d08854ff61e233bd35fc8fcd5165061c97bd6a73
[dpdk.git] / drivers / net / bnxt / bnxt_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright(c) 2019-2021 Broadcom All rights reserved. */
3
4 #include <inttypes.h>
5 #include <stdbool.h>
6
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #include <rte_vect.h>
12
13 #include "bnxt.h"
14 #include "bnxt_cpr.h"
15 #include "bnxt_ring.h"
16
17 #include "bnxt_txq.h"
18 #include "bnxt_txr.h"
19 #include "bnxt_rxtx_vec_common.h"
20 #include <unistd.h>
21
22 static uint16_t
23 recv_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
24 {
25         struct bnxt_rx_queue *rxq = rx_queue;
26         const __m256i mbuf_init =
27                 _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer);
28         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
29         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
30         uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
31         uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
32         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
33         uint64_t valid, desc_valid_mask = ~0ULL;
34         const __m256i info3_v_mask = _mm256_set1_epi32(CMPL_BASE_V);
35         uint32_t raw_cons = cpr->cp_raw_cons;
36         uint32_t cons, mbcons;
37         int nb_rx_pkts = 0;
38         int i;
39         const __m256i valid_target =
40                 _mm256_set1_epi32(!!(raw_cons & cp_ring_size));
41         const __m256i dsc_shuf_msk =
42                 _mm256_set_epi8(0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
43                                 7, 6,                    /* metadata type */
44                                 9, 8,                    /* flags2 low 16 */
45                                 5, 4,                    /* vlan_tci */
46                                 1, 0,                    /* errors_v2 */
47                                 0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
48                                 0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
49                                 7, 6,                    /* metadata type */
50                                 9, 8,                    /* flags2 low 16 */
51                                 5, 4,                    /* vlan_tci */
52                                 1, 0,                    /* errors_v2 */
53                                 0xff, 0xff, 0xff, 0xff); /* Zeroes. */
54         const __m256i shuf_msk =
55                 _mm256_set_epi8(15, 14, 13, 12,          /* rss */
56                                 7, 6,                    /* vlan_tci */
57                                 3, 2,                    /* data_len */
58                                 0xFF, 0xFF, 3, 2,        /* pkt_len */
59                                 0xFF, 0xFF, 0xFF, 0xFF,  /* pkt_type (zeroes) */
60                                 15, 14, 13, 12,          /* rss */
61                                 7, 6,                    /* vlan_tci */
62                                 3, 2,                    /* data_len */
63                                 0xFF, 0xFF, 3, 2,        /* pkt_len */
64                                 0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
65         const __m256i flags_type_mask =
66                 _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
67         const __m256i flags2_mask1 =
68                 _mm256_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK);
69         const __m256i flags2_mask2 =
70                 _mm256_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
71         const __m256i rss_mask =
72                 _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID);
73         __m256i t0, t1, flags_type, flags2, index, errors;
74         __m256i ptype_idx, ptypes, is_tunnel;
75         __m256i mbuf01, mbuf23, mbuf45, mbuf67;
76         __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7;
77         __m256i ol_flags, ol_flags_hi;
78         __m256i rss_flags;
79
80         /* Validate ptype table indexing at build time. */
81         bnxt_check_ptype_constants();
82
83         /* If Rx Q was stopped return */
84         if (unlikely(!rxq->rx_started))
85                 return 0;
86
87         if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
88                 bnxt_rxq_rearm(rxq, rxr);
89
90         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
91
92         cons = raw_cons & (cp_ring_size - 1);
93         mbcons = (raw_cons / 2) & (rx_ring_size - 1);
94
95         /* Prefetch first four descriptor pairs. */
96         rte_prefetch0(&cp_desc_ring[cons + 0]);
97         rte_prefetch0(&cp_desc_ring[cons + 4]);
98         rte_prefetch0(&cp_desc_ring[cons + 8]);
99         rte_prefetch0(&cp_desc_ring[cons + 12]);
100
101         /* Ensure that we do not go past the ends of the rings. */
102         nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
103                                            (cp_ring_size - cons) / 2));
104         /*
105          * If we are at the end of the ring, ensure that descriptors after the
106          * last valid entry are not treated as valid. Otherwise, force the
107          * maximum number of packets to receive to be a multiple of the per-
108          * loop count.
109          */
110         if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC256) {
111                 desc_valid_mask >>=
112                         CHAR_BIT * (BNXT_RX_DESCS_PER_LOOP_VEC256 - nb_pkts);
113         } else {
114                 nb_pkts =
115                         RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
116         }
117
118         /* Handle RX burst request */
119         for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC256,
120                                   cons += BNXT_RX_DESCS_PER_LOOP_VEC256 * 2,
121                                   mbcons += BNXT_RX_DESCS_PER_LOOP_VEC256) {
122                 __m256i desc0, desc1, desc2, desc3, desc4, desc5, desc6, desc7;
123                 __m256i rxcmp0_1, rxcmp2_3, rxcmp4_5, rxcmp6_7, info3_v;
124                 __m256i errors_v2;
125                 uint32_t num_valid;
126
127                 /* Copy eight mbuf pointers to output array. */
128                 t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons]);
129                 _mm256_storeu_si256((void *)&rx_pkts[i], t0);
130 #ifdef RTE_ARCH_X86_64
131                 t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons + 4]);
132                 _mm256_storeu_si256((void *)&rx_pkts[i + 4], t0);
133 #endif
134
135                 /* Prefetch eight descriptor pairs for next iteration. */
136                 if (i + BNXT_RX_DESCS_PER_LOOP_VEC256 < nb_pkts) {
137                         rte_prefetch0(&cp_desc_ring[cons + 16]);
138                         rte_prefetch0(&cp_desc_ring[cons + 20]);
139                         rte_prefetch0(&cp_desc_ring[cons + 24]);
140                         rte_prefetch0(&cp_desc_ring[cons + 28]);
141                 }
142
143                 /*
144                  * Load eight receive completion descriptors into 256-bit
145                  * registers. Loads are issued in reverse order in order to
146                  * ensure consistent state.
147                  */
148                 desc7 = _mm256_load_si256((void *)&cp_desc_ring[cons + 14]);
149                 rte_compiler_barrier();
150                 desc6 = _mm256_load_si256((void *)&cp_desc_ring[cons + 12]);
151                 rte_compiler_barrier();
152                 desc5 = _mm256_load_si256((void *)&cp_desc_ring[cons + 10]);
153                 rte_compiler_barrier();
154                 desc4 = _mm256_load_si256((void *)&cp_desc_ring[cons + 8]);
155                 rte_compiler_barrier();
156                 desc3 = _mm256_load_si256((void *)&cp_desc_ring[cons + 6]);
157                 rte_compiler_barrier();
158                 desc2 = _mm256_load_si256((void *)&cp_desc_ring[cons + 4]);
159                 rte_compiler_barrier();
160                 desc1 = _mm256_load_si256((void *)&cp_desc_ring[cons + 2]);
161                 rte_compiler_barrier();
162                 desc0 = _mm256_load_si256((void *)&cp_desc_ring[cons + 0]);
163
164                 /*
165                  * Pack needed fields from each descriptor into a compressed
166                  * 128-bit layout and pair two compressed descriptors into
167                  * 256-bit registers. The 128-bit compressed layout is as
168                  * follows:
169                  *     Bits  0-15: flags_type field from low completion record.
170                  *     Bits 16-31: len field  from low completion record.
171                  *     Bits 32-47: flags2 (low 16 bits) from high completion.
172                  *     Bits 48-79: metadata from high completion record.
173                  *     Bits 80-95: errors_v2 from high completion record.
174                  *     Bits 96-127: rss hash from low completion record.
175                  */
176                 t0 = _mm256_permute2f128_si256(desc6, desc7, 0x20);
177                 t1 = _mm256_permute2f128_si256(desc6, desc7, 0x31);
178                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
179                 rxcmp6_7 = _mm256_blend_epi32(t0, t1, 0x66);
180
181                 t0 = _mm256_permute2f128_si256(desc4, desc5, 0x20);
182                 t1 = _mm256_permute2f128_si256(desc4, desc5, 0x31);
183                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
184                 rxcmp4_5 = _mm256_blend_epi32(t0, t1, 0x66);
185
186                 t0 = _mm256_permute2f128_si256(desc2, desc3, 0x20);
187                 t1 = _mm256_permute2f128_si256(desc2, desc3, 0x31);
188                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
189                 rxcmp2_3 = _mm256_blend_epi32(t0, t1, 0x66);
190
191                 t0 = _mm256_permute2f128_si256(desc0, desc1, 0x20);
192                 t1 = _mm256_permute2f128_si256(desc0, desc1, 0x31);
193                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
194                 rxcmp0_1 = _mm256_blend_epi32(t0, t1, 0x66);
195
196                 /* Compute packet type table indices for eight packets. */
197                 t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
198                 t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
199                 flags_type = _mm256_unpacklo_epi64(t0, t1);
200                 ptype_idx = _mm256_and_si256(flags_type, flags_type_mask);
201                 ptype_idx = _mm256_srli_epi32(ptype_idx,
202                                               RX_PKT_CMPL_FLAGS_ITYPE_SFT -
203                                               BNXT_PTYPE_TBL_TYPE_SFT);
204
205                 t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
206                 t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
207                 flags2 = _mm256_unpackhi_epi64(t0, t1);
208
209                 t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask1),
210                                        RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
211                                        BNXT_PTYPE_TBL_VLAN_SFT);
212                 ptype_idx = _mm256_or_si256(ptype_idx, t0);
213
214                 t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask2),
215                                        RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
216                                        BNXT_PTYPE_TBL_IP_VER_SFT);
217                 ptype_idx = _mm256_or_si256(ptype_idx, t0);
218
219                 /*
220                  * Load ptypes for eight packets using gather. Gather operations
221                  * have extremely high latency (~19 cycles), execution and use
222                  * of result should be separated as much as possible.
223                  */
224                 ptypes = _mm256_i32gather_epi32((int *)bnxt_ptype_table,
225                                                 ptype_idx, sizeof(uint32_t));
226                 /*
227                  * Compute ol_flags and checksum error table indices for eight
228                  * packets.
229                  */
230                 is_tunnel = _mm256_and_si256(flags2, _mm256_set1_epi32(4));
231                 is_tunnel = _mm256_slli_epi32(is_tunnel, 3);
232                 flags2 = _mm256_and_si256(flags2, _mm256_set1_epi32(0x1F));
233
234                 /* Extract errors_v2 fields for eight packets. */
235                 t0 = _mm256_unpackhi_epi32(rxcmp0_1, rxcmp2_3);
236                 t1 = _mm256_unpackhi_epi32(rxcmp4_5, rxcmp6_7);
237                 errors_v2 = _mm256_unpacklo_epi64(t0, t1);
238
239                 errors = _mm256_srli_epi32(errors_v2, 4);
240                 errors = _mm256_and_si256(errors, _mm256_set1_epi32(0xF));
241                 errors = _mm256_and_si256(errors, flags2);
242
243                 index = _mm256_andnot_si256(errors, flags2);
244                 errors = _mm256_or_si256(errors,
245                                          _mm256_srli_epi32(is_tunnel, 1));
246                 index = _mm256_or_si256(index, is_tunnel);
247
248                 /*
249                  * Load ol_flags for eight packets using gather. Gather
250                  * operations have extremely high latency (~19 cycles),
251                  * execution and use of result should be separated as much
252                  * as possible.
253                  */
254                 ol_flags = _mm256_i32gather_epi32((int *)rxr->ol_flags_table,
255                                                   index, sizeof(uint32_t));
256                 errors = _mm256_i32gather_epi32((int *)rxr->ol_flags_err_table,
257                                                 errors, sizeof(uint32_t));
258
259                 /*
260                  * Pack the 128-bit array of valid descriptor flags into 64
261                  * bits and count the number of set bits in order to determine
262                  * the number of valid descriptors.
263                  */
264                 const __m256i perm_msk =
265                                 _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
266                 info3_v = _mm256_permutevar8x32_epi32(errors_v2, perm_msk);
267                 info3_v = _mm256_and_si256(errors_v2, info3_v_mask);
268                 info3_v = _mm256_xor_si256(info3_v, valid_target);
269
270                 info3_v = _mm256_packs_epi32(info3_v, _mm256_setzero_si256());
271                 valid = _mm_cvtsi128_si64(_mm256_extracti128_si256(info3_v, 1));
272                 valid = (valid << CHAR_BIT) |
273                         _mm_cvtsi128_si64(_mm256_castsi256_si128(info3_v));
274                 num_valid = __builtin_popcountll(valid & desc_valid_mask);
275
276                 if (num_valid == 0)
277                         break;
278
279                 /* Update mbuf rearm_data for eight packets. */
280                 mbuf01 = _mm256_shuffle_epi8(rxcmp0_1, shuf_msk);
281                 mbuf23 = _mm256_shuffle_epi8(rxcmp2_3, shuf_msk);
282                 mbuf45 = _mm256_shuffle_epi8(rxcmp4_5, shuf_msk);
283                 mbuf67 = _mm256_shuffle_epi8(rxcmp6_7, shuf_msk);
284
285                 /* Blend in ptype field for two mbufs at a time. */
286                 mbuf01 = _mm256_blend_epi32(mbuf01, ptypes, 0x11);
287                 mbuf23 = _mm256_blend_epi32(mbuf23,
288                                         _mm256_srli_si256(ptypes, 4), 0x11);
289                 mbuf45 = _mm256_blend_epi32(mbuf45,
290                                         _mm256_srli_si256(ptypes, 8), 0x11);
291                 mbuf67 = _mm256_blend_epi32(mbuf67,
292                                         _mm256_srli_si256(ptypes, 12), 0x11);
293
294                 /* Unpack rearm data, set fixed fields for first four mbufs. */
295                 rearm0 = _mm256_permute2f128_si256(mbuf_init, mbuf01, 0x20);
296                 rearm1 = _mm256_blend_epi32(mbuf_init, mbuf01, 0xF0);
297                 rearm2 = _mm256_permute2f128_si256(mbuf_init, mbuf23, 0x20);
298                 rearm3 = _mm256_blend_epi32(mbuf_init, mbuf23, 0xF0);
299
300                 /* Compute final ol_flags values for eight packets. */
301                 rss_flags = _mm256_and_si256(flags_type, rss_mask);
302                 rss_flags = _mm256_srli_epi32(rss_flags, 9);
303                 ol_flags = _mm256_or_si256(ol_flags, errors);
304                 ol_flags = _mm256_or_si256(ol_flags, rss_flags);
305                 ol_flags_hi = _mm256_permute2f128_si256(ol_flags,
306                                                         ol_flags, 0x11);
307
308                 /* Set ol_flags fields for first four packets. */
309                 rearm0 = _mm256_blend_epi32(rearm0,
310                                             _mm256_slli_si256(ol_flags, 8),
311                                             0x04);
312                 rearm1 = _mm256_blend_epi32(rearm1,
313                                             _mm256_slli_si256(ol_flags_hi, 8),
314                                             0x04);
315                 rearm2 = _mm256_blend_epi32(rearm2,
316                                             _mm256_slli_si256(ol_flags, 4),
317                                             0x04);
318                 rearm3 = _mm256_blend_epi32(rearm3,
319                                             _mm256_slli_si256(ol_flags_hi, 4),
320                                             0x04);
321
322                 /* Store all mbuf fields for first four packets. */
323                 _mm256_storeu_si256((void *)&rx_pkts[i + 0]->rearm_data,
324                                     rearm0);
325                 _mm256_storeu_si256((void *)&rx_pkts[i + 1]->rearm_data,
326                                     rearm1);
327                 _mm256_storeu_si256((void *)&rx_pkts[i + 2]->rearm_data,
328                                     rearm2);
329                 _mm256_storeu_si256((void *)&rx_pkts[i + 3]->rearm_data,
330                                     rearm3);
331
332                 /* Unpack rearm data, set fixed fields for final four mbufs. */
333                 rearm4 = _mm256_permute2f128_si256(mbuf_init, mbuf45, 0x20);
334                 rearm5 = _mm256_blend_epi32(mbuf_init, mbuf45, 0xF0);
335                 rearm6 = _mm256_permute2f128_si256(mbuf_init, mbuf67, 0x20);
336                 rearm7 = _mm256_blend_epi32(mbuf_init, mbuf67, 0xF0);
337
338                 /* Set ol_flags fields for final four packets. */
339                 rearm4 = _mm256_blend_epi32(rearm4, ol_flags, 0x04);
340                 rearm5 = _mm256_blend_epi32(rearm5, ol_flags_hi, 0x04);
341                 rearm6 = _mm256_blend_epi32(rearm6,
342                                             _mm256_srli_si256(ol_flags, 4),
343                                             0x04);
344                 rearm7 = _mm256_blend_epi32(rearm7,
345                                             _mm256_srli_si256(ol_flags_hi, 4),
346                                             0x04);
347
348                 /* Store all mbuf fields for final four packets. */
349                 _mm256_storeu_si256((void *)&rx_pkts[i + 4]->rearm_data,
350                                     rearm4);
351                 _mm256_storeu_si256((void *)&rx_pkts[i + 5]->rearm_data,
352                                     rearm5);
353                 _mm256_storeu_si256((void *)&rx_pkts[i + 6]->rearm_data,
354                                     rearm6);
355                 _mm256_storeu_si256((void *)&rx_pkts[i + 7]->rearm_data,
356                                     rearm7);
357
358                 nb_rx_pkts += num_valid;
359                 if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC256)
360                         break;
361         }
362
363         if (nb_rx_pkts) {
364                 rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
365
366                 rxq->rxrearm_nb += nb_rx_pkts;
367                 cpr->cp_raw_cons += 2 * nb_rx_pkts;
368                 bnxt_db_cq(cpr);
369         }
370
371         return nb_rx_pkts;
372 }
373
374 uint16_t
375 bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
376                          uint16_t nb_pkts)
377 {
378         uint16_t cnt = 0;
379
380         while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
381                 uint16_t burst;
382
383                 burst = recv_burst_vec_avx2(rx_queue, rx_pkts + cnt,
384                                              RTE_BNXT_MAX_RX_BURST);
385
386                 cnt += burst;
387                 nb_pkts -= burst;
388
389                 if (burst < RTE_BNXT_MAX_RX_BURST)
390                         return cnt;
391         }
392         return cnt + recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, nb_pkts);
393 }
394
395 static void
396 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
397 {
398         struct bnxt_cp_ring_info *cpr = txq->cp_ring;
399         uint32_t raw_cons = cpr->cp_raw_cons;
400         uint32_t cons;
401         uint32_t nb_tx_pkts = 0;
402         struct tx_cmpl *txcmp;
403         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
404         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
405         uint32_t ring_mask = cp_ring_struct->ring_mask;
406
407         do {
408                 cons = RING_CMPL(ring_mask, raw_cons);
409                 txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
410
411                 if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
412                         break;
413
414                 nb_tx_pkts += txcmp->opaque;
415                 raw_cons = NEXT_RAW_CMP(raw_cons);
416         } while (nb_tx_pkts < ring_mask);
417
418         if (nb_tx_pkts) {
419                 if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
420                         bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
421                 else
422                         bnxt_tx_cmp_vec(txq, nb_tx_pkts);
423                 cpr->cp_raw_cons = raw_cons;
424                 bnxt_db_cq(cpr);
425         }
426 }
427
428 static inline void
429 bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd,
430               struct rte_mbuf **tx_buf)
431 {
432         uint64_t dsc_hi, dsc_lo;
433         __m128i desc;
434
435         *tx_buf = mbuf;
436
437         dsc_hi = mbuf->buf_iova + mbuf->data_off;
438         dsc_lo = (mbuf->data_len << 16) |
439                  bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL);
440
441         desc = _mm_set_epi64x(dsc_hi, dsc_lo);
442         _mm_store_si128((void *)txbd, desc);
443 }
444
445 static uint16_t
446 bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **pkts,
447                           uint16_t nb_pkts)
448 {
449         struct bnxt_tx_ring_info *txr = txq->tx_ring;
450         uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
451         struct tx_bd_long *txbd;
452         struct rte_mbuf **tx_buf;
453         uint16_t to_send;
454
455         tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
456         txbd = &txr->tx_desc_ring[tx_prod];
457         tx_buf = &txr->tx_buf_ring[tx_prod];
458
459         /* Prefetch next transmit buffer descriptors. */
460         rte_prefetch0(txbd);
461         rte_prefetch0(txbd + 3);
462
463         nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
464
465         if (unlikely(nb_pkts == 0))
466                 return 0;
467
468         /* Handle TX burst request */
469         to_send = nb_pkts;
470
471         /*
472          * If current descriptor is not on a 32-byte boundary, send one packet
473          * to align for 32-byte stores.
474          */
475         if (tx_prod & 1) {
476                 bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
477                 to_send--;
478                 pkts++;
479         }
480
481         /*
482          * Send four packets per loop, with a single store for each pair
483          * of descriptors.
484          */
485         while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
486                 uint64_t dsc0_hi, dsc0_lo, dsc1_hi, dsc1_lo;
487                 uint64_t dsc2_hi, dsc2_lo, dsc3_hi, dsc3_lo;
488                 __m256i dsc01, dsc23;
489
490                 /* Prefetch next transmit buffer descriptors. */
491                 rte_prefetch0(txbd + 4);
492                 rte_prefetch0(txbd + 7);
493
494                 /* Copy four mbuf pointers to tx buf ring. */
495 #ifdef RTE_ARCH_X86_64
496                 __m256i tmp = _mm256_loadu_si256((void *)pkts);
497                 _mm256_storeu_si256((void *)tx_buf, tmp);
498 #else
499                 __m128i tmp = _mm_loadu_si128((void *)pkts);
500                 _mm_storeu_si128((void *)tx_buf, tmp);
501 #endif
502
503                 dsc0_hi = tx_buf[0]->buf_iova + tx_buf[0]->data_off;
504                 dsc0_lo = (tx_buf[0]->data_len << 16) |
505                           bnxt_xmit_flags_len(tx_buf[0]->data_len,
506                                               TX_BD_FLAGS_NOCMPL);
507
508                 dsc1_hi = tx_buf[1]->buf_iova + tx_buf[1]->data_off;
509                 dsc1_lo = (tx_buf[1]->data_len << 16) |
510                           bnxt_xmit_flags_len(tx_buf[1]->data_len,
511                                               TX_BD_FLAGS_NOCMPL);
512
513                 dsc01 = _mm256_set_epi64x(dsc1_hi, dsc1_lo, dsc0_hi, dsc0_lo);
514
515                 dsc2_hi = tx_buf[2]->buf_iova + tx_buf[2]->data_off;
516                 dsc2_lo = (tx_buf[2]->data_len << 16) |
517                           bnxt_xmit_flags_len(tx_buf[2]->data_len,
518                                               TX_BD_FLAGS_NOCMPL);
519
520                 dsc3_hi = tx_buf[3]->buf_iova + tx_buf[3]->data_off;
521                 dsc3_lo = (tx_buf[3]->data_len << 16) |
522                           bnxt_xmit_flags_len(tx_buf[3]->data_len,
523                                               TX_BD_FLAGS_NOCMPL);
524
525                 dsc23 = _mm256_set_epi64x(dsc3_hi, dsc3_lo, dsc2_hi, dsc2_lo);
526
527                 _mm256_store_si256((void *)txbd, dsc01);
528                 _mm256_store_si256((void *)(txbd + 2), dsc23);
529
530                 to_send -= BNXT_TX_DESCS_PER_LOOP;
531                 pkts += BNXT_TX_DESCS_PER_LOOP;
532                 txbd += BNXT_TX_DESCS_PER_LOOP;
533                 tx_buf += BNXT_TX_DESCS_PER_LOOP;
534         }
535
536         /* Send any remaining packets, writing each descriptor individually. */
537         while (to_send) {
538                 bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
539                 to_send--;
540                 pkts++;
541         }
542
543         /* Request a completion for the final packet of the burst. */
544         txbd[-1].opaque = nb_pkts;
545         txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
546
547         tx_raw_prod += nb_pkts;
548         bnxt_db_write(&txr->tx_db, tx_raw_prod);
549
550         txr->tx_raw_prod = tx_raw_prod;
551
552         return nb_pkts;
553 }
554
555 uint16_t
556 bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
557                         uint16_t nb_pkts)
558 {
559         int nb_sent = 0;
560         struct bnxt_tx_queue *txq = tx_queue;
561         struct bnxt_tx_ring_info *txr = txq->tx_ring;
562         uint16_t ring_size = txr->tx_ring_struct->ring_size;
563
564         /* Tx queue was stopped; wait for it to be restarted */
565         if (unlikely(!txq->tx_started)) {
566                 PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
567                 return 0;
568         }
569
570         /* Handle TX completions */
571         if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
572                 bnxt_handle_tx_cp_vec(txq);
573
574         while (nb_pkts) {
575                 uint16_t ret, num;
576
577                 /*
578                  * Ensure that no more than RTE_BNXT_MAX_TX_BURST packets
579                  * are transmitted before the next completion.
580                  */
581                 num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
582
583                 /*
584                  * Ensure that a ring wrap does not occur within a call to
585                  * bnxt_xmit_fixed_burst_vec().
586                  */
587                 num = RTE_MIN(num, ring_size -
588                                    (txr->tx_raw_prod & (ring_size - 1)));
589                 ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num);
590                 nb_sent += ret;
591                 nb_pkts -= ret;
592                 if (ret < num)
593                         break;
594         }
595
596         return nb_sent;
597 }