net/bnxt: remove redundant header file inclusion
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_ring.h"
16 #include "bnxt_rxr.h"
17 #include "bnxt_rxq.h"
18 #include "hsi_struct_def_dpdk.h"
19 #ifdef RTE_LIBRTE_IEEE1588
20 #include "bnxt_hwrm.h"
21 #endif
22
23 /*
24  * RX Ring handling
25  */
26
27 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
28 {
29         struct rte_mbuf *data;
30
31         data = rte_mbuf_raw_alloc(mb);
32
33         return data;
34 }
35
36 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
37                                      struct bnxt_rx_ring_info *rxr,
38                                      uint16_t prod)
39 {
40         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
41         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
42         struct rte_mbuf *mbuf;
43
44         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
45         if (!mbuf) {
46                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
47                 return -ENOMEM;
48         }
49
50         rx_buf->mbuf = mbuf;
51         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
52
53         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
54
55         return 0;
56 }
57
58 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
59                                      struct bnxt_rx_ring_info *rxr,
60                                      uint16_t prod)
61 {
62         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
63         struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
64         struct rte_mbuf *mbuf;
65
66         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
67         if (!mbuf) {
68                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
69                 return -ENOMEM;
70         }
71
72         if (rxbd == NULL)
73                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
74         if (rx_buf == NULL)
75                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
76
77
78         rx_buf->mbuf = mbuf;
79         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
80
81         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
82
83         return 0;
84 }
85
86 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
87                                struct rte_mbuf *mbuf)
88 {
89         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
90         struct bnxt_sw_rx_bd *prod_rx_buf;
91         struct rx_prod_pkt_bd *prod_bd;
92
93         prod_rx_buf = &rxr->rx_buf_ring[prod];
94
95         RTE_ASSERT(prod_rx_buf->mbuf == NULL);
96         RTE_ASSERT(mbuf != NULL);
97
98         prod_rx_buf->mbuf = mbuf;
99
100         prod_bd = &rxr->rx_desc_ring[prod];
101
102         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
103
104         rxr->rx_prod = prod;
105 }
106
107 static inline
108 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
109                                      uint16_t cons)
110 {
111         struct bnxt_sw_rx_bd *cons_rx_buf;
112         struct rte_mbuf *mbuf;
113
114         cons_rx_buf = &rxr->rx_buf_ring[cons];
115         RTE_ASSERT(cons_rx_buf->mbuf != NULL);
116         mbuf = cons_rx_buf->mbuf;
117         cons_rx_buf->mbuf = NULL;
118         return mbuf;
119 }
120
121 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
122                            struct rx_tpa_start_cmpl *tpa_start,
123                            struct rx_tpa_start_cmpl_hi *tpa_start1)
124 {
125         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
126         uint16_t agg_id;
127         uint16_t data_cons;
128         struct bnxt_tpa_info *tpa_info;
129         struct rte_mbuf *mbuf;
130
131         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
132
133         data_cons = tpa_start->opaque;
134         tpa_info = &rxr->tpa_info[agg_id];
135
136         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
137
138         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
139
140         tpa_info->agg_count = 0;
141         tpa_info->mbuf = mbuf;
142         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
143
144         mbuf->nb_segs = 1;
145         mbuf->next = NULL;
146         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
147         mbuf->data_len = mbuf->pkt_len;
148         mbuf->port = rxq->port_id;
149         mbuf->ol_flags = PKT_RX_LRO;
150         if (likely(tpa_start->flags_type &
151                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
152                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
153                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
154         } else {
155                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
156                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
157         }
158         if (tpa_start1->flags2 &
159             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
160                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
161                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
162         }
163         if (likely(tpa_start1->flags2 &
164                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
165                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
166
167         /* recycle next mbuf */
168         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
169         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
170 }
171
172 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
173                 uint8_t agg_bufs, uint32_t raw_cp_cons)
174 {
175         uint16_t last_cp_cons;
176         struct rx_pkt_cmpl *agg_cmpl;
177
178         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
179         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
180         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
181         cpr->valid = FLIP_VALID(raw_cp_cons,
182                                 cpr->cp_ring_struct->ring_mask,
183                                 cpr->valid);
184         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
185 }
186
187 /* TPA consume agg buffer out of order, allocate connected data only */
188 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
189 {
190         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
191         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
192
193         /* TODO batch allocation for better performance */
194         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
195                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
196                         PMD_DRV_LOG(ERR,
197                                 "agg mbuf alloc failed: prod=0x%x\n", next);
198                         break;
199                 }
200                 rte_bitmap_clear(rxr->ag_bitmap, next);
201                 rxr->ag_prod = next;
202                 next = RING_NEXT(rxr->ag_ring_struct, next);
203         }
204
205         return 0;
206 }
207
208 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
209                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
210                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
211 {
212         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
213         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
214         int i;
215         uint16_t cp_cons, ag_cons;
216         struct rx_pkt_cmpl *rxcmp;
217         struct rte_mbuf *last = mbuf;
218         bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
219
220         for (i = 0; i < agg_buf; i++) {
221                 struct bnxt_sw_rx_bd *ag_buf;
222                 struct rte_mbuf *ag_mbuf;
223
224                 if (is_thor_tpa) {
225                         rxcmp = (void *)&tpa_info->agg_arr[i];
226                 } else {
227                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
228                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
229                         rxcmp = (struct rx_pkt_cmpl *)
230                                         &cpr->cp_desc_ring[cp_cons];
231                 }
232
233 #ifdef BNXT_DEBUG
234                 bnxt_dump_cmpl(cp_cons, rxcmp);
235 #endif
236
237                 ag_cons = rxcmp->opaque;
238                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
239                 ag_buf = &rxr->ag_buf_ring[ag_cons];
240                 ag_mbuf = ag_buf->mbuf;
241                 RTE_ASSERT(ag_mbuf != NULL);
242
243                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
244
245                 mbuf->nb_segs++;
246                 mbuf->pkt_len += ag_mbuf->data_len;
247
248                 last->next = ag_mbuf;
249                 last = ag_mbuf;
250
251                 ag_buf->mbuf = NULL;
252
253                 /*
254                  * As aggregation buffer consumed out of order in TPA module,
255                  * use bitmap to track freed slots to be allocated and notified
256                  * to NIC
257                  */
258                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
259         }
260         bnxt_prod_ag_mbuf(rxq);
261         return 0;
262 }
263
264 static inline struct rte_mbuf *bnxt_tpa_end(
265                 struct bnxt_rx_queue *rxq,
266                 uint32_t *raw_cp_cons,
267                 struct rx_tpa_end_cmpl *tpa_end,
268                 struct rx_tpa_end_cmpl_hi *tpa_end1)
269 {
270         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
271         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
272         uint16_t agg_id;
273         struct rte_mbuf *mbuf;
274         uint8_t agg_bufs;
275         uint8_t payload_offset;
276         struct bnxt_tpa_info *tpa_info;
277
278         if (BNXT_CHIP_THOR(rxq->bp)) {
279                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
280                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
281
282                 th_tpa_end = (void *)tpa_end;
283                 th_tpa_end1 = (void *)tpa_end1;
284                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
285                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
286                 payload_offset = th_tpa_end1->payload_offset;
287         } else {
288                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
289                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
290                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
291                         return NULL;
292                 payload_offset = tpa_end->payload_offset;
293         }
294
295         tpa_info = &rxr->tpa_info[agg_id];
296         mbuf = tpa_info->mbuf;
297         RTE_ASSERT(mbuf != NULL);
298
299         rte_prefetch0(mbuf);
300         if (agg_bufs) {
301                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
302         }
303         mbuf->l4_len = payload_offset;
304
305         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
306         RTE_ASSERT(new_data != NULL);
307         if (!new_data) {
308                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
309                 return NULL;
310         }
311         tpa_info->mbuf = new_data;
312
313         return mbuf;
314 }
315
316 static uint32_t
317 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
318 {
319         uint32_t l3, pkt_type = 0;
320         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
321         uint32_t flags_type;
322
323         vlan = !!(rxcmp1->flags2 &
324                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
325         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
326
327         t_ipcs = !!(rxcmp1->flags2 &
328                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
329         ip6 = !!(rxcmp1->flags2 &
330                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
331
332         flags_type = rxcmp->flags_type &
333                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
334
335         if (!t_ipcs && !ip6)
336                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
337         else if (!t_ipcs && ip6)
338                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
339         else if (t_ipcs && !ip6)
340                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
341         else
342                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
343
344         switch (flags_type) {
345         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
346                 if (!t_ipcs)
347                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
348                 else
349                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
350                 break;
351
352         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
353                 if (!t_ipcs)
354                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
355                 else
356                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
357                 break;
358
359         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
360                 if (!t_ipcs)
361                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
362                 else
363                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
364                 break;
365
366         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
367                 pkt_type |= l3;
368                 break;
369         }
370
371         return pkt_type;
372 }
373
374 #ifdef RTE_LIBRTE_IEEE1588
375 static void
376 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
377 {
378         uint64_t systime_cycles = 0;
379
380         if (!BNXT_CHIP_THOR(bp))
381                 return;
382
383         /* On Thor, Rx timestamps are provided directly in the
384          * Rx completion records to the driver. Only 32 bits of
385          * the timestamp is present in the completion. Driver needs
386          * to read the current 48 bit free running timer using the
387          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
388          * from the HWRM response with the lower 32 bits in the
389          * Rx completion to produce the 48 bit timestamp for the Rx packet
390          */
391         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
392                                 &systime_cycles);
393         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
394         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
395 }
396 #endif
397
398 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
399                             struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
400 {
401         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
402         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
403         struct rx_pkt_cmpl *rxcmp;
404         struct rx_pkt_cmpl_hi *rxcmp1;
405         uint32_t tmp_raw_cons = *raw_cons;
406         uint16_t cons, prod, cp_cons =
407             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
408         struct rte_mbuf *mbuf;
409         int rc = 0;
410         uint8_t agg_buf = 0;
411         uint16_t cmp_type;
412         uint32_t flags2_f = 0;
413         uint16_t flags_type;
414
415         rxcmp = (struct rx_pkt_cmpl *)
416             &cpr->cp_desc_ring[cp_cons];
417
418         cmp_type = CMP_TYPE(rxcmp);
419
420         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
421                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
422                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
423                 struct bnxt_tpa_info *tpa_info;
424
425                 tpa_info = &rxr->tpa_info[agg_id];
426                 RTE_ASSERT(tpa_info->agg_count < 16);
427                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
428                 rc = -EINVAL; /* Continue w/o new mbuf */
429                 goto next_rx;
430         }
431
432         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
433         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
434         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
435
436         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
437                 return -EBUSY;
438
439         cpr->valid = FLIP_VALID(cp_cons,
440                                 cpr->cp_ring_struct->ring_mask,
441                                 cpr->valid);
442
443         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
444                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
445                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
446                 rc = -EINVAL; /* Continue w/o new mbuf */
447                 goto next_rx;
448         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
449                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
450                                    (struct rx_tpa_end_cmpl *)rxcmp,
451                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
452                 if (unlikely(!mbuf))
453                         return -EBUSY;
454                 *rx_pkt = mbuf;
455                 goto next_rx;
456         } else if (cmp_type != 0x11) {
457                 rc = -EINVAL;
458                 goto next_rx;
459         }
460
461         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
462                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
463         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
464                 return -EBUSY;
465
466         prod = rxr->rx_prod;
467
468         cons = rxcmp->opaque;
469         mbuf = bnxt_consume_rx_buf(rxr, cons);
470         if (mbuf == NULL)
471                 return -EBUSY;
472
473         rte_prefetch0(mbuf);
474
475         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
476         mbuf->nb_segs = 1;
477         mbuf->next = NULL;
478         mbuf->pkt_len = rxcmp->len;
479         mbuf->data_len = mbuf->pkt_len;
480         mbuf->port = rxq->port_id;
481         mbuf->ol_flags = 0;
482
483         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
484         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
485                 mbuf->hash.rss = rxcmp->rss_hash;
486                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
487         } else {
488                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
489                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
490         }
491 #ifdef RTE_LIBRTE_IEEE1588
492         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
493                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
494                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
495                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
496         }
497 #endif
498         if (agg_buf)
499                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
500
501         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
502                 mbuf->vlan_tci = rxcmp1->metadata &
503                         (RX_PKT_CMPL_METADATA_VID_MASK |
504                         RX_PKT_CMPL_METADATA_DE |
505                         RX_PKT_CMPL_METADATA_PRI_MASK);
506                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
507         }
508
509         flags2_f = flags2_0xf(rxcmp1);
510         /* IP Checksum */
511         if (unlikely(((IS_IP_NONTUNNEL_PKT(flags2_f)) &&
512                       (RX_CMP_IP_CS_ERROR(rxcmp1))) ||
513                      (IS_IP_TUNNEL_PKT(flags2_f) &&
514                       (RX_CMP_IP_OUTER_CS_ERROR(rxcmp1))))) {
515                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
516         } else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) {
517                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
518         } else {
519                 mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
520         }
521
522         /* L4 Checksum */
523         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
524                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
525                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
526                 else
527                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
528         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
529                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
530                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
531                 else
532                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
533                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
534                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
535                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
536                                     (flags2_f))) {
537                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
538                 } else {
539                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
540                 }
541         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
542                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
543         }
544
545         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
546
547 #ifdef BNXT_DEBUG
548         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
549                 /* Re-install the mbuf back to the rx ring */
550                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
551
552                 rc = -EIO;
553                 goto next_rx;
554         }
555 #endif
556         /*
557          * TODO: Redesign this....
558          * If the allocation fails, the packet does not get received.
559          * Simply returning this will result in slowly falling behind
560          * on the producer ring buffers.
561          * Instead, "filling up" the producer just before ringing the
562          * doorbell could be a better solution since it will let the
563          * producer ring starve until memory is available again pushing
564          * the drops into hardware and getting them out of the driver
565          * allowing recovery to a full producer ring.
566          *
567          * This could also help with cache usage by preventing per-packet
568          * calls in favour of a tight loop with the same function being called
569          * in it.
570          */
571         prod = RING_NEXT(rxr->rx_ring_struct, prod);
572         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
573                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
574                 rc = -ENOMEM;
575                 goto rx;
576         }
577         rxr->rx_prod = prod;
578         /*
579          * All MBUFs are allocated with the same size under DPDK,
580          * no optimization for rx_copy_thresh
581          */
582 rx:
583         *rx_pkt = mbuf;
584
585 next_rx:
586
587         *raw_cons = tmp_raw_cons;
588
589         return rc;
590 }
591
592 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
593                                uint16_t nb_pkts)
594 {
595         struct bnxt_rx_queue *rxq = rx_queue;
596         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
597         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
598         uint32_t raw_cons = cpr->cp_raw_cons;
599         uint32_t cons;
600         int nb_rx_pkts = 0;
601         struct rx_pkt_cmpl *rxcmp;
602         uint16_t prod = rxr->rx_prod;
603         uint16_t ag_prod = rxr->ag_prod;
604         int rc = 0;
605         bool evt = false;
606
607         if (unlikely(is_bnxt_in_error(rxq->bp)))
608                 return 0;
609
610         /* If Rx Q was stopped return */
611         if (unlikely(!rxq->rx_started ||
612                      !rte_spinlock_trylock(&rxq->lock)))
613                 return 0;
614
615         /* Handle RX burst request */
616         while (1) {
617                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
618                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
619                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
620
621                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
622                         break;
623                 cpr->valid = FLIP_VALID(cons,
624                                         cpr->cp_ring_struct->ring_mask,
625                                         cpr->valid);
626
627                 /* TODO: Avoid magic numbers... */
628                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
629                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
630                         if (likely(!rc) || rc == -ENOMEM)
631                                 nb_rx_pkts++;
632                         if (rc == -EBUSY)       /* partial completion */
633                                 break;
634                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
635                         evt =
636                         bnxt_event_hwrm_resp_handler(rxq->bp,
637                                                      (struct cmpl_base *)rxcmp);
638                 }
639
640                 raw_cons = NEXT_RAW_CMP(raw_cons);
641                 if (nb_rx_pkts == nb_pkts || evt)
642                         break;
643                 /* Post some Rx buf early in case of larger burst processing */
644                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
645                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
646         }
647
648         cpr->cp_raw_cons = raw_cons;
649         if (!nb_rx_pkts && !evt) {
650                 /*
651                  * For PMD, there is no need to keep on pushing to REARM
652                  * the doorbell if there are no new completions
653                  */
654                 goto done;
655         }
656
657         if (prod != rxr->rx_prod)
658                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
659
660         /* Ring the AGG ring DB */
661         if (ag_prod != rxr->ag_prod)
662                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
663
664         bnxt_db_cq(cpr);
665
666         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
667         if (rc == -ENOMEM) {
668                 int i;
669
670                 for (i = prod; i <= nb_rx_pkts;
671                         i = RING_NEXT(rxr->rx_ring_struct, i)) {
672                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
673
674                         /* Buffer already allocated for this index. */
675                         if (rx_buf->mbuf != NULL)
676                                 continue;
677
678                         /* This slot is empty. Alloc buffer for Rx */
679                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
680                                 rxr->rx_prod = i;
681                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
682                         } else {
683                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
684                                 break;
685                         }
686                 }
687         }
688
689 done:
690         rte_spinlock_unlock(&rxq->lock);
691
692         return nb_rx_pkts;
693 }
694
695 /*
696  * Dummy DPDK callback for RX.
697  *
698  * This function is used to temporarily replace the real callback during
699  * unsafe control operations on the queue, or in case of error.
700  */
701 uint16_t
702 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
703                      struct rte_mbuf **rx_pkts __rte_unused,
704                      uint16_t nb_pkts __rte_unused)
705 {
706         return 0;
707 }
708
709 void bnxt_free_rx_rings(struct bnxt *bp)
710 {
711         int i;
712         struct bnxt_rx_queue *rxq;
713
714         if (!bp->rx_queues)
715                 return;
716
717         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
718                 rxq = bp->rx_queues[i];
719                 if (!rxq)
720                         continue;
721
722                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
723                 rte_free(rxq->rx_ring->rx_ring_struct);
724
725                 /* Free the Aggregator ring */
726                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
727                 rte_free(rxq->rx_ring->ag_ring_struct);
728                 rxq->rx_ring->ag_ring_struct = NULL;
729
730                 rte_free(rxq->rx_ring);
731
732                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
733                 rte_free(rxq->cp_ring->cp_ring_struct);
734                 rte_free(rxq->cp_ring);
735
736                 rte_free(rxq);
737                 bp->rx_queues[i] = NULL;
738         }
739 }
740
741 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
742 {
743         struct bnxt_cp_ring_info *cpr;
744         struct bnxt_rx_ring_info *rxr;
745         struct bnxt_ring *ring;
746
747         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
748
749         rxr = rte_zmalloc_socket("bnxt_rx_ring",
750                                  sizeof(struct bnxt_rx_ring_info),
751                                  RTE_CACHE_LINE_SIZE, socket_id);
752         if (rxr == NULL)
753                 return -ENOMEM;
754         rxq->rx_ring = rxr;
755
756         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
757                                    sizeof(struct bnxt_ring),
758                                    RTE_CACHE_LINE_SIZE, socket_id);
759         if (ring == NULL)
760                 return -ENOMEM;
761         rxr->rx_ring_struct = ring;
762         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
763         ring->ring_mask = ring->ring_size - 1;
764         ring->bd = (void *)rxr->rx_desc_ring;
765         ring->bd_dma = rxr->rx_desc_mapping;
766         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
767         ring->vmem = (void **)&rxr->rx_buf_ring;
768
769         cpr = rte_zmalloc_socket("bnxt_rx_ring",
770                                  sizeof(struct bnxt_cp_ring_info),
771                                  RTE_CACHE_LINE_SIZE, socket_id);
772         if (cpr == NULL)
773                 return -ENOMEM;
774         rxq->cp_ring = cpr;
775
776         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
777                                    sizeof(struct bnxt_ring),
778                                    RTE_CACHE_LINE_SIZE, socket_id);
779         if (ring == NULL)
780                 return -ENOMEM;
781         cpr->cp_ring_struct = ring;
782         ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
783                                           (2 + AGG_RING_SIZE_FACTOR));
784         ring->ring_mask = ring->ring_size - 1;
785         ring->bd = (void *)cpr->cp_desc_ring;
786         ring->bd_dma = cpr->cp_desc_mapping;
787         ring->vmem_size = 0;
788         ring->vmem = NULL;
789
790         /* Allocate Aggregator rings */
791         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
792                                    sizeof(struct bnxt_ring),
793                                    RTE_CACHE_LINE_SIZE, socket_id);
794         if (ring == NULL)
795                 return -ENOMEM;
796         rxr->ag_ring_struct = ring;
797         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
798                                           AGG_RING_SIZE_FACTOR);
799         ring->ring_mask = ring->ring_size - 1;
800         ring->bd = (void *)rxr->ag_desc_ring;
801         ring->bd_dma = rxr->ag_desc_mapping;
802         ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
803         ring->vmem = (void **)&rxr->ag_buf_ring;
804
805         return 0;
806 }
807
808 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
809                             uint16_t len)
810 {
811         uint32_t j;
812         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
813
814         if (!rx_bd_ring)
815                 return;
816         for (j = 0; j < ring->ring_size; j++) {
817                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
818                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
819                 rx_bd_ring[j].opaque = j;
820         }
821 }
822
823 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
824 {
825         struct bnxt_rx_ring_info *rxr;
826         struct bnxt_ring *ring;
827         uint32_t prod, type;
828         unsigned int i;
829         uint16_t size;
830
831         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
832         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
833
834         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
835
836         rxr = rxq->rx_ring;
837         ring = rxr->rx_ring_struct;
838         bnxt_init_rxbds(ring, type, size);
839
840         prod = rxr->rx_prod;
841         for (i = 0; i < ring->ring_size; i++) {
842                 if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
843                         PMD_DRV_LOG(WARNING,
844                                 "init'ed rx ring %d with %d/%d mbufs only\n",
845                                 rxq->queue_id, i, ring->ring_size);
846                         break;
847                 }
848                 rxr->rx_prod = prod;
849                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
850         }
851
852         ring = rxr->ag_ring_struct;
853         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
854         bnxt_init_rxbds(ring, type, size);
855         prod = rxr->ag_prod;
856
857         for (i = 0; i < ring->ring_size; i++) {
858                 if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
859                         PMD_DRV_LOG(WARNING,
860                         "init'ed AG ring %d with %d/%d mbufs only\n",
861                         rxq->queue_id, i, ring->ring_size);
862                         break;
863                 }
864                 rxr->ag_prod = prod;
865                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
866         }
867         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
868
869         if (rxr->tpa_info) {
870                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
871
872                 for (i = 0; i < max_aggs; i++) {
873                         rxr->tpa_info[i].mbuf =
874                                 __bnxt_alloc_rx_data(rxq->mb_pool);
875                         if (!rxr->tpa_info[i].mbuf) {
876                                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
877                                 return -ENOMEM;
878                         }
879                 }
880         }
881         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
882
883         return 0;
884 }