ethdev: change promiscuous callbacks to return status
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static void eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static void eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .rx_queue_count       = eth_em_rx_queue_count,
180         .rx_descriptor_done   = eth_em_rx_descriptor_done,
181         .rx_descriptor_status = eth_em_rx_descriptor_status,
182         .tx_descriptor_status = eth_em_tx_descriptor_status,
183         .tx_queue_setup       = eth_em_tx_queue_setup,
184         .tx_queue_release     = eth_em_tx_queue_release,
185         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
186         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
187         .dev_led_on           = eth_em_led_on,
188         .dev_led_off          = eth_em_led_off,
189         .flow_ctrl_get        = eth_em_flow_ctrl_get,
190         .flow_ctrl_set        = eth_em_flow_ctrl_set,
191         .mac_addr_set         = eth_em_default_mac_addr_set,
192         .mac_addr_add         = eth_em_rar_set,
193         .mac_addr_remove      = eth_em_rar_clear,
194         .set_mc_addr_list     = eth_em_set_mc_addr_list,
195         .rxq_info_get         = em_rxq_info_get,
196         .txq_info_get         = em_txq_info_get,
197 };
198
199
200 /**
201  *  eth_em_dev_is_ich8 - Check for ICH8 device
202  *  @hw: pointer to the HW structure
203  *
204  *  return TRUE for ICH8, otherwise FALSE
205  **/
206 static bool
207 eth_em_dev_is_ich8(struct e1000_hw *hw)
208 {
209         DEBUGFUNC("eth_em_dev_is_ich8");
210
211         switch (hw->device_id) {
212         case E1000_DEV_ID_PCH2_LV_LM:
213         case E1000_DEV_ID_PCH_LPT_I217_LM:
214         case E1000_DEV_ID_PCH_LPT_I217_V:
215         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
216         case E1000_DEV_ID_PCH_LPTLP_I218_V:
217         case E1000_DEV_ID_PCH_I218_V2:
218         case E1000_DEV_ID_PCH_I218_LM2:
219         case E1000_DEV_ID_PCH_I218_V3:
220         case E1000_DEV_ID_PCH_I218_LM3:
221         case E1000_DEV_ID_PCH_SPT_I219_LM:
222         case E1000_DEV_ID_PCH_SPT_I219_V:
223         case E1000_DEV_ID_PCH_SPT_I219_LM2:
224         case E1000_DEV_ID_PCH_SPT_I219_V2:
225         case E1000_DEV_ID_PCH_LBG_I219_LM3:
226         case E1000_DEV_ID_PCH_SPT_I219_LM4:
227         case E1000_DEV_ID_PCH_SPT_I219_V4:
228         case E1000_DEV_ID_PCH_SPT_I219_LM5:
229         case E1000_DEV_ID_PCH_SPT_I219_V5:
230         case E1000_DEV_ID_PCH_CNP_I219_LM6:
231         case E1000_DEV_ID_PCH_CNP_I219_V6:
232         case E1000_DEV_ID_PCH_CNP_I219_LM7:
233         case E1000_DEV_ID_PCH_CNP_I219_V7:
234                 return 1;
235         default:
236                 return 0;
237         }
238 }
239
240 static int
241 eth_em_dev_init(struct rte_eth_dev *eth_dev)
242 {
243         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
244         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
245         struct e1000_adapter *adapter =
246                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
247         struct e1000_hw *hw =
248                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
249         struct e1000_vfta * shadow_vfta =
250                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
251
252         eth_dev->dev_ops = &eth_em_ops;
253         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
254         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
255         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
256
257         /* for secondary processes, we don't initialise any further as primary
258          * has already done this work. Only check we don't need a different
259          * RX function */
260         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
261                 if (eth_dev->data->scattered_rx)
262                         eth_dev->rx_pkt_burst =
263                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
264                 return 0;
265         }
266
267         rte_eth_copy_pci_info(eth_dev, pci_dev);
268
269         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
270         hw->device_id = pci_dev->id.device_id;
271         adapter->stopped = 0;
272
273         /* For ICH8 support we'll need to map the flash memory BAR */
274         if (eth_em_dev_is_ich8(hw))
275                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276
277         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
278                         em_hw_init(hw) != 0) {
279                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280                         "failed to init HW",
281                         eth_dev->data->port_id, pci_dev->id.vendor_id,
282                         pci_dev->id.device_id);
283                 return -ENODEV;
284         }
285
286         /* Allocate memory for storing MAC addresses */
287         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
288                         hw->mac.rar_entry_count, 0);
289         if (eth_dev->data->mac_addrs == NULL) {
290                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
291                         "store MAC addresses",
292                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
293                 return -ENOMEM;
294         }
295
296         /* Copy the permanent MAC address */
297         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
298                 eth_dev->data->mac_addrs);
299
300         /* initialize the vfta */
301         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302
303         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
304                      eth_dev->data->port_id, pci_dev->id.vendor_id,
305                      pci_dev->id.device_id);
306
307         rte_intr_callback_register(intr_handle,
308                                    eth_em_interrupt_handler, eth_dev);
309
310         return 0;
311 }
312
313 static int
314 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 {
316         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
317         struct e1000_adapter *adapter =
318                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
319         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
320
321         PMD_INIT_FUNC_TRACE();
322
323         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
324                 return -EPERM;
325
326         if (adapter->stopped == 0)
327                 eth_em_close(eth_dev);
328
329         eth_dev->dev_ops = NULL;
330         eth_dev->rx_pkt_burst = NULL;
331         eth_dev->tx_pkt_burst = NULL;
332
333         /* disable uio intr before callback unregister */
334         rte_intr_disable(intr_handle);
335         rte_intr_callback_unregister(intr_handle,
336                                      eth_em_interrupt_handler, eth_dev);
337
338         return 0;
339 }
340
341 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
342         struct rte_pci_device *pci_dev)
343 {
344         return rte_eth_dev_pci_generic_probe(pci_dev,
345                 sizeof(struct e1000_adapter), eth_em_dev_init);
346 }
347
348 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
349 {
350         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
351 }
352
353 static struct rte_pci_driver rte_em_pmd = {
354         .id_table = pci_id_em_map,
355         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
356         .probe = eth_em_pci_probe,
357         .remove = eth_em_pci_remove,
358 };
359
360 static int
361 em_hw_init(struct e1000_hw *hw)
362 {
363         int diag;
364
365         diag = hw->mac.ops.init_params(hw);
366         if (diag != 0) {
367                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
368                 return diag;
369         }
370         diag = hw->nvm.ops.init_params(hw);
371         if (diag != 0) {
372                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
373                 return diag;
374         }
375         diag = hw->phy.ops.init_params(hw);
376         if (diag != 0) {
377                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
378                 return diag;
379         }
380         (void) e1000_get_bus_info(hw);
381
382         hw->mac.autoneg = 1;
383         hw->phy.autoneg_wait_to_complete = 0;
384         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
385
386         e1000_init_script_state_82541(hw, TRUE);
387         e1000_set_tbi_compatibility_82543(hw, TRUE);
388
389         /* Copper options */
390         if (hw->phy.media_type == e1000_media_type_copper) {
391                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
392                 hw->phy.disable_polarity_correction = 0;
393                 hw->phy.ms_type = e1000_ms_hw_default;
394         }
395
396         /*
397          * Start from a known state, this is important in reading the nvm
398          * and mac from that.
399          */
400         e1000_reset_hw(hw);
401
402         /* Make sure we have a good EEPROM before we read from it */
403         if (e1000_validate_nvm_checksum(hw) < 0) {
404                 /*
405                  * Some PCI-E parts fail the first check due to
406                  * the link being in sleep state, call it again,
407                  * if it fails a second time its a real issue.
408                  */
409                 diag = e1000_validate_nvm_checksum(hw);
410                 if (diag < 0) {
411                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
412                         goto error;
413                 }
414         }
415
416         /* Read the permanent MAC address out of the EEPROM */
417         diag = e1000_read_mac_addr(hw);
418         if (diag != 0) {
419                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
420                 goto error;
421         }
422
423         /* Now initialize the hardware */
424         diag = em_hardware_init(hw);
425         if (diag != 0) {
426                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
427                 goto error;
428         }
429
430         hw->mac.get_link_status = 1;
431
432         /* Indicate SOL/IDER usage */
433         diag = e1000_check_reset_block(hw);
434         if (diag < 0) {
435                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
436                         "SOL/IDER session");
437         }
438         return 0;
439
440 error:
441         em_hw_control_release(hw);
442         return diag;
443 }
444
445 static int
446 eth_em_configure(struct rte_eth_dev *dev)
447 {
448         struct e1000_interrupt *intr =
449                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
450
451         PMD_INIT_FUNC_TRACE();
452         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
453
454         PMD_INIT_FUNC_TRACE();
455
456         return 0;
457 }
458
459 static void
460 em_set_pba(struct e1000_hw *hw)
461 {
462         uint32_t pba;
463
464         /*
465          * Packet Buffer Allocation (PBA)
466          * Writing PBA sets the receive portion of the buffer
467          * the remainder is used for the transmit buffer.
468          * Devices before the 82547 had a Packet Buffer of 64K.
469          * After the 82547 the buffer was reduced to 40K.
470          */
471         switch (hw->mac.type) {
472                 case e1000_82547:
473                 case e1000_82547_rev_2:
474                 /* 82547: Total Packet Buffer is 40K */
475                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
476                         break;
477                 case e1000_82571:
478                 case e1000_82572:
479                 case e1000_80003es2lan:
480                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
481                         break;
482                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
483                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
484                         break;
485                 case e1000_82574:
486                 case e1000_82583:
487                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
488                         break;
489                 case e1000_ich8lan:
490                         pba = E1000_PBA_8K;
491                         break;
492                 case e1000_ich9lan:
493                 case e1000_ich10lan:
494                         pba = E1000_PBA_10K;
495                         break;
496                 case e1000_pchlan:
497                 case e1000_pch2lan:
498                 case e1000_pch_lpt:
499                 case e1000_pch_spt:
500                 case e1000_pch_cnp:
501                         pba = E1000_PBA_26K;
502                         break;
503                 default:
504                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
505         }
506
507         E1000_WRITE_REG(hw, E1000_PBA, pba);
508 }
509
510 static void
511 eth_em_rxtx_control(struct rte_eth_dev *dev,
512                     bool enable)
513 {
514         struct e1000_hw *hw =
515                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
516         uint32_t tctl, rctl;
517
518         tctl = E1000_READ_REG(hw, E1000_TCTL);
519         rctl = E1000_READ_REG(hw, E1000_RCTL);
520         if (enable) {
521                 /* enable Tx/Rx */
522                 tctl |= E1000_TCTL_EN;
523                 rctl |= E1000_RCTL_EN;
524         } else {
525                 /* disable Tx/Rx */
526                 tctl &= ~E1000_TCTL_EN;
527                 rctl &= ~E1000_RCTL_EN;
528         }
529         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
530         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
531         E1000_WRITE_FLUSH(hw);
532 }
533
534 static int
535 eth_em_start(struct rte_eth_dev *dev)
536 {
537         struct e1000_adapter *adapter =
538                 E1000_DEV_PRIVATE(dev->data->dev_private);
539         struct e1000_hw *hw =
540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
541         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
542         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
543         int ret, mask;
544         uint32_t intr_vector = 0;
545         uint32_t *speeds;
546         int num_speeds;
547         bool autoneg;
548
549         PMD_INIT_FUNC_TRACE();
550
551         eth_em_stop(dev);
552
553         e1000_power_up_phy(hw);
554
555         /* Set default PBA value */
556         em_set_pba(hw);
557
558         /* Put the address into the Receive Address Array */
559         e1000_rar_set(hw, hw->mac.addr, 0);
560
561         /*
562          * With the 82571 adapter, RAR[0] may be overwritten
563          * when the other port is reset, we make a duplicate
564          * in RAR[14] for that eventuality, this assures
565          * the interface continues to function.
566          */
567         if (hw->mac.type == e1000_82571) {
568                 e1000_set_laa_state_82571(hw, TRUE);
569                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
570         }
571
572         /* Initialize the hardware */
573         if (em_hardware_init(hw)) {
574                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
575                 return -EIO;
576         }
577
578         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
579
580         /* Configure for OS presence */
581         em_init_manageability(hw);
582
583         if (dev->data->dev_conf.intr_conf.rxq != 0) {
584                 intr_vector = dev->data->nb_rx_queues;
585                 if (rte_intr_efd_enable(intr_handle, intr_vector))
586                         return -1;
587         }
588
589         if (rte_intr_dp_is_en(intr_handle)) {
590                 intr_handle->intr_vec =
591                         rte_zmalloc("intr_vec",
592                                         dev->data->nb_rx_queues * sizeof(int), 0);
593                 if (intr_handle->intr_vec == NULL) {
594                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
595                                                 " intr_vec", dev->data->nb_rx_queues);
596                         return -ENOMEM;
597                 }
598
599                 /* enable rx interrupt */
600                 em_rxq_intr_enable(hw);
601         }
602
603         eth_em_tx_init(dev);
604
605         ret = eth_em_rx_init(dev);
606         if (ret) {
607                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
608                 em_dev_clear_queues(dev);
609                 return ret;
610         }
611
612         e1000_clear_hw_cntrs_base_generic(hw);
613
614         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
615                         ETH_VLAN_EXTEND_MASK;
616         ret = eth_em_vlan_offload_set(dev, mask);
617         if (ret) {
618                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
619                 em_dev_clear_queues(dev);
620                 return ret;
621         }
622
623         /* Set Interrupt Throttling Rate to maximum allowed value. */
624         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
625
626         /* Setup link speed and duplex */
627         speeds = &dev->data->dev_conf.link_speeds;
628         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
629                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
630                 hw->mac.autoneg = 1;
631         } else {
632                 num_speeds = 0;
633                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
634
635                 /* Reset */
636                 hw->phy.autoneg_advertised = 0;
637
638                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
639                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
640                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
641                         num_speeds = -1;
642                         goto error_invalid_config;
643                 }
644                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
645                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
646                         num_speeds++;
647                 }
648                 if (*speeds & ETH_LINK_SPEED_10M) {
649                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
650                         num_speeds++;
651                 }
652                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
653                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
654                         num_speeds++;
655                 }
656                 if (*speeds & ETH_LINK_SPEED_100M) {
657                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
658                         num_speeds++;
659                 }
660                 if (*speeds & ETH_LINK_SPEED_1G) {
661                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
662                         num_speeds++;
663                 }
664                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
665                         goto error_invalid_config;
666
667                 /* Set/reset the mac.autoneg based on the link speed,
668                  * fixed or not
669                  */
670                 if (!autoneg) {
671                         hw->mac.autoneg = 0;
672                         hw->mac.forced_speed_duplex =
673                                         hw->phy.autoneg_advertised;
674                 } else {
675                         hw->mac.autoneg = 1;
676                 }
677         }
678
679         e1000_setup_link(hw);
680
681         if (rte_intr_allow_others(intr_handle)) {
682                 /* check if lsc interrupt is enabled */
683                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
684                         ret = eth_em_interrupt_setup(dev);
685                         if (ret) {
686                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
687                                 em_dev_clear_queues(dev);
688                                 return ret;
689                         }
690                 }
691         } else {
692                 rte_intr_callback_unregister(intr_handle,
693                                                 eth_em_interrupt_handler,
694                                                 (void *)dev);
695                 if (dev->data->dev_conf.intr_conf.lsc != 0)
696                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
697                                      " no intr multiplexn");
698         }
699         /* check if rxq interrupt is enabled */
700         if (dev->data->dev_conf.intr_conf.rxq != 0)
701                 eth_em_rxq_interrupt_setup(dev);
702
703         rte_intr_enable(intr_handle);
704
705         adapter->stopped = 0;
706
707         eth_em_rxtx_control(dev, true);
708         eth_em_link_update(dev, 0);
709
710         PMD_INIT_LOG(DEBUG, "<<");
711
712         return 0;
713
714 error_invalid_config:
715         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
716                      dev->data->dev_conf.link_speeds, dev->data->port_id);
717         em_dev_clear_queues(dev);
718         return -EINVAL;
719 }
720
721 /*********************************************************************
722  *
723  *  This routine disables all traffic on the adapter by issuing a
724  *  global reset on the MAC.
725  *
726  **********************************************************************/
727 static void
728 eth_em_stop(struct rte_eth_dev *dev)
729 {
730         struct rte_eth_link link;
731         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
732         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
733         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
734
735         eth_em_rxtx_control(dev, false);
736         em_rxq_intr_disable(hw);
737         em_lsc_intr_disable(hw);
738
739         e1000_reset_hw(hw);
740
741         /* Flush desc rings for i219 */
742         if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
743                 em_flush_desc_rings(dev);
744
745         if (hw->mac.type >= e1000_82544)
746                 E1000_WRITE_REG(hw, E1000_WUC, 0);
747
748         /* Power down the phy. Needed to make the link go down */
749         e1000_power_down_phy(hw);
750
751         em_dev_clear_queues(dev);
752
753         /* clear the recorded link status */
754         memset(&link, 0, sizeof(link));
755         rte_eth_linkstatus_set(dev, &link);
756
757         if (!rte_intr_allow_others(intr_handle))
758                 /* resume to the default handler */
759                 rte_intr_callback_register(intr_handle,
760                                            eth_em_interrupt_handler,
761                                            (void *)dev);
762
763         /* Clean datapath event and queue/vec mapping */
764         rte_intr_efd_disable(intr_handle);
765         if (intr_handle->intr_vec != NULL) {
766                 rte_free(intr_handle->intr_vec);
767                 intr_handle->intr_vec = NULL;
768         }
769 }
770
771 static void
772 eth_em_close(struct rte_eth_dev *dev)
773 {
774         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
775         struct e1000_adapter *adapter =
776                 E1000_DEV_PRIVATE(dev->data->dev_private);
777
778         eth_em_stop(dev);
779         adapter->stopped = 1;
780         em_dev_free_queues(dev);
781         e1000_phy_hw_reset(hw);
782         em_release_manageability(hw);
783         em_hw_control_release(hw);
784 }
785
786 static int
787 em_get_rx_buffer_size(struct e1000_hw *hw)
788 {
789         uint32_t rx_buf_size;
790
791         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
792         return rx_buf_size;
793 }
794
795 /*********************************************************************
796  *
797  *  Initialize the hardware
798  *
799  **********************************************************************/
800 static int
801 em_hardware_init(struct e1000_hw *hw)
802 {
803         uint32_t rx_buf_size;
804         int diag;
805
806         /* Issue a global reset */
807         e1000_reset_hw(hw);
808
809         /* Let the firmware know the OS is in control */
810         em_hw_control_acquire(hw);
811
812         /*
813          * These parameters control the automatic generation (Tx) and
814          * response (Rx) to Ethernet PAUSE frames.
815          * - High water mark should allow for at least two standard size (1518)
816          *   frames to be received after sending an XOFF.
817          * - Low water mark works best when it is very near the high water mark.
818          *   This allows the receiver to restart by sending XON when it has
819          *   drained a bit. Here we use an arbitrary value of 1500 which will
820          *   restart after one full frame is pulled from the buffer. There
821          *   could be several smaller frames in the buffer and if so they will
822          *   not trigger the XON until their total number reduces the buffer
823          *   by 1500.
824          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
825          */
826         rx_buf_size = em_get_rx_buffer_size(hw);
827
828         hw->fc.high_water = rx_buf_size -
829                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
830         hw->fc.low_water = hw->fc.high_water - 1500;
831
832         if (hw->mac.type == e1000_80003es2lan)
833                 hw->fc.pause_time = UINT16_MAX;
834         else
835                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
836
837         hw->fc.send_xon = 1;
838
839         /* Set Flow control, use the tunable location if sane */
840         if (em_fc_setting <= e1000_fc_full)
841                 hw->fc.requested_mode = em_fc_setting;
842         else
843                 hw->fc.requested_mode = e1000_fc_none;
844
845         /* Workaround: no TX flow ctrl for PCH */
846         if (hw->mac.type == e1000_pchlan)
847                 hw->fc.requested_mode = e1000_fc_rx_pause;
848
849         /* Override - settings for PCH2LAN, ya its magic :) */
850         if (hw->mac.type == e1000_pch2lan) {
851                 hw->fc.high_water = 0x5C20;
852                 hw->fc.low_water = 0x5048;
853                 hw->fc.pause_time = 0x0650;
854                 hw->fc.refresh_time = 0x0400;
855         } else if (hw->mac.type == e1000_pch_lpt ||
856                    hw->mac.type == e1000_pch_spt ||
857                    hw->mac.type == e1000_pch_cnp) {
858                 hw->fc.requested_mode = e1000_fc_full;
859         }
860
861         diag = e1000_init_hw(hw);
862         if (diag < 0)
863                 return diag;
864         e1000_check_for_link(hw);
865         return 0;
866 }
867
868 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
869 static int
870 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
871 {
872         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
873         struct e1000_hw_stats *stats =
874                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
875         int pause_frames;
876
877         if(hw->phy.media_type == e1000_media_type_copper ||
878                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
879                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
880                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
881         }
882
883         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
884         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
885         stats->scc += E1000_READ_REG(hw, E1000_SCC);
886         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
887
888         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
889         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
890         stats->colc += E1000_READ_REG(hw, E1000_COLC);
891         stats->dc += E1000_READ_REG(hw, E1000_DC);
892         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
893         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
894         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
895
896         /*
897          * For watchdog management we need to know if we have been
898          * paused during the last interval, so capture that here.
899          */
900         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
901         stats->xoffrxc += pause_frames;
902         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
903         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
904         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
905         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
906         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
907         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
908         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
909         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
910         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
911         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
912         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
913         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
914
915         /*
916          * For the 64-bit byte counters the low dword must be read first.
917          * Both registers clear on the read of the high dword.
918          */
919
920         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
921         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
922         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
923         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
924
925         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
926         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
927         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
928         stats->roc += E1000_READ_REG(hw, E1000_ROC);
929         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
930
931         stats->tor += E1000_READ_REG(hw, E1000_TORH);
932         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
933
934         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
935         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
936         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
937         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
938         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
939         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
940         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
941         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
942         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
943         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
944
945         /* Interrupt Counts */
946
947         if (hw->mac.type >= e1000_82571) {
948                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
949                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
950                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
951                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
952                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
953                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
954                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
955                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
956                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
957         }
958
959         if (hw->mac.type >= e1000_82543) {
960                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
961                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
962                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
963                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
964                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
965                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
966         }
967
968         if (rte_stats == NULL)
969                 return -EINVAL;
970
971         /* Rx Errors */
972         rte_stats->imissed = stats->mpc;
973         rte_stats->ierrors = stats->crcerrs +
974                              stats->rlec + stats->ruc + stats->roc +
975                              stats->rxerrc + stats->algnerrc + stats->cexterr;
976
977         /* Tx Errors */
978         rte_stats->oerrors = stats->ecol + stats->latecol;
979
980         rte_stats->ipackets = stats->gprc;
981         rte_stats->opackets = stats->gptc;
982         rte_stats->ibytes   = stats->gorc;
983         rte_stats->obytes   = stats->gotc;
984         return 0;
985 }
986
987 static void
988 eth_em_stats_reset(struct rte_eth_dev *dev)
989 {
990         struct e1000_hw_stats *hw_stats =
991                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
992
993         /* HW registers are cleared on read */
994         eth_em_stats_get(dev, NULL);
995
996         /* Reset software totals */
997         memset(hw_stats, 0, sizeof(*hw_stats));
998 }
999
1000 static int
1001 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1002 {
1003         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1004         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1005         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1006
1007         em_rxq_intr_enable(hw);
1008         rte_intr_ack(intr_handle);
1009
1010         return 0;
1011 }
1012
1013 static int
1014 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1015 {
1016         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1017
1018         em_rxq_intr_disable(hw);
1019
1020         return 0;
1021 }
1022
1023 uint32_t
1024 em_get_max_pktlen(struct rte_eth_dev *dev)
1025 {
1026         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1027
1028         switch (hw->mac.type) {
1029         case e1000_82571:
1030         case e1000_82572:
1031         case e1000_ich9lan:
1032         case e1000_ich10lan:
1033         case e1000_pch2lan:
1034         case e1000_pch_lpt:
1035         case e1000_pch_spt:
1036         case e1000_pch_cnp:
1037         case e1000_82574:
1038         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1039         case e1000_82583:
1040                 return 0x2412;
1041         case e1000_pchlan:
1042                 return 0x1000;
1043         /* Adapters that do not support jumbo frames */
1044         case e1000_ich8lan:
1045                 return RTE_ETHER_MAX_LEN;
1046         default:
1047                 return MAX_JUMBO_FRAME_SIZE;
1048         }
1049 }
1050
1051 static int
1052 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1053 {
1054         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1055
1056         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1057         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1058         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1059
1060         /*
1061          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1062          * Unfortunatelly, all these nics have just one TX context.
1063          * So we have few choises for TX:
1064          * - Use just one TX queue.
1065          * - Allow cksum offload only for one TX queue.
1066          * - Don't allow TX cksum offload at all.
1067          * For now, option #1 was chosen.
1068          * To use second RX queue we have to use extended RX descriptor
1069          * (Multiple Receive Queues are mutually exclusive with UDP
1070          * fragmentation and are not supported when a legacy receive
1071          * descriptor format is used).
1072          * Which means separate RX routinies - as legacy nics (82540, 82545)
1073          * don't support extended RXD.
1074          * To avoid it we support just one RX queue for now (no RSS).
1075          */
1076
1077         dev_info->max_rx_queues = 1;
1078         dev_info->max_tx_queues = 1;
1079
1080         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1081         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1082                                     dev_info->rx_queue_offload_capa;
1083         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1084         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1085                                     dev_info->tx_queue_offload_capa;
1086
1087         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1088                 .nb_max = E1000_MAX_RING_DESC,
1089                 .nb_min = E1000_MIN_RING_DESC,
1090                 .nb_align = EM_RXD_ALIGN,
1091         };
1092
1093         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1094                 .nb_max = E1000_MAX_RING_DESC,
1095                 .nb_min = E1000_MIN_RING_DESC,
1096                 .nb_align = EM_TXD_ALIGN,
1097                 .nb_seg_max = EM_TX_MAX_SEG,
1098                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1099         };
1100
1101         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1102                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1103                         ETH_LINK_SPEED_1G;
1104
1105         /* Preferred queue parameters */
1106         dev_info->default_rxportconf.nb_queues = 1;
1107         dev_info->default_txportconf.nb_queues = 1;
1108         dev_info->default_txportconf.ring_size = 256;
1109         dev_info->default_rxportconf.ring_size = 256;
1110
1111         return 0;
1112 }
1113
1114 /* return 0 means link status changed, -1 means not changed */
1115 static int
1116 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1117 {
1118         struct e1000_hw *hw =
1119                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1120         struct rte_eth_link link;
1121         int link_check, count;
1122
1123         link_check = 0;
1124         hw->mac.get_link_status = 1;
1125
1126         /* possible wait-to-complete in up to 9 seconds */
1127         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1128                 /* Read the real link status */
1129                 switch (hw->phy.media_type) {
1130                 case e1000_media_type_copper:
1131                         /* Do the work to read phy */
1132                         e1000_check_for_link(hw);
1133                         link_check = !hw->mac.get_link_status;
1134                         break;
1135
1136                 case e1000_media_type_fiber:
1137                         e1000_check_for_link(hw);
1138                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1139                                         E1000_STATUS_LU);
1140                         break;
1141
1142                 case e1000_media_type_internal_serdes:
1143                         e1000_check_for_link(hw);
1144                         link_check = hw->mac.serdes_has_link;
1145                         break;
1146
1147                 default:
1148                         break;
1149                 }
1150                 if (link_check || wait_to_complete == 0)
1151                         break;
1152                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1153         }
1154         memset(&link, 0, sizeof(link));
1155
1156         /* Now we check if a transition has happened */
1157         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1158                 uint16_t duplex, speed;
1159                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1160                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1161                                 ETH_LINK_FULL_DUPLEX :
1162                                 ETH_LINK_HALF_DUPLEX;
1163                 link.link_speed = speed;
1164                 link.link_status = ETH_LINK_UP;
1165                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1166                                 ETH_LINK_SPEED_FIXED);
1167         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1168                 link.link_speed = ETH_SPEED_NUM_NONE;
1169                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1170                 link.link_status = ETH_LINK_DOWN;
1171                 link.link_autoneg = ETH_LINK_FIXED;
1172         }
1173
1174         return rte_eth_linkstatus_set(dev, &link);
1175 }
1176
1177 /*
1178  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1179  * For ASF and Pass Through versions of f/w this means
1180  * that the driver is loaded. For AMT version type f/w
1181  * this means that the network i/f is open.
1182  */
1183 static void
1184 em_hw_control_acquire(struct e1000_hw *hw)
1185 {
1186         uint32_t ctrl_ext, swsm;
1187
1188         /* Let firmware know the driver has taken over */
1189         if (hw->mac.type == e1000_82573) {
1190                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1191                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1192
1193         } else {
1194                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1195                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1196                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1197         }
1198 }
1199
1200 /*
1201  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1202  * For ASF and Pass Through versions of f/w this means that the
1203  * driver is no longer loaded. For AMT versions of the
1204  * f/w this means that the network i/f is closed.
1205  */
1206 static void
1207 em_hw_control_release(struct e1000_hw *hw)
1208 {
1209         uint32_t ctrl_ext, swsm;
1210
1211         /* Let firmware taken over control of h/w */
1212         if (hw->mac.type == e1000_82573) {
1213                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1214                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1215         } else {
1216                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1217                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1218                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1219         }
1220 }
1221
1222 /*
1223  * Bit of a misnomer, what this really means is
1224  * to enable OS management of the system... aka
1225  * to disable special hardware management features.
1226  */
1227 static void
1228 em_init_manageability(struct e1000_hw *hw)
1229 {
1230         if (e1000_enable_mng_pass_thru(hw)) {
1231                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1232                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1233
1234                 /* disable hardware interception of ARP */
1235                 manc &= ~(E1000_MANC_ARP_EN);
1236
1237                 /* enable receiving management packets to the host */
1238                 manc |= E1000_MANC_EN_MNG2HOST;
1239                 manc2h |= 1 << 5;  /* Mng Port 623 */
1240                 manc2h |= 1 << 6;  /* Mng Port 664 */
1241                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1242                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1243         }
1244 }
1245
1246 /*
1247  * Give control back to hardware management
1248  * controller if there is one.
1249  */
1250 static void
1251 em_release_manageability(struct e1000_hw *hw)
1252 {
1253         uint32_t manc;
1254
1255         if (e1000_enable_mng_pass_thru(hw)) {
1256                 manc = E1000_READ_REG(hw, E1000_MANC);
1257
1258                 /* re-enable hardware interception of ARP */
1259                 manc |= E1000_MANC_ARP_EN;
1260                 manc &= ~E1000_MANC_EN_MNG2HOST;
1261
1262                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1263         }
1264 }
1265
1266 static int
1267 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1268 {
1269         struct e1000_hw *hw =
1270                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1271         uint32_t rctl;
1272
1273         rctl = E1000_READ_REG(hw, E1000_RCTL);
1274         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1275         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1276
1277         return 0;
1278 }
1279
1280 static int
1281 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1282 {
1283         struct e1000_hw *hw =
1284                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1285         uint32_t rctl;
1286
1287         rctl = E1000_READ_REG(hw, E1000_RCTL);
1288         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1289         if (dev->data->all_multicast == 1)
1290                 rctl |= E1000_RCTL_MPE;
1291         else
1292                 rctl &= (~E1000_RCTL_MPE);
1293         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1294
1295         return 0;
1296 }
1297
1298 static void
1299 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1300 {
1301         struct e1000_hw *hw =
1302                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1303         uint32_t rctl;
1304
1305         rctl = E1000_READ_REG(hw, E1000_RCTL);
1306         rctl |= E1000_RCTL_MPE;
1307         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1308 }
1309
1310 static void
1311 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1312 {
1313         struct e1000_hw *hw =
1314                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1315         uint32_t rctl;
1316
1317         if (dev->data->promiscuous == 1)
1318                 return; /* must remain in all_multicast mode */
1319         rctl = E1000_READ_REG(hw, E1000_RCTL);
1320         rctl &= (~E1000_RCTL_MPE);
1321         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1322 }
1323
1324 static int
1325 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1326 {
1327         struct e1000_hw *hw =
1328                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1329         struct e1000_vfta * shadow_vfta =
1330                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1331         uint32_t vfta;
1332         uint32_t vid_idx;
1333         uint32_t vid_bit;
1334
1335         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1336                               E1000_VFTA_ENTRY_MASK);
1337         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1338         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1339         if (on)
1340                 vfta |= vid_bit;
1341         else
1342                 vfta &= ~vid_bit;
1343         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1344
1345         /* update local VFTA copy */
1346         shadow_vfta->vfta[vid_idx] = vfta;
1347
1348         return 0;
1349 }
1350
1351 static void
1352 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1353 {
1354         struct e1000_hw *hw =
1355                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1356         uint32_t reg;
1357
1358         /* Filter Table Disable */
1359         reg = E1000_READ_REG(hw, E1000_RCTL);
1360         reg &= ~E1000_RCTL_CFIEN;
1361         reg &= ~E1000_RCTL_VFE;
1362         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1363 }
1364
1365 static void
1366 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1367 {
1368         struct e1000_hw *hw =
1369                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1370         struct e1000_vfta * shadow_vfta =
1371                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1372         uint32_t reg;
1373         int i;
1374
1375         /* Filter Table Enable, CFI not used for packet acceptance */
1376         reg = E1000_READ_REG(hw, E1000_RCTL);
1377         reg &= ~E1000_RCTL_CFIEN;
1378         reg |= E1000_RCTL_VFE;
1379         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1380
1381         /* restore vfta from local copy */
1382         for (i = 0; i < IGB_VFTA_SIZE; i++)
1383                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1384 }
1385
1386 static void
1387 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1388 {
1389         struct e1000_hw *hw =
1390                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1391         uint32_t reg;
1392
1393         /* VLAN Mode Disable */
1394         reg = E1000_READ_REG(hw, E1000_CTRL);
1395         reg &= ~E1000_CTRL_VME;
1396         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1397
1398 }
1399
1400 static void
1401 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1402 {
1403         struct e1000_hw *hw =
1404                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1405         uint32_t reg;
1406
1407         /* VLAN Mode Enable */
1408         reg = E1000_READ_REG(hw, E1000_CTRL);
1409         reg |= E1000_CTRL_VME;
1410         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1411 }
1412
1413 static int
1414 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1415 {
1416         struct rte_eth_rxmode *rxmode;
1417
1418         rxmode = &dev->data->dev_conf.rxmode;
1419         if(mask & ETH_VLAN_STRIP_MASK){
1420                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1421                         em_vlan_hw_strip_enable(dev);
1422                 else
1423                         em_vlan_hw_strip_disable(dev);
1424         }
1425
1426         if(mask & ETH_VLAN_FILTER_MASK){
1427                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1428                         em_vlan_hw_filter_enable(dev);
1429                 else
1430                         em_vlan_hw_filter_disable(dev);
1431         }
1432
1433         return 0;
1434 }
1435
1436 /*
1437  * It enables the interrupt mask and then enable the interrupt.
1438  *
1439  * @param dev
1440  *  Pointer to struct rte_eth_dev.
1441  *
1442  * @return
1443  *  - On success, zero.
1444  *  - On failure, a negative value.
1445  */
1446 static int
1447 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1448 {
1449         uint32_t regval;
1450         struct e1000_hw *hw =
1451                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1452
1453         /* clear interrupt */
1454         E1000_READ_REG(hw, E1000_ICR);
1455         regval = E1000_READ_REG(hw, E1000_IMS);
1456         E1000_WRITE_REG(hw, E1000_IMS,
1457                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1458         return 0;
1459 }
1460
1461 /*
1462  * It clears the interrupt causes and enables the interrupt.
1463  * It will be called once only during nic initialized.
1464  *
1465  * @param dev
1466  *  Pointer to struct rte_eth_dev.
1467  *
1468  * @return
1469  *  - On success, zero.
1470  *  - On failure, a negative value.
1471  */
1472 static int
1473 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1474 {
1475         struct e1000_hw *hw =
1476         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1477
1478         E1000_READ_REG(hw, E1000_ICR);
1479         em_rxq_intr_enable(hw);
1480         return 0;
1481 }
1482
1483 /*
1484  * It enable receive packet interrupt.
1485  * @param hw
1486  * Pointer to struct e1000_hw
1487  *
1488  * @return
1489  */
1490 static void
1491 em_rxq_intr_enable(struct e1000_hw *hw)
1492 {
1493         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1494         E1000_WRITE_FLUSH(hw);
1495 }
1496
1497 /*
1498  * It disabled lsc interrupt.
1499  * @param hw
1500  * Pointer to struct e1000_hw
1501  *
1502  * @return
1503  */
1504 static void
1505 em_lsc_intr_disable(struct e1000_hw *hw)
1506 {
1507         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1508         E1000_WRITE_FLUSH(hw);
1509 }
1510
1511 /*
1512  * It disabled receive packet interrupt.
1513  * @param hw
1514  * Pointer to struct e1000_hw
1515  *
1516  * @return
1517  */
1518 static void
1519 em_rxq_intr_disable(struct e1000_hw *hw)
1520 {
1521         E1000_READ_REG(hw, E1000_ICR);
1522         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1523         E1000_WRITE_FLUSH(hw);
1524 }
1525
1526 /*
1527  * It reads ICR and gets interrupt causes, check it and set a bit flag
1528  * to update link status.
1529  *
1530  * @param dev
1531  *  Pointer to struct rte_eth_dev.
1532  *
1533  * @return
1534  *  - On success, zero.
1535  *  - On failure, a negative value.
1536  */
1537 static int
1538 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1539 {
1540         uint32_t icr;
1541         struct e1000_hw *hw =
1542                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1543         struct e1000_interrupt *intr =
1544                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1545
1546         /* read-on-clear nic registers here */
1547         icr = E1000_READ_REG(hw, E1000_ICR);
1548         if (icr & E1000_ICR_LSC) {
1549                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1550         }
1551
1552         return 0;
1553 }
1554
1555 /*
1556  * It executes link_update after knowing an interrupt is prsent.
1557  *
1558  * @param dev
1559  *  Pointer to struct rte_eth_dev.
1560  *
1561  * @return
1562  *  - On success, zero.
1563  *  - On failure, a negative value.
1564  */
1565 static int
1566 eth_em_interrupt_action(struct rte_eth_dev *dev,
1567                         struct rte_intr_handle *intr_handle)
1568 {
1569         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1570         struct e1000_hw *hw =
1571                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1572         struct e1000_interrupt *intr =
1573                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1574         struct rte_eth_link link;
1575         int ret;
1576
1577         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1578                 return -1;
1579
1580         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1581         rte_intr_ack(intr_handle);
1582
1583         /* set get_link_status to check register later */
1584         hw->mac.get_link_status = 1;
1585         ret = eth_em_link_update(dev, 0);
1586
1587         /* check if link has changed */
1588         if (ret < 0)
1589                 return 0;
1590
1591         rte_eth_linkstatus_get(dev, &link);
1592
1593         if (link.link_status) {
1594                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1595                              dev->data->port_id, link.link_speed,
1596                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1597                              "full-duplex" : "half-duplex");
1598         } else {
1599                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1600         }
1601         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1602                      pci_dev->addr.domain, pci_dev->addr.bus,
1603                      pci_dev->addr.devid, pci_dev->addr.function);
1604
1605         return 0;
1606 }
1607
1608 /**
1609  * Interrupt handler which shall be registered at first.
1610  *
1611  * @param handle
1612  *  Pointer to interrupt handle.
1613  * @param param
1614  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1615  *
1616  * @return
1617  *  void
1618  */
1619 static void
1620 eth_em_interrupt_handler(void *param)
1621 {
1622         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1623
1624         eth_em_interrupt_get_status(dev);
1625         eth_em_interrupt_action(dev, dev->intr_handle);
1626         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1627 }
1628
1629 static int
1630 eth_em_led_on(struct rte_eth_dev *dev)
1631 {
1632         struct e1000_hw *hw;
1633
1634         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1635         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1636 }
1637
1638 static int
1639 eth_em_led_off(struct rte_eth_dev *dev)
1640 {
1641         struct e1000_hw *hw;
1642
1643         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1645 }
1646
1647 static int
1648 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1649 {
1650         struct e1000_hw *hw;
1651         uint32_t ctrl;
1652         int tx_pause;
1653         int rx_pause;
1654
1655         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1656         fc_conf->pause_time = hw->fc.pause_time;
1657         fc_conf->high_water = hw->fc.high_water;
1658         fc_conf->low_water = hw->fc.low_water;
1659         fc_conf->send_xon = hw->fc.send_xon;
1660         fc_conf->autoneg = hw->mac.autoneg;
1661
1662         /*
1663          * Return rx_pause and tx_pause status according to actual setting of
1664          * the TFCE and RFCE bits in the CTRL register.
1665          */
1666         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1667         if (ctrl & E1000_CTRL_TFCE)
1668                 tx_pause = 1;
1669         else
1670                 tx_pause = 0;
1671
1672         if (ctrl & E1000_CTRL_RFCE)
1673                 rx_pause = 1;
1674         else
1675                 rx_pause = 0;
1676
1677         if (rx_pause && tx_pause)
1678                 fc_conf->mode = RTE_FC_FULL;
1679         else if (rx_pause)
1680                 fc_conf->mode = RTE_FC_RX_PAUSE;
1681         else if (tx_pause)
1682                 fc_conf->mode = RTE_FC_TX_PAUSE;
1683         else
1684                 fc_conf->mode = RTE_FC_NONE;
1685
1686         return 0;
1687 }
1688
1689 static int
1690 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1691 {
1692         struct e1000_hw *hw;
1693         int err;
1694         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1695                 e1000_fc_none,
1696                 e1000_fc_rx_pause,
1697                 e1000_fc_tx_pause,
1698                 e1000_fc_full
1699         };
1700         uint32_t rx_buf_size;
1701         uint32_t max_high_water;
1702         uint32_t rctl;
1703
1704         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1705         if (fc_conf->autoneg != hw->mac.autoneg)
1706                 return -ENOTSUP;
1707         rx_buf_size = em_get_rx_buffer_size(hw);
1708         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1709
1710         /* At least reserve one Ethernet frame for watermark */
1711         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1712         if ((fc_conf->high_water > max_high_water) ||
1713             (fc_conf->high_water < fc_conf->low_water)) {
1714                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1715                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1716                 return -EINVAL;
1717         }
1718
1719         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1720         hw->fc.pause_time     = fc_conf->pause_time;
1721         hw->fc.high_water     = fc_conf->high_water;
1722         hw->fc.low_water      = fc_conf->low_water;
1723         hw->fc.send_xon       = fc_conf->send_xon;
1724
1725         err = e1000_setup_link_generic(hw);
1726         if (err == E1000_SUCCESS) {
1727
1728                 /* check if we want to forward MAC frames - driver doesn't have native
1729                  * capability to do that, so we'll write the registers ourselves */
1730
1731                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1732
1733                 /* set or clear MFLCN.PMCF bit depending on configuration */
1734                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1735                         rctl |= E1000_RCTL_PMCF;
1736                 else
1737                         rctl &= ~E1000_RCTL_PMCF;
1738
1739                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1740                 E1000_WRITE_FLUSH(hw);
1741
1742                 return 0;
1743         }
1744
1745         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1746         return -EIO;
1747 }
1748
1749 static int
1750 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1751                 uint32_t index, __rte_unused uint32_t pool)
1752 {
1753         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1754
1755         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1756 }
1757
1758 static void
1759 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1760 {
1761         uint8_t addr[RTE_ETHER_ADDR_LEN];
1762         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1763
1764         memset(addr, 0, sizeof(addr));
1765
1766         e1000_rar_set(hw, addr, index);
1767 }
1768
1769 static int
1770 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1771                             struct rte_ether_addr *addr)
1772 {
1773         eth_em_rar_clear(dev, 0);
1774
1775         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1776 }
1777
1778 static int
1779 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1780 {
1781         struct rte_eth_dev_info dev_info;
1782         struct e1000_hw *hw;
1783         uint32_t frame_size;
1784         uint32_t rctl;
1785         int ret;
1786
1787         ret = eth_em_infos_get(dev, &dev_info);
1788         if (ret != 0)
1789                 return ret;
1790
1791         frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1792                 VLAN_TAG_SIZE;
1793
1794         /* check that mtu is within the allowed range */
1795         if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen)
1796                 return -EINVAL;
1797
1798         /* refuse mtu that requires the support of scattered packets when this
1799          * feature has not been enabled before. */
1800         if (!dev->data->scattered_rx &&
1801             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1802                 return -EINVAL;
1803
1804         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1805         rctl = E1000_READ_REG(hw, E1000_RCTL);
1806
1807         /* switch to jumbo mode if needed */
1808         if (frame_size > RTE_ETHER_MAX_LEN) {
1809                 dev->data->dev_conf.rxmode.offloads |=
1810                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1811                 rctl |= E1000_RCTL_LPE;
1812         } else {
1813                 dev->data->dev_conf.rxmode.offloads &=
1814                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1815                 rctl &= ~E1000_RCTL_LPE;
1816         }
1817         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1818
1819         /* update max frame size */
1820         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1821         return 0;
1822 }
1823
1824 static int
1825 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1826                         struct rte_ether_addr *mc_addr_set,
1827                         uint32_t nb_mc_addr)
1828 {
1829         struct e1000_hw *hw;
1830
1831         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1832         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1833         return 0;
1834 }
1835
1836 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1837 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1838 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1839
1840 /* see e1000_logs.c */
1841 RTE_INIT(igb_init_log)
1842 {
1843         e1000_igb_init_log();
1844 }