rx_pkt_cmpl *)
349                                         &cpr->cp_desc_ring[cp_cons];
350                 }
351
352 #ifdef BNXT_DEBUG
353                 bnxt_dump_cmpl(cp_cons, rxcmp);
354 #endif
355
356                 ag_cons = rxcmp->opaque;
357                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
358                 ag_buf = &rxr->ag_buf_ring[ag_cons];
359                 ag_mbuf = *ag_buf;
360                 RTE_ASSERT(ag_mbuf != NULL);
361
362                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
363
364                 mbuf->nb_segs++;
365                 mbuf->pkt_len += ag_mbuf->data_len;
366
367                 last->next = ag_mbuf;
368                 last = ag_mbuf;
369
370                 *ag_buf = NULL;
371
372                 /*
373                  * As aggregation buffer consumed out of order in TPA module,
374                  * use bitmap to track freed slots to be allocated and notified
375                  * to NIC
376                  */
377                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
378         }
379         last->next = NULL;
380         bnxt_prod_ag_mbuf(rxq);
381         return 0;
382 }
383
384 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
385                            uint32_t *raw_cons, void *cmp)
386 {
387         struct rx_pkt_cmpl *rxcmp = cmp;
388         uint32_t tmp_raw_cons = *raw_cons;
389         uint8_t cmp_type, agg_bufs = 0;
390
391         cmp_type = CMP_TYPE(rxcmp);
392
393         if (cmp_type == CMPL_BASE_TYPE_RX_L2) {
394                 agg_bufs = BNXT_RX_L2_AGG_BUFS(rxcmp);
395         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
396                 struct rx_tpa_end_cmpl *tpa_end = cmp;
397
398                 if (BNXT_CHIP_P5(bp))
399                         return 0;
400
401                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
402         }
403
404         if (agg_bufs) {
405                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, tmp_raw_cons))
406                         return -EBUSY;
407         }
408         *raw_cons = tmp_raw_cons;
409         return 0;
410 }
411
412 static inline struct rte_mbuf *bnxt_tpa_end(
413                 struct bnxt_rx_queue *rxq,
414                 uint32_t *raw_cp_cons,
415                 struct rx_tpa_end_cmpl *tpa_end,
416                 struct rx_tpa_end_cmpl_hi *tpa_end1)
417 {
418         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
419         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
420         uint16_t agg_id;
421         struct rte_mbuf *mbuf;
422         uint8_t agg_bufs;
423         uint8_t payload_offset;
424         struct bnxt_tpa_info *tpa_info;
425
426         if (unlikely(rxq->in_reset)) {
427                 PMD_DRV_LOG(ERR, "rxq->in_reset: raw_cp_cons:%d\n",
428                             *raw_cp_cons);
429                 bnxt_discard_rx(rxq->bp, cpr, raw_cp_cons, tpa_end);
430                 return NULL;
431         }
432
433         if (BNXT_CHIP_P5(rxq->bp)) {
434                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
435                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
436
437                 th_tpa_end = (void *)tpa_end;
438                 th_tpa_end1 = (void *)tpa_end1;
439                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
440                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
441                 payload_offset = th_tpa_end1->payload_offset;
442         } else {
443                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
444                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
445                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
446                         return NULL;
447                 payload_offset = tpa_end->payload_offset;
448         }
449
450         tpa_info = &rxr->tpa_info[agg_id];
451         mbuf = tpa_info->mbuf;
452         RTE_ASSERT(mbuf != NULL);
453
454         if (agg_bufs) {
455                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
456         }
457         mbuf->l4_len = payload_offset;
458
459         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
460         RTE_ASSERT(new_data != NULL);
461         if (!new_data) {
462                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
463                 return NULL;
464         }
465         tpa_info->mbuf = new_data;
466
467         return mbuf;
468 }
469
470 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
471
472 static void __rte_cold
473 bnxt_init_ptype_table(void)
474 {
475         uint32_t *pt = bnxt_ptype_table;
476         static bool initialized;
477         int ip6, tun, type;
478         uint32_t l3;
479         int i;
480
481         if (initialized)
482                 return;
483
484         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
485                 if (i & BNXT_PTYPE_TBL_VLAN_MSK)
486                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
487                 else
488                         pt[i] = RTE_PTYPE_L2_ETHER;
489
490                 ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
491                 tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
492                 type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
493
494                 if (!tun && !ip6)
495                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
496                 else if (!tun && ip6)
497                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
498                 else if (tun && !ip6)
499                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
500                 else
501                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
502
503                 switch (type) {
504                 case BNXT_PTYPE_TBL_TYPE_ICMP:
505                         if (tun)
506                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
507                         else
508                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
509                         break;
510                 case BNXT_PTYPE_TBL_TYPE_TCP:
511                         if (tun)
512                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
513                         else
514                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
515                         break;
516                 case BNXT_PTYPE_TBL_TYPE_UDP:
517                         if (tun)
518                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
519                         else
520                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
521                         break;
522                 case BNXT_PTYPE_TBL_TYPE_IP:
523                         pt[i] |= l3;
524                         break;
525                 }
526         }
527         initialized = true;
528 }
529
530 static uint32_t
531 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
532 {
533         uint32_t flags_type, flags2;
534         uint8_t index;
535
536         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
537         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
538
539         /* Validate ptype table indexing at build time. */
540         bnxt_check_ptype_constants();
541
542         /*
543          * Index format:
544          *     bit 0: Set if IP tunnel encapsulated packet.
545          *     bit 1: Set if IPv6 packet, clear if IPv4.
546          *     bit 2: Set if VLAN tag present.
547          *     bits 3-6: Four-bit hardware packet type field.
548          */
549         index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
550                 BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
551                 BNXT_CMPL_IP_VER_TO_IDX(flags2);
552
553         return bnxt_ptype_table[index];
554 }
555
556 static void __rte_cold
557 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
558 {
559         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
560         struct rte_eth_conf *dev_conf;
561         bool outer_cksum_enabled;
562         uint64_t offloads;
563         uint32_t *pt;
564         int i;
565
566         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
567         offloads = dev_conf->rxmode.offloads;
568
569         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
570                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
571
572         /* Initialize ol_flags table. */
573         pt = rxr->ol_flags_table;
574         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
575                 pt[i] = 0;
576
577                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
578                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
579
580                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
581                         /* Tunnel case. */
582                         if (outer_cksum_enabled) {
583                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
584                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
585
586                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
587                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
588
589                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
590                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
591                         } else {
592                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
593                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
594
595                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
596                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
597                         }
598                 } else {
599                         /* Non-tunnel case. */
600                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
601                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
602
603                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
604                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
605                 }
606         }
607
608         /* Initialize checksum error table. */
609         pt = rxr->ol_flags_err_table;
610         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
611                 pt[i] = 0;
612
613                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
614                         /* Tunnel case. */
615                         if (outer_cksum_enabled) {
616                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
617                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
618
619                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
620                                         pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
621
622                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
623                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
624
625                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
626                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
627                         } else {
628                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
629                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
630
631                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
632                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
633                         }
634                 } else {
635                         /* Non-tunnel case. */
636                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
637                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
638
639                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
640                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
641                 }
642         }
643 }
644
645 static void
646 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
647                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
648 {
649         uint16_t flags_type, errors, flags;
650         uint64_t ol_flags;
651
652         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
653
654         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
655                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
656                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
657                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
658                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
659                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
660
661         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
662         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
663                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
664                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
665                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
666                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
667         errors = (errors >> 4) & flags;
668
669         ol_flags = rxr->ol_flags_table[flags & ~errors];
670
671         if (unlikely(errors)) {
672                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
673                 ol_flags |= rxr->ol_flags_err_table[errors];
674         }
675
676         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
677                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
678                 ol_flags |= PKT_RX_RSS_HASH;
679         }
680
681 #ifdef RTE_LIBRTE_IEEE1588
682         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
683                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
684                 ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
685 #endif
686
687         mbuf->ol_flags = ol_flags;
688 }
689
690 #ifdef RTE_LIBRTE_IEEE1588
691 static void
692 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
693 {
694         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
695         uint64_t last_hwrm_time;
696         uint64_t pkt_time = 0;
697
698         if (!BNXT_CHIP_P5(bp) || !ptp)
699                 return;
700
701         /* On Thor, Rx timestamps are provided directly in the
702          * Rx completion records to the driver. Only 32 bits of
703          * the timestamp is present in the completion. Driver needs
704          * to read the current 48 bit free running timer using the
705          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
706          * from the HWRM response with the lower 32 bits in the
707          * Rx completion to produce the 48 bit timestamp for the Rx packet
708          */
709         last_hwrm_time = ptp->current_time;
710         pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
711         if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
712                 /* timer has rolled over */
713                 pkt_time += (1ULL << 32);
714         }
715         ptp->rx_timestamp = pkt_time;
716 }
717 #endif
718
719 static uint32_t
720 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
721                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
722 {
723         uint32_t cfa_code;
724         uint32_t meta_fmt;
725         uint32_t meta;
726         bool gfid = false;
727         uint32_t mark_id;
728         uint32_t flags2;
729         uint32_t gfid_support = 0;
730         int rc;
731
732         if (BNXT_GFID_ENABLED(bp))
733                 gfid_support = 1;
734
735         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
736         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
737         meta = rte_le_to_cpu_32(rxcmp1->metadata);
738
739         /*
740          * The flags field holds extra bits of info from [6:4]
741          * which indicate if the flow is in TCAM or EM or EEM
742          */
743         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
744                 BNXT_CFA_META_FMT_SHFT;
745
746         switch (meta_fmt) {
747         case 0:
748                 if (gfid_support) {
749                         /* Not an LFID or GFID, a flush cmd. */
750                         goto skip_mark;
751                 } else {
752                         /* LFID mode, no vlan scenario */
753                         gfid = false;
754                 }
755                 break;
756         case 4:
757         case 5:
758                 /*
759                  * EM/TCAM case
760                  * Assume that EM doesn't support Mark due to GFID
761                  * collisions with EEM.  Simply return without setting the mark
762                  * in the mbuf.
763                  */
764                 if (BNXT_CFA_META_EM_TEST(meta)) {
765                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
766                         gfid = true;
767                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
768                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
769                 } else {
770                         /*
771                          * It is a TCAM entry, so it is an LFID.
772                          * The TCAM IDX and Mode can also be determined
773                          * by decoding the meta_data. We are not
774                          * using these for now.
775                          */
776                 }
777                 break;
778         case 6:
779         case 7:
780                 /* EEM Case, only using gfid in EEM for now. */
781                 gfid = true;
782
783                 /*
784                  * For EEM flows, The first part of cfa_code is 16 bits.
785                  * The second part is embedded in the
786                  * metadata field from bit 19 onwards. The driver needs to
787                  * ignore the first 19 bits of metadata and use the next 12
788                  * bits as higher 12 bits of cfa_code.
789                  */
790                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
791                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
792                 break;
793         default:
794                 /* For other values, the cfa_code is assumed to be an LFID. */
795                 break;
796         }
797
798         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
799                                   cfa_code, vfr_flag, &mark_id);
800         if (!rc) {
801                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
802                 if (vfr_flag && *vfr_flag)
803                         return mark_id;
804                 /* Got the mark, write it to the mbuf and return */
805                 mbuf->hash.fdir.hi = mark_id;
806                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
807                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
808                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
809                 return mark_id;
810         }
811
812 skip_mark:
813         mbuf->hash.fdir.hi = 0;
814         mbuf->hash.fdir.id = 0;
815
816         return 0;
817 }
818
819 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
820                            struct rx_pkt_cmpl_hi *rxcmp1,
821                            struct rte_mbuf *mbuf)
822 {
823         uint32_t cfa_code = 0;
824         uint8_t meta_fmt = 0;
825         uint16_t flags2 = 0;
826         uint32_t meta =  0;
827
828         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
829         if (!cfa_code)
830                 return;
831
832         if (cfa_code && !bp->mark_table[cfa_code].valid)
833                 return;
834
835         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
836         meta = rte_le_to_cpu_32(rxcmp1->metadata);
837         if (meta) {
838                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
839
840                 /* The flags field holds extra bits of info from [6:4]
841                  * which indicate if the flow is in TCAM or EM or EEM
842                  */
843                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
844                            BNXT_CFA_META_FMT_SHFT;
845
846                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
847                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
848                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
849                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
850                  */
851                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
852         }
853
854         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
855         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
856 }
857
858 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
859                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
860 {
861         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
862         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
863         struct rx_pkt_cmpl *rxcmp;
864         struct rx_pkt_cmpl_hi *rxcmp1;
865         uint32_t tmp_raw_cons = *raw_cons;
866         uint16_t cons, raw_prod, cp_cons =
867             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
868         struct rte_mbuf *mbuf;
869         int rc = 0;
870         uint8_t agg_buf = 0;
871         uint16_t cmp_type;
872         uint32_t vfr_flag = 0, mark_id = 0;
873         struct bnxt *bp = rxq->bp;
874
875         rxcmp = (struct rx_pkt_cmpl *)
876             &cpr->cp_desc_ring[cp_cons];
877
878         cmp_type = CMP_TYPE(rxcmp);
879
880         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
881                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
882                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
883                 struct bnxt_tpa_info *tpa_info;
884
885                 tpa_info = &rxr->tpa_info[agg_id];
886                 RTE_ASSERT(tpa_info->agg_count < 16);
887                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
888                 rc = -EINVAL; /* Continue w/o new mbuf */
889                 goto next_rx;
890         }
891
892         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
893         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
894         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
895
896         if (!bnxt_cpr_cmp_valid(rxcmp1, tmp_raw_cons,
897                                 cpr->cp_ring_struct->ring_size))
898                 return -EBUSY;
899
900         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
901             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
902                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
903                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
904                 rc = -EINVAL; /* Continue w/o new mbuf */
905                 goto next_rx;
906         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
907                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
908                                    (struct rx_tpa_end_cmpl *)rxcmp,
909                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
910                 if (unlikely(!mbuf))
911                         return -EBUSY;
912                 *rx_pkt = mbuf;
913                 goto next_rx;
914         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
915                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
916                 rc = -EINVAL;
917                 goto next_rx;
918         }
919
920         agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
921         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
922                 return -EBUSY;
923
924         raw_prod = rxr->rx_raw_prod;
925
926         cons = rxcmp->opaque;
927         if (unlikely(cons != rxr->rx_next_cons)) {
928                 bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
929                 PMD_DRV_LOG(ERR, "RX cons %x != expected cons %x\n",
930                             cons, rxr->rx_next_cons);
931                 bnxt_sched_ring_reset(rxq);
932                 rc = -EBUSY;
933                 goto next_rx;
934         }
935         mbuf = bnxt_consume_rx_buf(rxr, cons);
936         if (mbuf == NULL)
937                 return -EBUSY;
938
939         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
940         mbuf->nb_segs = 1;
941         mbuf->next = NULL;
942         mbuf->pkt_len = rxcmp->len;
943         mbuf->data_len = mbuf->pkt_len;
944         mbuf->port = rxq->port_id;
945
946 #ifdef RTE_LIBRTE_IEEE1588
947         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
948                       RX_PKT_CMPL_FLAGS_MASK) ==
949                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
950                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
951 #endif
952
953         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
954                 bnxt_parse_csum_v2(mbuf, rxcmp1);
955                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
956                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
957                 /* TODO Add support for cfa_code parsing */
958                 goto reuse_rx_mbuf;
959         }
960
961         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
962
963         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
964
965         bnxt_set_vlan(rxcmp1, mbuf);
966
967         if (BNXT_TRUFLOW_EN(bp))
968                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
969                                                     &vfr_flag);
970         else
971                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
972
973 reuse_rx_mbuf:
974         if (agg_buf)
975                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
976
977 #ifdef BNXT_DEBUG
978         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
979                 /* Re-install the mbuf back to the rx ring */
980                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
981
982                 rc = -EIO;
983                 goto next_rx;
984         }
985 #endif
986         /*
987          * TODO: Redesign this....
988          * If the allocation fails, the packet does not get received.
989          * Simply returning this will result in slowly falling behind
990          * on the producer ring buffers.
991          * Instead, "filling up" the producer just before ringing the
992          * doorbell could be a better solution since it will let the
993          * producer ring starve until memory is available again pushing
994          * the drops into hardware and getting them out of the driver
995          * allowing recovery to a full producer ring.
996          *
997          * This could also help with cache usage by preventing per-packet
998          * calls in favour of a tight loop with the same function being called
999          * in it.
1000          */
1001         raw_prod = RING_NEXT(raw_prod);
1002         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
1003                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
1004                             raw_prod);
1005                 rc = -ENOMEM;
1006                 goto rx;
1007         }
1008         rxr->rx_raw_prod = raw_prod;
1009         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
1010
1011         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
1012             vfr_flag) {
1013                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
1014                 /* Now return an error so that nb_rx_pkts is not
1015                  * incremented.
1016                  * This packet was meant to be given to the representor.
1017                  * So no need to account the packet and give it to
1018                  * parent Rx burst function.
1019                  */
1020                 rc = -ENODEV;
1021                 goto next_rx;
1022         }
1023         /*
1024          * All MBUFs are allocated with the same size under DPDK,
1025          * no optimization for rx_copy_thresh
1026          */
1027 rx:
1028         *rx_pkt = mbuf;
1029
1030 next_rx:
1031
1032         *raw_cons = tmp_raw_cons;
1033
1034         return rc;
1035 }
1036
1037 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1038                                uint16_t nb_pkts)
1039 {
1040         struct bnxt_rx_queue *rxq = rx_queue;
1041         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1042         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1043         uint16_t rx_raw_prod = rxr->rx_raw_prod;
1044         uint16_t ag_raw_prod = rxr->ag_raw_prod;
1045         uint32_t raw_cons = cpr->cp_raw_cons;
1046         bool alloc_failed = false;
1047         uint32_t cons;
1048         int nb_rx_pkts = 0;
1049         int nb_rep_rx_pkts = 0;
1050         struct rx_pkt_cmpl *rxcmp;
1051         int rc = 0;
1052         bool evt = false;
1053
1054         if (unlikely(is_bnxt_in_error(rxq->bp)))
1055                 return 0;
1056
1057         /* If Rx Q was stopped return */
1058         if (unlikely(!rxq->rx_started))
1059                 return 0;
1060
1061 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1062         /*
1063          * Replenish buffers if needed when a transition has been made from
1064          * vector- to non-vector- receive processing.
1065          */
1066         while (unlikely(rxq->rxrearm_nb)) {
1067                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
1068                         rxr->rx_raw_prod = rxq->rxrearm_start;
1069                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1070                         rxq->rxrearm_start++;
1071                         rxq->rxrearm_nb--;
1072                 } else {
1073                         /* Retry allocation on next call. */
1074                         break;
1075                 }
1076         }
1077 #endif
1078
1079         /* Handle RX burst request */
1080         while (1) {
1081                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1082                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1083
1084                 if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons,
1085                                         cpr->cp_ring_struct->ring_size))
1086                         break;
1087                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
1088                         PMD_DRV_LOG(ERR, "Rx flush done\n");
1089                 } else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
1090                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
1091                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
1092                         if (!rc)
1093                                 nb_rx_pkts++;
1094                         else if (rc == -EBUSY)  /* partial completion */
1095                                 break;
1096                         else if (rc == -ENODEV) /* completion for representor */
1097                                 nb_rep_rx_pkts++;
1098                         else if (rc == -ENOMEM) {
1099                                 nb_rx_pkts++;
1100                                 alloc_failed = true;
1101                         }
1102                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1103                         evt =
1104                         bnxt_event_hwrm_resp_handler(rxq->bp,
1105                                                      (struct cmpl_base *)rxcmp);
1106                         /* If the async event is Fatal error, return */
1107                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1108                                 goto done;
1109                 }
1110
1111                 raw_cons = NEXT_RAW_CMP(raw_cons);
1112                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1113                         break;
1114         }
1115
1116         cpr->cp_raw_cons = raw_cons;
1117         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1118                 /*
1119                  * For PMD, there is no need to keep on pushing to REARM
1120                  * the doorbell if there are no new completions
1121                  */
1122                 goto done;
1123         }
1124
1125         /* Ring the completion queue doorbell. */
1126         bnxt_db_cq(cpr);
1127
1128         /* Ring the receive descriptor doorbell. */
1129         if (rx_raw_prod != rxr->rx_raw_prod)
1130                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1131
1132         /* Ring the AGG ring DB */
1133         if (ag_raw_prod != rxr->ag_raw_prod)
1134                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1135
1136         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1137         if (alloc_failed) {
1138                 int cnt;
1139
1140                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1141                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1142                         struct rte_mbuf **rx_buf;
1143                         uint16_t ndx;
1144
1145                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1146                         rx_buf = &rxr->rx_buf_ring[ndx];
1147
1148                         /* Buffer already allocated for this index. */
1149                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1150                                 continue;
1151
1152                         /* This slot is empty. Alloc buffer for Rx */
1153                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1154                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1155                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1156                         } else {
1157                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1158                                 break;
1159                         }
1160                 }
1161         }
1162
1163 done:
1164         return nb_rx_pkts;
1165 }
1166
1167 /*
1168  * Dummy DPDK callback for RX.
1169  *
1170  * This function is used to temporarily replace the real callback during
1171  * unsafe control operations on the queue, or in case of error.
1172  */
1173 uint16_t
1174 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1175                      struct rte_mbuf **rx_pkts __rte_unused,
1176                      uint16_t nb_pkts __rte_unused)
1177 {
1178         return 0;
1179 }
1180
1181 void bnxt_free_rx_rings(struct bnxt *bp)
1182 {
1183         int i;
1184         struct bnxt_rx_queue *rxq;
1185
1186         if (!bp->rx_queues)
1187                 return;
1188
1189         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1190                 rxq = bp->rx_queues[i];
1191                 if (!rxq)
1192                         continue;
1193
1194                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1195                 rte_free(rxq->rx_ring->rx_ring_struct);
1196
1197                 /* Free the Aggregator ring */
1198                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1199                 rte_free(rxq->rx_ring->ag_ring_struct);
1200                 rxq->rx_ring->ag_ring_struct = NULL;
1201
1202                 rte_free(rxq->rx_ring);
1203
1204                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1205                 rte_free(rxq->cp_ring->cp_ring_struct);
1206                 rte_free(rxq->cp_ring);
1207
1208                 rte_free(rxq);
1209                 bp->rx_queues[i] = NULL;
1210         }
1211 }
1212
1213 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1214 {
1215         struct bnxt_cp_ring_info *cpr;
1216         struct bnxt_rx_ring_info *rxr;
1217         struct bnxt_ring *ring;
1218
1219         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1220
1221         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1222                                  sizeof(struct bnxt_rx_ring_info),
1223                                  RTE_CACHE_LINE_SIZE, socket_id);
1224         if (rxr == NULL)
1225                 return -ENOMEM;
1226         rxq->rx_ring = rxr;
1227
1228         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1229                                    sizeof(struct bnxt_ring),
1230                                    RTE_CACHE_LINE_SIZE, socket_id);
1231         if (ring == NULL)
1232                 return -ENOMEM;
1233         rxr->rx_ring_struct = ring;
1234         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1235         ring->ring_mask = ring->ring_size - 1;
1236         ring->bd = (void *)rxr->rx_desc_ring;
1237         ring->bd_dma = rxr->rx_desc_mapping;
1238
1239         /* Allocate extra rx ring entries for vector rx. */
1240         ring->vmem_size = sizeof(struct rte_mbuf *) *
1241                           (ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
1242
1243         ring->vmem = (void **)&rxr->rx_buf_ring;
1244         ring->fw_ring_id = INVALID_HW_RING_ID;
1245
1246         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1247                                  sizeof(struct bnxt_cp_ring_info),
1248                                  RTE_CACHE_LINE_SIZE, socket_id);
1249         if (cpr == NULL)
1250                 return -ENOMEM;
1251         rxq->cp_ring = cpr;
1252
1253         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1254                                    sizeof(struct bnxt_ring),
1255                                    RTE_CACHE_LINE_SIZE, socket_id);
1256         if (ring == NULL)
1257                 return -ENOMEM;
1258         cpr->cp_ring_struct = ring;
1259
1260         /* Allocate two completion slots per entry in desc ring. */
1261         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1262         ring->ring_size *= AGG_RING_SIZE_FACTOR;
1263
1264         ring->ring_size = rte_align32pow2(ring->ring_size);
1265         ring->ring_mask = ring->ring_size - 1;
1266         ring->bd = (void *)cpr->cp_desc_ring;
1267         ring->bd_dma = cpr->cp_desc_mapping;
1268         ring->vmem_size = 0;
1269         ring->vmem = NULL;
1270         ring->fw_ring_id = INVALID_HW_RING_ID;
1271
1272         /* Allocate Aggregator rings */
1273         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1274                                    sizeof(struct bnxt_ring),
1275                                    RTE_CACHE_LINE_SIZE, socket_id);
1276         if (ring == NULL)
1277                 return -ENOMEM;
1278         rxr->ag_ring_struct = ring;
1279         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1280                                           AGG_RING_SIZE_FACTOR);
1281         ring->ring_mask = ring->ring_size - 1;
1282         ring->bd = (void *)rxr->ag_desc_ring;
1283         ring->bd_dma = rxr->ag_desc_mapping;
1284         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1285         ring->vmem = (void **)&rxr->ag_buf_ring;
1286         ring->fw_ring_id = INVALID_HW_RING_ID;
1287
1288         return 0;
1289 }
1290
1291 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1292                             uint16_t len)
1293 {
1294         uint32_t j;
1295         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1296
1297         if (!rx_bd_ring)
1298                 return;
1299         for (j = 0; j < ring->ring_size; j++) {
1300                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1301                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1302                 rx_bd_ring[j].opaque = j;
1303         }
1304 }
1305
1306 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1307 {
1308         struct bnxt_rx_ring_info *rxr;
1309         struct bnxt_ring *ring;
1310         uint32_t raw_prod, type;
1311         unsigned int i;
1312         uint16_t size;
1313
1314         /* Initialize packet type table. */
1315         bnxt_init_ptype_table();
1316
1317         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1318         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1319
1320         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1321
1322         rxr = rxq->rx_ring;
1323         ring = rxr->rx_ring_struct;
1324         bnxt_init_rxbds(ring, type, size);
1325
1326         /* Initialize offload flags parsing table. */
1327         bnxt_init_ol_flags_tables(rxq);
1328
1329         raw_prod = rxr->rx_raw_prod;
1330         for (i = 0; i < ring->ring_size; i++) {
1331                 if (unlikely(!rxr->rx_buf_ring[i])) {
1332                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1333                                 PMD_DRV_LOG(WARNING,
1334                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1335                                             rxq->queue_id, i, ring->ring_size);
1336                                 break;
1337                         }
1338                 }
1339                 rxr->rx_raw_prod = raw_prod;
1340                 raw_prod = RING_NEXT(raw_prod);
1341         }
1342
1343         /* Initialize dummy mbuf pointers for vector mode rx. */
1344         for (i = ring->ring_size;
1345              i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
1346                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1347         }
1348
1349         ring = rxr->ag_ring_struct;
1350         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1351         bnxt_init_rxbds(ring, type, size);
1352         raw_prod = rxr->ag_raw_prod;
1353
1354         for (i = 0; i < ring->ring_size; i++) {
1355                 if (unlikely(!rxr->ag_buf_ring[i])) {
1356                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1357                                 PMD_DRV_LOG(WARNING,
1358                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1359                                             rxq->queue_id, i, ring->ring_size);
1360                                 break;
1361                         }
1362                 }
1363                 rxr->ag_raw_prod = raw_prod;
1364                 raw_prod = RING_NEXT(raw_prod);
1365         }
1366         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1367
1368         if (rxr->tpa_info) {
1369                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1370
1371                 for (i = 0; i < max_aggs; i++) {
1372                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1373                                 rxr->tpa_info[i].mbuf =
1374                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1375                                 if (!rxr->tpa_info[i].mbuf) {
1376                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1377                                         return -ENOMEM;
1378                                 }
1379                         }
1380                 }
1381         }
1382         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1383
1384         /* Explicitly reset this driver internal tracker on a ring init */
1385         rxr->rx_next_cons = 0;
1386
1387         return 0;
1388 }
1389
1390 /* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
1391  * The mbufs will not be freed in this call.
1392  * They will be freed during ring free as a part of mem cleanup.
1393  */
1394 int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
1395 {
1396         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
1397         uint32_t ring_mask = cp_ring_struct->ring_mask;
1398         uint32_t raw_cons = cpr->cp_raw_cons;
1399         struct rx_pkt_cmpl *rxcmp;
1400         uint32_t nb_rx = 0;
1401         uint32_t cons;
1402
1403         do {
1404                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1405                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1406
1407                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
1408                         return 1;
1409
1410                 raw_cons = NEXT_RAW_CMP(raw_cons);
1411                 nb_rx++;
1412         } while (nb_rx < ring_mask);
1413
1414         cpr->cp_raw_cons = raw_cons;
1415
1416         /* Ring the completion queue doorbell. */
1417         bnxt_db_cq(cpr);
1418
1419         return 0;
1420 }