net: add rte prefix to ether defines
[dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "mps_tcam.h"
43
44 /**
45  * Allocate a chunk of memory. The allocated memory is cleared.
46  */
47 void *t4_alloc_mem(size_t size)
48 {
49         return rte_zmalloc(NULL, size, 0);
50 }
51
52 /**
53  * Free memory allocated through t4_alloc_mem().
54  */
55 void t4_free_mem(void *addr)
56 {
57         rte_free(addr);
58 }
59
60 /*
61  * Response queue handler for the FW event queue.
62  */
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64                           __rte_unused const struct pkt_gl *gl)
65 {
66         u8 opcode = ((const struct rss_header *)rsp)->opcode;
67
68         rsp++;                                          /* skip RSS header */
69
70         /*
71          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
72          */
73         if (unlikely(opcode == CPL_FW4_MSG &&
74                      ((const struct cpl_fw4_msg *)rsp)->type ==
75                       FW_TYPE_RSSCPL)) {
76                 rsp++;
77                 opcode = ((const struct rss_header *)rsp)->opcode;
78                 rsp++;
79                 if (opcode != CPL_SGE_EGR_UPDATE) {
80                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
81                                 opcode);
82                         goto out;
83                 }
84         }
85
86         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
87                 /* do nothing */
88         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89                 const struct cpl_fw6_msg *msg = (const void *)rsp;
90
91                 t4_handle_fw_rpl(q->adapter, msg->data);
92         } else if (opcode == CPL_ABORT_RPL_RSS) {
93                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
94
95                 hash_del_filter_rpl(q->adapter, p);
96         } else if (opcode == CPL_SET_TCB_RPL) {
97                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
98
99                 filter_rpl(q->adapter, p);
100         } else if (opcode == CPL_ACT_OPEN_RPL) {
101                 const struct cpl_act_open_rpl *p = (const void *)rsp;
102
103                 hash_filter_rpl(q->adapter, p);
104         } else if (opcode == CPL_L2T_WRITE_RPL) {
105                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
106
107                 do_l2t_write_rpl(q->adapter, p);
108         } else {
109                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110                         opcode);
111         }
112 out:
113         return 0;
114 }
115
116 /**
117  * Setup sge control queues to pass control information.
118  */
119 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
120 {
121         struct sge *s = &adapter->sge;
122         int err = 0, i = 0;
123
124         for_each_port(adapter, i) {
125                 struct port_info *pi = adap2pinfo(adapter, i);
126                 char name[RTE_ETH_NAME_MAX_LEN];
127                 struct sge_ctrl_txq *q = &s->ctrlq[i];
128
129                 q->q.size = 1024;
130                 err = t4_sge_alloc_ctrl_txq(adapter, q,
131                                             adapter->eth_dev,  i,
132                                             s->fw_evtq.cntxt_id,
133                                             rte_socket_id());
134                 if (err) {
135                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
136                                 err);
137                         goto out;
138                 }
139                 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
140                          pi->eth_dev->device->driver->name,
141                          pi->eth_dev->data->port_id);
142                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
143                                                      RTE_CACHE_LINE_SIZE,
144                                                      RTE_MBUF_PRIV_ALIGN,
145                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
146                                                      SOCKET_ID_ANY);
147                 if (!q->mb_pool) {
148                         err = -rte_errno;
149                         dev_err(adapter,
150                                 "Can't create ctrl pool for port %d. Err: %d\n",
151                                 pi->eth_dev->data->port_id, err);
152                         goto out;
153                 }
154         }
155         return 0;
156 out:
157         t4_free_sge_resources(adapter);
158         return err;
159 }
160
161 /**
162  * cxgbe_poll_for_completion: Poll rxq for completion
163  * @q: rxq to poll
164  * @ms: milliseconds to delay
165  * @cnt: number of times to poll
166  * @c: completion to check for 'done' status
167  *
168  * Polls the rxq for reples until completion is done or the count
169  * expires.
170  */
171 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
172                               unsigned int cnt, struct t4_completion *c)
173 {
174         unsigned int i;
175         unsigned int work_done, budget = 32;
176
177         if (!c)
178                 return -EINVAL;
179
180         for (i = 0; i < cnt; i++) {
181                 cxgbe_poll(q, NULL, budget, &work_done);
182                 t4_os_lock(&c->lock);
183                 if (c->done) {
184                         t4_os_unlock(&c->lock);
185                         return 0;
186                 }
187                 t4_os_unlock(&c->lock);
188                 rte_delay_ms(ms);
189         }
190         return -ETIMEDOUT;
191 }
192
193 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
194 {
195         struct sge *s = &adapter->sge;
196         int err = 0;
197         int msi_idx = 0;
198
199         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
200                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
201                                rte_socket_id());
202         return err;
203 }
204
205 static int closest_timer(const struct sge *s, int time)
206 {
207         unsigned int i, match = 0;
208         int delta, min_delta = INT_MAX;
209
210         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
211                 delta = time - s->timer_val[i];
212                 if (delta < 0)
213                         delta = -delta;
214                 if (delta < min_delta) {
215                         min_delta = delta;
216                         match = i;
217                 }
218         }
219         return match;
220 }
221
222 static int closest_thres(const struct sge *s, int thres)
223 {
224         unsigned int i, match = 0;
225         int delta, min_delta = INT_MAX;
226
227         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
228                 delta = thres - s->counter_val[i];
229                 if (delta < 0)
230                         delta = -delta;
231                 if (delta < min_delta) {
232                         min_delta = delta;
233                         match = i;
234                 }
235         }
236         return match;
237 }
238
239 /**
240  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
241  * @q: the Rx queue
242  * @us: the hold-off time in us, or 0 to disable timer
243  * @cnt: the hold-off packet count, or 0 to disable counter
244  *
245  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
246  * one of the two needs to be enabled for the queue to generate interrupts.
247  */
248 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
249                                unsigned int cnt)
250 {
251         struct adapter *adap = q->adapter;
252         unsigned int timer_val;
253
254         if (cnt) {
255                 int err;
256                 u32 v, new_idx;
257
258                 new_idx = closest_thres(&adap->sge, cnt);
259                 if (q->desc && q->pktcnt_idx != new_idx) {
260                         /* the queue has already been created, update it */
261                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
262                             V_FW_PARAMS_PARAM_X(
263                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
264                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
265                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
266                                             &v, &new_idx);
267                         if (err)
268                                 return err;
269                 }
270                 q->pktcnt_idx = new_idx;
271         }
272
273         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
274                                 closest_timer(&adap->sge, us);
275
276         if ((us | cnt) == 0)
277                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
278         else
279                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
280                                  V_QINTR_CNT_EN(cnt > 0);
281         return 0;
282 }
283
284 /**
285  * Allocate an active-open TID and set it to the supplied value.
286  */
287 int cxgbe_alloc_atid(struct tid_info *t, void *data)
288 {
289         int atid = -1;
290
291         t4_os_lock(&t->atid_lock);
292         if (t->afree) {
293                 union aopen_entry *p = t->afree;
294
295                 atid = p - t->atid_tab;
296                 t->afree = p->next;
297                 p->data = data;
298                 t->atids_in_use++;
299         }
300         t4_os_unlock(&t->atid_lock);
301         return atid;
302 }
303
304 /**
305  * Release an active-open TID.
306  */
307 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
308 {
309         union aopen_entry *p = &t->atid_tab[atid];
310
311         t4_os_lock(&t->atid_lock);
312         p->next = t->afree;
313         t->afree = p;
314         t->atids_in_use--;
315         t4_os_unlock(&t->atid_lock);
316 }
317
318 /**
319  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
320  */
321 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
322 {
323         struct cpl_tid_release *req;
324
325         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
326         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
327 }
328
329 /**
330  * Release a TID and inform HW.  If we are unable to allocate the release
331  * message we defer to a work queue.
332  */
333 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
334                       unsigned short family)
335 {
336         struct rte_mbuf *mbuf;
337         struct adapter *adap = container_of(t, struct adapter, tids);
338
339         WARN_ON(tid >= t->ntids);
340
341         if (t->tid_tab[tid]) {
342                 t->tid_tab[tid] = NULL;
343                 rte_atomic32_dec(&t->conns_in_use);
344                 if (t->hash_base && tid >= t->hash_base) {
345                         if (family == FILTER_TYPE_IPV4)
346                                 rte_atomic32_dec(&t->hash_tids_in_use);
347                 } else {
348                         if (family == FILTER_TYPE_IPV4)
349                                 rte_atomic32_dec(&t->tids_in_use);
350                 }
351         }
352
353         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
354         if (mbuf) {
355                 mbuf->data_len = sizeof(struct cpl_tid_release);
356                 mbuf->pkt_len = mbuf->data_len;
357                 mk_tid_release(mbuf, tid);
358                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
359         }
360 }
361
362 /**
363  * Insert a TID.
364  */
365 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
366                       unsigned short family)
367 {
368         t->tid_tab[tid] = data;
369         if (t->hash_base && tid >= t->hash_base) {
370                 if (family == FILTER_TYPE_IPV4)
371                         rte_atomic32_inc(&t->hash_tids_in_use);
372         } else {
373                 if (family == FILTER_TYPE_IPV4)
374                         rte_atomic32_inc(&t->tids_in_use);
375         }
376
377         rte_atomic32_inc(&t->conns_in_use);
378 }
379
380 /**
381  * Free TID tables.
382  */
383 static void tid_free(struct tid_info *t)
384 {
385         if (t->tid_tab) {
386                 if (t->ftid_bmap)
387                         rte_bitmap_free(t->ftid_bmap);
388
389                 if (t->ftid_bmap_array)
390                         t4_os_free(t->ftid_bmap_array);
391
392                 t4_os_free(t->tid_tab);
393         }
394
395         memset(t, 0, sizeof(struct tid_info));
396 }
397
398 /**
399  * Allocate and initialize the TID tables.  Returns 0 on success.
400  */
401 static int tid_init(struct tid_info *t)
402 {
403         size_t size;
404         unsigned int ftid_bmap_size;
405         unsigned int natids = t->natids;
406         unsigned int max_ftids = t->nftids;
407
408         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
409         size = t->ntids * sizeof(*t->tid_tab) +
410                 max_ftids * sizeof(*t->ftid_tab) +
411                 natids * sizeof(*t->atid_tab);
412
413         t->tid_tab = t4_os_alloc(size);
414         if (!t->tid_tab)
415                 return -ENOMEM;
416
417         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
418         t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
419         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
420         if (!t->ftid_bmap_array) {
421                 tid_free(t);
422                 return -ENOMEM;
423         }
424
425         t4_os_lock_init(&t->atid_lock);
426         t4_os_lock_init(&t->ftid_lock);
427
428         t->afree = NULL;
429         t->atids_in_use = 0;
430         rte_atomic32_init(&t->tids_in_use);
431         rte_atomic32_set(&t->tids_in_use, 0);
432         rte_atomic32_init(&t->conns_in_use);
433         rte_atomic32_set(&t->conns_in_use, 0);
434
435         /* Setup the free list for atid_tab and clear the stid bitmap. */
436         if (natids) {
437                 while (--natids)
438                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
439                 t->afree = t->atid_tab;
440         }
441
442         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
443                                        ftid_bmap_size);
444         if (!t->ftid_bmap) {
445                 tid_free(t);
446                 return -ENOMEM;
447         }
448
449         return 0;
450 }
451
452 static inline bool is_x_1g_port(const struct link_config *lc)
453 {
454         return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
455 }
456
457 static inline bool is_x_10g_port(const struct link_config *lc)
458 {
459         unsigned int speeds, high_speeds;
460
461         speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
462         high_speeds = speeds &
463                       ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
464
465         return high_speeds != 0;
466 }
467
468 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
469                       unsigned int us, unsigned int cnt,
470                       unsigned int size, unsigned int iqe_size)
471 {
472         q->adapter = adap;
473         cxgb4_set_rspq_intr_params(q, us, cnt);
474         q->iqe_len = iqe_size;
475         q->size = size;
476 }
477
478 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
479 {
480         struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
481         struct adapter *adap = pi->adapter;
482         struct sge *s = &adap->sge;
483         unsigned int max_queues = s->max_ethqsets / adap->params.nports;
484
485         if ((eth_dev->data->nb_rx_queues < 1) ||
486             (eth_dev->data->nb_tx_queues < 1))
487                 return -EINVAL;
488
489         if ((eth_dev->data->nb_rx_queues > max_queues) ||
490             (eth_dev->data->nb_tx_queues > max_queues))
491                 return -EINVAL;
492
493         if (eth_dev->data->nb_rx_queues > pi->rss_size)
494                 return -EINVAL;
495
496         /* We must configure RSS, since config has changed*/
497         pi->flags &= ~PORT_RSS_DONE;
498
499         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
500         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
501
502         return 0;
503 }
504
505 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
506 {
507         struct rte_config *config = rte_eal_get_configuration();
508         struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
509         struct adapter *adap = pi->adapter;
510         struct sge *s = &adap->sge;
511         unsigned int i, nb_ports = 0, qidx = 0;
512         unsigned int q_per_port = 0;
513
514         if (!(adap->flags & CFG_QUEUES)) {
515                 for_each_port(adap, i) {
516                         struct port_info *tpi = adap2pinfo(adap, i);
517
518                         nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
519                                      is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
520                 }
521
522                 /*
523                  * We default up to # of cores queues per 1G/10G port.
524                  */
525                 if (nb_ports)
526                         q_per_port = (s->max_ethqsets -
527                                      (adap->params.nports - nb_ports)) /
528                                      nb_ports;
529
530                 if (q_per_port > config->lcore_count)
531                         q_per_port = config->lcore_count;
532
533                 for_each_port(adap, i) {
534                         struct port_info *pi = adap2pinfo(adap, i);
535
536                         pi->first_qset = qidx;
537
538                         /* Initially n_rx_qsets == n_tx_qsets */
539                         pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
540                                           is_x_1g_port(&pi->link_cfg)) ?
541                                           q_per_port : 1;
542                         pi->n_tx_qsets = pi->n_rx_qsets;
543
544                         if (pi->n_rx_qsets > pi->rss_size)
545                                 pi->n_rx_qsets = pi->rss_size;
546
547                         qidx += pi->n_rx_qsets;
548                 }
549
550                 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
551                         struct sge_eth_rxq *r = &s->ethrxq[i];
552
553                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
554                         r->usembufs = 1;
555                         r->fl.size = (r->usembufs ? 1024 : 72);
556                 }
557
558                 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
559                         s->ethtxq[i].q.size = 1024;
560
561                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
562                 adap->flags |= CFG_QUEUES;
563         }
564 }
565
566 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
567 {
568         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
569                                  &pi->stats_base);
570 }
571
572 void cxgbe_stats_reset(struct port_info *pi)
573 {
574         t4_clr_port_stats(pi->adapter, pi->tx_chan);
575 }
576
577 static void setup_memwin(struct adapter *adap)
578 {
579         u32 mem_win0_base;
580
581         /* For T5, only relative offset inside the PCIe BAR is passed */
582         mem_win0_base = MEMWIN0_BASE;
583
584         /*
585          * Set up memory window for accessing adapter memory ranges.  (Read
586          * back MA register to ensure that changes propagate before we attempt
587          * to use the new values.)
588          */
589         t4_write_reg(adap,
590                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
591                                          MEMWIN_NIC),
592                      mem_win0_base | V_BIR(0) |
593                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
594         t4_read_reg(adap,
595                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
596                                         MEMWIN_NIC));
597 }
598
599 int cxgbe_init_rss(struct adapter *adap)
600 {
601         unsigned int i;
602
603         if (is_pf4(adap)) {
604                 int err;
605
606                 err = t4_init_rss_mode(adap, adap->mbox);
607                 if (err)
608                         return err;
609         }
610
611         for_each_port(adap, i) {
612                 struct port_info *pi = adap2pinfo(adap, i);
613
614                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
615                 if (!pi->rss)
616                         return -ENOMEM;
617
618                 pi->rss_hf = CXGBE_RSS_HF_ALL;
619         }
620         return 0;
621 }
622
623 /**
624  * Dump basic information about the adapter.
625  */
626 void cxgbe_print_adapter_info(struct adapter *adap)
627 {
628         /**
629          * Hardware/Firmware/etc. Version/Revision IDs.
630          */
631         t4_dump_version_info(adap);
632 }
633
634 void cxgbe_print_port_info(struct adapter *adap)
635 {
636         int i;
637         char buf[80];
638         struct rte_pci_addr *loc = &adap->pdev->addr;
639
640         for_each_port(adap, i) {
641                 const struct port_info *pi = adap2pinfo(adap, i);
642                 char *bufp = buf;
643
644                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
645                         bufp += sprintf(bufp, "100M/");
646                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
647                         bufp += sprintf(bufp, "1G/");
648                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
649                         bufp += sprintf(bufp, "10G/");
650                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
651                         bufp += sprintf(bufp, "25G/");
652                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
653                         bufp += sprintf(bufp, "40G/");
654                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
655                         bufp += sprintf(bufp, "50G/");
656                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
657                         bufp += sprintf(bufp, "100G/");
658                 if (bufp != buf)
659                         --bufp;
660                 sprintf(bufp, "BASE-%s",
661                         t4_get_port_type_description(
662                                         (enum fw_port_type)pi->port_type));
663
664                 dev_info(adap,
665                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
666                          loc->domain, loc->bus, loc->devid, loc->function,
667                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
668                          (adap->flags & USING_MSIX) ? " MSI-X" :
669                          (adap->flags & USING_MSI) ? " MSI" : "");
670         }
671 }
672
673 static int
674 check_devargs_handler(__rte_unused const char *key, const char *value,
675                       __rte_unused void *opaque)
676 {
677         if (strcmp(value, "1"))
678                 return -1;
679
680         return 0;
681 }
682
683 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
684 {
685         struct rte_kvargs *kvlist;
686
687         if (!devargs)
688                 return 0;
689
690         kvlist = rte_kvargs_parse(devargs->args, NULL);
691         if (!kvlist)
692                 return 0;
693
694         if (!rte_kvargs_count(kvlist, key)) {
695                 rte_kvargs_free(kvlist);
696                 return 0;
697         }
698
699         if (rte_kvargs_process(kvlist, key,
700                                check_devargs_handler, NULL) < 0) {
701                 rte_kvargs_free(kvlist);
702                 return 0;
703         }
704         rte_kvargs_free(kvlist);
705
706         return 1;
707 }
708
709 static void configure_vlan_types(struct adapter *adapter)
710 {
711         struct rte_pci_device *pdev = adapter->pdev;
712         int i;
713
714         for_each_port(adapter, i) {
715                 /* OVLAN Type 0x88a8 */
716                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
717                                  V_OVLAN_MASK(M_OVLAN_MASK) |
718                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
719                                  V_OVLAN_MASK(M_OVLAN_MASK) |
720                                  V_OVLAN_ETYPE(0x88a8));
721                 /* OVLAN Type 0x9100 */
722                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
723                                  V_OVLAN_MASK(M_OVLAN_MASK) |
724                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
725                                  V_OVLAN_MASK(M_OVLAN_MASK) |
726                                  V_OVLAN_ETYPE(0x9100));
727                 /* OVLAN Type 0x8100 */
728                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
729                                  V_OVLAN_MASK(M_OVLAN_MASK) |
730                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
731                                  V_OVLAN_MASK(M_OVLAN_MASK) |
732                                  V_OVLAN_ETYPE(0x8100));
733
734                 /* IVLAN 0X8100 */
735                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
736                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
737                                  V_IVLAN_ETYPE(0x8100));
738
739                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
740                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
741                                  F_OVLAN_EN2 | F_IVLAN_EN,
742                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
743                                  F_OVLAN_EN2 | F_IVLAN_EN);
744         }
745
746         if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
747                 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
748                                        V_RM_OVLAN(1), V_RM_OVLAN(0));
749 }
750
751 static void configure_pcie_ext_tag(struct adapter *adapter)
752 {
753         u16 v;
754         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
755
756         if (!pos)
757                 return;
758
759         if (pos > 0) {
760                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
761                 v |= PCI_EXP_DEVCTL_EXT_TAG;
762                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
763                 if (is_t6(adapter->params.chip)) {
764                         t4_set_reg_field(adapter, A_PCIE_CFG2,
765                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
766                                          V_T6_TOTMAXTAG(7));
767                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
768                                          V_T6_MINTAG(M_T6_MINTAG),
769                                          V_T6_MINTAG(8));
770                 } else {
771                         t4_set_reg_field(adapter, A_PCIE_CFG2,
772                                          V_TOTMAXTAG(M_TOTMAXTAG),
773                                          V_TOTMAXTAG(3));
774                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
775                                          V_MINTAG(M_MINTAG),
776                                          V_MINTAG(8));
777                 }
778         }
779 }
780
781 /* Figure out how many Queue Sets we can support */
782 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
783 {
784         unsigned int ethqsets;
785
786         /*
787          * We need to reserve an Ingress Queue for the Asynchronous Firmware
788          * Event Queue.
789          *
790          * For each Queue Set, we'll need the ability to allocate two Egress
791          * Contexts -- one for the Ingress Queue Free List and one for the TX
792          * Ethernet Queue.
793          */
794         if (is_pf4(adapter)) {
795                 struct pf_resources *pfres = &adapter->params.pfres;
796
797                 ethqsets = pfres->niqflint - 1;
798                 if (pfres->neq < ethqsets * 2)
799                         ethqsets = pfres->neq / 2;
800         } else {
801                 struct vf_resources *vfres = &adapter->params.vfres;
802
803                 ethqsets = vfres->niqflint - 1;
804                 if (vfres->nethctrl != ethqsets)
805                         ethqsets = min(vfres->nethctrl, ethqsets);
806                 if (vfres->neq < ethqsets * 2)
807                         ethqsets = vfres->neq / 2;
808         }
809
810         if (ethqsets > MAX_ETH_QSETS)
811                 ethqsets = MAX_ETH_QSETS;
812         adapter->sge.max_ethqsets = ethqsets;
813 }
814
815 /*
816  * Tweak configuration based on system architecture, etc.  Most of these have
817  * defaults assigned to them by Firmware Configuration Files (if we're using
818  * them) but need to be explicitly set if we're using hard-coded
819  * initialization. So these are essentially common tweaks/settings for
820  * Configuration Files and hard-coded initialization ...
821  */
822 static int adap_init0_tweaks(struct adapter *adapter)
823 {
824         u8 rx_dma_offset;
825
826         /*
827          * Fix up various Host-Dependent Parameters like Page Size, Cache
828          * Line Size, etc.  The firmware default is for a 4KB Page Size and
829          * 64B Cache Line Size ...
830          */
831         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
832                                     T5_LAST_REV);
833
834         /*
835          * Keep the chip default offset to deliver Ingress packets into our
836          * DMA buffers to zero
837          */
838         rx_dma_offset = 0;
839         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
840                          V_PKTSHIFT(rx_dma_offset));
841
842         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
843                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
844                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
845
846         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
847                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
848
849         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
850                          V_IDMAARBROUNDROBIN(1U));
851
852         /*
853          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
854          * adds the pseudo header itself.
855          */
856         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
857                                F_CSUM_HAS_PSEUDO_HDR, 0);
858
859         return 0;
860 }
861
862 /*
863  * Attempt to initialize the adapter via a Firmware Configuration File.
864  */
865 static int adap_init0_config(struct adapter *adapter, int reset)
866 {
867         struct fw_caps_config_cmd caps_cmd;
868         unsigned long mtype = 0, maddr = 0;
869         u32 finiver, finicsum, cfcsum;
870         int ret;
871         int config_issued = 0;
872         int cfg_addr;
873         char config_name[20];
874
875         /*
876          * Reset device if necessary.
877          */
878         if (reset) {
879                 ret = t4_fw_reset(adapter, adapter->mbox,
880                                   F_PIORSTMODE | F_PIORST);
881                 if (ret < 0) {
882                         dev_warn(adapter, "Firmware reset failed, error %d\n",
883                                  -ret);
884                         goto bye;
885                 }
886         }
887
888         cfg_addr = t4_flash_cfg_addr(adapter);
889         if (cfg_addr < 0) {
890                 ret = cfg_addr;
891                 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
892                          -ret);
893                 goto bye;
894         }
895
896         strcpy(config_name, "On Flash");
897         mtype = FW_MEMTYPE_CF_FLASH;
898         maddr = cfg_addr;
899
900         /*
901          * Issue a Capability Configuration command to the firmware to get it
902          * to parse the Configuration File.  We don't use t4_fw_config_file()
903          * because we want the ability to modify various features after we've
904          * processed the configuration file ...
905          */
906         memset(&caps_cmd, 0, sizeof(caps_cmd));
907         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
908                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
909         caps_cmd.cfvalid_to_len16 =
910                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
911                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
912                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
913                             FW_LEN16(caps_cmd));
914         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
915                          &caps_cmd);
916         /*
917          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
918          * Configuration File in FLASH), our last gasp effort is to use the
919          * Firmware Configuration File which is embedded in the firmware.  A
920          * very few early versions of the firmware didn't have one embedded
921          * but we can ignore those.
922          */
923         if (ret == -ENOENT) {
924                 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
925                          __func__);
926
927                 memset(&caps_cmd, 0, sizeof(caps_cmd));
928                 caps_cmd.op_to_write =
929                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
930                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
931                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
932                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
933                                  sizeof(caps_cmd), &caps_cmd);
934                 strcpy(config_name, "Firmware Default");
935         }
936
937         config_issued = 1;
938         if (ret < 0)
939                 goto bye;
940
941         finiver = be32_to_cpu(caps_cmd.finiver);
942         finicsum = be32_to_cpu(caps_cmd.finicsum);
943         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
944         if (finicsum != cfcsum)
945                 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
946                          finicsum, cfcsum);
947
948         /*
949          * If we're a pure NIC driver then disable all offloading facilities.
950          * This will allow the firmware to optimize aspects of the hardware
951          * configuration which will result in improved performance.
952          */
953         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
954         caps_cmd.toecaps = 0;
955         caps_cmd.iscsicaps = 0;
956         caps_cmd.rdmacaps = 0;
957         caps_cmd.fcoecaps = 0;
958
959         /*
960          * And now tell the firmware to use the configuration we just loaded.
961          */
962         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
963                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
964         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
965         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
966                          NULL);
967         if (ret < 0) {
968                 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
969                          -ret);
970                 goto bye;
971         }
972
973         /*
974          * Tweak configuration based on system architecture, etc.
975          */
976         ret = adap_init0_tweaks(adapter);
977         if (ret < 0) {
978                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
979                 goto bye;
980         }
981
982         /*
983          * And finally tell the firmware to initialize itself using the
984          * parameters from the Configuration File.
985          */
986         ret = t4_fw_initialize(adapter, adapter->mbox);
987         if (ret < 0) {
988                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
989                          -ret);
990                 goto bye;
991         }
992
993         /*
994          * Return successfully and note that we're operating with parameters
995          * not supplied by the driver, rather than from hard-wired
996          * initialization constants buried in the driver.
997          */
998         dev_info(adapter,
999                  "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1000                  config_name, finiver, cfcsum);
1001
1002         return 0;
1003
1004         /*
1005          * Something bad happened.  Return the error ...  (If the "error"
1006          * is that there's no Configuration File on the adapter we don't
1007          * want to issue a warning since this is fairly common.)
1008          */
1009 bye:
1010         if (config_issued && ret != -ENOENT)
1011                 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1012                          config_name, -ret);
1013
1014         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1015         return ret;
1016 }
1017
1018 static int adap_init0(struct adapter *adap)
1019 {
1020         struct fw_caps_config_cmd caps_cmd;
1021         int ret = 0;
1022         u32 v, port_vec;
1023         enum dev_state state;
1024         u32 params[7], val[7];
1025         int reset = 1;
1026         int mbox = adap->mbox;
1027
1028         /*
1029          * Contact FW, advertising Master capability.
1030          */
1031         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1032         if (ret < 0) {
1033                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1034                         __func__, -ret);
1035                 goto bye;
1036         }
1037
1038         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1039                          adap->mbox, ret);
1040
1041         if (ret == mbox)
1042                 adap->flags |= MASTER_PF;
1043
1044         if (state == DEV_STATE_INIT) {
1045                 /*
1046                  * Force halt and reset FW because a previous instance may have
1047                  * exited abnormally without properly shutting down
1048                  */
1049                 ret = t4_fw_halt(adap, adap->mbox, reset);
1050                 if (ret < 0) {
1051                         dev_err(adap, "Failed to halt. Exit.\n");
1052                         goto bye;
1053                 }
1054
1055                 ret = t4_fw_restart(adap, adap->mbox, reset);
1056                 if (ret < 0) {
1057                         dev_err(adap, "Failed to restart. Exit.\n");
1058                         goto bye;
1059                 }
1060                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1061         }
1062
1063         t4_get_version_info(adap);
1064
1065         ret = t4_get_core_clock(adap, &adap->params.vpd);
1066         if (ret < 0) {
1067                 dev_err(adap, "%s: could not get core clock, error %d\n",
1068                         __func__, -ret);
1069                 goto bye;
1070         }
1071
1072         /*
1073          * If the firmware is initialized already (and we're not forcing a
1074          * master initialization), note that we're living with existing
1075          * adapter parameters.  Otherwise, it's time to try initializing the
1076          * adapter ...
1077          */
1078         if (state == DEV_STATE_INIT) {
1079                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1080                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1081         } else {
1082                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1083
1084                 ret = adap_init0_config(adap, reset);
1085                 if (ret == -ENOENT) {
1086                         dev_err(adap,
1087                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1088                         goto bye;
1089                 }
1090         }
1091         if (ret < 0) {
1092                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1093                 goto bye;
1094         }
1095
1096         /* Now that we've successfully configured and initialized the adapter
1097          * (or found it already initialized), we can ask the Firmware what
1098          * resources it has provisioned for us.
1099          */
1100         ret = t4_get_pfres(adap);
1101         if (ret) {
1102                 dev_err(adap->pdev_dev,
1103                         "Unable to retrieve resource provisioning info\n");
1104                 goto bye;
1105         }
1106
1107         /* Find out what ports are available to us. */
1108         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1109             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1110         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1111         if (ret < 0) {
1112                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1113                         __func__, ret);
1114                 goto bye;
1115         }
1116
1117         adap->params.nports = hweight32(port_vec);
1118         adap->params.portvec = port_vec;
1119
1120         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1121                   adap->params.nports);
1122
1123         /*
1124          * Give the SGE code a chance to pull in anything that it needs ...
1125          * Note that this must be called after we retrieve our VPD parameters
1126          * in order to know how to convert core ticks to seconds, etc.
1127          */
1128         ret = t4_sge_init(adap);
1129         if (ret < 0) {
1130                 dev_err(adap, "t4_sge_init failed with error %d\n",
1131                         -ret);
1132                 goto bye;
1133         }
1134
1135         /*
1136          * Grab some of our basic fundamental operating parameters.
1137          */
1138 #define FW_PARAM_DEV(param) \
1139         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1140          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1141
1142 #define FW_PARAM_PFVF(param) \
1143         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1144          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
1145          V_FW_PARAMS_PARAM_Y(0) | \
1146          V_FW_PARAMS_PARAM_Z(0))
1147
1148         params[0] = FW_PARAM_PFVF(L2T_START);
1149         params[1] = FW_PARAM_PFVF(L2T_END);
1150         params[2] = FW_PARAM_PFVF(FILTER_START);
1151         params[3] = FW_PARAM_PFVF(FILTER_END);
1152         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1153         if (ret < 0)
1154                 goto bye;
1155         adap->l2t_start = val[0];
1156         adap->l2t_end = val[1];
1157         adap->tids.ftid_base = val[2];
1158         adap->tids.nftids = val[3] - val[2] + 1;
1159
1160         params[0] = FW_PARAM_PFVF(CLIP_START);
1161         params[1] = FW_PARAM_PFVF(CLIP_END);
1162         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1163         if (ret < 0)
1164                 goto bye;
1165         adap->clipt_start = val[0];
1166         adap->clipt_end = val[1];
1167
1168         /*
1169          * Get device capabilities so we can determine what resources we need
1170          * to manage.
1171          */
1172         memset(&caps_cmd, 0, sizeof(caps_cmd));
1173         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1174                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1175         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1176         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1177                          &caps_cmd);
1178         if (ret < 0)
1179                 goto bye;
1180
1181         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1182             is_t6(adap->params.chip)) {
1183                 if (init_hash_filter(adap) < 0)
1184                         goto bye;
1185         }
1186
1187         /* See if FW supports FW_FILTER2 work request */
1188         if (is_t4(adap->params.chip)) {
1189                 adap->params.filter2_wr_support = 0;
1190         } else {
1191                 params[0] = FW_PARAM_DEV(FILTER2_WR);
1192                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1193                                       1, params, val);
1194                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1195         }
1196
1197         /* query tid-related parameters */
1198         params[0] = FW_PARAM_DEV(NTID);
1199         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1200                               params, val);
1201         if (ret < 0)
1202                 goto bye;
1203         adap->tids.ntids = val[0];
1204         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1205
1206         /* If we're running on newer firmware, let it know that we're
1207          * prepared to deal with encapsulated CPL messages.  Older
1208          * firmware won't understand this and we'll just get
1209          * unencapsulated messages ...
1210          */
1211         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1212         val[0] = 1;
1213         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1214
1215         /*
1216          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1217          * capability.  Earlier versions of the firmware didn't have the
1218          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1219          * permission to use ULPTX MEMWRITE DSGL.
1220          */
1221         if (is_t4(adap->params.chip)) {
1222                 adap->params.ulptx_memwrite_dsgl = false;
1223         } else {
1224                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1225                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1226                                       1, params, val);
1227                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1228         }
1229
1230         /*
1231          * The MTU/MSS Table is initialized by now, so load their values.  If
1232          * we're initializing the adapter, then we'll make any modifications
1233          * we want to the MTU/MSS Table and also initialize the congestion
1234          * parameters.
1235          */
1236         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1237         if (state != DEV_STATE_INIT) {
1238                 int i;
1239
1240                 /*
1241                  * The default MTU Table contains values 1492 and 1500.
1242                  * However, for TCP, it's better to have two values which are
1243                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1244                  * This allows us to have a TCP Data Payload which is a
1245                  * multiple of 8 regardless of what combination of TCP Options
1246                  * are in use (always a multiple of 4 bytes) which is
1247                  * important for performance reasons.  For instance, if no
1248                  * options are in use, then we have a 20-byte IP header and a
1249                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1250                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1251                  * which is not a multiple of 8.  So using an MSS of 1488 in
1252                  * this case results in a TCP Data Payload of 1448 bytes which
1253                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1254                  * Stamps have been negotiated, then an MTU of 1500 bytes
1255                  * results in a TCP Data Payload of 1448 bytes which, as
1256                  * above, is a multiple of 8 bytes ...
1257                  */
1258                 for (i = 0; i < NMTUS; i++)
1259                         if (adap->params.mtus[i] == 1492) {
1260                                 adap->params.mtus[i] = 1488;
1261                                 break;
1262                         }
1263
1264                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1265                              adap->params.b_wnd);
1266         }
1267         t4_init_sge_params(adap);
1268         t4_init_tp_params(adap);
1269         configure_pcie_ext_tag(adap);
1270         configure_vlan_types(adap);
1271         cxgbe_configure_max_ethqsets(adap);
1272
1273         adap->params.drv_memwin = MEMWIN_NIC;
1274         adap->flags |= FW_OK;
1275         dev_debug(adap, "%s: returning zero..\n", __func__);
1276         return 0;
1277
1278         /*
1279          * Something bad happened.  If a command timed out or failed with EIO
1280          * FW does not operate within its spec or something catastrophic
1281          * happened to HW/FW, stop issuing commands.
1282          */
1283 bye:
1284         if (ret != -ETIMEDOUT && ret != -EIO)
1285                 t4_fw_bye(adap, adap->mbox);
1286         return ret;
1287 }
1288
1289 /**
1290  * t4_os_portmod_changed - handle port module changes
1291  * @adap: the adapter associated with the module change
1292  * @port_id: the port index whose module status has changed
1293  *
1294  * This is the OS-dependent handler for port module changes.  It is
1295  * invoked when a port module is removed or inserted for any OS-specific
1296  * processing.
1297  */
1298 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1299 {
1300         static const char * const mod_str[] = {
1301                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1302         };
1303
1304         const struct port_info *pi = adap2pinfo(adap, port_id);
1305
1306         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1307                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1308         else if (pi->mod_type < ARRAY_SIZE(mod_str))
1309                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1310                          mod_str[pi->mod_type]);
1311         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1312                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1313                          pi->port_id);
1314         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1315                 dev_info(adap, "Port%d: unknown port module inserted\n",
1316                          pi->port_id);
1317         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1318                 dev_info(adap, "Port%d: transceiver module error\n",
1319                          pi->port_id);
1320         else
1321                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1322                          pi->port_id, pi->mod_type);
1323 }
1324
1325 bool cxgbe_force_linkup(struct adapter *adap)
1326 {
1327         struct rte_pci_device *pdev = adap->pdev;
1328
1329         if (is_pf4(adap))
1330                 return false;   /* force_linkup not required for pf driver*/
1331         if (!cxgbe_get_devargs(pdev->device.devargs,
1332                                CXGBE_DEVARG_FORCE_LINK_UP))
1333                 return false;
1334         return true;
1335 }
1336
1337 /**
1338  * link_start - enable a port
1339  * @dev: the port to enable
1340  *
1341  * Performs the MAC and PHY actions needed to enable a port.
1342  */
1343 int cxgbe_link_start(struct port_info *pi)
1344 {
1345         struct adapter *adapter = pi->adapter;
1346         u64 conf_offloads;
1347         unsigned int mtu;
1348         int ret;
1349
1350         mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1351               (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1352
1353         conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1354
1355         /*
1356          * We do not set address filters and promiscuity here, the stack does
1357          * that step explicitly.
1358          */
1359         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1360                             !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1361                             true);
1362         if (ret == 0) {
1363                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1364                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1365                 if (ret >= 0) {
1366                         pi->xact_addr_filt = ret;
1367                         ret = 0;
1368                 }
1369         }
1370         if (ret == 0 && is_pf4(adapter))
1371                 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1372                                     &pi->link_cfg);
1373         if (ret == 0) {
1374                 /*
1375                  * Enabling a Virtual Interface can result in an interrupt
1376                  * during the processing of the VI Enable command and, in some
1377                  * paths, result in an attempt to issue another command in the
1378                  * interrupt context.  Thus, we disable interrupts during the
1379                  * course of the VI Enable command ...
1380                  */
1381                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1382                                           true, true, false);
1383         }
1384
1385         if (ret == 0 && cxgbe_force_linkup(adapter))
1386                 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1387         return ret;
1388 }
1389
1390 /**
1391  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1392  * @pi: the port
1393  * @rss_hf: Hash configuration to apply
1394  */
1395 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1396 {
1397         struct adapter *adapter = pi->adapter;
1398         const struct sge_eth_rxq *rxq;
1399         u64 flags = 0;
1400         u16 rss;
1401         int err;
1402
1403         /*  Should never be called before setting up sge eth rx queues */
1404         if (!(adapter->flags & FULL_INIT_DONE)) {
1405                 dev_err(adap, "%s No RXQs available on port %d\n",
1406                         __func__, pi->port_id);
1407                 return -EINVAL;
1408         }
1409
1410         /* Don't allow unsupported hash functions */
1411         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1412                 return -EINVAL;
1413
1414         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1415                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1416
1417         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1418                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1419
1420         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1421                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1422                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1423
1424         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1425                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1426
1427         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1428                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1429                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1430
1431         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1432                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1433                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1434                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1435
1436         rxq = &adapter->sge.ethrxq[pi->first_qset];
1437         rss = rxq[0].rspq.abs_id;
1438
1439         /* If Tunnel All Lookup isn't specified in the global RSS
1440          * Configuration, then we need to specify a default Ingress
1441          * Queue for any ingress packets which aren't hashed.  We'll
1442          * use our first ingress queue ...
1443          */
1444         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1445                                flags, rss);
1446         return err;
1447 }
1448
1449 /**
1450  * cxgbe_write_rss - write the RSS table for a given port
1451  * @pi: the port
1452  * @queues: array of queue indices for RSS
1453  *
1454  * Sets up the portion of the HW RSS table for the port's VI to distribute
1455  * packets to the Rx queues in @queues.
1456  */
1457 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1458 {
1459         u16 *rss;
1460         int i, err;
1461         struct adapter *adapter = pi->adapter;
1462         const struct sge_eth_rxq *rxq;
1463
1464         /*  Should never be called before setting up sge eth rx queues */
1465         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1466
1467         rxq = &adapter->sge.ethrxq[pi->first_qset];
1468         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1469         if (!rss)
1470                 return -ENOMEM;
1471
1472         /* map the queue indices to queue ids */
1473         for (i = 0; i < pi->rss_size; i++, queues++)
1474                 rss[i] = rxq[*queues].rspq.abs_id;
1475
1476         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1477                                   pi->rss_size, rss, pi->rss_size);
1478         rte_free(rss);
1479         return err;
1480 }
1481
1482 /**
1483  * setup_rss - configure RSS
1484  * @adapter: the adapter
1485  *
1486  * Sets up RSS to distribute packets to multiple receive queues.  We
1487  * configure the RSS CPU lookup table to distribute to the number of HW
1488  * receive queues, and the response queue lookup table to narrow that
1489  * down to the response queues actually configured for each port.
1490  * We always configure the RSS mapping for all ports since the mapping
1491  * table has plenty of entries.
1492  */
1493 int cxgbe_setup_rss(struct port_info *pi)
1494 {
1495         int j, err;
1496         struct adapter *adapter = pi->adapter;
1497
1498         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1499                   __func__, pi->rss_size, pi->n_rx_qsets);
1500
1501         if (!(pi->flags & PORT_RSS_DONE)) {
1502                 if (adapter->flags & FULL_INIT_DONE) {
1503                         /* Fill default values with equal distribution */
1504                         for (j = 0; j < pi->rss_size; j++)
1505                                 pi->rss[j] = j % pi->n_rx_qsets;
1506
1507                         err = cxgbe_write_rss(pi, pi->rss);
1508                         if (err)
1509                                 return err;
1510
1511                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1512                         if (err)
1513                                 return err;
1514                         pi->flags |= PORT_RSS_DONE;
1515                 }
1516         }
1517         return 0;
1518 }
1519
1520 /*
1521  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1522  */
1523 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1524 {
1525         /* 0-increment GTS to start the timer and enable interrupts */
1526         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1527                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1528                      V_SEINTARM(q->intr_params) |
1529                      V_INGRESSQID(q->cntxt_id));
1530 }
1531
1532 void cxgbe_enable_rx_queues(struct port_info *pi)
1533 {
1534         struct adapter *adap = pi->adapter;
1535         struct sge *s = &adap->sge;
1536         unsigned int i;
1537
1538         for (i = 0; i < pi->n_rx_qsets; i++)
1539                 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1540 }
1541
1542 /**
1543  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1544  * @port_type: Firmware Port Type
1545  * @fw_caps: Firmware Port Capabilities
1546  * @speed_caps: Device Info Speed Capabilities
1547  *
1548  * Translate a Firmware Port Capabilities specification to Device Info
1549  * Speed Capabilities.
1550  */
1551 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1552                                   unsigned int fw_caps,
1553                                   u32 *speed_caps)
1554 {
1555 #define SET_SPEED(__speed_name) \
1556         do { \
1557                 *speed_caps |= ETH_LINK_ ## __speed_name; \
1558         } while (0)
1559
1560 #define FW_CAPS_TO_SPEED(__fw_name) \
1561         do { \
1562                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1563                         SET_SPEED(__fw_name); \
1564         } while (0)
1565
1566         switch (port_type) {
1567         case FW_PORT_TYPE_BT_SGMII:
1568         case FW_PORT_TYPE_BT_XFI:
1569         case FW_PORT_TYPE_BT_XAUI:
1570                 FW_CAPS_TO_SPEED(SPEED_100M);
1571                 FW_CAPS_TO_SPEED(SPEED_1G);
1572                 FW_CAPS_TO_SPEED(SPEED_10G);
1573                 break;
1574
1575         case FW_PORT_TYPE_KX4:
1576         case FW_PORT_TYPE_KX:
1577         case FW_PORT_TYPE_FIBER_XFI:
1578         case FW_PORT_TYPE_FIBER_XAUI:
1579         case FW_PORT_TYPE_SFP:
1580         case FW_PORT_TYPE_QSFP_10G:
1581         case FW_PORT_TYPE_QSA:
1582                 FW_CAPS_TO_SPEED(SPEED_1G);
1583                 FW_CAPS_TO_SPEED(SPEED_10G);
1584                 break;
1585
1586         case FW_PORT_TYPE_KR:
1587                 SET_SPEED(SPEED_10G);
1588                 break;
1589
1590         case FW_PORT_TYPE_BP_AP:
1591         case FW_PORT_TYPE_BP4_AP:
1592                 SET_SPEED(SPEED_1G);
1593                 SET_SPEED(SPEED_10G);
1594                 break;
1595
1596         case FW_PORT_TYPE_BP40_BA:
1597         case FW_PORT_TYPE_QSFP:
1598                 SET_SPEED(SPEED_40G);
1599                 break;
1600
1601         case FW_PORT_TYPE_CR_QSFP:
1602         case FW_PORT_TYPE_SFP28:
1603         case FW_PORT_TYPE_KR_SFP28:
1604                 FW_CAPS_TO_SPEED(SPEED_1G);
1605                 FW_CAPS_TO_SPEED(SPEED_10G);
1606                 FW_CAPS_TO_SPEED(SPEED_25G);
1607                 break;
1608
1609         case FW_PORT_TYPE_CR2_QSFP:
1610                 SET_SPEED(SPEED_50G);
1611                 break;
1612
1613         case FW_PORT_TYPE_KR4_100G:
1614         case FW_PORT_TYPE_CR4_QSFP:
1615                 FW_CAPS_TO_SPEED(SPEED_25G);
1616                 FW_CAPS_TO_SPEED(SPEED_40G);
1617                 FW_CAPS_TO_SPEED(SPEED_50G);
1618                 FW_CAPS_TO_SPEED(SPEED_100G);
1619                 break;
1620
1621         default:
1622                 break;
1623         }
1624
1625 #undef FW_CAPS_TO_SPEED
1626 #undef SET_SPEED
1627 }
1628
1629 /**
1630  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1631  * @pi: Underlying port's info
1632  * @speed_caps: Device Info speed capabilities
1633  *
1634  * Fetch supported speed capabilities of the underlying port.
1635  */
1636 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1637 {
1638         *speed_caps = 0;
1639
1640         fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1641                               speed_caps);
1642
1643         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1644                 *speed_caps |= ETH_LINK_SPEED_FIXED;
1645 }
1646
1647 /**
1648  * cxgbe_set_link_status - Set device link up or down.
1649  * @pi: Underlying port's info
1650  * @status: 0 - down, 1 - up
1651  *
1652  * Set the device link up or down.
1653  */
1654 int cxgbe_set_link_status(struct port_info *pi, bool status)
1655 {
1656         struct adapter *adapter = pi->adapter;
1657         int err = 0;
1658
1659         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1660         if (err) {
1661                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1662                 return err;
1663         }
1664
1665         if (!status)
1666                 t4_reset_link_config(adapter, pi->pidx);
1667
1668         return 0;
1669 }
1670
1671 /**
1672  * cxgb_up - enable the adapter
1673  * @adap: adapter being enabled
1674  *
1675  * Called when the first port is enabled, this function performs the
1676  * actions necessary to make an adapter operational, such as completing
1677  * the initialization of HW modules, and enabling interrupts.
1678  */
1679 int cxgbe_up(struct adapter *adap)
1680 {
1681         enable_rx(adap, &adap->sge.fw_evtq);
1682         t4_sge_tx_monitor_start(adap);
1683         if (is_pf4(adap))
1684                 t4_intr_enable(adap);
1685         adap->flags |= FULL_INIT_DONE;
1686
1687         /* TODO: deadman watchdog ?? */
1688         return 0;
1689 }
1690
1691 /*
1692  * Close the port
1693  */
1694 int cxgbe_down(struct port_info *pi)
1695 {
1696         return cxgbe_set_link_status(pi, false);
1697 }
1698
1699 /*
1700  * Release resources when all the ports have been stopped.
1701  */
1702 void cxgbe_close(struct adapter *adapter)
1703 {
1704         struct port_info *pi;
1705         int i;
1706
1707         if (adapter->flags & FULL_INIT_DONE) {
1708                 tid_free(&adapter->tids);
1709                 t4_cleanup_mpstcam(adapter);
1710                 t4_cleanup_clip_tbl(adapter);
1711                 t4_cleanup_l2t(adapter);
1712                 if (is_pf4(adapter))
1713                         t4_intr_disable(adapter);
1714                 t4_sge_tx_monitor_stop(adapter);
1715                 t4_free_sge_resources(adapter);
1716                 for_each_port(adapter, i) {
1717                         pi = adap2pinfo(adapter, i);
1718                         if (pi->viid != 0)
1719                                 t4_free_vi(adapter, adapter->mbox,
1720                                            adapter->pf, 0, pi->viid);
1721                         rte_eth_dev_release_port(pi->eth_dev);
1722                 }
1723                 adapter->flags &= ~FULL_INIT_DONE;
1724         }
1725
1726         if (is_pf4(adapter) && (adapter->flags & FW_OK))
1727                 t4_fw_bye(adapter, adapter->mbox);
1728 }
1729
1730 int cxgbe_probe(struct adapter *adapter)
1731 {
1732         struct port_info *pi;
1733         int chip;
1734         int func, i;
1735         int err = 0;
1736         u32 whoami;
1737
1738         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1739         chip = t4_get_chip_type(adapter,
1740                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1741         if (chip < 0)
1742                 return chip;
1743
1744         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1745                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1746
1747         adapter->mbox = func;
1748         adapter->pf = func;
1749
1750         t4_os_lock_init(&adapter->mbox_lock);
1751         TAILQ_INIT(&adapter->mbox_list);
1752         t4_os_lock_init(&adapter->win0_lock);
1753
1754         err = t4_prep_adapter(adapter);
1755         if (err)
1756                 return err;
1757
1758         setup_memwin(adapter);
1759         err = adap_init0(adapter);
1760         if (err) {
1761                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1762                         __func__, err);
1763                 goto out_free;
1764         }
1765
1766         if (!is_t4(adapter->params.chip)) {
1767                 /*
1768                  * The userspace doorbell BAR is split evenly into doorbell
1769                  * regions, each associated with an egress queue.  If this
1770                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
1771                  * then it can be used to submit a tx work request with an
1772                  * implied doorbell.  Enable write combining on the BAR if
1773                  * there is room for such work requests.
1774                  */
1775                 int s_qpp, qpp, num_seg;
1776
1777                 s_qpp = (S_QUEUESPERPAGEPF0 +
1778                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1779                         adapter->pf);
1780                 qpp = 1 << ((t4_read_reg(adapter,
1781                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1782                                 & M_QUEUESPERPAGEPF0);
1783                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1784                 if (qpp > num_seg)
1785                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1786
1787                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1788                 if (!adapter->bar2) {
1789                         dev_err(adapter, "cannot map device bar2 region\n");
1790                         err = -ENOMEM;
1791                         goto out_free;
1792                 }
1793                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1794                              V_STATMODE(0));
1795         }
1796
1797         for_each_port(adapter, i) {
1798                 const unsigned int numa_node = rte_socket_id();
1799                 char name[RTE_ETH_NAME_MAX_LEN];
1800                 struct rte_eth_dev *eth_dev;
1801
1802                 snprintf(name, sizeof(name), "%s_%d",
1803                          adapter->pdev->device.name, i);
1804
1805                 if (i == 0) {
1806                         /* First port is already allocated by DPDK */
1807                         eth_dev = adapter->eth_dev;
1808                         goto allocate_mac;
1809                 }
1810
1811                 /*
1812                  * now do all data allocation - for eth_dev structure,
1813                  * and internal (private) data for the remaining ports
1814                  */
1815
1816                 /* reserve an ethdev entry */
1817                 eth_dev = rte_eth_dev_allocate(name);
1818                 if (!eth_dev)
1819                         goto out_free;
1820
1821                 eth_dev->data->dev_private =
1822                         rte_zmalloc_socket(name, sizeof(struct port_info),
1823                                            RTE_CACHE_LINE_SIZE, numa_node);
1824                 if (!eth_dev->data->dev_private)
1825                         goto out_free;
1826
1827 allocate_mac:
1828                 pi = (struct port_info *)eth_dev->data->dev_private;
1829                 adapter->port[i] = pi;
1830                 pi->eth_dev = eth_dev;
1831                 pi->adapter = adapter;
1832                 pi->xact_addr_filt = -1;
1833                 pi->port_id = i;
1834                 pi->pidx = i;
1835
1836                 pi->eth_dev->device = &adapter->pdev->device;
1837                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1838                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1839                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1840
1841                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1842
1843                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1844                                                         RTE_ETHER_ADDR_LEN, 0);
1845                 if (!pi->eth_dev->data->mac_addrs) {
1846                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1847                                 __func__);
1848                         err = -1;
1849                         goto out_free;
1850                 }
1851
1852                 if (i > 0) {
1853                         /* First port will be notified by upper layer */
1854                         rte_eth_dev_probing_finish(eth_dev);
1855                 }
1856         }
1857
1858         if (adapter->flags & FW_OK) {
1859                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1860                 if (err) {
1861                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1862                                 __func__, err);
1863                         goto out_free;
1864                 }
1865         }
1866
1867         cxgbe_cfg_queues(adapter->eth_dev);
1868
1869         cxgbe_print_adapter_info(adapter);
1870         cxgbe_print_port_info(adapter);
1871
1872         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1873                                           adapter->clipt_end);
1874         if (!adapter->clipt) {
1875                 /* We tolerate a lack of clip_table, giving up some
1876                  * functionality
1877                  */
1878                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1879         }
1880
1881         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1882         if (!adapter->l2t) {
1883                 /* We tolerate a lack of L2T, giving up some functionality */
1884                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1885         }
1886
1887         if (tid_init(&adapter->tids) < 0) {
1888                 /* Disable filtering support */
1889                 dev_warn(adapter, "could not allocate TID table, "
1890                          "filter support disabled. Continuing\n");
1891         }
1892
1893         adapter->mpstcam = t4_init_mpstcam(adapter);
1894         if (!adapter->mpstcam)
1895                 dev_warn(adapter, "could not allocate mps tcam table."
1896                          " Continuing\n");
1897
1898         if (is_hashfilter(adapter)) {
1899                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1900                         u32 hash_base, hash_reg;
1901
1902                         hash_reg = A_LE_DB_TID_HASHBASE;
1903                         hash_base = t4_read_reg(adapter, hash_reg);
1904                         adapter->tids.hash_base = hash_base / 4;
1905                 }
1906         } else {
1907                 /* Disable hash filtering support */
1908                 dev_warn(adapter,
1909                          "Maskless filter support disabled. Continuing\n");
1910         }
1911
1912         err = cxgbe_init_rss(adapter);
1913         if (err)
1914                 goto out_free;
1915
1916         return 0;
1917
1918 out_free:
1919         for_each_port(adapter, i) {
1920                 pi = adap2pinfo(adapter, i);
1921                 if (pi->viid != 0)
1922                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
1923                                    0, pi->viid);
1924                 rte_eth_dev_release_port(pi->eth_dev);
1925         }
1926
1927         if (adapter->flags & FW_OK)
1928                 t4_fw_bye(adapter, adapter->mbox);
1929         return -err;
1930 }