net/bnxt: fix memory leak during queue restart
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_ring.h"
16 #include "bnxt_rxr.h"
17 #include "bnxt_rxq.h"
18 #include "hsi_struct_def_dpdk.h"
19 #ifdef RTE_LIBRTE_IEEE1588
20 #include "bnxt_hwrm.h"
21 #endif
22
23 #include <bnxt_tf_common.h>
24 #include <ulp_mark_mgr.h>
25
26 /*
27  * RX Ring handling
28  */
29
30 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
31 {
32         struct rte_mbuf *data;
33
34         data = rte_mbuf_raw_alloc(mb);
35
36         return data;
37 }
38
39 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
40                                      struct bnxt_rx_ring_info *rxr,
41                                      uint16_t prod)
42 {
43         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
44         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
45         struct rte_mbuf *mbuf;
46
47         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
48         if (!mbuf) {
49                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
50                 return -ENOMEM;
51         }
52
53         rx_buf->mbuf = mbuf;
54         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
55
56         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
57
58         return 0;
59 }
60
61 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
62                                      struct bnxt_rx_ring_info *rxr,
63                                      uint16_t prod)
64 {
65         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
66         struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
67         struct rte_mbuf *mbuf;
68
69         if (rxbd == NULL) {
70                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
71                 return -EINVAL;
72         }
73
74         if (rx_buf == NULL) {
75                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
76                 return -EINVAL;
77         }
78
79         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
80         if (!mbuf) {
81                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
82                 return -ENOMEM;
83         }
84
85         rx_buf->mbuf = mbuf;
86         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
87
88         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
89
90         return 0;
91 }
92
93 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
94                                struct rte_mbuf *mbuf)
95 {
96         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
97         struct bnxt_sw_rx_bd *prod_rx_buf;
98         struct rx_prod_pkt_bd *prod_bd;
99
100         prod_rx_buf = &rxr->rx_buf_ring[prod];
101
102         RTE_ASSERT(prod_rx_buf->mbuf == NULL);
103         RTE_ASSERT(mbuf != NULL);
104
105         prod_rx_buf->mbuf = mbuf;
106
107         prod_bd = &rxr->rx_desc_ring[prod];
108
109         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
110
111         rxr->rx_prod = prod;
112 }
113
114 static inline
115 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
116                                      uint16_t cons)
117 {
118         struct bnxt_sw_rx_bd *cons_rx_buf;
119         struct rte_mbuf *mbuf;
120
121         cons_rx_buf = &rxr->rx_buf_ring[cons];
122         RTE_ASSERT(cons_rx_buf->mbuf != NULL);
123         mbuf = cons_rx_buf->mbuf;
124         cons_rx_buf->mbuf = NULL;
125         return mbuf;
126 }
127
128 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
129                            struct rx_tpa_start_cmpl *tpa_start,
130                            struct rx_tpa_start_cmpl_hi *tpa_start1)
131 {
132         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
133         uint16_t agg_id;
134         uint16_t data_cons;
135         struct bnxt_tpa_info *tpa_info;
136         struct rte_mbuf *mbuf;
137
138         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
139
140         data_cons = tpa_start->opaque;
141         tpa_info = &rxr->tpa_info[agg_id];
142
143         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
144
145         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
146
147         tpa_info->agg_count = 0;
148         tpa_info->mbuf = mbuf;
149         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
150
151         mbuf->nb_segs = 1;
152         mbuf->next = NULL;
153         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
154         mbuf->data_len = mbuf->pkt_len;
155         mbuf->port = rxq->port_id;
156         mbuf->ol_flags = PKT_RX_LRO;
157         if (likely(tpa_start->flags_type &
158                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
159                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
160                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
161         } else {
162                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
163                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
164         }
165         if (tpa_start1->flags2 &
166             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
167                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
168                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
169         }
170         if (likely(tpa_start1->flags2 &
171                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
172                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
173
174         /* recycle next mbuf */
175         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
176         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
177 }
178
179 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
180                 uint8_t agg_bufs, uint32_t raw_cp_cons)
181 {
182         uint16_t last_cp_cons;
183         struct rx_pkt_cmpl *agg_cmpl;
184
185         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
186         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
187         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
188         cpr->valid = FLIP_VALID(raw_cp_cons,
189                                 cpr->cp_ring_struct->ring_mask,
190                                 cpr->valid);
191         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
192 }
193
194 /* TPA consume agg buffer out of order, allocate connected data only */
195 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
196 {
197         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
198         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
199
200         /* TODO batch allocation for better performance */
201         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
202                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
203                         PMD_DRV_LOG(ERR,
204                                 "agg mbuf alloc failed: prod=0x%x\n", next);
205                         break;
206                 }
207                 rte_bitmap_clear(rxr->ag_bitmap, next);
208                 rxr->ag_prod = next;
209                 next = RING_NEXT(rxr->ag_ring_struct, next);
210         }
211
212         return 0;
213 }
214
215 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
216                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
217                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
218 {
219         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
220         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
221         int i;
222         uint16_t cp_cons, ag_cons;
223         struct rx_pkt_cmpl *rxcmp;
224         struct rte_mbuf *last = mbuf;
225         bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
226
227         for (i = 0; i < agg_buf; i++) {
228                 struct bnxt_sw_rx_bd *ag_buf;
229                 struct rte_mbuf *ag_mbuf;
230
231                 if (is_thor_tpa) {
232                         rxcmp = (void *)&tpa_info->agg_arr[i];
233                 } else {
234                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
235                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
236                         rxcmp = (struct rx_pkt_cmpl *)
237                                         &cpr->cp_desc_ring[cp_cons];
238                 }
239
240 #ifdef BNXT_DEBUG
241                 bnxt_dump_cmpl(cp_cons, rxcmp);
242 #endif
243
244                 ag_cons = rxcmp->opaque;
245                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
246                 ag_buf = &rxr->ag_buf_ring[ag_cons];
247                 ag_mbuf = ag_buf->mbuf;
248                 RTE_ASSERT(ag_mbuf != NULL);
249
250                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
251
252                 mbuf->nb_segs++;
253                 mbuf->pkt_len += ag_mbuf->data_len;
254
255                 last->next = ag_mbuf;
256                 last = ag_mbuf;
257
258                 ag_buf->mbuf = NULL;
259
260                 /*
261                  * As aggregation buffer consumed out of order in TPA module,
262                  * use bitmap to track freed slots to be allocated and notified
263                  * to NIC
264                  */
265                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
266         }
267         bnxt_prod_ag_mbuf(rxq);
268         return 0;
269 }
270
271 static inline struct rte_mbuf *bnxt_tpa_end(
272                 struct bnxt_rx_queue *rxq,
273                 uint32_t *raw_cp_cons,
274                 struct rx_tpa_end_cmpl *tpa_end,
275                 struct rx_tpa_end_cmpl_hi *tpa_end1)
276 {
277         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
278         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
279         uint16_t agg_id;
280         struct rte_mbuf *mbuf;
281         uint8_t agg_bufs;
282         uint8_t payload_offset;
283         struct bnxt_tpa_info *tpa_info;
284
285         if (BNXT_CHIP_THOR(rxq->bp)) {
286                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
287                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
288
289                 th_tpa_end = (void *)tpa_end;
290                 th_tpa_end1 = (void *)tpa_end1;
291                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
292                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
293                 payload_offset = th_tpa_end1->payload_offset;
294         } else {
295                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
296                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
297                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
298                         return NULL;
299                 payload_offset = tpa_end->payload_offset;
300         }
301
302         tpa_info = &rxr->tpa_info[agg_id];
303         mbuf = tpa_info->mbuf;
304         RTE_ASSERT(mbuf != NULL);
305
306         rte_prefetch0(mbuf);
307         if (agg_bufs) {
308                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
309         }
310         mbuf->l4_len = payload_offset;
311
312         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
313         RTE_ASSERT(new_data != NULL);
314         if (!new_data) {
315                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
316                 return NULL;
317         }
318         tpa_info->mbuf = new_data;
319
320         return mbuf;
321 }
322
323 static uint32_t
324 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
325 {
326         uint32_t l3, pkt_type = 0;
327         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
328         uint32_t flags_type;
329
330         vlan = !!(rxcmp1->flags2 &
331                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
332         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
333
334         t_ipcs = !!(rxcmp1->flags2 &
335                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
336         ip6 = !!(rxcmp1->flags2 &
337                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
338
339         flags_type = rxcmp->flags_type &
340                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
341
342         if (!t_ipcs && !ip6)
343                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
344         else if (!t_ipcs && ip6)
345                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
346         else if (t_ipcs && !ip6)
347                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
348         else
349                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
350
351         switch (flags_type) {
352         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
353                 if (!t_ipcs)
354                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
355                 else
356                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
357                 break;
358
359         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
360                 if (!t_ipcs)
361                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
362                 else
363                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
364                 break;
365
366         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
367                 if (!t_ipcs)
368                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
369                 else
370                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
371                 break;
372
373         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
374                 pkt_type |= l3;
375                 break;
376         }
377
378         return pkt_type;
379 }
380
381 #ifdef RTE_LIBRTE_IEEE1588
382 static void
383 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
384 {
385         uint64_t systime_cycles = 0;
386
387         if (!BNXT_CHIP_THOR(bp))
388                 return;
389
390         /* On Thor, Rx timestamps are provided directly in the
391          * Rx completion records to the driver. Only 32 bits of
392          * the timestamp is present in the completion. Driver needs
393          * to read the current 48 bit free running timer using the
394          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
395          * from the HWRM response with the lower 32 bits in the
396          * Rx completion to produce the 48 bit timestamp for the Rx packet
397          */
398         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
399                                 &systime_cycles);
400         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
401         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
402 }
403 #endif
404
405 static void
406 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
407                           struct rte_mbuf *mbuf)
408 {
409         uint32_t cfa_code;
410         uint32_t meta_fmt;
411         uint32_t meta;
412         uint32_t eem = 0;
413         uint32_t mark_id;
414         uint32_t flags2;
415         int rc;
416
417         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
418         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
419         meta = rte_le_to_cpu_32(rxcmp1->metadata);
420         if (meta) {
421                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
422
423                 /* The flags field holds extra bits of info from [6:4]
424                  * which indicate if the flow is in TCAM or EM or EEM
425                  */
426                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
427                             BNXT_CFA_META_FMT_SHFT;
428                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
429                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
430                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
431                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
432                  */
433                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
434
435                 eem = meta_fmt == BNXT_CFA_META_FMT_EEM;
436
437                 /* For EEM flows, The first part of cfa_code is 16 bits.
438                  * The second part is embedded in the
439                  * metadata field from bit 19 onwards. The driver needs to
440                  * ignore the first 19 bits of metadata and use the next 12
441                  * bits as higher 12 bits of cfa_code.
442                  */
443                 if (eem)
444                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
445         }
446
447         if (cfa_code) {
448                 mbuf->hash.fdir.hi = 0;
449                 mbuf->hash.fdir.id = 0;
450                 if (eem)
451                         rc = ulp_mark_db_mark_get(&bp->ulp_ctx, true,
452                                                   cfa_code, &mark_id);
453                 else
454                         rc = ulp_mark_db_mark_get(&bp->ulp_ctx, false,
455                                                   cfa_code, &mark_id);
456                 /* If the above fails, simply return and don't add the mark to
457                  * mbuf
458                  */
459                 if (rc)
460                         return;
461
462                 mbuf->hash.fdir.hi      = mark_id;
463                 mbuf->udata64           = (cfa_code & 0xffffffffull) << 32;
464                 mbuf->hash.fdir.id      = rxcmp1->cfa_code;
465                 mbuf->ol_flags          |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
466         }
467 }
468
469 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
470                            struct rx_pkt_cmpl_hi *rxcmp1,
471                            struct rte_mbuf *mbuf)
472 {
473         uint32_t cfa_code = 0;
474         uint8_t meta_fmt = 0;
475         uint16_t flags2 = 0;
476         uint32_t meta =  0;
477
478         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
479         if (!cfa_code)
480                 return;
481
482         if (cfa_code && !bp->mark_table[cfa_code].valid)
483                 return;
484
485         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
486         meta = rte_le_to_cpu_32(rxcmp1->metadata);
487         if (meta) {
488                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
489
490                 /* The flags field holds extra bits of info from [6:4]
491                  * which indicate if the flow is in TCAM or EM or EEM
492                  */
493                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
494                            BNXT_CFA_META_FMT_SHFT;
495
496                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
497                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
498                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
499                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
500                  */
501                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
502         }
503
504         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
505         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
506 }
507
508 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
509                             struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
510 {
511         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
512         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
513         struct rx_pkt_cmpl *rxcmp;
514         struct rx_pkt_cmpl_hi *rxcmp1;
515         uint32_t tmp_raw_cons = *raw_cons;
516         uint16_t cons, prod, cp_cons =
517             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
518         struct rte_mbuf *mbuf;
519         int rc = 0;
520         uint8_t agg_buf = 0;
521         uint16_t cmp_type;
522         uint32_t flags2_f = 0;
523         uint16_t flags_type;
524         struct bnxt *bp = rxq->bp;
525
526         rxcmp = (struct rx_pkt_cmpl *)
527             &cpr->cp_desc_ring[cp_cons];
528
529         cmp_type = CMP_TYPE(rxcmp);
530
531         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
532                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
533                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
534                 struct bnxt_tpa_info *tpa_info;
535
536                 tpa_info = &rxr->tpa_info[agg_id];
537                 RTE_ASSERT(tpa_info->agg_count < 16);
538                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
539                 rc = -EINVAL; /* Continue w/o new mbuf */
540                 goto next_rx;
541         }
542
543         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
544         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
545         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
546
547         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
548                 return -EBUSY;
549
550         cpr->valid = FLIP_VALID(cp_cons,
551                                 cpr->cp_ring_struct->ring_mask,
552                                 cpr->valid);
553
554         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
555                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
556                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
557                 rc = -EINVAL; /* Continue w/o new mbuf */
558                 goto next_rx;
559         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
560                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
561                                    (struct rx_tpa_end_cmpl *)rxcmp,
562                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
563                 if (unlikely(!mbuf))
564                         return -EBUSY;
565                 *rx_pkt = mbuf;
566                 goto next_rx;
567         } else if (cmp_type != 0x11) {
568                 rc = -EINVAL;
569                 goto next_rx;
570         }
571
572         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
573                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
574         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
575                 return -EBUSY;
576
577         prod = rxr->rx_prod;
578
579         cons = rxcmp->opaque;
580         mbuf = bnxt_consume_rx_buf(rxr, cons);
581         if (mbuf == NULL)
582                 return -EBUSY;
583
584         rte_prefetch0(mbuf);
585
586         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
587         mbuf->nb_segs = 1;
588         mbuf->next = NULL;
589         mbuf->pkt_len = rxcmp->len;
590         mbuf->data_len = mbuf->pkt_len;
591         mbuf->port = rxq->port_id;
592         mbuf->ol_flags = 0;
593
594         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
595         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
596                 mbuf->hash.rss = rxcmp->rss_hash;
597                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
598         }
599
600         if (bp->truflow)
601                 bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
602         else
603                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
604
605 #ifdef RTE_LIBRTE_IEEE1588
606         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
607                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
608                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
609                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
610         }
611 #endif
612         if (agg_buf)
613                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
614
615         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
616                 mbuf->vlan_tci = rxcmp1->metadata &
617                         (RX_PKT_CMPL_METADATA_VID_MASK |
618                         RX_PKT_CMPL_METADATA_DE |
619                         RX_PKT_CMPL_METADATA_PRI_MASK);
620                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
621         }
622
623         flags2_f = flags2_0xf(rxcmp1);
624         /* IP Checksum */
625         if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
626                 if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
627                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
628                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
629                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
630                 else
631                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
632         } else if (IS_IP_TUNNEL_PKT(flags2_f)) {
633                 if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
634                              RX_CMP_IP_CS_ERROR(rxcmp1)))
635                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
636                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
637                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
638                 else
639                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
640         }
641
642         /* L4 Checksum */
643         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
644                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
645                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
646                 else
647                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
648         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
649                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
650                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
651                 else
652                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
653                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
654                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
655                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
656                                     (flags2_f))) {
657                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
658                 } else {
659                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
660                 }
661         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
662                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
663         }
664
665         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
666
667 #ifdef BNXT_DEBUG
668         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
669                 /* Re-install the mbuf back to the rx ring */
670                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
671
672                 rc = -EIO;
673                 goto next_rx;
674         }
675 #endif
676         /*
677          * TODO: Redesign this....
678          * If the allocation fails, the packet does not get received.
679          * Simply returning this will result in slowly falling behind
680          * on the producer ring buffers.
681          * Instead, "filling up" the producer just before ringing the
682          * doorbell could be a better solution since it will let the
683          * producer ring starve until memory is available again pushing
684          * the drops into hardware and getting them out of the driver
685          * allowing recovery to a full producer ring.
686          *
687          * This could also help with cache usage by preventing per-packet
688          * calls in favour of a tight loop with the same function being called
689          * in it.
690          */
691         prod = RING_NEXT(rxr->rx_ring_struct, prod);
692         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
693                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
694                 rc = -ENOMEM;
695                 goto rx;
696         }
697         rxr->rx_prod = prod;
698         /*
699          * All MBUFs are allocated with the same size under DPDK,
700          * no optimization for rx_copy_thresh
701          */
702 rx:
703         *rx_pkt = mbuf;
704
705 next_rx:
706
707         *raw_cons = tmp_raw_cons;
708
709         return rc;
710 }
711
712 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
713                                uint16_t nb_pkts)
714 {
715         struct bnxt_rx_queue *rxq = rx_queue;
716         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
717         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
718         uint32_t raw_cons = cpr->cp_raw_cons;
719         uint32_t cons;
720         int nb_rx_pkts = 0;
721         struct rx_pkt_cmpl *rxcmp;
722         uint16_t prod = rxr->rx_prod;
723         uint16_t ag_prod = rxr->ag_prod;
724         int rc = 0;
725         bool evt = false;
726
727         if (unlikely(is_bnxt_in_error(rxq->bp)))
728                 return 0;
729
730         /* If Rx Q was stopped return */
731         if (unlikely(!rxq->rx_started ||
732                      !rte_spinlock_trylock(&rxq->lock)))
733                 return 0;
734
735         /* Handle RX burst request */
736         while (1) {
737                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
738                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
739                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
740
741                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
742                         break;
743                 cpr->valid = FLIP_VALID(cons,
744                                         cpr->cp_ring_struct->ring_mask,
745                                         cpr->valid);
746
747                 /* TODO: Avoid magic numbers... */
748                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
749                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
750                         if (likely(!rc) || rc == -ENOMEM)
751                                 nb_rx_pkts++;
752                         if (rc == -EBUSY)       /* partial completion */
753                                 break;
754                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
755                         evt =
756                         bnxt_event_hwrm_resp_handler(rxq->bp,
757                                                      (struct cmpl_base *)rxcmp);
758                         /* If the async event is Fatal error, return */
759                         if (unlikely(is_bnxt_in_error(rxq->bp)))
760                                 goto done;
761                 }
762
763                 raw_cons = NEXT_RAW_CMP(raw_cons);
764                 if (nb_rx_pkts == nb_pkts || evt)
765                         break;
766                 /* Post some Rx buf early in case of larger burst processing */
767                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
768                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
769         }
770
771         cpr->cp_raw_cons = raw_cons;
772         if (!nb_rx_pkts && !evt) {
773                 /*
774                  * For PMD, there is no need to keep on pushing to REARM
775                  * the doorbell if there are no new completions
776                  */
777                 goto done;
778         }
779
780         if (prod != rxr->rx_prod)
781                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
782
783         /* Ring the AGG ring DB */
784         if (ag_prod != rxr->ag_prod)
785                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
786
787         bnxt_db_cq(cpr);
788
789         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
790         if (rc == -ENOMEM) {
791                 int i = RING_NEXT(rxr->rx_ring_struct, prod);
792                 int cnt = nb_rx_pkts;
793
794                 for (; cnt;
795                         i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
796                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
797
798                         /* Buffer already allocated for this index. */
799                         if (rx_buf->mbuf != NULL)
800                                 continue;
801
802                         /* This slot is empty. Alloc buffer for Rx */
803                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
804                                 rxr->rx_prod = i;
805                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
806                         } else {
807                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
808                                 break;
809                         }
810                 }
811         }
812
813 done:
814         rte_spinlock_unlock(&rxq->lock);
815
816         return nb_rx_pkts;
817 }
818
819 /*
820  * Dummy DPDK callback for RX.
821  *
822  * This function is used to temporarily replace the real callback during
823  * unsafe control operations on the queue, or in case of error.
824  */
825 uint16_t
826 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
827                      struct rte_mbuf **rx_pkts __rte_unused,
828                      uint16_t nb_pkts __rte_unused)
829 {
830         return 0;
831 }
832
833 void bnxt_free_rx_rings(struct bnxt *bp)
834 {
835         int i;
836         struct bnxt_rx_queue *rxq;
837
838         if (!bp->rx_queues)
839                 return;
840
841         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
842                 rxq = bp->rx_queues[i];
843                 if (!rxq)
844                         continue;
845
846                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
847                 rte_free(rxq->rx_ring->rx_ring_struct);
848
849                 /* Free the Aggregator ring */
850                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
851                 rte_free(rxq->rx_ring->ag_ring_struct);
852                 rxq->rx_ring->ag_ring_struct = NULL;
853
854                 rte_free(rxq->rx_ring);
855
856                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
857                 rte_free(rxq->cp_ring->cp_ring_struct);
858                 rte_free(rxq->cp_ring);
859
860                 rte_free(rxq);
861                 bp->rx_queues[i] = NULL;
862         }
863 }
864
865 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
866 {
867         struct bnxt_cp_ring_info *cpr;
868         struct bnxt_rx_ring_info *rxr;
869         struct bnxt_ring *ring;
870
871         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
872
873         rxr = rte_zmalloc_socket("bnxt_rx_ring",
874                                  sizeof(struct bnxt_rx_ring_info),
875                                  RTE_CACHE_LINE_SIZE, socket_id);
876         if (rxr == NULL)
877                 return -ENOMEM;
878         rxq->rx_ring = rxr;
879
880         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
881                                    sizeof(struct bnxt_ring),
882                                    RTE_CACHE_LINE_SIZE, socket_id);
883         if (ring == NULL)
884                 return -ENOMEM;
885         rxr->rx_ring_struct = ring;
886         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
887         ring->ring_mask = ring->ring_size - 1;
888         ring->bd = (void *)rxr->rx_desc_ring;
889         ring->bd_dma = rxr->rx_desc_mapping;
890         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
891         ring->vmem = (void **)&rxr->rx_buf_ring;
892
893         cpr = rte_zmalloc_socket("bnxt_rx_ring",
894                                  sizeof(struct bnxt_cp_ring_info),
895                                  RTE_CACHE_LINE_SIZE, socket_id);
896         if (cpr == NULL)
897                 return -ENOMEM;
898         rxq->cp_ring = cpr;
899
900         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
901                                    sizeof(struct bnxt_ring),
902                                    RTE_CACHE_LINE_SIZE, socket_id);
903         if (ring == NULL)
904                 return -ENOMEM;
905         cpr->cp_ring_struct = ring;
906         ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
907                                           (2 + AGG_RING_SIZE_FACTOR));
908         ring->ring_mask = ring->ring_size - 1;
909         ring->bd = (void *)cpr->cp_desc_ring;
910         ring->bd_dma = cpr->cp_desc_mapping;
911         ring->vmem_size = 0;
912         ring->vmem = NULL;
913
914         /* Allocate Aggregator rings */
915         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
916                                    sizeof(struct bnxt_ring),
917                                    RTE_CACHE_LINE_SIZE, socket_id);
918         if (ring == NULL)
919                 return -ENOMEM;
920         rxr->ag_ring_struct = ring;
921         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
922                                           AGG_RING_SIZE_FACTOR);
923         ring->ring_mask = ring->ring_size - 1;
924         ring->bd = (void *)rxr->ag_desc_ring;
925         ring->bd_dma = rxr->ag_desc_mapping;
926         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
927         ring->vmem = (void **)&rxr->ag_buf_ring;
928
929         return 0;
930 }
931
932 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
933                             uint16_t len)
934 {
935         uint32_t j;
936         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
937
938         if (!rx_bd_ring)
939                 return;
940         for (j = 0; j < ring->ring_size; j++) {
941                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
942                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
943                 rx_bd_ring[j].opaque = j;
944         }
945 }
946
947 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
948 {
949         struct bnxt_rx_ring_info *rxr;
950         struct bnxt_ring *ring;
951         uint32_t prod, type;
952         unsigned int i;
953         uint16_t size;
954
955         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
956         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
957
958         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
959
960         rxr = rxq->rx_ring;
961         ring = rxr->rx_ring_struct;
962         bnxt_init_rxbds(ring, type, size);
963
964         prod = rxr->rx_prod;
965         for (i = 0; i < ring->ring_size; i++) {
966                 if (unlikely(!rxr->rx_buf_ring[i].mbuf)) {
967                         if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
968                                 PMD_DRV_LOG(WARNING,
969                                             "init'ed rx ring %d with %d/%d mbufs only\n",
970                                             rxq->queue_id, i, ring->ring_size);
971                                 break;
972                         }
973                         rxr->rx_prod = prod;
974                         prod = RING_NEXT(rxr->rx_ring_struct, prod);
975                 }
976         }
977
978         ring = rxr->ag_ring_struct;
979         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
980         bnxt_init_rxbds(ring, type, size);
981         prod = rxr->ag_prod;
982
983         for (i = 0; i < ring->ring_size; i++) {
984                 if (unlikely(!rxr->ag_buf_ring[i].mbuf)) {
985                         if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
986                                 PMD_DRV_LOG(WARNING,
987                                             "init'ed AG ring %d with %d/%d mbufs only\n",
988                                             rxq->queue_id, i, ring->ring_size);
989                                 break;
990                         }
991                         rxr->ag_prod = prod;
992                         prod = RING_NEXT(rxr->ag_ring_struct, prod);
993                 }
994         }
995         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
996
997         if (rxr->tpa_info) {
998                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
999
1000                 for (i = 0; i < max_aggs; i++) {
1001                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1002                                 rxr->tpa_info[i].mbuf =
1003                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1004                                 if (!rxr->tpa_info[i].mbuf) {
1005                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1006                                         return -ENOMEM;
1007                                 }
1008                         }
1009                 }
1010         }
1011         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1012
1013         return 0;
1014 }