net/bnxt: fix Rx queue start/stop
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_cpr.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 /*
25  * RX Ring handling
26  */
27
28 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
29 {
30         struct rte_mbuf *data;
31
32         data = rte_mbuf_raw_alloc(mb);
33
34         return data;
35 }
36
37 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
38                                      struct bnxt_rx_ring_info *rxr,
39                                      uint16_t prod)
40 {
41         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
42         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
43         struct rte_mbuf *mbuf;
44
45         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
46         if (!mbuf) {
47                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
48                 return -ENOMEM;
49         }
50
51         rx_buf->mbuf = mbuf;
52         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
53
54         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
55
56         return 0;
57 }
58
59 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
60                                      struct bnxt_rx_ring_info *rxr,
61                                      uint16_t prod)
62 {
63         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
64         struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
65         struct rte_mbuf *mbuf;
66
67         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
68         if (!mbuf) {
69                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
70                 return -ENOMEM;
71         }
72
73         if (rxbd == NULL)
74                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
75         if (rx_buf == NULL)
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
77
78
79         rx_buf->mbuf = mbuf;
80         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
81
82         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
83
84         return 0;
85 }
86
87 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
88                                struct rte_mbuf *mbuf)
89 {
90         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
91         struct bnxt_sw_rx_bd *prod_rx_buf;
92         struct rx_prod_pkt_bd *prod_bd;
93
94         prod_rx_buf = &rxr->rx_buf_ring[prod];
95
96         RTE_ASSERT(prod_rx_buf->mbuf == NULL);
97         RTE_ASSERT(mbuf != NULL);
98
99         prod_rx_buf->mbuf = mbuf;
100
101         prod_bd = &rxr->rx_desc_ring[prod];
102
103         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
104
105         rxr->rx_prod = prod;
106 }
107
108 static inline
109 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
110                                      uint16_t cons)
111 {
112         struct bnxt_sw_rx_bd *cons_rx_buf;
113         struct rte_mbuf *mbuf;
114
115         cons_rx_buf = &rxr->rx_buf_ring[cons];
116         RTE_ASSERT(cons_rx_buf->mbuf != NULL);
117         mbuf = cons_rx_buf->mbuf;
118         cons_rx_buf->mbuf = NULL;
119         return mbuf;
120 }
121
122 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
123                            struct rx_tpa_start_cmpl *tpa_start,
124                            struct rx_tpa_start_cmpl_hi *tpa_start1)
125 {
126         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
127         uint8_t agg_id = rte_le_to_cpu_32(tpa_start->agg_id &
128                 RX_TPA_START_CMPL_AGG_ID_MASK) >> RX_TPA_START_CMPL_AGG_ID_SFT;
129         uint16_t data_cons;
130         struct bnxt_tpa_info *tpa_info;
131         struct rte_mbuf *mbuf;
132
133         data_cons = tpa_start->opaque;
134         tpa_info = &rxr->tpa_info[agg_id];
135
136         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
137
138         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
139
140         tpa_info->mbuf = mbuf;
141         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
142
143         mbuf->nb_segs = 1;
144         mbuf->next = NULL;
145         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
146         mbuf->data_len = mbuf->pkt_len;
147         mbuf->port = rxq->port_id;
148         mbuf->ol_flags = PKT_RX_LRO;
149         if (likely(tpa_start->flags_type &
150                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
151                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
152                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
153         } else {
154                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
155                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
156         }
157         if (tpa_start1->flags2 &
158             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
159                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
160                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
161         }
162         if (likely(tpa_start1->flags2 &
163                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
164                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
165
166         /* recycle next mbuf */
167         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
168         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
169 }
170
171 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
172                 uint8_t agg_bufs, uint32_t raw_cp_cons)
173 {
174         uint16_t last_cp_cons;
175         struct rx_pkt_cmpl *agg_cmpl;
176
177         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
178         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
179         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
180         cpr->valid = FLIP_VALID(raw_cp_cons,
181                                 cpr->cp_ring_struct->ring_mask,
182                                 cpr->valid);
183         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
184 }
185
186 /* TPA consume agg buffer out of order, allocate connected data only */
187 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
188 {
189         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
190         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
191
192         /* TODO batch allocation for better performance */
193         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
194                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
195                         PMD_DRV_LOG(ERR,
196                                 "agg mbuf alloc failed: prod=0x%x\n", next);
197                         break;
198                 }
199                 rte_bitmap_clear(rxr->ag_bitmap, next);
200                 rxr->ag_prod = next;
201                 next = RING_NEXT(rxr->ag_ring_struct, next);
202         }
203
204         return 0;
205 }
206
207 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
208                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
209                          uint8_t agg_buf)
210 {
211         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
212         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
213         int i;
214         uint16_t cp_cons, ag_cons;
215         struct rx_pkt_cmpl *rxcmp;
216         struct rte_mbuf *last = mbuf;
217
218         for (i = 0; i < agg_buf; i++) {
219                 struct bnxt_sw_rx_bd *ag_buf;
220                 struct rte_mbuf *ag_mbuf;
221                 *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
222                 cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
223                 rxcmp = (struct rx_pkt_cmpl *)
224                                         &cpr->cp_desc_ring[cp_cons];
225
226 #ifdef BNXT_DEBUG
227                 bnxt_dump_cmpl(cp_cons, rxcmp);
228 #endif
229
230                 ag_cons = rxcmp->opaque;
231                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
232                 ag_buf = &rxr->ag_buf_ring[ag_cons];
233                 ag_mbuf = ag_buf->mbuf;
234                 RTE_ASSERT(ag_mbuf != NULL);
235
236                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
237
238                 mbuf->nb_segs++;
239                 mbuf->pkt_len += ag_mbuf->data_len;
240
241                 last->next = ag_mbuf;
242                 last = ag_mbuf;
243
244                 ag_buf->mbuf = NULL;
245
246                 /*
247                  * As aggregation buffer consumed out of order in TPA module,
248                  * use bitmap to track freed slots to be allocated and notified
249                  * to NIC
250                  */
251                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
252         }
253         bnxt_prod_ag_mbuf(rxq);
254         return 0;
255 }
256
257 static inline struct rte_mbuf *bnxt_tpa_end(
258                 struct bnxt_rx_queue *rxq,
259                 uint32_t *raw_cp_cons,
260                 struct rx_tpa_end_cmpl *tpa_end,
261                 struct rx_tpa_end_cmpl_hi *tpa_end1 __rte_unused)
262 {
263         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
264         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
265         uint8_t agg_id = (tpa_end->agg_id & RX_TPA_END_CMPL_AGG_ID_MASK)
266                         >> RX_TPA_END_CMPL_AGG_ID_SFT;
267         struct rte_mbuf *mbuf;
268         uint8_t agg_bufs;
269         struct bnxt_tpa_info *tpa_info;
270
271         tpa_info = &rxr->tpa_info[agg_id];
272         mbuf = tpa_info->mbuf;
273         RTE_ASSERT(mbuf != NULL);
274
275         rte_prefetch0(mbuf);
276         agg_bufs = (rte_le_to_cpu_32(tpa_end->agg_bufs_v1) &
277                 RX_TPA_END_CMPL_AGG_BUFS_MASK) >> RX_TPA_END_CMPL_AGG_BUFS_SFT;
278         if (agg_bufs) {
279                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
280                         return NULL;
281                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs);
282         }
283         mbuf->l4_len = tpa_end->payload_offset;
284
285         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
286         RTE_ASSERT(new_data != NULL);
287         if (!new_data) {
288                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
289                 return NULL;
290         }
291         tpa_info->mbuf = new_data;
292
293         return mbuf;
294 }
295
296 static uint32_t
297 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
298 {
299         uint32_t l3, pkt_type = 0;
300         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
301         uint32_t flags_type;
302
303         vlan = !!(rxcmp1->flags2 &
304                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
305         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
306
307         t_ipcs = !!(rxcmp1->flags2 &
308                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
309         ip6 = !!(rxcmp1->flags2 &
310                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
311
312         flags_type = rxcmp->flags_type &
313                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
314
315         if (!t_ipcs && !ip6)
316                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
317         else if (!t_ipcs && ip6)
318                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
319         else if (t_ipcs && !ip6)
320                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
321         else
322                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
323
324         switch (flags_type) {
325         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
326                 if (!t_ipcs)
327                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
328                 else
329                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
330                 break;
331
332         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
333                 if (!t_ipcs)
334                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
335                 else
336                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
337                 break;
338
339         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
340                 if (!t_ipcs)
341                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
342                 else
343                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
344                 break;
345
346         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
347                 pkt_type |= l3;
348                 break;
349         }
350
351         return pkt_type;
352 }
353
354 #ifdef RTE_LIBRTE_IEEE1588
355 static void
356 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
357 {
358         uint64_t systime_cycles = 0;
359
360         if (!BNXT_CHIP_THOR(bp))
361                 return;
362
363         /* On Thor, Rx timestamps are provided directly in the
364          * Rx completion records to the driver. Only 32 bits of
365          * the timestamp is present in the completion. Driver needs
366          * to read the current 48 bit free running timer using the
367          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
368          * from the HWRM response with the lower 32 bits in the
369          * Rx completion to produce the 48 bit timestamp for the Rx packet
370          */
371         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
372                                 &systime_cycles);
373         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
374         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
375 }
376 #endif
377
378 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
379                             struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
380 {
381         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
382         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
383         struct rx_pkt_cmpl *rxcmp;
384         struct rx_pkt_cmpl_hi *rxcmp1;
385         uint32_t tmp_raw_cons = *raw_cons;
386         uint16_t cons, prod, cp_cons =
387             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
388         struct rte_mbuf *mbuf;
389         int rc = 0;
390         uint8_t agg_buf = 0;
391         uint16_t cmp_type;
392         uint32_t flags2_f = 0;
393         uint16_t flags_type;
394
395         rxcmp = (struct rx_pkt_cmpl *)
396             &cpr->cp_desc_ring[cp_cons];
397
398         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
399         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
400         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
401
402         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
403                 return -EBUSY;
404
405         cpr->valid = FLIP_VALID(cp_cons,
406                                 cpr->cp_ring_struct->ring_mask,
407                                 cpr->valid);
408
409         cmp_type = CMP_TYPE(rxcmp);
410         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
411                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
412                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
413                 rc = -EINVAL; /* Continue w/o new mbuf */
414                 goto next_rx;
415         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
416                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
417                                    (struct rx_tpa_end_cmpl *)rxcmp,
418                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
419                 if (unlikely(!mbuf))
420                         return -EBUSY;
421                 *rx_pkt = mbuf;
422                 goto next_rx;
423         } else if (cmp_type != 0x11) {
424                 rc = -EINVAL;
425                 goto next_rx;
426         }
427
428         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
429                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
430         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
431                 return -EBUSY;
432
433         prod = rxr->rx_prod;
434
435         cons = rxcmp->opaque;
436         mbuf = bnxt_consume_rx_buf(rxr, cons);
437         if (mbuf == NULL)
438                 return -EBUSY;
439
440         rte_prefetch0(mbuf);
441
442         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
443         mbuf->nb_segs = 1;
444         mbuf->next = NULL;
445         mbuf->pkt_len = rxcmp->len;
446         mbuf->data_len = mbuf->pkt_len;
447         mbuf->port = rxq->port_id;
448         mbuf->ol_flags = 0;
449
450         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
451         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
452                 mbuf->hash.rss = rxcmp->rss_hash;
453                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
454         } else {
455                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
456                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
457         }
458 #ifdef RTE_LIBRTE_IEEE1588
459         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
460                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
461                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
462                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
463         }
464 #endif
465         if (agg_buf)
466                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf);
467
468         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
469                 mbuf->vlan_tci = rxcmp1->metadata &
470                         (RX_PKT_CMPL_METADATA_VID_MASK |
471                         RX_PKT_CMPL_METADATA_DE |
472                         RX_PKT_CMPL_METADATA_PRI_MASK);
473                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
474         }
475
476         flags2_f = flags2_0xf(rxcmp1);
477         /* IP Checksum */
478         if (unlikely(((IS_IP_NONTUNNEL_PKT(flags2_f)) &&
479                       (RX_CMP_IP_CS_ERROR(rxcmp1))) ||
480                      (IS_IP_TUNNEL_PKT(flags2_f) &&
481                       (RX_CMP_IP_OUTER_CS_ERROR(rxcmp1))))) {
482                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
483         } else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) {
484                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
485         } else {
486                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
487         }
488
489         /* L4 Checksum */
490         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
491                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
492                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
493                 else
494                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
495         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
496                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
497                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
498                 else
499                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
500                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
501                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
502                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
503                                     (flags2_f))) {
504                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
505                 } else {
506                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
507                 }
508         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
509                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
510         }
511
512         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
513
514 #ifdef BNXT_DEBUG
515         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
516                 /* Re-install the mbuf back to the rx ring */
517                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
518
519                 rc = -EIO;
520                 goto next_rx;
521         }
522 #endif
523         /*
524          * TODO: Redesign this....
525          * If the allocation fails, the packet does not get received.
526          * Simply returning this will result in slowly falling behind
527          * on the producer ring buffers.
528          * Instead, "filling up" the producer just before ringing the
529          * doorbell could be a better solution since it will let the
530          * producer ring starve until memory is available again pushing
531          * the drops into hardware and getting them out of the driver
532          * allowing recovery to a full producer ring.
533          *
534          * This could also help with cache usage by preventing per-packet
535          * calls in favour of a tight loop with the same function being called
536          * in it.
537          */
538         prod = RING_NEXT(rxr->rx_ring_struct, prod);
539         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
540                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
541                 rc = -ENOMEM;
542                 goto rx;
543         }
544         rxr->rx_prod = prod;
545         /*
546          * All MBUFs are allocated with the same size under DPDK,
547          * no optimization for rx_copy_thresh
548          */
549 rx:
550         *rx_pkt = mbuf;
551
552 next_rx:
553
554         *raw_cons = tmp_raw_cons;
555
556         return rc;
557 }
558
559 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
560                                uint16_t nb_pkts)
561 {
562         struct bnxt_rx_queue *rxq = rx_queue;
563         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
564         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
565         uint32_t raw_cons = cpr->cp_raw_cons;
566         uint32_t cons;
567         int nb_rx_pkts = 0;
568         struct rx_pkt_cmpl *rxcmp;
569         uint16_t prod = rxr->rx_prod;
570         uint16_t ag_prod = rxr->ag_prod;
571         int rc = 0;
572         bool evt = false;
573
574         if (unlikely(is_bnxt_in_error(rxq->bp)))
575                 return 0;
576
577         /* If Rx Q was stopped return */
578         if (unlikely(!rxq->rx_started ||
579                      !rte_spinlock_trylock(&rxq->lock)))
580                 return 0;
581
582         /* Handle RX burst request */
583         while (1) {
584                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
585                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
586                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
587
588                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
589                         break;
590                 cpr->valid = FLIP_VALID(cons,
591                                         cpr->cp_ring_struct->ring_mask,
592                                         cpr->valid);
593
594                 /* TODO: Avoid magic numbers... */
595                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
596                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
597                         if (likely(!rc) || rc == -ENOMEM)
598                                 nb_rx_pkts++;
599                         if (rc == -EBUSY)       /* partial completion */
600                                 break;
601                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
602                         evt =
603                         bnxt_event_hwrm_resp_handler(rxq->bp,
604                                                      (struct cmpl_base *)rxcmp);
605                 }
606
607                 raw_cons = NEXT_RAW_CMP(raw_cons);
608                 if (nb_rx_pkts == nb_pkts || evt)
609                         break;
610                 /* Post some Rx buf early in case of larger burst processing */
611                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
612                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
613         }
614
615         cpr->cp_raw_cons = raw_cons;
616         if (!nb_rx_pkts && !evt) {
617                 /*
618                  * For PMD, there is no need to keep on pushing to REARM
619                  * the doorbell if there are no new completions
620                  */
621                 goto done;
622         }
623
624         if (prod != rxr->rx_prod)
625                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
626
627         /* Ring the AGG ring DB */
628         if (ag_prod != rxr->ag_prod)
629                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
630
631         bnxt_db_cq(cpr);
632
633         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
634         if (rc == -ENOMEM) {
635                 int i;
636
637                 for (i = prod; i <= nb_rx_pkts;
638                         i = RING_NEXT(rxr->rx_ring_struct, i)) {
639                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
640
641                         /* Buffer already allocated for this index. */
642                         if (rx_buf->mbuf != NULL)
643                                 continue;
644
645                         /* This slot is empty. Alloc buffer for Rx */
646                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
647                                 rxr->rx_prod = i;
648                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
649                         } else {
650                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
651                                 break;
652                         }
653                 }
654         }
655
656 done:
657         rte_spinlock_unlock(&rxq->lock);
658
659         return nb_rx_pkts;
660 }
661
662 /*
663  * Dummy DPDK callback for RX.
664  *
665  * This function is used to temporarily replace the real callback during
666  * unsafe control operations on the queue, or in case of error.
667  */
668 uint16_t
669 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
670                      struct rte_mbuf **rx_pkts __rte_unused,
671                      uint16_t nb_pkts __rte_unused)
672 {
673         return 0;
674 }
675
676 void bnxt_free_rx_rings(struct bnxt *bp)
677 {
678         int i;
679         struct bnxt_rx_queue *rxq;
680
681         if (!bp->rx_queues)
682                 return;
683
684         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
685                 rxq = bp->rx_queues[i];
686                 if (!rxq)
687                         continue;
688
689                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
690                 rte_free(rxq->rx_ring->rx_ring_struct);
691
692                 /* Free the Aggregator ring */
693                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
694                 rte_free(rxq->rx_ring->ag_ring_struct);
695                 rxq->rx_ring->ag_ring_struct = NULL;
696
697                 rte_free(rxq->rx_ring);
698
699                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
700                 rte_free(rxq->cp_ring->cp_ring_struct);
701                 rte_free(rxq->cp_ring);
702
703                 rte_free(rxq);
704                 bp->rx_queues[i] = NULL;
705         }
706 }
707
708 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
709 {
710         struct bnxt_cp_ring_info *cpr;
711         struct bnxt_cp_ring_info *nqr;
712         struct bnxt_rx_ring_info *rxr;
713         struct bnxt_ring *ring;
714
715         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
716
717         rxr = rte_zmalloc_socket("bnxt_rx_ring",
718                                  sizeof(struct bnxt_rx_ring_info),
719                                  RTE_CACHE_LINE_SIZE, socket_id);
720         if (rxr == NULL)
721                 return -ENOMEM;
722         rxq->rx_ring = rxr;
723
724         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
725                                    sizeof(struct bnxt_ring),
726                                    RTE_CACHE_LINE_SIZE, socket_id);
727         if (ring == NULL)
728                 return -ENOMEM;
729         rxr->rx_ring_struct = ring;
730         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
731         ring->ring_mask = ring->ring_size - 1;
732         ring->bd = (void *)rxr->rx_desc_ring;
733         ring->bd_dma = rxr->rx_desc_mapping;
734         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
735         ring->vmem = (void **)&rxr->rx_buf_ring;
736
737         cpr = rte_zmalloc_socket("bnxt_rx_ring",
738                                  sizeof(struct bnxt_cp_ring_info),
739                                  RTE_CACHE_LINE_SIZE, socket_id);
740         if (cpr == NULL)
741                 return -ENOMEM;
742         rxq->cp_ring = cpr;
743
744         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
745                                    sizeof(struct bnxt_ring),
746                                    RTE_CACHE_LINE_SIZE, socket_id);
747         if (ring == NULL)
748                 return -ENOMEM;
749         cpr->cp_ring_struct = ring;
750         ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
751                                           (2 + AGG_RING_SIZE_FACTOR));
752         ring->ring_mask = ring->ring_size - 1;
753         ring->bd = (void *)cpr->cp_desc_ring;
754         ring->bd_dma = cpr->cp_desc_mapping;
755         ring->vmem_size = 0;
756         ring->vmem = NULL;
757
758         if (BNXT_HAS_NQ(rxq->bp)) {
759                 nqr = rte_zmalloc_socket("bnxt_rx_ring_cq",
760                                          sizeof(struct bnxt_cp_ring_info),
761                                          RTE_CACHE_LINE_SIZE, socket_id);
762                 if (nqr == NULL)
763                         return -ENOMEM;
764
765                 rxq->nq_ring = nqr;
766
767                 ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
768                                           sizeof(struct bnxt_ring),
769                                           RTE_CACHE_LINE_SIZE, socket_id);
770                 if (ring == NULL)
771                         return -ENOMEM;
772
773                 nqr->cp_ring_struct = ring;
774                 ring->ring_size =
775                         rte_align32pow2(rxr->rx_ring_struct->ring_size *
776                                         (2 + AGG_RING_SIZE_FACTOR));
777                 ring->ring_mask = ring->ring_size - 1;
778                 ring->bd = (void *)nqr->cp_desc_ring;
779                 ring->bd_dma = nqr->cp_desc_mapping;
780                 ring->vmem_size = 0;
781                 ring->vmem = NULL;
782         }
783
784         /* Allocate Aggregator rings */
785         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
786                                    sizeof(struct bnxt_ring),
787                                    RTE_CACHE_LINE_SIZE, socket_id);
788         if (ring == NULL)
789                 return -ENOMEM;
790         rxr->ag_ring_struct = ring;
791         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
792                                           AGG_RING_SIZE_FACTOR);
793         ring->ring_mask = ring->ring_size - 1;
794         ring->bd = (void *)rxr->ag_desc_ring;
795         ring->bd_dma = rxr->ag_desc_mapping;
796         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
797         ring->vmem = (void **)&rxr->ag_buf_ring;
798
799         return 0;
800 }
801
802 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
803                             uint16_t len)
804 {
805         uint32_t j;
806         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
807
808         if (!rx_bd_ring)
809                 return;
810         for (j = 0; j < ring->ring_size; j++) {
811                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
812                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
813                 rx_bd_ring[j].opaque = j;
814         }
815 }
816
817 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
818 {
819         struct bnxt_rx_ring_info *rxr;
820         struct bnxt_ring *ring;
821         uint32_t prod, type;
822         unsigned int i;
823         uint16_t size;
824
825         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
826         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
827
828         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
829
830         rxr = rxq->rx_ring;
831         ring = rxr->rx_ring_struct;
832         bnxt_init_rxbds(ring, type, size);
833
834         prod = rxr->rx_prod;
835         for (i = 0; i < ring->ring_size; i++) {
836                 if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
837                         PMD_DRV_LOG(WARNING,
838                                 "init'ed rx ring %d with %d/%d mbufs only\n",
839                                 rxq->queue_id, i, ring->ring_size);
840                         break;
841                 }
842                 rxr->rx_prod = prod;
843                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
844         }
845
846         ring = rxr->ag_ring_struct;
847         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
848         bnxt_init_rxbds(ring, type, size);
849         prod = rxr->ag_prod;
850
851         for (i = 0; i < ring->ring_size; i++) {
852                 if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
853                         PMD_DRV_LOG(WARNING,
854                         "init'ed AG ring %d with %d/%d mbufs only\n",
855                         rxq->queue_id, i, ring->ring_size);
856                         break;
857                 }
858                 rxr->ag_prod = prod;
859                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
860         }
861         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
862
863         if (rxr->tpa_info) {
864                 for (i = 0; i < BNXT_TPA_MAX; i++) {
865                         rxr->tpa_info[i].mbuf =
866                                 __bnxt_alloc_rx_data(rxq->mb_pool);
867                         if (!rxr->tpa_info[i].mbuf) {
868                                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
869                                 return -ENOMEM;
870                         }
871                 }
872         }
873         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
874
875         return 0;
876 }