9da477e59def7dcbacf4a88396d4b066083c9f6a
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <ethdev_driver.h>
19 #include <ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static int eth_em_stop(struct rte_eth_dev *dev);
37 static int eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static int eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static int eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static int eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .tx_queue_setup       = eth_em_tx_queue_setup,
180         .tx_queue_release     = eth_em_tx_queue_release,
181         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
182         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
183         .dev_led_on           = eth_em_led_on,
184         .dev_led_off          = eth_em_led_off,
185         .flow_ctrl_get        = eth_em_flow_ctrl_get,
186         .flow_ctrl_set        = eth_em_flow_ctrl_set,
187         .mac_addr_set         = eth_em_default_mac_addr_set,
188         .mac_addr_add         = eth_em_rar_set,
189         .mac_addr_remove      = eth_em_rar_clear,
190         .set_mc_addr_list     = eth_em_set_mc_addr_list,
191         .rxq_info_get         = em_rxq_info_get,
192         .txq_info_get         = em_txq_info_get,
193 };
194
195
196 /**
197  *  eth_em_dev_is_ich8 - Check for ICH8 device
198  *  @hw: pointer to the HW structure
199  *
200  *  return TRUE for ICH8, otherwise FALSE
201  **/
202 static bool
203 eth_em_dev_is_ich8(struct e1000_hw *hw)
204 {
205         DEBUGFUNC("eth_em_dev_is_ich8");
206
207         switch (hw->device_id) {
208         case E1000_DEV_ID_PCH2_LV_LM:
209         case E1000_DEV_ID_PCH_LPT_I217_LM:
210         case E1000_DEV_ID_PCH_LPT_I217_V:
211         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
212         case E1000_DEV_ID_PCH_LPTLP_I218_V:
213         case E1000_DEV_ID_PCH_I218_V2:
214         case E1000_DEV_ID_PCH_I218_LM2:
215         case E1000_DEV_ID_PCH_I218_V3:
216         case E1000_DEV_ID_PCH_I218_LM3:
217         case E1000_DEV_ID_PCH_SPT_I219_LM:
218         case E1000_DEV_ID_PCH_SPT_I219_V:
219         case E1000_DEV_ID_PCH_SPT_I219_LM2:
220         case E1000_DEV_ID_PCH_SPT_I219_V2:
221         case E1000_DEV_ID_PCH_LBG_I219_LM3:
222         case E1000_DEV_ID_PCH_SPT_I219_LM4:
223         case E1000_DEV_ID_PCH_SPT_I219_V4:
224         case E1000_DEV_ID_PCH_SPT_I219_LM5:
225         case E1000_DEV_ID_PCH_SPT_I219_V5:
226         case E1000_DEV_ID_PCH_CNP_I219_LM6:
227         case E1000_DEV_ID_PCH_CNP_I219_V6:
228         case E1000_DEV_ID_PCH_CNP_I219_LM7:
229         case E1000_DEV_ID_PCH_CNP_I219_V7:
230                 return 1;
231         default:
232                 return 0;
233         }
234 }
235
236 static int
237 eth_em_dev_init(struct rte_eth_dev *eth_dev)
238 {
239         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
240         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
241         struct e1000_adapter *adapter =
242                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
243         struct e1000_hw *hw =
244                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
245         struct e1000_vfta * shadow_vfta =
246                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
247
248         eth_dev->dev_ops = &eth_em_ops;
249         eth_dev->rx_queue_count = eth_em_rx_queue_count;
250         eth_dev->rx_descriptor_status = eth_em_rx_descriptor_status;
251         eth_dev->tx_descriptor_status = eth_em_tx_descriptor_status;
252         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
253         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
254         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
255
256         /* for secondary processes, we don't initialise any further as primary
257          * has already done this work. Only check we don't need a different
258          * RX function */
259         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
260                 if (eth_dev->data->scattered_rx)
261                         eth_dev->rx_pkt_burst =
262                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
263                 return 0;
264         }
265
266         rte_eth_copy_pci_info(eth_dev, pci_dev);
267
268         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
269         hw->device_id = pci_dev->id.device_id;
270         adapter->stopped = 0;
271
272         /* For ICH8 support we'll need to map the flash memory BAR */
273         if (eth_em_dev_is_ich8(hw))
274                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
275
276         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
277                         em_hw_init(hw) != 0) {
278                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
279                         "failed to init HW",
280                         eth_dev->data->port_id, pci_dev->id.vendor_id,
281                         pci_dev->id.device_id);
282                 return -ENODEV;
283         }
284
285         /* Allocate memory for storing MAC addresses */
286         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
287                         hw->mac.rar_entry_count, 0);
288         if (eth_dev->data->mac_addrs == NULL) {
289                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
290                         "store MAC addresses",
291                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
292                 return -ENOMEM;
293         }
294
295         /* Copy the permanent MAC address */
296         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
297                 eth_dev->data->mac_addrs);
298
299         /* initialize the vfta */
300         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
301
302         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
303                      eth_dev->data->port_id, pci_dev->id.vendor_id,
304                      pci_dev->id.device_id);
305
306         rte_intr_callback_register(intr_handle,
307                                    eth_em_interrupt_handler, eth_dev);
308
309         return 0;
310 }
311
312 static int
313 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
314 {
315         PMD_INIT_FUNC_TRACE();
316
317         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
318                 return 0;
319
320         eth_em_close(eth_dev);
321
322         return 0;
323 }
324
325 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
326         struct rte_pci_device *pci_dev)
327 {
328         return rte_eth_dev_pci_generic_probe(pci_dev,
329                 sizeof(struct e1000_adapter), eth_em_dev_init);
330 }
331
332 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
333 {
334         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
335 }
336
337 static struct rte_pci_driver rte_em_pmd = {
338         .id_table = pci_id_em_map,
339         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
340         .probe = eth_em_pci_probe,
341         .remove = eth_em_pci_remove,
342 };
343
344 static int
345 em_hw_init(struct e1000_hw *hw)
346 {
347         int diag;
348
349         diag = hw->mac.ops.init_params(hw);
350         if (diag != 0) {
351                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
352                 return diag;
353         }
354         diag = hw->nvm.ops.init_params(hw);
355         if (diag != 0) {
356                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
357                 return diag;
358         }
359         diag = hw->phy.ops.init_params(hw);
360         if (diag != 0) {
361                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
362                 return diag;
363         }
364         (void) e1000_get_bus_info(hw);
365
366         hw->mac.autoneg = 1;
367         hw->phy.autoneg_wait_to_complete = 0;
368         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
369
370         e1000_init_script_state_82541(hw, TRUE);
371         e1000_set_tbi_compatibility_82543(hw, TRUE);
372
373         /* Copper options */
374         if (hw->phy.media_type == e1000_media_type_copper) {
375                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
376                 hw->phy.disable_polarity_correction = 0;
377                 hw->phy.ms_type = e1000_ms_hw_default;
378         }
379
380         /*
381          * Start from a known state, this is important in reading the nvm
382          * and mac from that.
383          */
384         e1000_reset_hw(hw);
385
386         /* Make sure we have a good EEPROM before we read from it */
387         if (e1000_validate_nvm_checksum(hw) < 0) {
388                 /*
389                  * Some PCI-E parts fail the first check due to
390                  * the link being in sleep state, call it again,
391                  * if it fails a second time its a real issue.
392                  */
393                 diag = e1000_validate_nvm_checksum(hw);
394                 if (diag < 0) {
395                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
396                         goto error;
397                 }
398         }
399
400         /* Read the permanent MAC address out of the EEPROM */
401         diag = e1000_read_mac_addr(hw);
402         if (diag != 0) {
403                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
404                 goto error;
405         }
406
407         /* Now initialize the hardware */
408         diag = em_hardware_init(hw);
409         if (diag != 0) {
410                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
411                 goto error;
412         }
413
414         hw->mac.get_link_status = 1;
415
416         /* Indicate SOL/IDER usage */
417         diag = e1000_check_reset_block(hw);
418         if (diag < 0) {
419                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
420                         "SOL/IDER session");
421         }
422         return 0;
423
424 error:
425         em_hw_control_release(hw);
426         return diag;
427 }
428
429 static int
430 eth_em_configure(struct rte_eth_dev *dev)
431 {
432         struct e1000_interrupt *intr =
433                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
434
435         PMD_INIT_FUNC_TRACE();
436         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
437
438         PMD_INIT_FUNC_TRACE();
439
440         return 0;
441 }
442
443 static void
444 em_set_pba(struct e1000_hw *hw)
445 {
446         uint32_t pba;
447
448         /*
449          * Packet Buffer Allocation (PBA)
450          * Writing PBA sets the receive portion of the buffer
451          * the remainder is used for the transmit buffer.
452          * Devices before the 82547 had a Packet Buffer of 64K.
453          * After the 82547 the buffer was reduced to 40K.
454          */
455         switch (hw->mac.type) {
456                 case e1000_82547:
457                 case e1000_82547_rev_2:
458                 /* 82547: Total Packet Buffer is 40K */
459                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
460                         break;
461                 case e1000_82571:
462                 case e1000_82572:
463                 case e1000_80003es2lan:
464                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
465                         break;
466                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
467                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
468                         break;
469                 case e1000_82574:
470                 case e1000_82583:
471                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
472                         break;
473                 case e1000_ich8lan:
474                         pba = E1000_PBA_8K;
475                         break;
476                 case e1000_ich9lan:
477                 case e1000_ich10lan:
478                         pba = E1000_PBA_10K;
479                         break;
480                 case e1000_pchlan:
481                 case e1000_pch2lan:
482                 case e1000_pch_lpt:
483                 case e1000_pch_spt:
484                 case e1000_pch_cnp:
485                         pba = E1000_PBA_26K;
486                         break;
487                 default:
488                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
489         }
490
491         E1000_WRITE_REG(hw, E1000_PBA, pba);
492 }
493
494 static void
495 eth_em_rxtx_control(struct rte_eth_dev *dev,
496                     bool enable)
497 {
498         struct e1000_hw *hw =
499                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
500         uint32_t tctl, rctl;
501
502         tctl = E1000_READ_REG(hw, E1000_TCTL);
503         rctl = E1000_READ_REG(hw, E1000_RCTL);
504         if (enable) {
505                 /* enable Tx/Rx */
506                 tctl |= E1000_TCTL_EN;
507                 rctl |= E1000_RCTL_EN;
508         } else {
509                 /* disable Tx/Rx */
510                 tctl &= ~E1000_TCTL_EN;
511                 rctl &= ~E1000_RCTL_EN;
512         }
513         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
514         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
515         E1000_WRITE_FLUSH(hw);
516 }
517
518 static int
519 eth_em_start(struct rte_eth_dev *dev)
520 {
521         struct e1000_adapter *adapter =
522                 E1000_DEV_PRIVATE(dev->data->dev_private);
523         struct e1000_hw *hw =
524                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
525         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
526         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
527         int ret, mask;
528         uint32_t intr_vector = 0;
529         uint32_t *speeds;
530         int num_speeds;
531         bool autoneg;
532
533         PMD_INIT_FUNC_TRACE();
534
535         ret = eth_em_stop(dev);
536         if (ret != 0)
537                 return ret;
538
539         e1000_power_up_phy(hw);
540
541         /* Set default PBA value */
542         em_set_pba(hw);
543
544         /* Put the address into the Receive Address Array */
545         e1000_rar_set(hw, hw->mac.addr, 0);
546
547         /*
548          * With the 82571 adapter, RAR[0] may be overwritten
549          * when the other port is reset, we make a duplicate
550          * in RAR[14] for that eventuality, this assures
551          * the interface continues to function.
552          */
553         if (hw->mac.type == e1000_82571) {
554                 e1000_set_laa_state_82571(hw, TRUE);
555                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
556         }
557
558         /* Initialize the hardware */
559         if (em_hardware_init(hw)) {
560                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
561                 return -EIO;
562         }
563
564         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
565
566         /* Configure for OS presence */
567         em_init_manageability(hw);
568
569         if (dev->data->dev_conf.intr_conf.rxq != 0) {
570                 intr_vector = dev->data->nb_rx_queues;
571                 if (rte_intr_efd_enable(intr_handle, intr_vector))
572                         return -1;
573         }
574
575         if (rte_intr_dp_is_en(intr_handle)) {
576                 intr_handle->intr_vec =
577                         rte_zmalloc("intr_vec",
578                                         dev->data->nb_rx_queues * sizeof(int), 0);
579                 if (intr_handle->intr_vec == NULL) {
580                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
581                                                 " intr_vec", dev->data->nb_rx_queues);
582                         return -ENOMEM;
583                 }
584
585                 /* enable rx interrupt */
586                 em_rxq_intr_enable(hw);
587         }
588
589         eth_em_tx_init(dev);
590
591         ret = eth_em_rx_init(dev);
592         if (ret) {
593                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
594                 em_dev_clear_queues(dev);
595                 return ret;
596         }
597
598         e1000_clear_hw_cntrs_base_generic(hw);
599
600         mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK |
601                         RTE_ETH_VLAN_EXTEND_MASK;
602         ret = eth_em_vlan_offload_set(dev, mask);
603         if (ret) {
604                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
605                 em_dev_clear_queues(dev);
606                 return ret;
607         }
608
609         /* Set Interrupt Throttling Rate to maximum allowed value. */
610         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
611
612         /* Setup link speed and duplex */
613         speeds = &dev->data->dev_conf.link_speeds;
614         if (*speeds == RTE_ETH_LINK_SPEED_AUTONEG) {
615                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
616                 hw->mac.autoneg = 1;
617         } else {
618                 num_speeds = 0;
619                 autoneg = (*speeds & RTE_ETH_LINK_SPEED_FIXED) == 0;
620
621                 /* Reset */
622                 hw->phy.autoneg_advertised = 0;
623
624                 if (*speeds & ~(RTE_ETH_LINK_SPEED_10M_HD | RTE_ETH_LINK_SPEED_10M |
625                                 RTE_ETH_LINK_SPEED_100M_HD | RTE_ETH_LINK_SPEED_100M |
626                                 RTE_ETH_LINK_SPEED_1G | RTE_ETH_LINK_SPEED_FIXED)) {
627                         num_speeds = -1;
628                         goto error_invalid_config;
629                 }
630                 if (*speeds & RTE_ETH_LINK_SPEED_10M_HD) {
631                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
632                         num_speeds++;
633                 }
634                 if (*speeds & RTE_ETH_LINK_SPEED_10M) {
635                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
636                         num_speeds++;
637                 }
638                 if (*speeds & RTE_ETH_LINK_SPEED_100M_HD) {
639                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
640                         num_speeds++;
641                 }
642                 if (*speeds & RTE_ETH_LINK_SPEED_100M) {
643                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
644                         num_speeds++;
645                 }
646                 if (*speeds & RTE_ETH_LINK_SPEED_1G) {
647                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
648                         num_speeds++;
649                 }
650                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
651                         goto error_invalid_config;
652
653                 /* Set/reset the mac.autoneg based on the link speed,
654                  * fixed or not
655                  */
656                 if (!autoneg) {
657                         hw->mac.autoneg = 0;
658                         hw->mac.forced_speed_duplex =
659                                         hw->phy.autoneg_advertised;
660                 } else {
661                         hw->mac.autoneg = 1;
662                 }
663         }
664
665         e1000_setup_link(hw);
666
667         if (rte_intr_allow_others(intr_handle)) {
668                 /* check if lsc interrupt is enabled */
669                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
670                         ret = eth_em_interrupt_setup(dev);
671                         if (ret) {
672                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
673                                 em_dev_clear_queues(dev);
674                                 return ret;
675                         }
676                 }
677         } else {
678                 rte_intr_callback_unregister(intr_handle,
679                                                 eth_em_interrupt_handler,
680                                                 (void *)dev);
681                 if (dev->data->dev_conf.intr_conf.lsc != 0)
682                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
683                                      " no intr multiplexn");
684         }
685         /* check if rxq interrupt is enabled */
686         if (dev->data->dev_conf.intr_conf.rxq != 0)
687                 eth_em_rxq_interrupt_setup(dev);
688
689         rte_intr_enable(intr_handle);
690
691         adapter->stopped = 0;
692
693         eth_em_rxtx_control(dev, true);
694         eth_em_link_update(dev, 0);
695
696         PMD_INIT_LOG(DEBUG, "<<");
697
698         return 0;
699
700 error_invalid_config:
701         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
702                      dev->data->dev_conf.link_speeds, dev->data->port_id);
703         em_dev_clear_queues(dev);
704         return -EINVAL;
705 }
706
707 /*********************************************************************
708  *
709  *  This routine disables all traffic on the adapter by issuing a
710  *  global reset on the MAC.
711  *
712  **********************************************************************/
713 static int
714 eth_em_stop(struct rte_eth_dev *dev)
715 {
716         struct rte_eth_link link;
717         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
718         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
719         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
720
721         dev->data->dev_started = 0;
722
723         eth_em_rxtx_control(dev, false);
724         em_rxq_intr_disable(hw);
725         em_lsc_intr_disable(hw);
726
727         e1000_reset_hw(hw);
728
729         /* Flush desc rings for i219 */
730         if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
731                 em_flush_desc_rings(dev);
732
733         if (hw->mac.type >= e1000_82544)
734                 E1000_WRITE_REG(hw, E1000_WUC, 0);
735
736         /* Power down the phy. Needed to make the link go down */
737         e1000_power_down_phy(hw);
738
739         em_dev_clear_queues(dev);
740
741         /* clear the recorded link status */
742         memset(&link, 0, sizeof(link));
743         rte_eth_linkstatus_set(dev, &link);
744
745         if (!rte_intr_allow_others(intr_handle))
746                 /* resume to the default handler */
747                 rte_intr_callback_register(intr_handle,
748                                            eth_em_interrupt_handler,
749                                            (void *)dev);
750
751         /* Clean datapath event and queue/vec mapping */
752         rte_intr_efd_disable(intr_handle);
753         if (intr_handle->intr_vec != NULL) {
754                 rte_free(intr_handle->intr_vec);
755                 intr_handle->intr_vec = NULL;
756         }
757
758         return 0;
759 }
760
761 static int
762 eth_em_close(struct rte_eth_dev *dev)
763 {
764         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
765         struct e1000_adapter *adapter =
766                 E1000_DEV_PRIVATE(dev->data->dev_private);
767         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
768         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
769         int ret;
770
771         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
772                 return 0;
773
774         ret = eth_em_stop(dev);
775         adapter->stopped = 1;
776         em_dev_free_queues(dev);
777         e1000_phy_hw_reset(hw);
778         em_release_manageability(hw);
779         em_hw_control_release(hw);
780
781         /* disable uio intr before callback unregister */
782         rte_intr_disable(intr_handle);
783         rte_intr_callback_unregister(intr_handle,
784                                      eth_em_interrupt_handler, dev);
785
786         return ret;
787 }
788
789 static int
790 em_get_rx_buffer_size(struct e1000_hw *hw)
791 {
792         uint32_t rx_buf_size;
793
794         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
795         return rx_buf_size;
796 }
797
798 /*********************************************************************
799  *
800  *  Initialize the hardware
801  *
802  **********************************************************************/
803 static int
804 em_hardware_init(struct e1000_hw *hw)
805 {
806         uint32_t rx_buf_size;
807         int diag;
808
809         /* Issue a global reset */
810         e1000_reset_hw(hw);
811
812         /* Let the firmware know the OS is in control */
813         em_hw_control_acquire(hw);
814
815         /*
816          * These parameters control the automatic generation (Tx) and
817          * response (Rx) to Ethernet PAUSE frames.
818          * - High water mark should allow for at least two standard size (1518)
819          *   frames to be received after sending an XOFF.
820          * - Low water mark works best when it is very near the high water mark.
821          *   This allows the receiver to restart by sending XON when it has
822          *   drained a bit. Here we use an arbitrary value of 1500 which will
823          *   restart after one full frame is pulled from the buffer. There
824          *   could be several smaller frames in the buffer and if so they will
825          *   not trigger the XON until their total number reduces the buffer
826          *   by 1500.
827          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
828          */
829         rx_buf_size = em_get_rx_buffer_size(hw);
830
831         hw->fc.high_water = rx_buf_size -
832                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
833         hw->fc.low_water = hw->fc.high_water - 1500;
834
835         if (hw->mac.type == e1000_80003es2lan)
836                 hw->fc.pause_time = UINT16_MAX;
837         else
838                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
839
840         hw->fc.send_xon = 1;
841
842         /* Set Flow control, use the tunable location if sane */
843         if (em_fc_setting <= e1000_fc_full)
844                 hw->fc.requested_mode = em_fc_setting;
845         else
846                 hw->fc.requested_mode = e1000_fc_none;
847
848         /* Workaround: no TX flow ctrl for PCH */
849         if (hw->mac.type == e1000_pchlan)
850                 hw->fc.requested_mode = e1000_fc_rx_pause;
851
852         /* Override - settings for PCH2LAN, ya its magic :) */
853         if (hw->mac.type == e1000_pch2lan) {
854                 hw->fc.high_water = 0x5C20;
855                 hw->fc.low_water = 0x5048;
856                 hw->fc.pause_time = 0x0650;
857                 hw->fc.refresh_time = 0x0400;
858         } else if (hw->mac.type == e1000_pch_lpt ||
859                    hw->mac.type == e1000_pch_spt ||
860                    hw->mac.type == e1000_pch_cnp) {
861                 hw->fc.requested_mode = e1000_fc_full;
862         }
863
864         diag = e1000_init_hw(hw);
865         if (diag < 0)
866                 return diag;
867         e1000_check_for_link(hw);
868         return 0;
869 }
870
871 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
872 static int
873 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
874 {
875         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
876         struct e1000_hw_stats *stats =
877                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
878         int pause_frames;
879
880         if(hw->phy.media_type == e1000_media_type_copper ||
881                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
882                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
883                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
884         }
885
886         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
887         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
888         stats->scc += E1000_READ_REG(hw, E1000_SCC);
889         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
890
891         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
892         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
893         stats->colc += E1000_READ_REG(hw, E1000_COLC);
894         stats->dc += E1000_READ_REG(hw, E1000_DC);
895         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
896         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
897         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
898
899         /*
900          * For watchdog management we need to know if we have been
901          * paused during the last interval, so capture that here.
902          */
903         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
904         stats->xoffrxc += pause_frames;
905         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
906         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
907         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
908         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
909         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
910         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
911         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
912         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
913         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
914         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
915         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
916         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
917
918         /*
919          * For the 64-bit byte counters the low dword must be read first.
920          * Both registers clear on the read of the high dword.
921          */
922
923         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
924         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
925         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
926         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
927
928         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
929         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
930         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
931         stats->roc += E1000_READ_REG(hw, E1000_ROC);
932         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
933
934         stats->tor += E1000_READ_REG(hw, E1000_TORH);
935         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
936
937         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
938         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
939         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
940         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
941         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
942         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
943         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
944         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
945         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
946         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
947
948         /* Interrupt Counts */
949
950         if (hw->mac.type >= e1000_82571) {
951                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
952                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
953                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
954                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
955                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
956                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
957                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
958                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
959                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
960         }
961
962         if (hw->mac.type >= e1000_82543) {
963                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
964                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
965                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
966                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
967                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
968                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
969         }
970
971         if (rte_stats == NULL)
972                 return -EINVAL;
973
974         /* Rx Errors */
975         rte_stats->imissed = stats->mpc;
976         rte_stats->ierrors = stats->crcerrs + stats->rlec +
977                              stats->rxerrc + stats->algnerrc + stats->cexterr;
978
979         /* Tx Errors */
980         rte_stats->oerrors = stats->ecol + stats->latecol;
981
982         rte_stats->ipackets = stats->gprc;
983         rte_stats->opackets = stats->gptc;
984         rte_stats->ibytes   = stats->gorc;
985         rte_stats->obytes   = stats->gotc;
986         return 0;
987 }
988
989 static int
990 eth_em_stats_reset(struct rte_eth_dev *dev)
991 {
992         struct e1000_hw_stats *hw_stats =
993                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
994
995         /* HW registers are cleared on read */
996         eth_em_stats_get(dev, NULL);
997
998         /* Reset software totals */
999         memset(hw_stats, 0, sizeof(*hw_stats));
1000
1001         return 0;
1002 }
1003
1004 static int
1005 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1006 {
1007         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1008         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1009         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1010
1011         em_rxq_intr_enable(hw);
1012         rte_intr_ack(intr_handle);
1013
1014         return 0;
1015 }
1016
1017 static int
1018 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1019 {
1020         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1021
1022         em_rxq_intr_disable(hw);
1023
1024         return 0;
1025 }
1026
1027 uint32_t
1028 em_get_max_pktlen(struct rte_eth_dev *dev)
1029 {
1030         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1031
1032         switch (hw->mac.type) {
1033         case e1000_82571:
1034         case e1000_82572:
1035         case e1000_ich9lan:
1036         case e1000_ich10lan:
1037         case e1000_pch2lan:
1038         case e1000_pch_lpt:
1039         case e1000_pch_spt:
1040         case e1000_pch_cnp:
1041         case e1000_82574:
1042         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1043         case e1000_82583:
1044                 return 0x2412;
1045         case e1000_pchlan:
1046                 return 0x1000;
1047         /* Adapters that do not support jumbo frames */
1048         case e1000_ich8lan:
1049                 return RTE_ETHER_MAX_LEN;
1050         default:
1051                 return MAX_JUMBO_FRAME_SIZE;
1052         }
1053 }
1054
1055 static int
1056 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1057 {
1058         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1059
1060         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1061         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1062         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1063
1064         /*
1065          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1066          * Unfortunatelly, all these nics have just one TX context.
1067          * So we have few choises for TX:
1068          * - Use just one TX queue.
1069          * - Allow cksum offload only for one TX queue.
1070          * - Don't allow TX cksum offload at all.
1071          * For now, option #1 was chosen.
1072          * To use second RX queue we have to use extended RX descriptor
1073          * (Multiple Receive Queues are mutually exclusive with UDP
1074          * fragmentation and are not supported when a legacy receive
1075          * descriptor format is used).
1076          * Which means separate RX routinies - as legacy nics (82540, 82545)
1077          * don't support extended RXD.
1078          * To avoid it we support just one RX queue for now (no RSS).
1079          */
1080
1081         dev_info->max_rx_queues = 1;
1082         dev_info->max_tx_queues = 1;
1083
1084         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa();
1085         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa() |
1086                                     dev_info->rx_queue_offload_capa;
1087         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1088         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1089                                     dev_info->tx_queue_offload_capa;
1090
1091         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1092                 .nb_max = E1000_MAX_RING_DESC,
1093                 .nb_min = E1000_MIN_RING_DESC,
1094                 .nb_align = EM_RXD_ALIGN,
1095         };
1096
1097         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1098                 .nb_max = E1000_MAX_RING_DESC,
1099                 .nb_min = E1000_MIN_RING_DESC,
1100                 .nb_align = EM_TXD_ALIGN,
1101                 .nb_seg_max = EM_TX_MAX_SEG,
1102                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1103         };
1104
1105         dev_info->speed_capa = RTE_ETH_LINK_SPEED_10M_HD | RTE_ETH_LINK_SPEED_10M |
1106                         RTE_ETH_LINK_SPEED_100M_HD | RTE_ETH_LINK_SPEED_100M |
1107                         RTE_ETH_LINK_SPEED_1G;
1108
1109         /* Preferred queue parameters */
1110         dev_info->default_rxportconf.nb_queues = 1;
1111         dev_info->default_txportconf.nb_queues = 1;
1112         dev_info->default_txportconf.ring_size = 256;
1113         dev_info->default_rxportconf.ring_size = 256;
1114
1115         return 0;
1116 }
1117
1118 /* return 0 means link status changed, -1 means not changed */
1119 static int
1120 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1121 {
1122         struct e1000_hw *hw =
1123                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1124         struct rte_eth_link link;
1125         int link_up, count;
1126
1127         link_up = 0;
1128         hw->mac.get_link_status = 1;
1129
1130         /* possible wait-to-complete in up to 9 seconds */
1131         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1132                 /* Read the real link status */
1133                 switch (hw->phy.media_type) {
1134                 case e1000_media_type_copper:
1135                         /* Do the work to read phy */
1136                         e1000_check_for_link(hw);
1137                         link_up = !hw->mac.get_link_status;
1138                         break;
1139
1140                 case e1000_media_type_fiber:
1141                         e1000_check_for_link(hw);
1142                         link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1143                                         E1000_STATUS_LU);
1144                         break;
1145
1146                 case e1000_media_type_internal_serdes:
1147                         e1000_check_for_link(hw);
1148                         link_up = hw->mac.serdes_has_link;
1149                         break;
1150
1151                 default:
1152                         break;
1153                 }
1154                 if (link_up || wait_to_complete == 0)
1155                         break;
1156                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1157         }
1158         memset(&link, 0, sizeof(link));
1159
1160         /* Now we check if a transition has happened */
1161         if (link_up) {
1162                 uint16_t duplex, speed;
1163                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1164                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1165                                 RTE_ETH_LINK_FULL_DUPLEX :
1166                                 RTE_ETH_LINK_HALF_DUPLEX;
1167                 link.link_speed = speed;
1168                 link.link_status = RTE_ETH_LINK_UP;
1169                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1170                                 RTE_ETH_LINK_SPEED_FIXED);
1171         } else {
1172                 link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1173                 link.link_duplex = RTE_ETH_LINK_HALF_DUPLEX;
1174                 link.link_status = RTE_ETH_LINK_DOWN;
1175                 link.link_autoneg = RTE_ETH_LINK_FIXED;
1176         }
1177
1178         return rte_eth_linkstatus_set(dev, &link);
1179 }
1180
1181 /*
1182  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1183  * For ASF and Pass Through versions of f/w this means
1184  * that the driver is loaded. For AMT version type f/w
1185  * this means that the network i/f is open.
1186  */
1187 static void
1188 em_hw_control_acquire(struct e1000_hw *hw)
1189 {
1190         uint32_t ctrl_ext, swsm;
1191
1192         /* Let firmware know the driver has taken over */
1193         if (hw->mac.type == e1000_82573) {
1194                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1195                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1196
1197         } else {
1198                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1199                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1200                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1201         }
1202 }
1203
1204 /*
1205  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1206  * For ASF and Pass Through versions of f/w this means that the
1207  * driver is no longer loaded. For AMT versions of the
1208  * f/w this means that the network i/f is closed.
1209  */
1210 static void
1211 em_hw_control_release(struct e1000_hw *hw)
1212 {
1213         uint32_t ctrl_ext, swsm;
1214
1215         /* Let firmware taken over control of h/w */
1216         if (hw->mac.type == e1000_82573) {
1217                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1218                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1219         } else {
1220                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1221                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1222                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1223         }
1224 }
1225
1226 /*
1227  * Bit of a misnomer, what this really means is
1228  * to enable OS management of the system... aka
1229  * to disable special hardware management features.
1230  */
1231 static void
1232 em_init_manageability(struct e1000_hw *hw)
1233 {
1234         if (e1000_enable_mng_pass_thru(hw)) {
1235                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1236                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1237
1238                 /* disable hardware interception of ARP */
1239                 manc &= ~(E1000_MANC_ARP_EN);
1240
1241                 /* enable receiving management packets to the host */
1242                 manc |= E1000_MANC_EN_MNG2HOST;
1243                 manc2h |= 1 << 5;  /* Mng Port 623 */
1244                 manc2h |= 1 << 6;  /* Mng Port 664 */
1245                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1246                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1247         }
1248 }
1249
1250 /*
1251  * Give control back to hardware management
1252  * controller if there is one.
1253  */
1254 static void
1255 em_release_manageability(struct e1000_hw *hw)
1256 {
1257         uint32_t manc;
1258
1259         if (e1000_enable_mng_pass_thru(hw)) {
1260                 manc = E1000_READ_REG(hw, E1000_MANC);
1261
1262                 /* re-enable hardware interception of ARP */
1263                 manc |= E1000_MANC_ARP_EN;
1264                 manc &= ~E1000_MANC_EN_MNG2HOST;
1265
1266                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1267         }
1268 }
1269
1270 static int
1271 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1272 {
1273         struct e1000_hw *hw =
1274                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1275         uint32_t rctl;
1276
1277         rctl = E1000_READ_REG(hw, E1000_RCTL);
1278         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1279         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1280
1281         return 0;
1282 }
1283
1284 static int
1285 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1286 {
1287         struct e1000_hw *hw =
1288                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1289         uint32_t rctl;
1290
1291         rctl = E1000_READ_REG(hw, E1000_RCTL);
1292         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1293         if (dev->data->all_multicast == 1)
1294                 rctl |= E1000_RCTL_MPE;
1295         else
1296                 rctl &= (~E1000_RCTL_MPE);
1297         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1298
1299         return 0;
1300 }
1301
1302 static int
1303 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1304 {
1305         struct e1000_hw *hw =
1306                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1307         uint32_t rctl;
1308
1309         rctl = E1000_READ_REG(hw, E1000_RCTL);
1310         rctl |= E1000_RCTL_MPE;
1311         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1312
1313         return 0;
1314 }
1315
1316 static int
1317 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1318 {
1319         struct e1000_hw *hw =
1320                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1321         uint32_t rctl;
1322
1323         if (dev->data->promiscuous == 1)
1324                 return 0; /* must remain in all_multicast mode */
1325         rctl = E1000_READ_REG(hw, E1000_RCTL);
1326         rctl &= (~E1000_RCTL_MPE);
1327         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1328
1329         return 0;
1330 }
1331
1332 static int
1333 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1334 {
1335         struct e1000_hw *hw =
1336                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1337         struct e1000_vfta * shadow_vfta =
1338                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1339         uint32_t vfta;
1340         uint32_t vid_idx;
1341         uint32_t vid_bit;
1342
1343         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1344                               E1000_VFTA_ENTRY_MASK);
1345         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1346         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1347         if (on)
1348                 vfta |= vid_bit;
1349         else
1350                 vfta &= ~vid_bit;
1351         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1352
1353         /* update local VFTA copy */
1354         shadow_vfta->vfta[vid_idx] = vfta;
1355
1356         return 0;
1357 }
1358
1359 static void
1360 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1361 {
1362         struct e1000_hw *hw =
1363                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1364         uint32_t reg;
1365
1366         /* Filter Table Disable */
1367         reg = E1000_READ_REG(hw, E1000_RCTL);
1368         reg &= ~E1000_RCTL_CFIEN;
1369         reg &= ~E1000_RCTL_VFE;
1370         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1371 }
1372
1373 static void
1374 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1375 {
1376         struct e1000_hw *hw =
1377                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1378         struct e1000_vfta * shadow_vfta =
1379                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1380         uint32_t reg;
1381         int i;
1382
1383         /* Filter Table Enable, CFI not used for packet acceptance */
1384         reg = E1000_READ_REG(hw, E1000_RCTL);
1385         reg &= ~E1000_RCTL_CFIEN;
1386         reg |= E1000_RCTL_VFE;
1387         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1388
1389         /* restore vfta from local copy */
1390         for (i = 0; i < IGB_VFTA_SIZE; i++)
1391                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1392 }
1393
1394 static void
1395 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1396 {
1397         struct e1000_hw *hw =
1398                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1399         uint32_t reg;
1400
1401         /* VLAN Mode Disable */
1402         reg = E1000_READ_REG(hw, E1000_CTRL);
1403         reg &= ~E1000_CTRL_VME;
1404         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1405
1406 }
1407
1408 static void
1409 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1410 {
1411         struct e1000_hw *hw =
1412                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1413         uint32_t reg;
1414
1415         /* VLAN Mode Enable */
1416         reg = E1000_READ_REG(hw, E1000_CTRL);
1417         reg |= E1000_CTRL_VME;
1418         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1419 }
1420
1421 static int
1422 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1423 {
1424         struct rte_eth_rxmode *rxmode;
1425
1426         rxmode = &dev->data->dev_conf.rxmode;
1427         if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1428                 if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1429                         em_vlan_hw_strip_enable(dev);
1430                 else
1431                         em_vlan_hw_strip_disable(dev);
1432         }
1433
1434         if (mask & RTE_ETH_VLAN_FILTER_MASK) {
1435                 if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
1436                         em_vlan_hw_filter_enable(dev);
1437                 else
1438                         em_vlan_hw_filter_disable(dev);
1439         }
1440
1441         return 0;
1442 }
1443
1444 /*
1445  * It enables the interrupt mask and then enable the interrupt.
1446  *
1447  * @param dev
1448  *  Pointer to struct rte_eth_dev.
1449  *
1450  * @return
1451  *  - On success, zero.
1452  *  - On failure, a negative value.
1453  */
1454 static int
1455 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1456 {
1457         uint32_t regval;
1458         struct e1000_hw *hw =
1459                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1460
1461         /* clear interrupt */
1462         E1000_READ_REG(hw, E1000_ICR);
1463         regval = E1000_READ_REG(hw, E1000_IMS);
1464         E1000_WRITE_REG(hw, E1000_IMS,
1465                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1466         return 0;
1467 }
1468
1469 /*
1470  * It clears the interrupt causes and enables the interrupt.
1471  * It will be called once only during nic initialized.
1472  *
1473  * @param dev
1474  *  Pointer to struct rte_eth_dev.
1475  *
1476  * @return
1477  *  - On success, zero.
1478  *  - On failure, a negative value.
1479  */
1480 static int
1481 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1482 {
1483         struct e1000_hw *hw =
1484         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1485
1486         E1000_READ_REG(hw, E1000_ICR);
1487         em_rxq_intr_enable(hw);
1488         return 0;
1489 }
1490
1491 /*
1492  * It enable receive packet interrupt.
1493  * @param hw
1494  * Pointer to struct e1000_hw
1495  *
1496  * @return
1497  */
1498 static void
1499 em_rxq_intr_enable(struct e1000_hw *hw)
1500 {
1501         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1502         E1000_WRITE_FLUSH(hw);
1503 }
1504
1505 /*
1506  * It disabled lsc interrupt.
1507  * @param hw
1508  * Pointer to struct e1000_hw
1509  *
1510  * @return
1511  */
1512 static void
1513 em_lsc_intr_disable(struct e1000_hw *hw)
1514 {
1515         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1516         E1000_WRITE_FLUSH(hw);
1517 }
1518
1519 /*
1520  * It disabled receive packet interrupt.
1521  * @param hw
1522  * Pointer to struct e1000_hw
1523  *
1524  * @return
1525  */
1526 static void
1527 em_rxq_intr_disable(struct e1000_hw *hw)
1528 {
1529         E1000_READ_REG(hw, E1000_ICR);
1530         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1531         E1000_WRITE_FLUSH(hw);
1532 }
1533
1534 /*
1535  * It reads ICR and gets interrupt causes, check it and set a bit flag
1536  * to update link status.
1537  *
1538  * @param dev
1539  *  Pointer to struct rte_eth_dev.
1540  *
1541  * @return
1542  *  - On success, zero.
1543  *  - On failure, a negative value.
1544  */
1545 static int
1546 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1547 {
1548         uint32_t icr;
1549         struct e1000_hw *hw =
1550                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1551         struct e1000_interrupt *intr =
1552                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1553
1554         /* read-on-clear nic registers here */
1555         icr = E1000_READ_REG(hw, E1000_ICR);
1556         if (icr & E1000_ICR_LSC) {
1557                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1558         }
1559
1560         return 0;
1561 }
1562
1563 /*
1564  * It executes link_update after knowing an interrupt is prsent.
1565  *
1566  * @param dev
1567  *  Pointer to struct rte_eth_dev.
1568  *
1569  * @return
1570  *  - On success, zero.
1571  *  - On failure, a negative value.
1572  */
1573 static int
1574 eth_em_interrupt_action(struct rte_eth_dev *dev,
1575                         struct rte_intr_handle *intr_handle)
1576 {
1577         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1578         struct e1000_hw *hw =
1579                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1580         struct e1000_interrupt *intr =
1581                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1582         struct rte_eth_link link;
1583         int ret;
1584
1585         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1586                 return -1;
1587
1588         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1589         rte_intr_ack(intr_handle);
1590
1591         /* set get_link_status to check register later */
1592         hw->mac.get_link_status = 1;
1593         ret = eth_em_link_update(dev, 0);
1594
1595         /* check if link has changed */
1596         if (ret < 0)
1597                 return 0;
1598
1599         rte_eth_linkstatus_get(dev, &link);
1600
1601         if (link.link_status) {
1602                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1603                              dev->data->port_id, link.link_speed,
1604                              link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX ?
1605                              "full-duplex" : "half-duplex");
1606         } else {
1607                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1608         }
1609         PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
1610                      pci_dev->addr.domain, pci_dev->addr.bus,
1611                      pci_dev->addr.devid, pci_dev->addr.function);
1612
1613         return 0;
1614 }
1615
1616 /**
1617  * Interrupt handler which shall be registered at first.
1618  *
1619  * @param handle
1620  *  Pointer to interrupt handle.
1621  * @param param
1622  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1623  *
1624  * @return
1625  *  void
1626  */
1627 static void
1628 eth_em_interrupt_handler(void *param)
1629 {
1630         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1631
1632         eth_em_interrupt_get_status(dev);
1633         eth_em_interrupt_action(dev, dev->intr_handle);
1634         rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1635 }
1636
1637 static int
1638 eth_em_led_on(struct rte_eth_dev *dev)
1639 {
1640         struct e1000_hw *hw;
1641
1642         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1643         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1644 }
1645
1646 static int
1647 eth_em_led_off(struct rte_eth_dev *dev)
1648 {
1649         struct e1000_hw *hw;
1650
1651         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1652         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1653 }
1654
1655 static int
1656 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1657 {
1658         struct e1000_hw *hw;
1659         uint32_t ctrl;
1660         int tx_pause;
1661         int rx_pause;
1662
1663         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1664         fc_conf->pause_time = hw->fc.pause_time;
1665         fc_conf->high_water = hw->fc.high_water;
1666         fc_conf->low_water = hw->fc.low_water;
1667         fc_conf->send_xon = hw->fc.send_xon;
1668         fc_conf->autoneg = hw->mac.autoneg;
1669
1670         /*
1671          * Return rx_pause and tx_pause status according to actual setting of
1672          * the TFCE and RFCE bits in the CTRL register.
1673          */
1674         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1675         if (ctrl & E1000_CTRL_TFCE)
1676                 tx_pause = 1;
1677         else
1678                 tx_pause = 0;
1679
1680         if (ctrl & E1000_CTRL_RFCE)
1681                 rx_pause = 1;
1682         else
1683                 rx_pause = 0;
1684
1685         if (rx_pause && tx_pause)
1686                 fc_conf->mode = RTE_ETH_FC_FULL;
1687         else if (rx_pause)
1688                 fc_conf->mode = RTE_ETH_FC_RX_PAUSE;
1689         else if (tx_pause)
1690                 fc_conf->mode = RTE_ETH_FC_TX_PAUSE;
1691         else
1692                 fc_conf->mode = RTE_ETH_FC_NONE;
1693
1694         return 0;
1695 }
1696
1697 static int
1698 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1699 {
1700         struct e1000_hw *hw;
1701         int err;
1702         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1703                 e1000_fc_none,
1704                 e1000_fc_rx_pause,
1705                 e1000_fc_tx_pause,
1706                 e1000_fc_full
1707         };
1708         uint32_t rx_buf_size;
1709         uint32_t max_high_water;
1710         uint32_t rctl;
1711
1712         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1713         if (fc_conf->autoneg != hw->mac.autoneg)
1714                 return -ENOTSUP;
1715         rx_buf_size = em_get_rx_buffer_size(hw);
1716         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1717
1718         /* At least reserve one Ethernet frame for watermark */
1719         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1720         if ((fc_conf->high_water > max_high_water) ||
1721             (fc_conf->high_water < fc_conf->low_water)) {
1722                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1723                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1724                 return -EINVAL;
1725         }
1726
1727         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1728         hw->fc.pause_time     = fc_conf->pause_time;
1729         hw->fc.high_water     = fc_conf->high_water;
1730         hw->fc.low_water      = fc_conf->low_water;
1731         hw->fc.send_xon       = fc_conf->send_xon;
1732
1733         err = e1000_setup_link_generic(hw);
1734         if (err == E1000_SUCCESS) {
1735
1736                 /* check if we want to forward MAC frames - driver doesn't have native
1737                  * capability to do that, so we'll write the registers ourselves */
1738
1739                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1740
1741                 /* set or clear MFLCN.PMCF bit depending on configuration */
1742                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1743                         rctl |= E1000_RCTL_PMCF;
1744                 else
1745                         rctl &= ~E1000_RCTL_PMCF;
1746
1747                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1748                 E1000_WRITE_FLUSH(hw);
1749
1750                 return 0;
1751         }
1752
1753         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1754         return -EIO;
1755 }
1756
1757 static int
1758 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1759                 uint32_t index, __rte_unused uint32_t pool)
1760 {
1761         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1762
1763         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1764 }
1765
1766 static void
1767 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1768 {
1769         uint8_t addr[RTE_ETHER_ADDR_LEN];
1770         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1771
1772         memset(addr, 0, sizeof(addr));
1773
1774         e1000_rar_set(hw, addr, index);
1775 }
1776
1777 static int
1778 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1779                             struct rte_ether_addr *addr)
1780 {
1781         eth_em_rar_clear(dev, 0);
1782
1783         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1784 }
1785
1786 static int
1787 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1788 {
1789         struct e1000_hw *hw;
1790         uint32_t frame_size;
1791         uint32_t rctl;
1792
1793         frame_size = mtu + E1000_ETH_OVERHEAD;
1794
1795         /*
1796          * If device is started, refuse mtu that requires the support of
1797          * scattered packets when this feature has not been enabled before.
1798          */
1799         if (dev->data->dev_started && !dev->data->scattered_rx &&
1800             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
1801                 PMD_INIT_LOG(ERR, "Stop port first.");
1802                 return -EINVAL;
1803         }
1804
1805         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1806         rctl = E1000_READ_REG(hw, E1000_RCTL);
1807
1808         /* switch to jumbo mode if needed */
1809         if (mtu > RTE_ETHER_MTU)
1810                 rctl |= E1000_RCTL_LPE;
1811         else
1812                 rctl &= ~E1000_RCTL_LPE;
1813         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1814
1815         return 0;
1816 }
1817
1818 static int
1819 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1820                         struct rte_ether_addr *mc_addr_set,
1821                         uint32_t nb_mc_addr)
1822 {
1823         struct e1000_hw *hw;
1824
1825         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1826         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1827         return 0;
1828 }
1829
1830 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1831 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1832 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");