net/bnxt: use dedicated CPR for async events
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_cpr.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20
21 /*
22  * RX Ring handling
23  */
24
25 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
26 {
27         struct rte_mbuf *data;
28
29         data = rte_mbuf_raw_alloc(mb);
30
31         return data;
32 }
33
34 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
35                                      struct bnxt_rx_ring_info *rxr,
36                                      uint16_t prod)
37 {
38         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
39         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
40         struct rte_mbuf *mbuf;
41
42         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
43         if (!mbuf) {
44                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
45                 return -ENOMEM;
46         }
47
48         rx_buf->mbuf = mbuf;
49         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
50
51         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
52
53         return 0;
54 }
55
56 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
57                                      struct bnxt_rx_ring_info *rxr,
58                                      uint16_t prod)
59 {
60         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
61         struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
62         struct rte_mbuf *mbuf;
63
64         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
65         if (!mbuf) {
66                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
67                 return -ENOMEM;
68         }
69
70         if (rxbd == NULL)
71                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
72         if (rx_buf == NULL)
73                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
74
75
76         rx_buf->mbuf = mbuf;
77         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
78
79         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
80
81         return 0;
82 }
83
84 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
85                                struct rte_mbuf *mbuf)
86 {
87         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
88         struct bnxt_sw_rx_bd *prod_rx_buf;
89         struct rx_prod_pkt_bd *prod_bd;
90
91         prod_rx_buf = &rxr->rx_buf_ring[prod];
92
93         RTE_ASSERT(prod_rx_buf->mbuf == NULL);
94         RTE_ASSERT(mbuf != NULL);
95
96         prod_rx_buf->mbuf = mbuf;
97
98         prod_bd = &rxr->rx_desc_ring[prod];
99
100         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
101
102         rxr->rx_prod = prod;
103 }
104
105 static inline
106 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
107                                      uint16_t cons)
108 {
109         struct bnxt_sw_rx_bd *cons_rx_buf;
110         struct rte_mbuf *mbuf;
111
112         cons_rx_buf = &rxr->rx_buf_ring[cons];
113         RTE_ASSERT(cons_rx_buf->mbuf != NULL);
114         mbuf = cons_rx_buf->mbuf;
115         cons_rx_buf->mbuf = NULL;
116         return mbuf;
117 }
118
119 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
120                            struct rx_tpa_start_cmpl *tpa_start,
121                            struct rx_tpa_start_cmpl_hi *tpa_start1)
122 {
123         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
124         uint8_t agg_id = rte_le_to_cpu_32(tpa_start->agg_id &
125                 RX_TPA_START_CMPL_AGG_ID_MASK) >> RX_TPA_START_CMPL_AGG_ID_SFT;
126         uint16_t data_cons;
127         struct bnxt_tpa_info *tpa_info;
128         struct rte_mbuf *mbuf;
129
130         data_cons = tpa_start->opaque;
131         tpa_info = &rxr->tpa_info[agg_id];
132
133         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
134
135         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
136
137         tpa_info->mbuf = mbuf;
138         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
139
140         mbuf->nb_segs = 1;
141         mbuf->next = NULL;
142         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
143         mbuf->data_len = mbuf->pkt_len;
144         mbuf->port = rxq->port_id;
145         mbuf->ol_flags = PKT_RX_LRO;
146         if (likely(tpa_start->flags_type &
147                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
148                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
149                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
150         } else {
151                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
152                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
153         }
154         if (tpa_start1->flags2 &
155             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
156                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
157                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
158         }
159         if (likely(tpa_start1->flags2 &
160                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
161                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
162
163         /* recycle next mbuf */
164         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
165         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
166 }
167
168 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
169                 uint8_t agg_bufs, uint32_t raw_cp_cons)
170 {
171         uint16_t last_cp_cons;
172         struct rx_pkt_cmpl *agg_cmpl;
173
174         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
175         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
176         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
177         cpr->valid = FLIP_VALID(raw_cp_cons,
178                                 cpr->cp_ring_struct->ring_mask,
179                                 cpr->valid);
180         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
181 }
182
183 /* TPA consume agg buffer out of order, allocate connected data only */
184 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
185 {
186         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
187         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
188
189         /* TODO batch allocation for better performance */
190         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
191                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
192                         PMD_DRV_LOG(ERR,
193                                 "agg mbuf alloc failed: prod=0x%x\n", next);
194                         break;
195                 }
196                 rte_bitmap_clear(rxr->ag_bitmap, next);
197                 rxr->ag_prod = next;
198                 next = RING_NEXT(rxr->ag_ring_struct, next);
199         }
200
201         return 0;
202 }
203
204 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
205                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
206                          uint8_t agg_buf)
207 {
208         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
209         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
210         int i;
211         uint16_t cp_cons, ag_cons;
212         struct rx_pkt_cmpl *rxcmp;
213         struct rte_mbuf *last = mbuf;
214
215         for (i = 0; i < agg_buf; i++) {
216                 struct bnxt_sw_rx_bd *ag_buf;
217                 struct rte_mbuf *ag_mbuf;
218                 *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
219                 cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
220                 rxcmp = (struct rx_pkt_cmpl *)
221                                         &cpr->cp_desc_ring[cp_cons];
222
223 #ifdef BNXT_DEBUG
224                 bnxt_dump_cmpl(cp_cons, rxcmp);
225 #endif
226
227                 ag_cons = rxcmp->opaque;
228                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
229                 ag_buf = &rxr->ag_buf_ring[ag_cons];
230                 ag_mbuf = ag_buf->mbuf;
231                 RTE_ASSERT(ag_mbuf != NULL);
232
233                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
234
235                 mbuf->nb_segs++;
236                 mbuf->pkt_len += ag_mbuf->data_len;
237
238                 last->next = ag_mbuf;
239                 last = ag_mbuf;
240
241                 ag_buf->mbuf = NULL;
242
243                 /*
244                  * As aggregation buffer consumed out of order in TPA module,
245                  * use bitmap to track freed slots to be allocated and notified
246                  * to NIC
247                  */
248                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
249         }
250         bnxt_prod_ag_mbuf(rxq);
251         return 0;
252 }
253
254 static inline struct rte_mbuf *bnxt_tpa_end(
255                 struct bnxt_rx_queue *rxq,
256                 uint32_t *raw_cp_cons,
257                 struct rx_tpa_end_cmpl *tpa_end,
258                 struct rx_tpa_end_cmpl_hi *tpa_end1 __rte_unused)
259 {
260         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
261         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
262         uint8_t agg_id = (tpa_end->agg_id & RX_TPA_END_CMPL_AGG_ID_MASK)
263                         >> RX_TPA_END_CMPL_AGG_ID_SFT;
264         struct rte_mbuf *mbuf;
265         uint8_t agg_bufs;
266         struct bnxt_tpa_info *tpa_info;
267
268         tpa_info = &rxr->tpa_info[agg_id];
269         mbuf = tpa_info->mbuf;
270         RTE_ASSERT(mbuf != NULL);
271
272         rte_prefetch0(mbuf);
273         agg_bufs = (rte_le_to_cpu_32(tpa_end->agg_bufs_v1) &
274                 RX_TPA_END_CMPL_AGG_BUFS_MASK) >> RX_TPA_END_CMPL_AGG_BUFS_SFT;
275         if (agg_bufs) {
276                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
277                         return NULL;
278                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs);
279         }
280         mbuf->l4_len = tpa_end->payload_offset;
281
282         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
283         RTE_ASSERT(new_data != NULL);
284         if (!new_data) {
285                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
286                 return NULL;
287         }
288         tpa_info->mbuf = new_data;
289
290         return mbuf;
291 }
292
293 static uint32_t
294 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
295 {
296         uint32_t l3, pkt_type = 0;
297         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
298         uint32_t flags_type;
299
300         vlan = !!(rxcmp1->flags2 &
301                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
302         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
303
304         t_ipcs = !!(rxcmp1->flags2 &
305                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
306         ip6 = !!(rxcmp1->flags2 &
307                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
308
309         flags_type = rxcmp->flags_type &
310                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
311
312         if (!t_ipcs && !ip6)
313                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
314         else if (!t_ipcs && ip6)
315                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
316         else if (t_ipcs && !ip6)
317                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
318         else
319                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
320
321         switch (flags_type) {
322         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
323                 if (!t_ipcs)
324                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
325                 else
326                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
327                 break;
328
329         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
330                 if (!t_ipcs)
331                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
332                 else
333                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
334                 break;
335
336         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
337                 if (!t_ipcs)
338                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
339                 else
340                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
341                 break;
342
343         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
344                 pkt_type |= l3;
345                 break;
346         }
347
348         return pkt_type;
349 }
350
351 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
352                             struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
353 {
354         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
355         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
356         struct rx_pkt_cmpl *rxcmp;
357         struct rx_pkt_cmpl_hi *rxcmp1;
358         uint32_t tmp_raw_cons = *raw_cons;
359         uint16_t cons, prod, cp_cons =
360             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
361         struct rte_mbuf *mbuf;
362         int rc = 0;
363         uint8_t agg_buf = 0;
364         uint16_t cmp_type;
365         uint32_t flags2_f = 0;
366
367         rxcmp = (struct rx_pkt_cmpl *)
368             &cpr->cp_desc_ring[cp_cons];
369
370         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
371         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
372         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
373
374         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
375                 return -EBUSY;
376
377         cpr->valid = FLIP_VALID(cp_cons,
378                                 cpr->cp_ring_struct->ring_mask,
379                                 cpr->valid);
380
381         cmp_type = CMP_TYPE(rxcmp);
382         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
383                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
384                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
385                 rc = -EINVAL; /* Continue w/o new mbuf */
386                 goto next_rx;
387         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
388                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
389                                    (struct rx_tpa_end_cmpl *)rxcmp,
390                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
391                 if (unlikely(!mbuf))
392                         return -EBUSY;
393                 *rx_pkt = mbuf;
394                 goto next_rx;
395         } else if (cmp_type != 0x11) {
396                 rc = -EINVAL;
397                 goto next_rx;
398         }
399
400         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
401                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
402         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
403                 return -EBUSY;
404
405         prod = rxr->rx_prod;
406
407         cons = rxcmp->opaque;
408         mbuf = bnxt_consume_rx_buf(rxr, cons);
409         if (mbuf == NULL)
410                 return -EBUSY;
411
412         rte_prefetch0(mbuf);
413
414         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
415         mbuf->nb_segs = 1;
416         mbuf->next = NULL;
417         mbuf->pkt_len = rxcmp->len;
418         mbuf->data_len = mbuf->pkt_len;
419         mbuf->port = rxq->port_id;
420         mbuf->ol_flags = 0;
421         if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
422                 mbuf->hash.rss = rxcmp->rss_hash;
423                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
424         } else {
425                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
426                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
427         }
428
429         if ((rxcmp->flags_type & rte_cpu_to_le_16(RX_PKT_CMPL_FLAGS_MASK)) ==
430              RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)
431                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
432
433         if (agg_buf)
434                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf);
435
436         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
437                 mbuf->vlan_tci = rxcmp1->metadata &
438                         (RX_PKT_CMPL_METADATA_VID_MASK |
439                         RX_PKT_CMPL_METADATA_DE |
440                         RX_PKT_CMPL_METADATA_PRI_MASK);
441                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
442         }
443
444         flags2_f = flags2_0xf(rxcmp1);
445         /* IP Checksum */
446         if (unlikely(((IS_IP_NONTUNNEL_PKT(flags2_f)) &&
447                       (RX_CMP_IP_CS_ERROR(rxcmp1))) ||
448                      (IS_IP_TUNNEL_PKT(flags2_f) &&
449                       (RX_CMP_IP_OUTER_CS_ERROR(rxcmp1))))) {
450                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
451         } else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) {
452                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
453         } else {
454                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
455         }
456
457         /* L4 Checksum */
458         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
459                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
460                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
461                 else
462                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
463         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
464                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
465                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
466                 else
467                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
468                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
469                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
470                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
471                                     (flags2_f))) {
472                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
473                 } else {
474                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
475                 }
476         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
477                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
478         }
479
480         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
481
482 #ifdef BNXT_DEBUG
483         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
484                 /* Re-install the mbuf back to the rx ring */
485                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
486
487                 rc = -EIO;
488                 goto next_rx;
489         }
490 #endif
491         /*
492          * TODO: Redesign this....
493          * If the allocation fails, the packet does not get received.
494          * Simply returning this will result in slowly falling behind
495          * on the producer ring buffers.
496          * Instead, "filling up" the producer just before ringing the
497          * doorbell could be a better solution since it will let the
498          * producer ring starve until memory is available again pushing
499          * the drops into hardware and getting them out of the driver
500          * allowing recovery to a full producer ring.
501          *
502          * This could also help with cache usage by preventing per-packet
503          * calls in favour of a tight loop with the same function being called
504          * in it.
505          */
506         prod = RING_NEXT(rxr->rx_ring_struct, prod);
507         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
508                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
509                 rc = -ENOMEM;
510                 goto rx;
511         }
512         rxr->rx_prod = prod;
513         /*
514          * All MBUFs are allocated with the same size under DPDK,
515          * no optimization for rx_copy_thresh
516          */
517 rx:
518         *rx_pkt = mbuf;
519
520 next_rx:
521
522         *raw_cons = tmp_raw_cons;
523
524         return rc;
525 }
526
527 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
528                                uint16_t nb_pkts)
529 {
530         struct bnxt_rx_queue *rxq = rx_queue;
531         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
532         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
533         uint32_t raw_cons = cpr->cp_raw_cons;
534         uint32_t cons;
535         int nb_rx_pkts = 0;
536         struct rx_pkt_cmpl *rxcmp;
537         uint16_t prod = rxr->rx_prod;
538         uint16_t ag_prod = rxr->ag_prod;
539         int rc = 0;
540         bool evt = false;
541
542         /* If Rx Q was stopped return. RxQ0 cannot be stopped. */
543         if (unlikely(((rxq->rx_deferred_start ||
544                        !rte_spinlock_trylock(&rxq->lock)) &&
545                       rxq->queue_id)))
546                 return 0;
547
548         /* Handle RX burst request */
549         while (1) {
550                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
551                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
552                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
553
554                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
555                         break;
556                 cpr->valid = FLIP_VALID(cons,
557                                         cpr->cp_ring_struct->ring_mask,
558                                         cpr->valid);
559
560                 /* TODO: Avoid magic numbers... */
561                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
562                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
563                         if (likely(!rc) || rc == -ENOMEM)
564                                 nb_rx_pkts++;
565                         if (rc == -EBUSY)       /* partial completion */
566                                 break;
567                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
568                         evt =
569                         bnxt_event_hwrm_resp_handler(rxq->bp,
570                                                      (struct cmpl_base *)rxcmp);
571                 }
572
573                 raw_cons = NEXT_RAW_CMP(raw_cons);
574                 if (nb_rx_pkts == nb_pkts || evt)
575                         break;
576                 /* Post some Rx buf early in case of larger burst processing */
577                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
578                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
579         }
580
581         cpr->cp_raw_cons = raw_cons;
582         if (!nb_rx_pkts && !evt) {
583                 /*
584                  * For PMD, there is no need to keep on pushing to REARM
585                  * the doorbell if there are no new completions
586                  */
587                 goto done;
588         }
589
590         if (prod != rxr->rx_prod)
591                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
592
593         /* Ring the AGG ring DB */
594         if (ag_prod != rxr->ag_prod)
595                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
596
597         bnxt_db_cq(cpr);
598
599         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
600         if (rc == -ENOMEM) {
601                 int i;
602
603                 for (i = prod; i <= nb_rx_pkts;
604                         i = RING_NEXT(rxr->rx_ring_struct, i)) {
605                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
606
607                         /* Buffer already allocated for this index. */
608                         if (rx_buf->mbuf != NULL)
609                                 continue;
610
611                         /* This slot is empty. Alloc buffer for Rx */
612                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
613                                 rxr->rx_prod = i;
614                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
615                         } else {
616                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
617                                 break;
618                         }
619                 }
620         }
621
622 done:
623         rte_spinlock_unlock(&rxq->lock);
624
625         return nb_rx_pkts;
626 }
627
628 void bnxt_free_rx_rings(struct bnxt *bp)
629 {
630         int i;
631         struct bnxt_rx_queue *rxq;
632
633         if (!bp->rx_queues)
634                 return;
635
636         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
637                 rxq = bp->rx_queues[i];
638                 if (!rxq)
639                         continue;
640
641                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
642                 rte_free(rxq->rx_ring->rx_ring_struct);
643
644                 /* Free the Aggregator ring */
645                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
646                 rte_free(rxq->rx_ring->ag_ring_struct);
647                 rxq->rx_ring->ag_ring_struct = NULL;
648
649                 rte_free(rxq->rx_ring);
650
651                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
652                 rte_free(rxq->cp_ring->cp_ring_struct);
653                 rte_free(rxq->cp_ring);
654
655                 rte_free(rxq);
656                 bp->rx_queues[i] = NULL;
657         }
658 }
659
660 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
661 {
662         struct bnxt_cp_ring_info *cpr;
663         struct bnxt_cp_ring_info *nqr;
664         struct bnxt_rx_ring_info *rxr;
665         struct bnxt_ring *ring;
666
667         rxq->rx_buf_use_size = BNXT_MAX_MTU + RTE_ETHER_HDR_LEN +
668                 RTE_ETHER_CRC_LEN + (2 * VLAN_TAG_SIZE);
669         rxq->rx_buf_size = rxq->rx_buf_use_size + sizeof(struct rte_mbuf);
670
671         rxr = rte_zmalloc_socket("bnxt_rx_ring",
672                                  sizeof(struct bnxt_rx_ring_info),
673                                  RTE_CACHE_LINE_SIZE, socket_id);
674         if (rxr == NULL)
675                 return -ENOMEM;
676         rxq->rx_ring = rxr;
677
678         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
679                                    sizeof(struct bnxt_ring),
680                                    RTE_CACHE_LINE_SIZE, socket_id);
681         if (ring == NULL)
682                 return -ENOMEM;
683         rxr->rx_ring_struct = ring;
684         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
685         ring->ring_mask = ring->ring_size - 1;
686         ring->bd = (void *)rxr->rx_desc_ring;
687         ring->bd_dma = rxr->rx_desc_mapping;
688         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
689         ring->vmem = (void **)&rxr->rx_buf_ring;
690
691         cpr = rte_zmalloc_socket("bnxt_rx_ring",
692                                  sizeof(struct bnxt_cp_ring_info),
693                                  RTE_CACHE_LINE_SIZE, socket_id);
694         if (cpr == NULL)
695                 return -ENOMEM;
696         rxq->cp_ring = cpr;
697
698         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
699                                    sizeof(struct bnxt_ring),
700                                    RTE_CACHE_LINE_SIZE, socket_id);
701         if (ring == NULL)
702                 return -ENOMEM;
703         cpr->cp_ring_struct = ring;
704         ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
705                                           (2 + AGG_RING_SIZE_FACTOR));
706         ring->ring_mask = ring->ring_size - 1;
707         ring->bd = (void *)cpr->cp_desc_ring;
708         ring->bd_dma = cpr->cp_desc_mapping;
709         ring->vmem_size = 0;
710         ring->vmem = NULL;
711
712         if (BNXT_HAS_NQ(rxq->bp)) {
713                 nqr = rte_zmalloc_socket("bnxt_rx_ring_cq",
714                                          sizeof(struct bnxt_cp_ring_info),
715                                          RTE_CACHE_LINE_SIZE, socket_id);
716                 if (nqr == NULL)
717                         return -ENOMEM;
718
719                 rxq->nq_ring = nqr;
720
721                 ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
722                                           sizeof(struct bnxt_ring),
723                                           RTE_CACHE_LINE_SIZE, socket_id);
724                 if (ring == NULL)
725                         return -ENOMEM;
726
727                 nqr->cp_ring_struct = ring;
728                 ring->ring_size =
729                         rte_align32pow2(rxr->rx_ring_struct->ring_size *
730                                         (2 + AGG_RING_SIZE_FACTOR));
731                 ring->ring_mask = ring->ring_size - 1;
732                 ring->bd = (void *)nqr->cp_desc_ring;
733                 ring->bd_dma = nqr->cp_desc_mapping;
734                 ring->vmem_size = 0;
735                 ring->vmem = NULL;
736         }
737
738         /* Allocate Aggregator rings */
739         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
740                                    sizeof(struct bnxt_ring),
741                                    RTE_CACHE_LINE_SIZE, socket_id);
742         if (ring == NULL)
743                 return -ENOMEM;
744         rxr->ag_ring_struct = ring;
745         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
746                                           AGG_RING_SIZE_FACTOR);
747         ring->ring_mask = ring->ring_size - 1;
748         ring->bd = (void *)rxr->ag_desc_ring;
749         ring->bd_dma = rxr->ag_desc_mapping;
750         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
751         ring->vmem = (void **)&rxr->ag_buf_ring;
752
753         return 0;
754 }
755
756 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
757                             uint16_t len)
758 {
759         uint32_t j;
760         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
761
762         if (!rx_bd_ring)
763                 return;
764         for (j = 0; j < ring->ring_size; j++) {
765                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
766                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
767                 rx_bd_ring[j].opaque = j;
768         }
769 }
770
771 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
772 {
773         struct bnxt_rx_ring_info *rxr;
774         struct bnxt_ring *ring;
775         uint32_t prod, type;
776         unsigned int i;
777         uint16_t size;
778
779         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
780         if (rxq->rx_buf_use_size <= size)
781                 size = rxq->rx_buf_use_size;
782
783         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
784
785         rxr = rxq->rx_ring;
786         ring = rxr->rx_ring_struct;
787         bnxt_init_rxbds(ring, type, size);
788
789         prod = rxr->rx_prod;
790         for (i = 0; i < ring->ring_size; i++) {
791                 if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
792                         PMD_DRV_LOG(WARNING,
793                                 "init'ed rx ring %d with %d/%d mbufs only\n",
794                                 rxq->queue_id, i, ring->ring_size);
795                         break;
796                 }
797                 rxr->rx_prod = prod;
798                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
799         }
800
801         ring = rxr->ag_ring_struct;
802         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
803         bnxt_init_rxbds(ring, type, size);
804         prod = rxr->ag_prod;
805
806         for (i = 0; i < ring->ring_size; i++) {
807                 if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
808                         PMD_DRV_LOG(WARNING,
809                         "init'ed AG ring %d with %d/%d mbufs only\n",
810                         rxq->queue_id, i, ring->ring_size);
811                         break;
812                 }
813                 rxr->ag_prod = prod;
814                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
815         }
816         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
817
818         if (rxr->tpa_info) {
819                 for (i = 0; i < BNXT_TPA_MAX; i++) {
820                         rxr->tpa_info[i].mbuf =
821                                 __bnxt_alloc_rx_data(rxq->mb_pool);
822                         if (!rxr->tpa_info[i].mbuf) {
823                                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
824                                 return -ENOMEM;
825                         }
826                 }
827         }
828         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
829
830         return 0;
831 }