eb555c4545e6805643a4d75125afd9e237696b00
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13 #include <rte_alarm.h>
14
15 #include "bnxt.h"
16 #include "bnxt_reps.h"
17 #include "bnxt_ring.h"
18 #include "bnxt_rxr.h"
19 #include "bnxt_rxq.h"
20 #include "hsi_struct_def_dpdk.h"
21 #include "bnxt_hwrm.h"
22
23 #include <bnxt_tf_common.h>
24 #include <ulp_mark_mgr.h>
25
26 /*
27  * RX Ring handling
28  */
29
30 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
31 {
32         struct rte_mbuf *data;
33
34         data = rte_mbuf_raw_alloc(mb);
35
36         return data;
37 }
38
39 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
40                                      struct bnxt_rx_ring_info *rxr,
41                                      uint16_t raw_prod)
42 {
43         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
44         struct rx_prod_pkt_bd *rxbd;
45         struct rte_mbuf **rx_buf;
46         struct rte_mbuf *mbuf;
47
48         rxbd = &rxr->rx_desc_ring[prod];
49         rx_buf = &rxr->rx_buf_ring[prod];
50         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
51         if (!mbuf) {
52                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
53                 return -ENOMEM;
54         }
55
56         *rx_buf = mbuf;
57         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
58
59         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
60
61         return 0;
62 }
63
64 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
65                                      struct bnxt_rx_ring_info *rxr,
66                                      uint16_t raw_prod)
67 {
68         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
69         struct rx_prod_pkt_bd *rxbd;
70         struct rte_mbuf **rx_buf;
71         struct rte_mbuf *mbuf;
72
73         rxbd = &rxr->ag_desc_ring[prod];
74         rx_buf = &rxr->ag_buf_ring[prod];
75         if (rxbd == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
77                 return -EINVAL;
78         }
79
80         if (rx_buf == NULL) {
81                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
82                 return -EINVAL;
83         }
84
85         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
86         if (!mbuf) {
87                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
88                 return -ENOMEM;
89         }
90
91         *rx_buf = mbuf;
92         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
93
94         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
95
96         return 0;
97 }
98
99 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
100                                struct rte_mbuf *mbuf)
101 {
102         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
103         struct rte_mbuf **prod_rx_buf;
104         struct rx_prod_pkt_bd *prod_bd;
105
106         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
107         prod_rx_buf = &rxr->rx_buf_ring[prod];
108
109         RTE_ASSERT(*prod_rx_buf == NULL);
110         RTE_ASSERT(mbuf != NULL);
111
112         *prod_rx_buf = mbuf;
113
114         prod_bd = &rxr->rx_desc_ring[prod];
115
116         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
117
118         rxr->rx_raw_prod = raw_prod;
119 }
120
121 static inline
122 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
123                                      uint16_t cons)
124 {
125         struct rte_mbuf **cons_rx_buf;
126         struct rte_mbuf *mbuf;
127
128         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
129         RTE_ASSERT(*cons_rx_buf != NULL);
130         mbuf = *cons_rx_buf;
131         *cons_rx_buf = NULL;
132
133         return mbuf;
134 }
135
136 static void bnxt_rx_ring_reset(void *arg)
137 {
138         struct bnxt *bp = arg;
139         int i, rc = 0;
140         struct bnxt_rx_queue *rxq;
141
142
143         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
144                 struct bnxt_rx_ring_info *rxr;
145
146                 rxq = bp->rx_queues[i];
147                 if (!rxq || !rxq->in_reset)
148                         continue;
149
150                 rxr = rxq->rx_ring;
151                 /* Disable and flush TPA before resetting the RX ring */
152                 if (rxr->tpa_info)
153                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, false);
154                 rc = bnxt_hwrm_rx_ring_reset(bp, i);
155                 if (rc) {
156                         PMD_DRV_LOG(ERR, "Rx ring%d reset failed\n", i);
157                         continue;
158                 }
159
160                 bnxt_rx_queue_release_mbufs(rxq);
161                 rxr->rx_raw_prod = 0;
162                 rxr->ag_raw_prod = 0;
163                 rxr->rx_next_cons = 0;
164                 bnxt_init_one_rx_ring(rxq);
165                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
166                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
167                 if (rxr->tpa_info)
168                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, true);
169
170                 rxq->in_reset = 0;
171         }
172 }
173
174
175 static void bnxt_sched_ring_reset(struct bnxt_rx_queue *rxq)
176 {
177         rxq->in_reset = 1;
178         rte_eal_alarm_set(1, bnxt_rx_ring_reset, (void *)rxq->bp);
179 }
180
181 static void bnxt_tpa_get_metadata(struct bnxt *bp,
182                                   struct bnxt_tpa_info *tpa_info,
183                                   struct rx_tpa_start_cmpl *tpa_start,
184                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
185 {
186         tpa_info->cfa_code_valid = 0;
187         tpa_info->vlan_valid = 0;
188         tpa_info->hash_valid = 0;
189         tpa_info->l4_csum_valid = 0;
190
191         if (likely(tpa_start->flags_type &
192                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
193                 tpa_info->hash_valid = 1;
194                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
195         }
196
197         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
198                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
199                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
200                         (void *)tpa_start1;
201
202                 if (v2_tpa_start->agg_id &
203                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
204                         tpa_info->vlan_valid = 1;
205                         tpa_info->vlan =
206                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
207                 }
208
209                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
210                         tpa_info->l4_csum_valid = 1;
211
212                 return;
213         }
214
215         tpa_info->cfa_code_valid = 1;
216         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
217         if (tpa_start1->flags2 &
218             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
219                 tpa_info->vlan_valid = 1;
220                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
221         }
222
223         if (likely(tpa_start1->flags2 &
224                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
225                 tpa_info->l4_csum_valid = 1;
226 }
227
228 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
229                            struct rx_tpa_start_cmpl *tpa_start,
230                            struct rx_tpa_start_cmpl_hi *tpa_start1)
231 {
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         uint16_t agg_id;
234         uint16_t data_cons;
235         struct bnxt_tpa_info *tpa_info;
236         struct rte_mbuf *mbuf;
237
238         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
239
240         data_cons = tpa_start->opaque;
241         tpa_info = &rxr->tpa_info[agg_id];
242         if (unlikely(data_cons != rxr->rx_next_cons)) {
243                 PMD_DRV_LOG(ERR, "TPA cons %x, expected cons %x\n",
244                             data_cons, rxr->rx_next_cons);
245                 bnxt_sched_ring_reset(rxq);
246                 return;
247         }
248
249         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
250
251         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
252
253         tpa_info->agg_count = 0;
254         tpa_info->mbuf = mbuf;
255         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
256
257         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
258         mbuf->nb_segs = 1;
259         mbuf->next = NULL;
260         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
261         mbuf->data_len = mbuf->pkt_len;
262         mbuf->port = rxq->port_id;
263         mbuf->ol_flags = PKT_RX_LRO;
264
265         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
266
267         if (likely(tpa_info->hash_valid)) {
268                 mbuf->hash.rss = tpa_info->rss_hash;
269                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
270         } else if (tpa_info->cfa_code_valid) {
271                 mbuf->hash.fdir.id = tpa_info->cfa_code;
272                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
273         }
274
275         if (tpa_info->vlan_valid && BNXT_RX_VLAN_STRIP_EN(rxq->bp)) {
276                 mbuf->vlan_tci = tpa_info->vlan;
277                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
278         }
279
280         if (likely(tpa_info->l4_csum_valid))
281                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
282
283         /* recycle next mbuf */
284         data_cons = RING_NEXT(data_cons);
285         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
286
287         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct,
288                                      RING_NEXT(data_cons));
289 }
290
291 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
292                 uint8_t agg_bufs, uint32_t raw_cp_cons)
293 {
294         uint16_t last_cp_cons;
295         struct rx_pkt_cmpl *agg_cmpl;
296
297         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
298         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
299         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
300         return bnxt_cpr_cmp_valid(agg_cmpl, raw_cp_cons,
301                                   cpr->cp_ring_struct->ring_size);
302 }
303
304 /* TPA consume agg buffer out of order, allocate connected data only */
305 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
306 {
307         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
308         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
309         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
310
311         /* TODO batch allocation for better performance */
312         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
313                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
314                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
315                                     raw_next);
316                         break;
317                 }
318                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
319                 rxr->ag_raw_prod = raw_next;
320                 raw_next = RING_NEXT(raw_next);
321                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
322         }
323
324         return 0;
325 }
326
327 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
328                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
329                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
330 {
331         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
332         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
333         int i;
334         uint16_t cp_cons, ag_cons;
335         struct rx_pkt_cmpl *rxcmp;
336         struct rte_mbuf *last = mbuf;
337         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
338
339         for (i = 0; i < agg_buf; i++) {
340                 struct rte_mbuf **ag_buf;
341                 struct rte_mbuf *ag_mbuf;
342
343                 if (is_p5_tpa) {
344                         rxcmp = (void *)&tpa_info->agg_arr[i];
345                 } else {
346                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
347                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
348                         rxcmp = (struct rx_pkt_cmpl *)
349                                         &cpr->cp_desc_ring[cp_cons];
350                 }
351
352 #ifdef BNXT_DEBUG
353                 bnxt_dump_cmpl(cp_cons, rxcmp);
354 #endif
355
356                 ag_cons = rxcmp->opaque;
357                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
358                 ag_buf = &rxr->ag_buf_ring[ag_cons];
359                 ag_mbuf = *ag_buf;
360                 RTE_ASSERT(ag_mbuf != NULL);
361
362                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
363
364                 mbuf->nb_segs++;
365                 mbuf->pkt_len += ag_mbuf->data_len;
366
367                 last->next = ag_mbuf;
368                 last = ag_mbuf;
369
370                 *ag_buf = NULL;
371
372                 /*
373                  * As aggregation buffer consumed out of order in TPA module,
374                  * use bitmap to track freed slots to be allocated and notified
375                  * to NIC
376                  */
377                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
378         }
379         last->next = NULL;
380         bnxt_prod_ag_mbuf(rxq);
381         return 0;
382 }
383
384 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
385                            uint32_t *raw_cons, void *cmp)
386 {
387         struct rx_pkt_cmpl *rxcmp = cmp;
388         uint32_t tmp_raw_cons = *raw_cons;
389         uint8_t cmp_type, agg_bufs = 0;
390
391         cmp_type = CMP_TYPE(rxcmp);
392
393         if (cmp_type == CMPL_BASE_TYPE_RX_L2) {
394                 agg_bufs = BNXT_RX_L2_AGG_BUFS(rxcmp);
395         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
396                 struct rx_tpa_end_cmpl *tpa_end = cmp;
397
398                 if (BNXT_CHIP_P5(bp))
399                         return 0;
400
401                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
402         }
403
404         if (agg_bufs) {
405                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, tmp_raw_cons))
406                         return -EBUSY;
407         }
408         *raw_cons = tmp_raw_cons;
409         return 0;
410 }
411
412 static inline struct rte_mbuf *bnxt_tpa_end(
413                 struct bnxt_rx_queue *rxq,
414                 uint32_t *raw_cp_cons,
415                 struct rx_tpa_end_cmpl *tpa_end,
416                 struct rx_tpa_end_cmpl_hi *tpa_end1)
417 {
418         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
419         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
420         uint16_t agg_id;
421         struct rte_mbuf *mbuf;
422         uint8_t agg_bufs;
423         uint8_t payload_offset;
424         struct bnxt_tpa_info *tpa_info;
425
426         if (unlikely(rxq->in_reset)) {
427                 PMD_DRV_LOG(ERR, "rxq->in_reset: raw_cp_cons:%d\n",
428                             *raw_cp_cons);
429                 bnxt_discard_rx(rxq->bp, cpr, raw_cp_cons, tpa_end);
430                 return NULL;
431         }
432
433         if (BNXT_CHIP_P5(rxq->bp)) {
434                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
435                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
436
437                 th_tpa_end = (void *)tpa_end;
438                 th_tpa_end1 = (void *)tpa_end1;
439                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
440                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
441                 payload_offset = th_tpa_end1->payload_offset;
442         } else {
443                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
444                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
445                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
446                         return NULL;
447                 payload_offset = tpa_end->payload_offset;
448         }
449
450         tpa_info = &rxr->tpa_info[agg_id];
451         mbuf = tpa_info->mbuf;
452         RTE_ASSERT(mbuf != NULL);
453
454         if (agg_bufs) {
455                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
456         }
457         mbuf->l4_len = payload_offset;
458
459         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
460         RTE_ASSERT(new_data != NULL);
461         if (!new_data) {
462                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
463                 return NULL;
464         }
465         tpa_info->mbuf = new_data;
466
467         return mbuf;
468 }
469
470 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
471
472 static void __rte_cold
473 bnxt_init_ptype_table(void)
474 {
475         uint32_t *pt = bnxt_ptype_table;
476         static bool initialized;
477         int ip6, tun, type;
478         uint32_t l3;
479         int i;
480
481         if (initialized)
482                 return;
483
484         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
485                 if (i & BNXT_PTYPE_TBL_VLAN_MSK)
486                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
487                 else
488                         pt[i] = RTE_PTYPE_L2_ETHER;
489
490                 ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
491                 tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
492                 type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
493
494                 if (!tun && !ip6)
495                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
496                 else if (!tun && ip6)
497                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
498                 else if (tun && !ip6)
499                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
500                 else
501                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
502
503                 switch (type) {
504                 case BNXT_PTYPE_TBL_TYPE_ICMP:
505                         if (tun)
506                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
507                         else
508                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
509                         break;
510                 case BNXT_PTYPE_TBL_TYPE_TCP:
511                         if (tun)
512                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
513                         else
514                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
515                         break;
516                 case BNXT_PTYPE_TBL_TYPE_UDP:
517                         if (tun)
518                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
519                         else
520                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
521                         break;
522                 case BNXT_PTYPE_TBL_TYPE_IP:
523                         pt[i] |= l3;
524                         break;
525                 }
526         }
527         initialized = true;
528 }
529
530 static uint32_t
531 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
532 {
533         uint32_t flags_type, flags2;
534         uint8_t index;
535
536         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
537         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
538
539         /* Validate ptype table indexing at build time. */
540         bnxt_check_ptype_constants();
541
542         /*
543          * Index format:
544          *     bit 0: Set if IP tunnel encapsulated packet.
545          *     bit 1: Set if IPv6 packet, clear if IPv4.
546          *     bit 2: Set if VLAN tag present.
547          *     bits 3-6: Four-bit hardware packet type field.
548          */
549         index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
550                 BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
551                 BNXT_CMPL_IP_VER_TO_IDX(flags2);
552
553         return bnxt_ptype_table[index];
554 }
555
556 static void __rte_cold
557 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
558 {
559         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
560         struct rte_eth_conf *dev_conf;
561         bool outer_cksum_enabled;
562         uint64_t offloads;
563         uint32_t *pt;
564         int i;
565
566         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
567         offloads = dev_conf->rxmode.offloads;
568
569         outer_cksum_enabled = !!(offloads & (RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
570                                              RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM));
571
572         /* Initialize ol_flags table. */
573         pt = rxr->ol_flags_table;
574         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
575                 pt[i] = 0;
576
577                 if (BNXT_RX_VLAN_STRIP_EN(rxq->bp)) {
578                         if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
579                                 pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
580                 }
581
582                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
583                         /* Tunnel case. */
584                         if (outer_cksum_enabled) {
585                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
586                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
587
588                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
589                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
590
591                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
592                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
593                         } else {
594                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
595                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
596
597                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
598                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
599                         }
600                 } else {
601                         /* Non-tunnel case. */
602                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
603                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
604
605                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
606                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
607                 }
608         }
609
610         /* Initialize checksum error table. */
611         pt = rxr->ol_flags_err_table;
612         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
613                 pt[i] = 0;
614
615                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
616                         /* Tunnel case. */
617                         if (outer_cksum_enabled) {
618                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
619                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
620
621                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
622                                         pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
623
624                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
625                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
626
627                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
628                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
629                         } else {
630                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
631                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
632
633                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
634                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
635                         }
636                 } else {
637                         /* Non-tunnel case. */
638                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
639                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
640
641                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
642                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
643                 }
644         }
645 }
646
647 static void
648 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
649                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
650 {
651         uint16_t flags_type, errors, flags;
652         uint64_t ol_flags;
653
654         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
655
656         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
657                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
658                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
659                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
660                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
661                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
662
663         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
664         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
665                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
666                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
667                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
668                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
669         errors = (errors >> 4) & flags;
670
671         ol_flags = rxr->ol_flags_table[flags & ~errors];
672
673         if (unlikely(errors)) {
674                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
675                 ol_flags |= rxr->ol_flags_err_table[errors];
676         }
677
678         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
679                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
680                 ol_flags |= PKT_RX_RSS_HASH;
681         }
682
683 #ifdef RTE_LIBRTE_IEEE1588
684         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
685                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
686                 ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
687 #endif
688
689         mbuf->ol_flags = ol_flags;
690 }
691
692 #ifdef RTE_LIBRTE_IEEE1588
693 static void
694 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
695 {
696         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
697         uint64_t last_hwrm_time;
698         uint64_t pkt_time = 0;
699
700         if (!BNXT_CHIP_P5(bp) || !ptp)
701                 return;
702
703         /* On Thor, Rx timestamps are provided directly in the
704          * Rx completion records to the driver. Only 32 bits of
705          * the timestamp is present in the completion. Driver needs
706          * to read the current 48 bit free running timer using the
707          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
708          * from the HWRM response with the lower 32 bits in the
709          * Rx completion to produce the 48 bit timestamp for the Rx packet
710          */
711         last_hwrm_time = ptp->current_time;
712         pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
713         if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
714                 /* timer has rolled over */
715                 pkt_time += (1ULL << 32);
716         }
717         ptp->rx_timestamp = pkt_time;
718 }
719 #endif
720
721 static uint32_t
722 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
723                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
724 {
725         uint32_t cfa_code;
726         uint32_t meta_fmt;
727         uint32_t meta;
728         bool gfid = false;
729         uint32_t mark_id;
730         uint32_t flags2;
731         uint32_t gfid_support = 0;
732         int rc;
733
734         if (BNXT_GFID_ENABLED(bp))
735                 gfid_support = 1;
736
737         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
738         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
739         meta = rte_le_to_cpu_32(rxcmp1->metadata);
740
741         /*
742          * The flags field holds extra bits of info from [6:4]
743          * which indicate if the flow is in TCAM or EM or EEM
744          */
745         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
746                 BNXT_CFA_META_FMT_SHFT;
747
748         switch (meta_fmt) {
749         case 0:
750                 if (gfid_support) {
751                         /* Not an LFID or GFID, a flush cmd. */
752                         goto skip_mark;
753                 } else {
754                         /* LFID mode, no vlan scenario */
755                         gfid = false;
756                 }
757                 break;
758         case 4:
759         case 5:
760                 /*
761                  * EM/TCAM case
762                  * Assume that EM doesn't support Mark due to GFID
763                  * collisions with EEM.  Simply return without setting the mark
764                  * in the mbuf.
765                  */
766                 if (BNXT_CFA_META_EM_TEST(meta)) {
767                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
768                         gfid = true;
769                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
770                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
771                 } else {
772                         /*
773                          * It is a TCAM entry, so it is an LFID.
774                          * The TCAM IDX and Mode can also be determined
775                          * by decoding the meta_data. We are not
776                          * using these for now.
777                          */
778                 }
779                 break;
780         case 6:
781         case 7:
782                 /* EEM Case, only using gfid in EEM for now. */
783                 gfid = true;
784
785                 /*
786                  * For EEM flows, The first part of cfa_code is 16 bits.
787                  * The second part is embedded in the
788                  * metadata field from bit 19 onwards. The driver needs to
789                  * ignore the first 19 bits of metadata and use the next 12
790                  * bits as higher 12 bits of cfa_code.
791                  */
792                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
793                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
794                 break;
795         default:
796                 /* For other values, the cfa_code is assumed to be an LFID. */
797                 break;
798         }
799
800         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
801                                   cfa_code, vfr_flag, &mark_id);
802         if (!rc) {
803                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
804                 if (vfr_flag && *vfr_flag)
805                         return mark_id;
806                 /* Got the mark, write it to the mbuf and return */
807                 mbuf->hash.fdir.hi = mark_id;
808                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
809                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
810                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
811                 return mark_id;
812         }
813
814 skip_mark:
815         mbuf->hash.fdir.hi = 0;
816         mbuf->hash.fdir.id = 0;
817
818         return 0;
819 }
820
821 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
822                            struct rx_pkt_cmpl_hi *rxcmp1,
823                            struct rte_mbuf *mbuf)
824 {
825         uint32_t cfa_code = 0;
826         uint8_t meta_fmt = 0;
827         uint16_t flags2 = 0;
828         uint32_t meta =  0;
829
830         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
831         if (!cfa_code)
832                 return;
833
834         if (cfa_code && !bp->mark_table[cfa_code].valid)
835                 return;
836
837         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
838         meta = rte_le_to_cpu_32(rxcmp1->metadata);
839         if (meta) {
840                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
841
842                 /* The flags field holds extra bits of info from [6:4]
843                  * which indicate if the flow is in TCAM or EM or EEM
844                  */
845                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
846                            BNXT_CFA_META_FMT_SHFT;
847
848                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
849                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
850                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
851                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
852                  */
853                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
854         }
855
856         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
857         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
858 }
859
860 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
861                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
862 {
863         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
864         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
865         struct rx_pkt_cmpl *rxcmp;
866         struct rx_pkt_cmpl_hi *rxcmp1;
867         uint32_t tmp_raw_cons = *raw_cons;
868         uint16_t cons, raw_prod, cp_cons =
869             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
870         struct rte_mbuf *mbuf;
871         int rc = 0;
872         uint8_t agg_buf = 0;
873         uint16_t cmp_type;
874         uint32_t vfr_flag = 0, mark_id = 0;
875         struct bnxt *bp = rxq->bp;
876
877         rxcmp = (struct rx_pkt_cmpl *)
878             &cpr->cp_desc_ring[cp_cons];
879
880         cmp_type = CMP_TYPE(rxcmp);
881
882         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
883                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
884                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
885                 struct bnxt_tpa_info *tpa_info;
886
887                 tpa_info = &rxr->tpa_info[agg_id];
888                 RTE_ASSERT(tpa_info->agg_count < 16);
889                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
890                 rc = -EINVAL; /* Continue w/o new mbuf */
891                 goto next_rx;
892         }
893
894         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
895         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
896         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
897
898         if (!bnxt_cpr_cmp_valid(rxcmp1, tmp_raw_cons,
899                                 cpr->cp_ring_struct->ring_size))
900                 return -EBUSY;
901
902         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
903             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
904                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
905                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
906                 rc = -EINVAL; /* Continue w/o new mbuf */
907                 goto next_rx;
908         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
909                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
910                                    (struct rx_tpa_end_cmpl *)rxcmp,
911                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
912                 if (unlikely(!mbuf))
913                         return -EBUSY;
914                 *rx_pkt = mbuf;
915                 goto next_rx;
916         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
917                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
918                 rc = -EINVAL;
919                 goto next_rx;
920         }
921
922         agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
923         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
924                 return -EBUSY;
925
926         raw_prod = rxr->rx_raw_prod;
927
928         cons = rxcmp->opaque;
929         if (unlikely(cons != rxr->rx_next_cons)) {
930                 bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
931                 PMD_DRV_LOG(ERR, "RX cons %x != expected cons %x\n",
932                             cons, rxr->rx_next_cons);
933                 bnxt_sched_ring_reset(rxq);
934                 rc = -EBUSY;
935                 goto next_rx;
936         }
937         mbuf = bnxt_consume_rx_buf(rxr, cons);
938         if (mbuf == NULL)
939                 return -EBUSY;
940
941         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
942         mbuf->nb_segs = 1;
943         mbuf->next = NULL;
944         mbuf->pkt_len = rxcmp->len;
945         mbuf->data_len = mbuf->pkt_len;
946         mbuf->port = rxq->port_id;
947
948 #ifdef RTE_LIBRTE_IEEE1588
949         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
950                       RX_PKT_CMPL_FLAGS_MASK) ==
951                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
952                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
953 #endif
954
955         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
956                 bnxt_parse_csum_v2(mbuf, rxcmp1);
957                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
958                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
959                 /* TODO Add support for cfa_code parsing */
960                 goto reuse_rx_mbuf;
961         }
962
963         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
964
965         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
966
967         bnxt_set_vlan(rxcmp1, mbuf);
968
969         if (BNXT_TRUFLOW_EN(bp))
970                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
971                                                     &vfr_flag);
972         else
973                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
974
975 reuse_rx_mbuf:
976         if (agg_buf)
977                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
978
979 #ifdef BNXT_DEBUG
980         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
981                 /* Re-install the mbuf back to the rx ring */
982                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
983
984                 rc = -EIO;
985                 goto next_rx;
986         }
987 #endif
988         /*
989          * TODO: Redesign this....
990          * If the allocation fails, the packet does not get received.
991          * Simply returning this will result in slowly falling behind
992          * on the producer ring buffers.
993          * Instead, "filling up" the producer just before ringing the
994          * doorbell could be a better solution since it will let the
995          * producer ring starve until memory is available again pushing
996          * the drops into hardware and getting them out of the driver
997          * allowing recovery to a full producer ring.
998          *
999          * This could also help with cache usage by preventing per-packet
1000          * calls in favour of a tight loop with the same function being called
1001          * in it.
1002          */
1003         raw_prod = RING_NEXT(raw_prod);
1004         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
1005                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
1006                             raw_prod);
1007                 rc = -ENOMEM;
1008                 goto rx;
1009         }
1010         rxr->rx_raw_prod = raw_prod;
1011         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
1012
1013         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
1014             vfr_flag) {
1015                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
1016                 /* Now return an error so that nb_rx_pkts is not
1017                  * incremented.
1018                  * This packet was meant to be given to the representor.
1019                  * So no need to account the packet and give it to
1020                  * parent Rx burst function.
1021                  */
1022                 rc = -ENODEV;
1023                 goto next_rx;
1024         }
1025         /*
1026          * All MBUFs are allocated with the same size under DPDK,
1027          * no optimization for rx_copy_thresh
1028          */
1029 rx:
1030         *rx_pkt = mbuf;
1031
1032 next_rx:
1033
1034         *raw_cons = tmp_raw_cons;
1035
1036         return rc;
1037 }
1038
1039 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1040                                uint16_t nb_pkts)
1041 {
1042         struct bnxt_rx_queue *rxq = rx_queue;
1043         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1044         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1045         uint16_t rx_raw_prod = rxr->rx_raw_prod;
1046         uint16_t ag_raw_prod = rxr->ag_raw_prod;
1047         uint32_t raw_cons = cpr->cp_raw_cons;
1048         bool alloc_failed = false;
1049         uint32_t cons;
1050         int nb_rx_pkts = 0;
1051         int nb_rep_rx_pkts = 0;
1052         struct rx_pkt_cmpl *rxcmp;
1053         int rc = 0;
1054         bool evt = false;
1055
1056         if (unlikely(is_bnxt_in_error(rxq->bp)))
1057                 return 0;
1058
1059         /* If Rx Q was stopped return */
1060         if (unlikely(!rxq->rx_started))
1061                 return 0;
1062
1063 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1064         /*
1065          * Replenish buffers if needed when a transition has been made from
1066          * vector- to non-vector- receive processing.
1067          */
1068         while (unlikely(rxq->rxrearm_nb)) {
1069                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
1070                         rxr->rx_raw_prod = rxq->rxrearm_start;
1071                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1072                         rxq->rxrearm_start++;
1073                         rxq->rxrearm_nb--;
1074                 } else {
1075                         /* Retry allocation on next call. */
1076                         break;
1077                 }
1078         }
1079 #endif
1080
1081         /* Handle RX burst request */
1082         while (1) {
1083                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1084                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1085
1086                 if (!bnxt_cpr_cmp_valid(rxcmp, raw_cons,
1087                                         cpr->cp_ring_struct->ring_size))
1088                         break;
1089                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
1090                         PMD_DRV_LOG(ERR, "Rx flush done\n");
1091                 } else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
1092                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
1093                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
1094                         if (!rc)
1095                                 nb_rx_pkts++;
1096                         else if (rc == -EBUSY)  /* partial completion */
1097                                 break;
1098                         else if (rc == -ENODEV) /* completion for representor */
1099                                 nb_rep_rx_pkts++;
1100                         else if (rc == -ENOMEM) {
1101                                 nb_rx_pkts++;
1102                                 alloc_failed = true;
1103                         }
1104                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1105                         evt =
1106                         bnxt_event_hwrm_resp_handler(rxq->bp,
1107                                                      (struct cmpl_base *)rxcmp);
1108                         /* If the async event is Fatal error, return */
1109                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1110                                 goto done;
1111                 }
1112
1113                 raw_cons = NEXT_RAW_CMP(raw_cons);
1114                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1115                         break;
1116         }
1117
1118         cpr->cp_raw_cons = raw_cons;
1119         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1120                 /*
1121                  * For PMD, there is no need to keep on pushing to REARM
1122                  * the doorbell if there are no new completions
1123                  */
1124                 goto done;
1125         }
1126
1127         /* Ring the completion queue doorbell. */
1128         bnxt_db_cq(cpr);
1129
1130         /* Ring the receive descriptor doorbell. */
1131         if (rx_raw_prod != rxr->rx_raw_prod)
1132                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1133
1134         /* Ring the AGG ring DB */
1135         if (ag_raw_prod != rxr->ag_raw_prod)
1136                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1137
1138         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1139         if (alloc_failed) {
1140                 int cnt;
1141
1142                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1143                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1144                         struct rte_mbuf **rx_buf;
1145                         uint16_t ndx;
1146
1147                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1148                         rx_buf = &rxr->rx_buf_ring[ndx];
1149
1150                         /* Buffer already allocated for this index. */
1151                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1152                                 continue;
1153
1154                         /* This slot is empty. Alloc buffer for Rx */
1155                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1156                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1157                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1158                         } else {
1159                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1160                                 break;
1161                         }
1162                 }
1163         }
1164
1165 done:
1166         return nb_rx_pkts;
1167 }
1168
1169 /*
1170  * Dummy DPDK callback for RX.
1171  *
1172  * This function is used to temporarily replace the real callback during
1173  * unsafe control operations on the queue, or in case of error.
1174  */
1175 uint16_t
1176 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1177                      struct rte_mbuf **rx_pkts __rte_unused,
1178                      uint16_t nb_pkts __rte_unused)
1179 {
1180         return 0;
1181 }
1182
1183 void bnxt_free_rx_rings(struct bnxt *bp)
1184 {
1185         int i;
1186         struct bnxt_rx_queue *rxq;
1187
1188         if (!bp->rx_queues)
1189                 return;
1190
1191         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1192                 rxq = bp->rx_queues[i];
1193                 if (!rxq)
1194                         continue;
1195
1196                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1197                 rte_free(rxq->rx_ring->rx_ring_struct);
1198
1199                 /* Free the Aggregator ring */
1200                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1201                 rte_free(rxq->rx_ring->ag_ring_struct);
1202                 rxq->rx_ring->ag_ring_struct = NULL;
1203
1204                 rte_free(rxq->rx_ring);
1205
1206                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1207                 rte_free(rxq->cp_ring->cp_ring_struct);
1208                 rte_free(rxq->cp_ring);
1209
1210                 rte_memzone_free(rxq->mz);
1211                 rxq->mz = NULL;
1212
1213                 rte_free(rxq);
1214                 bp->rx_queues[i] = NULL;
1215         }
1216 }
1217
1218 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1219 {
1220         struct bnxt_cp_ring_info *cpr;
1221         struct bnxt_rx_ring_info *rxr;
1222         struct bnxt_ring *ring;
1223
1224         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1225
1226         if (rxq->rx_ring != NULL) {
1227                 rxr = rxq->rx_ring;
1228         } else {
1229
1230                 rxr = rte_zmalloc_socket("bnxt_rx_ring",
1231                                          sizeof(struct bnxt_rx_ring_info),
1232                                          RTE_CACHE_LINE_SIZE, socket_id);
1233                 if (rxr == NULL)
1234                         return -ENOMEM;
1235                 rxq->rx_ring = rxr;
1236         }
1237
1238         if (rxr->rx_ring_struct == NULL) {
1239                 ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1240                                            sizeof(struct bnxt_ring),
1241                                            RTE_CACHE_LINE_SIZE, socket_id);
1242                 if (ring == NULL)
1243                         return -ENOMEM;
1244                 rxr->rx_ring_struct = ring;
1245                 ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1246                 ring->ring_mask = ring->ring_size - 1;
1247                 ring->bd = (void *)rxr->rx_desc_ring;
1248                 ring->bd_dma = rxr->rx_desc_mapping;
1249
1250                 /* Allocate extra rx ring entries for vector rx. */
1251                 ring->vmem_size = sizeof(struct rte_mbuf *) *
1252                                   (ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
1253
1254                 ring->vmem = (void **)&rxr->rx_buf_ring;
1255                 ring->fw_ring_id = INVALID_HW_RING_ID;
1256         }
1257
1258         if (rxq->cp_ring != NULL) {
1259                 cpr = rxq->cp_ring;
1260         } else {
1261                 cpr = rte_zmalloc_socket("bnxt_rx_ring",
1262                                          sizeof(struct bnxt_cp_ring_info),
1263                                          RTE_CACHE_LINE_SIZE, socket_id);
1264                 if (cpr == NULL)
1265                         return -ENOMEM;
1266                 rxq->cp_ring = cpr;
1267         }
1268
1269         if (cpr->cp_ring_struct == NULL) {
1270                 ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1271                                            sizeof(struct bnxt_ring),
1272                                            RTE_CACHE_LINE_SIZE, socket_id);
1273                 if (ring == NULL)
1274                         return -ENOMEM;
1275                 cpr->cp_ring_struct = ring;
1276
1277                 /* Allocate two completion slots per entry in desc ring. */
1278                 ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1279                 if (bnxt_need_agg_ring(rxq->bp->eth_dev))
1280                         ring->ring_size *= AGG_RING_SIZE_FACTOR;
1281
1282                 ring->ring_size = rte_align32pow2(ring->ring_size);
1283                 ring->ring_mask = ring->ring_size - 1;
1284                 ring->bd = (void *)cpr->cp_desc_ring;
1285                 ring->bd_dma = cpr->cp_desc_mapping;
1286                 ring->vmem_size = 0;
1287                 ring->vmem = NULL;
1288                 ring->fw_ring_id = INVALID_HW_RING_ID;
1289         }
1290
1291         if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
1292                 return 0;
1293
1294         rxr = rxq->rx_ring;
1295         /* Allocate Aggregator rings */
1296         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1297                                    sizeof(struct bnxt_ring),
1298                                    RTE_CACHE_LINE_SIZE, socket_id);
1299         if (ring == NULL)
1300                 return -ENOMEM;
1301         rxr->ag_ring_struct = ring;
1302         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1303                                           AGG_RING_SIZE_FACTOR);
1304         ring->ring_mask = ring->ring_size - 1;
1305         ring->bd = (void *)rxr->ag_desc_ring;
1306         ring->bd_dma = rxr->ag_desc_mapping;
1307         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1308         ring->vmem = (void **)&rxr->ag_buf_ring;
1309         ring->fw_ring_id = INVALID_HW_RING_ID;
1310
1311         return 0;
1312 }
1313
1314 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1315                             uint16_t len)
1316 {
1317         uint32_t j;
1318         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1319
1320         if (!rx_bd_ring)
1321                 return;
1322         for (j = 0; j < ring->ring_size; j++) {
1323                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1324                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1325                 rx_bd_ring[j].opaque = j;
1326         }
1327 }
1328
1329 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1330 {
1331         struct bnxt_rx_ring_info *rxr;
1332         struct bnxt_ring *ring;
1333         uint32_t raw_prod, type;
1334         unsigned int i;
1335         uint16_t size;
1336
1337         /* Initialize packet type table. */
1338         bnxt_init_ptype_table();
1339
1340         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1341         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1342
1343         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1344
1345         rxr = rxq->rx_ring;
1346         ring = rxr->rx_ring_struct;
1347         bnxt_init_rxbds(ring, type, size);
1348
1349         /* Initialize offload flags parsing table. */
1350         bnxt_init_ol_flags_tables(rxq);
1351
1352         raw_prod = rxr->rx_raw_prod;
1353         for (i = 0; i < ring->ring_size; i++) {
1354                 if (unlikely(!rxr->rx_buf_ring[i])) {
1355                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1356                                 PMD_DRV_LOG(WARNING,
1357                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1358                                             rxq->queue_id, i, ring->ring_size);
1359                                 break;
1360                         }
1361                 }
1362                 rxr->rx_raw_prod = raw_prod;
1363                 raw_prod = RING_NEXT(raw_prod);
1364         }
1365
1366         /* Initialize dummy mbuf pointers for vector mode rx. */
1367         for (i = ring->ring_size;
1368              i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
1369                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1370         }
1371
1372         if (!bnxt_need_agg_ring(rxq->bp->eth_dev))
1373                 return 0;
1374
1375         ring = rxr->ag_ring_struct;
1376         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1377         bnxt_init_rxbds(ring, type, size);
1378         raw_prod = rxr->ag_raw_prod;
1379
1380         for (i = 0; i < ring->ring_size; i++) {
1381                 if (unlikely(!rxr->ag_buf_ring[i])) {
1382                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1383                                 PMD_DRV_LOG(WARNING,
1384                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1385                                             rxq->queue_id, i, ring->ring_size);
1386                                 break;
1387                         }
1388                 }
1389                 rxr->ag_raw_prod = raw_prod;
1390                 raw_prod = RING_NEXT(raw_prod);
1391         }
1392         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1393
1394         if (rxr->tpa_info) {
1395                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1396
1397                 for (i = 0; i < max_aggs; i++) {
1398                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1399                                 rxr->tpa_info[i].mbuf =
1400                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1401                                 if (!rxr->tpa_info[i].mbuf) {
1402                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1403                                         return -ENOMEM;
1404                                 }
1405                         }
1406                 }
1407         }
1408         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1409
1410         /* Explicitly reset this driver internal tracker on a ring init */
1411         rxr->rx_next_cons = 0;
1412
1413         return 0;
1414 }
1415
1416 /* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
1417  * The mbufs will not be freed in this call.
1418  * They will be freed during ring free as a part of mem cleanup.
1419  */
1420 int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
1421 {
1422         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
1423         uint32_t ring_mask = cp_ring_struct->ring_mask;
1424         uint32_t raw_cons = cpr->cp_raw_cons;
1425         struct rx_pkt_cmpl *rxcmp;
1426         uint32_t nb_rx = 0;
1427         uint32_t cons;
1428
1429         do {
1430                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1431                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1432
1433                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
1434                         return 1;
1435
1436                 raw_cons = NEXT_RAW_CMP(raw_cons);
1437                 nb_rx++;
1438         } while (nb_rx < ring_mask);
1439
1440         cpr->cp_raw_cons = raw_cons;
1441
1442         /* Ring the completion queue doorbell. */
1443         bnxt_db_cq(cpr);
1444
1445         return 0;
1446 }