net: add rte prefix to ether defines
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static void eth_em_close(struct rte_eth_dev *dev);
38 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static void eth_em_stats_reset(struct rte_eth_dev *dev);
47 static void eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .rx_queue_count       = eth_em_rx_queue_count,
180         .rx_descriptor_done   = eth_em_rx_descriptor_done,
181         .rx_descriptor_status = eth_em_rx_descriptor_status,
182         .tx_descriptor_status = eth_em_tx_descriptor_status,
183         .tx_queue_setup       = eth_em_tx_queue_setup,
184         .tx_queue_release     = eth_em_tx_queue_release,
185         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
186         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
187         .dev_led_on           = eth_em_led_on,
188         .dev_led_off          = eth_em_led_off,
189         .flow_ctrl_get        = eth_em_flow_ctrl_get,
190         .flow_ctrl_set        = eth_em_flow_ctrl_set,
191         .mac_addr_set         = eth_em_default_mac_addr_set,
192         .mac_addr_add         = eth_em_rar_set,
193         .mac_addr_remove      = eth_em_rar_clear,
194         .set_mc_addr_list     = eth_em_set_mc_addr_list,
195         .rxq_info_get         = em_rxq_info_get,
196         .txq_info_get         = em_txq_info_get,
197 };
198
199
200 /**
201  *  eth_em_dev_is_ich8 - Check for ICH8 device
202  *  @hw: pointer to the HW structure
203  *
204  *  return TRUE for ICH8, otherwise FALSE
205  **/
206 static bool
207 eth_em_dev_is_ich8(struct e1000_hw *hw)
208 {
209         DEBUGFUNC("eth_em_dev_is_ich8");
210
211         switch (hw->device_id) {
212         case E1000_DEV_ID_PCH2_LV_LM:
213         case E1000_DEV_ID_PCH_LPT_I217_LM:
214         case E1000_DEV_ID_PCH_LPT_I217_V:
215         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
216         case E1000_DEV_ID_PCH_LPTLP_I218_V:
217         case E1000_DEV_ID_PCH_I218_V2:
218         case E1000_DEV_ID_PCH_I218_LM2:
219         case E1000_DEV_ID_PCH_I218_V3:
220         case E1000_DEV_ID_PCH_I218_LM3:
221         case E1000_DEV_ID_PCH_SPT_I219_LM:
222         case E1000_DEV_ID_PCH_SPT_I219_V:
223         case E1000_DEV_ID_PCH_SPT_I219_LM2:
224         case E1000_DEV_ID_PCH_SPT_I219_V2:
225         case E1000_DEV_ID_PCH_LBG_I219_LM3:
226         case E1000_DEV_ID_PCH_SPT_I219_LM4:
227         case E1000_DEV_ID_PCH_SPT_I219_V4:
228         case E1000_DEV_ID_PCH_SPT_I219_LM5:
229         case E1000_DEV_ID_PCH_SPT_I219_V5:
230         case E1000_DEV_ID_PCH_CNP_I219_LM6:
231         case E1000_DEV_ID_PCH_CNP_I219_V6:
232         case E1000_DEV_ID_PCH_CNP_I219_LM7:
233         case E1000_DEV_ID_PCH_CNP_I219_V7:
234                 return 1;
235         default:
236                 return 0;
237         }
238 }
239
240 static int
241 eth_em_dev_init(struct rte_eth_dev *eth_dev)
242 {
243         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
244         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
245         struct e1000_adapter *adapter =
246                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
247         struct e1000_hw *hw =
248                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
249         struct e1000_vfta * shadow_vfta =
250                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
251
252         eth_dev->dev_ops = &eth_em_ops;
253         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
254         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
255         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
256
257         /* for secondary processes, we don't initialise any further as primary
258          * has already done this work. Only check we don't need a different
259          * RX function */
260         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
261                 if (eth_dev->data->scattered_rx)
262                         eth_dev->rx_pkt_burst =
263                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
264                 return 0;
265         }
266
267         rte_eth_copy_pci_info(eth_dev, pci_dev);
268
269         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
270         hw->device_id = pci_dev->id.device_id;
271         adapter->stopped = 0;
272
273         /* For ICH8 support we'll need to map the flash memory BAR */
274         if (eth_em_dev_is_ich8(hw))
275                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276
277         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
278                         em_hw_init(hw) != 0) {
279                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280                         "failed to init HW",
281                         eth_dev->data->port_id, pci_dev->id.vendor_id,
282                         pci_dev->id.device_id);
283                 return -ENODEV;
284         }
285
286         /* Allocate memory for storing MAC addresses */
287         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
288                         hw->mac.rar_entry_count, 0);
289         if (eth_dev->data->mac_addrs == NULL) {
290                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
291                         "store MAC addresses",
292                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
293                 return -ENOMEM;
294         }
295
296         /* Copy the permanent MAC address */
297         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
298                 eth_dev->data->mac_addrs);
299
300         /* initialize the vfta */
301         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302
303         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
304                      eth_dev->data->port_id, pci_dev->id.vendor_id,
305                      pci_dev->id.device_id);
306
307         rte_intr_callback_register(intr_handle,
308                                    eth_em_interrupt_handler, eth_dev);
309
310         return 0;
311 }
312
313 static int
314 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 {
316         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
317         struct e1000_adapter *adapter =
318                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
319         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
320
321         PMD_INIT_FUNC_TRACE();
322
323         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
324                 return -EPERM;
325
326         if (adapter->stopped == 0)
327                 eth_em_close(eth_dev);
328
329         eth_dev->dev_ops = NULL;
330         eth_dev->rx_pkt_burst = NULL;
331         eth_dev->tx_pkt_burst = NULL;
332
333         /* disable uio intr before callback unregister */
334         rte_intr_disable(intr_handle);
335         rte_intr_callback_unregister(intr_handle,
336                                      eth_em_interrupt_handler, eth_dev);
337
338         return 0;
339 }
340
341 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
342         struct rte_pci_device *pci_dev)
343 {
344         return rte_eth_dev_pci_generic_probe(pci_dev,
345                 sizeof(struct e1000_adapter), eth_em_dev_init);
346 }
347
348 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
349 {
350         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
351 }
352
353 static struct rte_pci_driver rte_em_pmd = {
354         .id_table = pci_id_em_map,
355         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
356                      RTE_PCI_DRV_IOVA_AS_VA,
357         .probe = eth_em_pci_probe,
358         .remove = eth_em_pci_remove,
359 };
360
361 static int
362 em_hw_init(struct e1000_hw *hw)
363 {
364         int diag;
365
366         diag = hw->mac.ops.init_params(hw);
367         if (diag != 0) {
368                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
369                 return diag;
370         }
371         diag = hw->nvm.ops.init_params(hw);
372         if (diag != 0) {
373                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
374                 return diag;
375         }
376         diag = hw->phy.ops.init_params(hw);
377         if (diag != 0) {
378                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
379                 return diag;
380         }
381         (void) e1000_get_bus_info(hw);
382
383         hw->mac.autoneg = 1;
384         hw->phy.autoneg_wait_to_complete = 0;
385         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
386
387         e1000_init_script_state_82541(hw, TRUE);
388         e1000_set_tbi_compatibility_82543(hw, TRUE);
389
390         /* Copper options */
391         if (hw->phy.media_type == e1000_media_type_copper) {
392                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
393                 hw->phy.disable_polarity_correction = 0;
394                 hw->phy.ms_type = e1000_ms_hw_default;
395         }
396
397         /*
398          * Start from a known state, this is important in reading the nvm
399          * and mac from that.
400          */
401         e1000_reset_hw(hw);
402
403         /* Make sure we have a good EEPROM before we read from it */
404         if (e1000_validate_nvm_checksum(hw) < 0) {
405                 /*
406                  * Some PCI-E parts fail the first check due to
407                  * the link being in sleep state, call it again,
408                  * if it fails a second time its a real issue.
409                  */
410                 diag = e1000_validate_nvm_checksum(hw);
411                 if (diag < 0) {
412                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
413                         goto error;
414                 }
415         }
416
417         /* Read the permanent MAC address out of the EEPROM */
418         diag = e1000_read_mac_addr(hw);
419         if (diag != 0) {
420                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
421                 goto error;
422         }
423
424         /* Now initialize the hardware */
425         diag = em_hardware_init(hw);
426         if (diag != 0) {
427                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
428                 goto error;
429         }
430
431         hw->mac.get_link_status = 1;
432
433         /* Indicate SOL/IDER usage */
434         diag = e1000_check_reset_block(hw);
435         if (diag < 0) {
436                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
437                         "SOL/IDER session");
438         }
439         return 0;
440
441 error:
442         em_hw_control_release(hw);
443         return diag;
444 }
445
446 static int
447 eth_em_configure(struct rte_eth_dev *dev)
448 {
449         struct e1000_interrupt *intr =
450                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
451
452         PMD_INIT_FUNC_TRACE();
453         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
454
455         PMD_INIT_FUNC_TRACE();
456
457         return 0;
458 }
459
460 static void
461 em_set_pba(struct e1000_hw *hw)
462 {
463         uint32_t pba;
464
465         /*
466          * Packet Buffer Allocation (PBA)
467          * Writing PBA sets the receive portion of the buffer
468          * the remainder is used for the transmit buffer.
469          * Devices before the 82547 had a Packet Buffer of 64K.
470          * After the 82547 the buffer was reduced to 40K.
471          */
472         switch (hw->mac.type) {
473                 case e1000_82547:
474                 case e1000_82547_rev_2:
475                 /* 82547: Total Packet Buffer is 40K */
476                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
477                         break;
478                 case e1000_82571:
479                 case e1000_82572:
480                 case e1000_80003es2lan:
481                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
482                         break;
483                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
484                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
485                         break;
486                 case e1000_82574:
487                 case e1000_82583:
488                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
489                         break;
490                 case e1000_ich8lan:
491                         pba = E1000_PBA_8K;
492                         break;
493                 case e1000_ich9lan:
494                 case e1000_ich10lan:
495                         pba = E1000_PBA_10K;
496                         break;
497                 case e1000_pchlan:
498                 case e1000_pch2lan:
499                 case e1000_pch_lpt:
500                 case e1000_pch_spt:
501                 case e1000_pch_cnp:
502                         pba = E1000_PBA_26K;
503                         break;
504                 default:
505                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
506         }
507
508         E1000_WRITE_REG(hw, E1000_PBA, pba);
509 }
510
511 static void
512 eth_em_rxtx_control(struct rte_eth_dev *dev,
513                     bool enable)
514 {
515         struct e1000_hw *hw =
516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
517         uint32_t tctl, rctl;
518
519         tctl = E1000_READ_REG(hw, E1000_TCTL);
520         rctl = E1000_READ_REG(hw, E1000_RCTL);
521         if (enable) {
522                 /* enable Tx/Rx */
523                 tctl |= E1000_TCTL_EN;
524                 rctl |= E1000_RCTL_EN;
525         } else {
526                 /* disable Tx/Rx */
527                 tctl &= ~E1000_TCTL_EN;
528                 rctl &= ~E1000_RCTL_EN;
529         }
530         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
531         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
532         E1000_WRITE_FLUSH(hw);
533 }
534
535 static int
536 eth_em_start(struct rte_eth_dev *dev)
537 {
538         struct e1000_adapter *adapter =
539                 E1000_DEV_PRIVATE(dev->data->dev_private);
540         struct e1000_hw *hw =
541                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
542         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
543         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
544         int ret, mask;
545         uint32_t intr_vector = 0;
546         uint32_t *speeds;
547         int num_speeds;
548         bool autoneg;
549
550         PMD_INIT_FUNC_TRACE();
551
552         eth_em_stop(dev);
553
554         e1000_power_up_phy(hw);
555
556         /* Set default PBA value */
557         em_set_pba(hw);
558
559         /* Put the address into the Receive Address Array */
560         e1000_rar_set(hw, hw->mac.addr, 0);
561
562         /*
563          * With the 82571 adapter, RAR[0] may be overwritten
564          * when the other port is reset, we make a duplicate
565          * in RAR[14] for that eventuality, this assures
566          * the interface continues to function.
567          */
568         if (hw->mac.type == e1000_82571) {
569                 e1000_set_laa_state_82571(hw, TRUE);
570                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
571         }
572
573         /* Initialize the hardware */
574         if (em_hardware_init(hw)) {
575                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
576                 return -EIO;
577         }
578
579         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
580
581         /* Configure for OS presence */
582         em_init_manageability(hw);
583
584         if (dev->data->dev_conf.intr_conf.rxq != 0) {
585                 intr_vector = dev->data->nb_rx_queues;
586                 if (rte_intr_efd_enable(intr_handle, intr_vector))
587                         return -1;
588         }
589
590         if (rte_intr_dp_is_en(intr_handle)) {
591                 intr_handle->intr_vec =
592                         rte_zmalloc("intr_vec",
593                                         dev->data->nb_rx_queues * sizeof(int), 0);
594                 if (intr_handle->intr_vec == NULL) {
595                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
596                                                 " intr_vec", dev->data->nb_rx_queues);
597                         return -ENOMEM;
598                 }
599
600                 /* enable rx interrupt */
601                 em_rxq_intr_enable(hw);
602         }
603
604         eth_em_tx_init(dev);
605
606         ret = eth_em_rx_init(dev);
607         if (ret) {
608                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
609                 em_dev_clear_queues(dev);
610                 return ret;
611         }
612
613         e1000_clear_hw_cntrs_base_generic(hw);
614
615         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
616                         ETH_VLAN_EXTEND_MASK;
617         ret = eth_em_vlan_offload_set(dev, mask);
618         if (ret) {
619                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
620                 em_dev_clear_queues(dev);
621                 return ret;
622         }
623
624         /* Set Interrupt Throttling Rate to maximum allowed value. */
625         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
626
627         /* Setup link speed and duplex */
628         speeds = &dev->data->dev_conf.link_speeds;
629         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
630                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
631                 hw->mac.autoneg = 1;
632         } else {
633                 num_speeds = 0;
634                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
635
636                 /* Reset */
637                 hw->phy.autoneg_advertised = 0;
638
639                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
640                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
641                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
642                         num_speeds = -1;
643                         goto error_invalid_config;
644                 }
645                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
646                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
647                         num_speeds++;
648                 }
649                 if (*speeds & ETH_LINK_SPEED_10M) {
650                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
651                         num_speeds++;
652                 }
653                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
654                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
655                         num_speeds++;
656                 }
657                 if (*speeds & ETH_LINK_SPEED_100M) {
658                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
659                         num_speeds++;
660                 }
661                 if (*speeds & ETH_LINK_SPEED_1G) {
662                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
663                         num_speeds++;
664                 }
665                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
666                         goto error_invalid_config;
667
668                 /* Set/reset the mac.autoneg based on the link speed,
669                  * fixed or not
670                  */
671                 if (!autoneg) {
672                         hw->mac.autoneg = 0;
673                         hw->mac.forced_speed_duplex =
674                                         hw->phy.autoneg_advertised;
675                 } else {
676                         hw->mac.autoneg = 1;
677                 }
678         }
679
680         e1000_setup_link(hw);
681
682         if (rte_intr_allow_others(intr_handle)) {
683                 /* check if lsc interrupt is enabled */
684                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
685                         ret = eth_em_interrupt_setup(dev);
686                         if (ret) {
687                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
688                                 em_dev_clear_queues(dev);
689                                 return ret;
690                         }
691                 }
692         } else {
693                 rte_intr_callback_unregister(intr_handle,
694                                                 eth_em_interrupt_handler,
695                                                 (void *)dev);
696                 if (dev->data->dev_conf.intr_conf.lsc != 0)
697                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
698                                      " no intr multiplexn");
699         }
700         /* check if rxq interrupt is enabled */
701         if (dev->data->dev_conf.intr_conf.rxq != 0)
702                 eth_em_rxq_interrupt_setup(dev);
703
704         rte_intr_enable(intr_handle);
705
706         adapter->stopped = 0;
707
708         eth_em_rxtx_control(dev, true);
709         eth_em_link_update(dev, 0);
710
711         PMD_INIT_LOG(DEBUG, "<<");
712
713         return 0;
714
715 error_invalid_config:
716         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
717                      dev->data->dev_conf.link_speeds, dev->data->port_id);
718         em_dev_clear_queues(dev);
719         return -EINVAL;
720 }
721
722 /*********************************************************************
723  *
724  *  This routine disables all traffic on the adapter by issuing a
725  *  global reset on the MAC.
726  *
727  **********************************************************************/
728 static void
729 eth_em_stop(struct rte_eth_dev *dev)
730 {
731         struct rte_eth_link link;
732         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
733         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
734         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
735
736         eth_em_rxtx_control(dev, false);
737         em_rxq_intr_disable(hw);
738         em_lsc_intr_disable(hw);
739
740         e1000_reset_hw(hw);
741         if (hw->mac.type >= e1000_82544)
742                 E1000_WRITE_REG(hw, E1000_WUC, 0);
743
744         /* Power down the phy. Needed to make the link go down */
745         e1000_power_down_phy(hw);
746
747         em_dev_clear_queues(dev);
748
749         /* clear the recorded link status */
750         memset(&link, 0, sizeof(link));
751         rte_eth_linkstatus_set(dev, &link);
752
753         if (!rte_intr_allow_others(intr_handle))
754                 /* resume to the default handler */
755                 rte_intr_callback_register(intr_handle,
756                                            eth_em_interrupt_handler,
757                                            (void *)dev);
758
759         /* Clean datapath event and queue/vec mapping */
760         rte_intr_efd_disable(intr_handle);
761         if (intr_handle->intr_vec != NULL) {
762                 rte_free(intr_handle->intr_vec);
763                 intr_handle->intr_vec = NULL;
764         }
765 }
766
767 static void
768 eth_em_close(struct rte_eth_dev *dev)
769 {
770         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
771         struct e1000_adapter *adapter =
772                 E1000_DEV_PRIVATE(dev->data->dev_private);
773
774         eth_em_stop(dev);
775         adapter->stopped = 1;
776         em_dev_free_queues(dev);
777         e1000_phy_hw_reset(hw);
778         em_release_manageability(hw);
779         em_hw_control_release(hw);
780 }
781
782 static int
783 em_get_rx_buffer_size(struct e1000_hw *hw)
784 {
785         uint32_t rx_buf_size;
786
787         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
788         return rx_buf_size;
789 }
790
791 /*********************************************************************
792  *
793  *  Initialize the hardware
794  *
795  **********************************************************************/
796 static int
797 em_hardware_init(struct e1000_hw *hw)
798 {
799         uint32_t rx_buf_size;
800         int diag;
801
802         /* Issue a global reset */
803         e1000_reset_hw(hw);
804
805         /* Let the firmware know the OS is in control */
806         em_hw_control_acquire(hw);
807
808         /*
809          * These parameters control the automatic generation (Tx) and
810          * response (Rx) to Ethernet PAUSE frames.
811          * - High water mark should allow for at least two standard size (1518)
812          *   frames to be received after sending an XOFF.
813          * - Low water mark works best when it is very near the high water mark.
814          *   This allows the receiver to restart by sending XON when it has
815          *   drained a bit. Here we use an arbitrary value of 1500 which will
816          *   restart after one full frame is pulled from the buffer. There
817          *   could be several smaller frames in the buffer and if so they will
818          *   not trigger the XON until their total number reduces the buffer
819          *   by 1500.
820          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
821          */
822         rx_buf_size = em_get_rx_buffer_size(hw);
823
824         hw->fc.high_water = rx_buf_size -
825                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
826         hw->fc.low_water = hw->fc.high_water - 1500;
827
828         if (hw->mac.type == e1000_80003es2lan)
829                 hw->fc.pause_time = UINT16_MAX;
830         else
831                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
832
833         hw->fc.send_xon = 1;
834
835         /* Set Flow control, use the tunable location if sane */
836         if (em_fc_setting <= e1000_fc_full)
837                 hw->fc.requested_mode = em_fc_setting;
838         else
839                 hw->fc.requested_mode = e1000_fc_none;
840
841         /* Workaround: no TX flow ctrl for PCH */
842         if (hw->mac.type == e1000_pchlan)
843                 hw->fc.requested_mode = e1000_fc_rx_pause;
844
845         /* Override - settings for PCH2LAN, ya its magic :) */
846         if (hw->mac.type == e1000_pch2lan) {
847                 hw->fc.high_water = 0x5C20;
848                 hw->fc.low_water = 0x5048;
849                 hw->fc.pause_time = 0x0650;
850                 hw->fc.refresh_time = 0x0400;
851         } else if (hw->mac.type == e1000_pch_lpt ||
852                    hw->mac.type == e1000_pch_spt ||
853                    hw->mac.type == e1000_pch_cnp) {
854                 hw->fc.requested_mode = e1000_fc_full;
855         }
856
857         diag = e1000_init_hw(hw);
858         if (diag < 0)
859                 return diag;
860         e1000_check_for_link(hw);
861         return 0;
862 }
863
864 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
865 static int
866 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
867 {
868         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
869         struct e1000_hw_stats *stats =
870                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
871         int pause_frames;
872
873         if(hw->phy.media_type == e1000_media_type_copper ||
874                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
875                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
876                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
877         }
878
879         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
880         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
881         stats->scc += E1000_READ_REG(hw, E1000_SCC);
882         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
883
884         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
885         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
886         stats->colc += E1000_READ_REG(hw, E1000_COLC);
887         stats->dc += E1000_READ_REG(hw, E1000_DC);
888         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
889         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
890         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
891
892         /*
893          * For watchdog management we need to know if we have been
894          * paused during the last interval, so capture that here.
895          */
896         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
897         stats->xoffrxc += pause_frames;
898         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
899         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
900         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
901         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
902         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
903         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
904         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
905         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
906         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
907         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
908         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
909         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
910
911         /*
912          * For the 64-bit byte counters the low dword must be read first.
913          * Both registers clear on the read of the high dword.
914          */
915
916         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
917         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
918         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
919         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
920
921         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
922         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
923         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
924         stats->roc += E1000_READ_REG(hw, E1000_ROC);
925         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
926
927         stats->tor += E1000_READ_REG(hw, E1000_TORH);
928         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
929
930         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
931         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
932         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
933         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
934         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
935         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
936         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
937         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
938         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
939         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
940
941         /* Interrupt Counts */
942
943         if (hw->mac.type >= e1000_82571) {
944                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
945                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
946                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
947                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
948                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
949                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
950                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
951                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
952                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
953         }
954
955         if (hw->mac.type >= e1000_82543) {
956                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
957                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
958                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
959                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
960                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
961                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
962         }
963
964         if (rte_stats == NULL)
965                 return -EINVAL;
966
967         /* Rx Errors */
968         rte_stats->imissed = stats->mpc;
969         rte_stats->ierrors = stats->crcerrs +
970                              stats->rlec + stats->ruc + stats->roc +
971                              stats->rxerrc + stats->algnerrc + stats->cexterr;
972
973         /* Tx Errors */
974         rte_stats->oerrors = stats->ecol + stats->latecol;
975
976         rte_stats->ipackets = stats->gprc;
977         rte_stats->opackets = stats->gptc;
978         rte_stats->ibytes   = stats->gorc;
979         rte_stats->obytes   = stats->gotc;
980         return 0;
981 }
982
983 static void
984 eth_em_stats_reset(struct rte_eth_dev *dev)
985 {
986         struct e1000_hw_stats *hw_stats =
987                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
988
989         /* HW registers are cleared on read */
990         eth_em_stats_get(dev, NULL);
991
992         /* Reset software totals */
993         memset(hw_stats, 0, sizeof(*hw_stats));
994 }
995
996 static int
997 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
998 {
999         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1000         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1001         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1002
1003         em_rxq_intr_enable(hw);
1004         rte_intr_enable(intr_handle);
1005
1006         return 0;
1007 }
1008
1009 static int
1010 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1011 {
1012         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1013
1014         em_rxq_intr_disable(hw);
1015
1016         return 0;
1017 }
1018
1019 uint32_t
1020 em_get_max_pktlen(struct rte_eth_dev *dev)
1021 {
1022         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1023
1024         switch (hw->mac.type) {
1025         case e1000_82571:
1026         case e1000_82572:
1027         case e1000_ich9lan:
1028         case e1000_ich10lan:
1029         case e1000_pch2lan:
1030         case e1000_pch_lpt:
1031         case e1000_pch_spt:
1032         case e1000_pch_cnp:
1033         case e1000_82574:
1034         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1035         case e1000_82583:
1036                 return 0x2412;
1037         case e1000_pchlan:
1038                 return 0x1000;
1039         /* Adapters that do not support jumbo frames */
1040         case e1000_ich8lan:
1041                 return RTE_ETHER_MAX_LEN;
1042         default:
1043                 return MAX_JUMBO_FRAME_SIZE;
1044         }
1045 }
1046
1047 static void
1048 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1049 {
1050         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1051
1052         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1053         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1054         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1055
1056         /*
1057          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1058          * Unfortunatelly, all these nics have just one TX context.
1059          * So we have few choises for TX:
1060          * - Use just one TX queue.
1061          * - Allow cksum offload only for one TX queue.
1062          * - Don't allow TX cksum offload at all.
1063          * For now, option #1 was chosen.
1064          * To use second RX queue we have to use extended RX descriptor
1065          * (Multiple Receive Queues are mutually exclusive with UDP
1066          * fragmentation and are not supported when a legacy receive
1067          * descriptor format is used).
1068          * Which means separate RX routinies - as legacy nics (82540, 82545)
1069          * don't support extended RXD.
1070          * To avoid it we support just one RX queue for now (no RSS).
1071          */
1072
1073         dev_info->max_rx_queues = 1;
1074         dev_info->max_tx_queues = 1;
1075
1076         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1077         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1078                                     dev_info->rx_queue_offload_capa;
1079         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1080         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1081                                     dev_info->tx_queue_offload_capa;
1082
1083         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1084                 .nb_max = E1000_MAX_RING_DESC,
1085                 .nb_min = E1000_MIN_RING_DESC,
1086                 .nb_align = EM_RXD_ALIGN,
1087         };
1088
1089         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1090                 .nb_max = E1000_MAX_RING_DESC,
1091                 .nb_min = E1000_MIN_RING_DESC,
1092                 .nb_align = EM_TXD_ALIGN,
1093                 .nb_seg_max = EM_TX_MAX_SEG,
1094                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1095         };
1096
1097         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1098                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1099                         ETH_LINK_SPEED_1G;
1100
1101         /* Preferred queue parameters */
1102         dev_info->default_rxportconf.nb_queues = 1;
1103         dev_info->default_txportconf.nb_queues = 1;
1104         dev_info->default_txportconf.ring_size = 256;
1105         dev_info->default_rxportconf.ring_size = 256;
1106 }
1107
1108 /* return 0 means link status changed, -1 means not changed */
1109 static int
1110 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1111 {
1112         struct e1000_hw *hw =
1113                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1114         struct rte_eth_link link;
1115         int link_check, count;
1116
1117         link_check = 0;
1118         hw->mac.get_link_status = 1;
1119
1120         /* possible wait-to-complete in up to 9 seconds */
1121         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1122                 /* Read the real link status */
1123                 switch (hw->phy.media_type) {
1124                 case e1000_media_type_copper:
1125                         /* Do the work to read phy */
1126                         e1000_check_for_link(hw);
1127                         link_check = !hw->mac.get_link_status;
1128                         break;
1129
1130                 case e1000_media_type_fiber:
1131                         e1000_check_for_link(hw);
1132                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1133                                         E1000_STATUS_LU);
1134                         break;
1135
1136                 case e1000_media_type_internal_serdes:
1137                         e1000_check_for_link(hw);
1138                         link_check = hw->mac.serdes_has_link;
1139                         break;
1140
1141                 default:
1142                         break;
1143                 }
1144                 if (link_check || wait_to_complete == 0)
1145                         break;
1146                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1147         }
1148         memset(&link, 0, sizeof(link));
1149
1150         /* Now we check if a transition has happened */
1151         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1152                 uint16_t duplex, speed;
1153                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1154                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1155                                 ETH_LINK_FULL_DUPLEX :
1156                                 ETH_LINK_HALF_DUPLEX;
1157                 link.link_speed = speed;
1158                 link.link_status = ETH_LINK_UP;
1159                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1160                                 ETH_LINK_SPEED_FIXED);
1161         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1162                 link.link_speed = ETH_SPEED_NUM_NONE;
1163                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1164                 link.link_status = ETH_LINK_DOWN;
1165                 link.link_autoneg = ETH_LINK_FIXED;
1166         }
1167
1168         return rte_eth_linkstatus_set(dev, &link);
1169 }
1170
1171 /*
1172  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1173  * For ASF and Pass Through versions of f/w this means
1174  * that the driver is loaded. For AMT version type f/w
1175  * this means that the network i/f is open.
1176  */
1177 static void
1178 em_hw_control_acquire(struct e1000_hw *hw)
1179 {
1180         uint32_t ctrl_ext, swsm;
1181
1182         /* Let firmware know the driver has taken over */
1183         if (hw->mac.type == e1000_82573) {
1184                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1185                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1186
1187         } else {
1188                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1189                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1190                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1191         }
1192 }
1193
1194 /*
1195  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1196  * For ASF and Pass Through versions of f/w this means that the
1197  * driver is no longer loaded. For AMT versions of the
1198  * f/w this means that the network i/f is closed.
1199  */
1200 static void
1201 em_hw_control_release(struct e1000_hw *hw)
1202 {
1203         uint32_t ctrl_ext, swsm;
1204
1205         /* Let firmware taken over control of h/w */
1206         if (hw->mac.type == e1000_82573) {
1207                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1208                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1209         } else {
1210                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1211                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1212                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1213         }
1214 }
1215
1216 /*
1217  * Bit of a misnomer, what this really means is
1218  * to enable OS management of the system... aka
1219  * to disable special hardware management features.
1220  */
1221 static void
1222 em_init_manageability(struct e1000_hw *hw)
1223 {
1224         if (e1000_enable_mng_pass_thru(hw)) {
1225                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1226                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1227
1228                 /* disable hardware interception of ARP */
1229                 manc &= ~(E1000_MANC_ARP_EN);
1230
1231                 /* enable receiving management packets to the host */
1232                 manc |= E1000_MANC_EN_MNG2HOST;
1233                 manc2h |= 1 << 5;  /* Mng Port 623 */
1234                 manc2h |= 1 << 6;  /* Mng Port 664 */
1235                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1236                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1237         }
1238 }
1239
1240 /*
1241  * Give control back to hardware management
1242  * controller if there is one.
1243  */
1244 static void
1245 em_release_manageability(struct e1000_hw *hw)
1246 {
1247         uint32_t manc;
1248
1249         if (e1000_enable_mng_pass_thru(hw)) {
1250                 manc = E1000_READ_REG(hw, E1000_MANC);
1251
1252                 /* re-enable hardware interception of ARP */
1253                 manc |= E1000_MANC_ARP_EN;
1254                 manc &= ~E1000_MANC_EN_MNG2HOST;
1255
1256                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1257         }
1258 }
1259
1260 static void
1261 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1262 {
1263         struct e1000_hw *hw =
1264                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1265         uint32_t rctl;
1266
1267         rctl = E1000_READ_REG(hw, E1000_RCTL);
1268         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1269         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1270 }
1271
1272 static void
1273 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1274 {
1275         struct e1000_hw *hw =
1276                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1277         uint32_t rctl;
1278
1279         rctl = E1000_READ_REG(hw, E1000_RCTL);
1280         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1281         if (dev->data->all_multicast == 1)
1282                 rctl |= E1000_RCTL_MPE;
1283         else
1284                 rctl &= (~E1000_RCTL_MPE);
1285         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1286 }
1287
1288 static void
1289 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1290 {
1291         struct e1000_hw *hw =
1292                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1293         uint32_t rctl;
1294
1295         rctl = E1000_READ_REG(hw, E1000_RCTL);
1296         rctl |= E1000_RCTL_MPE;
1297         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1298 }
1299
1300 static void
1301 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1302 {
1303         struct e1000_hw *hw =
1304                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1305         uint32_t rctl;
1306
1307         if (dev->data->promiscuous == 1)
1308                 return; /* must remain in all_multicast mode */
1309         rctl = E1000_READ_REG(hw, E1000_RCTL);
1310         rctl &= (~E1000_RCTL_MPE);
1311         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1312 }
1313
1314 static int
1315 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1316 {
1317         struct e1000_hw *hw =
1318                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1319         struct e1000_vfta * shadow_vfta =
1320                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1321         uint32_t vfta;
1322         uint32_t vid_idx;
1323         uint32_t vid_bit;
1324
1325         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1326                               E1000_VFTA_ENTRY_MASK);
1327         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1328         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1329         if (on)
1330                 vfta |= vid_bit;
1331         else
1332                 vfta &= ~vid_bit;
1333         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1334
1335         /* update local VFTA copy */
1336         shadow_vfta->vfta[vid_idx] = vfta;
1337
1338         return 0;
1339 }
1340
1341 static void
1342 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1343 {
1344         struct e1000_hw *hw =
1345                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1346         uint32_t reg;
1347
1348         /* Filter Table Disable */
1349         reg = E1000_READ_REG(hw, E1000_RCTL);
1350         reg &= ~E1000_RCTL_CFIEN;
1351         reg &= ~E1000_RCTL_VFE;
1352         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1353 }
1354
1355 static void
1356 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1357 {
1358         struct e1000_hw *hw =
1359                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1360         struct e1000_vfta * shadow_vfta =
1361                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1362         uint32_t reg;
1363         int i;
1364
1365         /* Filter Table Enable, CFI not used for packet acceptance */
1366         reg = E1000_READ_REG(hw, E1000_RCTL);
1367         reg &= ~E1000_RCTL_CFIEN;
1368         reg |= E1000_RCTL_VFE;
1369         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1370
1371         /* restore vfta from local copy */
1372         for (i = 0; i < IGB_VFTA_SIZE; i++)
1373                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1374 }
1375
1376 static void
1377 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1378 {
1379         struct e1000_hw *hw =
1380                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1381         uint32_t reg;
1382
1383         /* VLAN Mode Disable */
1384         reg = E1000_READ_REG(hw, E1000_CTRL);
1385         reg &= ~E1000_CTRL_VME;
1386         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1387
1388 }
1389
1390 static void
1391 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1392 {
1393         struct e1000_hw *hw =
1394                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1395         uint32_t reg;
1396
1397         /* VLAN Mode Enable */
1398         reg = E1000_READ_REG(hw, E1000_CTRL);
1399         reg |= E1000_CTRL_VME;
1400         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1401 }
1402
1403 static int
1404 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1405 {
1406         struct rte_eth_rxmode *rxmode;
1407
1408         rxmode = &dev->data->dev_conf.rxmode;
1409         if(mask & ETH_VLAN_STRIP_MASK){
1410                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1411                         em_vlan_hw_strip_enable(dev);
1412                 else
1413                         em_vlan_hw_strip_disable(dev);
1414         }
1415
1416         if(mask & ETH_VLAN_FILTER_MASK){
1417                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1418                         em_vlan_hw_filter_enable(dev);
1419                 else
1420                         em_vlan_hw_filter_disable(dev);
1421         }
1422
1423         return 0;
1424 }
1425
1426 /*
1427  * It enables the interrupt mask and then enable the interrupt.
1428  *
1429  * @param dev
1430  *  Pointer to struct rte_eth_dev.
1431  *
1432  * @return
1433  *  - On success, zero.
1434  *  - On failure, a negative value.
1435  */
1436 static int
1437 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1438 {
1439         uint32_t regval;
1440         struct e1000_hw *hw =
1441                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1442
1443         /* clear interrupt */
1444         E1000_READ_REG(hw, E1000_ICR);
1445         regval = E1000_READ_REG(hw, E1000_IMS);
1446         E1000_WRITE_REG(hw, E1000_IMS,
1447                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1448         return 0;
1449 }
1450
1451 /*
1452  * It clears the interrupt causes and enables the interrupt.
1453  * It will be called once only during nic initialized.
1454  *
1455  * @param dev
1456  *  Pointer to struct rte_eth_dev.
1457  *
1458  * @return
1459  *  - On success, zero.
1460  *  - On failure, a negative value.
1461  */
1462 static int
1463 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1464 {
1465         struct e1000_hw *hw =
1466         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1467
1468         E1000_READ_REG(hw, E1000_ICR);
1469         em_rxq_intr_enable(hw);
1470         return 0;
1471 }
1472
1473 /*
1474  * It enable receive packet interrupt.
1475  * @param hw
1476  * Pointer to struct e1000_hw
1477  *
1478  * @return
1479  */
1480 static void
1481 em_rxq_intr_enable(struct e1000_hw *hw)
1482 {
1483         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1484         E1000_WRITE_FLUSH(hw);
1485 }
1486
1487 /*
1488  * It disabled lsc interrupt.
1489  * @param hw
1490  * Pointer to struct e1000_hw
1491  *
1492  * @return
1493  */
1494 static void
1495 em_lsc_intr_disable(struct e1000_hw *hw)
1496 {
1497         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1498         E1000_WRITE_FLUSH(hw);
1499 }
1500
1501 /*
1502  * It disabled receive packet interrupt.
1503  * @param hw
1504  * Pointer to struct e1000_hw
1505  *
1506  * @return
1507  */
1508 static void
1509 em_rxq_intr_disable(struct e1000_hw *hw)
1510 {
1511         E1000_READ_REG(hw, E1000_ICR);
1512         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1513         E1000_WRITE_FLUSH(hw);
1514 }
1515
1516 /*
1517  * It reads ICR and gets interrupt causes, check it and set a bit flag
1518  * to update link status.
1519  *
1520  * @param dev
1521  *  Pointer to struct rte_eth_dev.
1522  *
1523  * @return
1524  *  - On success, zero.
1525  *  - On failure, a negative value.
1526  */
1527 static int
1528 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1529 {
1530         uint32_t icr;
1531         struct e1000_hw *hw =
1532                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1533         struct e1000_interrupt *intr =
1534                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1535
1536         /* read-on-clear nic registers here */
1537         icr = E1000_READ_REG(hw, E1000_ICR);
1538         if (icr & E1000_ICR_LSC) {
1539                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1540         }
1541
1542         return 0;
1543 }
1544
1545 /*
1546  * It executes link_update after knowing an interrupt is prsent.
1547  *
1548  * @param dev
1549  *  Pointer to struct rte_eth_dev.
1550  *
1551  * @return
1552  *  - On success, zero.
1553  *  - On failure, a negative value.
1554  */
1555 static int
1556 eth_em_interrupt_action(struct rte_eth_dev *dev,
1557                         struct rte_intr_handle *intr_handle)
1558 {
1559         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1560         struct e1000_hw *hw =
1561                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1562         struct e1000_interrupt *intr =
1563                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1564         struct rte_eth_link link;
1565         int ret;
1566
1567         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1568                 return -1;
1569
1570         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1571         rte_intr_enable(intr_handle);
1572
1573         /* set get_link_status to check register later */
1574         hw->mac.get_link_status = 1;
1575         ret = eth_em_link_update(dev, 0);
1576
1577         /* check if link has changed */
1578         if (ret < 0)
1579                 return 0;
1580
1581         rte_eth_linkstatus_get(dev, &link);
1582
1583         if (link.link_status) {
1584                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1585                              dev->data->port_id, link.link_speed,
1586                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1587                              "full-duplex" : "half-duplex");
1588         } else {
1589                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1590         }
1591         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1592                      pci_dev->addr.domain, pci_dev->addr.bus,
1593                      pci_dev->addr.devid, pci_dev->addr.function);
1594
1595         return 0;
1596 }
1597
1598 /**
1599  * Interrupt handler which shall be registered at first.
1600  *
1601  * @param handle
1602  *  Pointer to interrupt handle.
1603  * @param param
1604  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1605  *
1606  * @return
1607  *  void
1608  */
1609 static void
1610 eth_em_interrupt_handler(void *param)
1611 {
1612         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1613
1614         eth_em_interrupt_get_status(dev);
1615         eth_em_interrupt_action(dev, dev->intr_handle);
1616         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1617 }
1618
1619 static int
1620 eth_em_led_on(struct rte_eth_dev *dev)
1621 {
1622         struct e1000_hw *hw;
1623
1624         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1625         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1626 }
1627
1628 static int
1629 eth_em_led_off(struct rte_eth_dev *dev)
1630 {
1631         struct e1000_hw *hw;
1632
1633         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1634         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1635 }
1636
1637 static int
1638 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1639 {
1640         struct e1000_hw *hw;
1641         uint32_t ctrl;
1642         int tx_pause;
1643         int rx_pause;
1644
1645         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1646         fc_conf->pause_time = hw->fc.pause_time;
1647         fc_conf->high_water = hw->fc.high_water;
1648         fc_conf->low_water = hw->fc.low_water;
1649         fc_conf->send_xon = hw->fc.send_xon;
1650         fc_conf->autoneg = hw->mac.autoneg;
1651
1652         /*
1653          * Return rx_pause and tx_pause status according to actual setting of
1654          * the TFCE and RFCE bits in the CTRL register.
1655          */
1656         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1657         if (ctrl & E1000_CTRL_TFCE)
1658                 tx_pause = 1;
1659         else
1660                 tx_pause = 0;
1661
1662         if (ctrl & E1000_CTRL_RFCE)
1663                 rx_pause = 1;
1664         else
1665                 rx_pause = 0;
1666
1667         if (rx_pause && tx_pause)
1668                 fc_conf->mode = RTE_FC_FULL;
1669         else if (rx_pause)
1670                 fc_conf->mode = RTE_FC_RX_PAUSE;
1671         else if (tx_pause)
1672                 fc_conf->mode = RTE_FC_TX_PAUSE;
1673         else
1674                 fc_conf->mode = RTE_FC_NONE;
1675
1676         return 0;
1677 }
1678
1679 static int
1680 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1681 {
1682         struct e1000_hw *hw;
1683         int err;
1684         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1685                 e1000_fc_none,
1686                 e1000_fc_rx_pause,
1687                 e1000_fc_tx_pause,
1688                 e1000_fc_full
1689         };
1690         uint32_t rx_buf_size;
1691         uint32_t max_high_water;
1692         uint32_t rctl;
1693
1694         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695         if (fc_conf->autoneg != hw->mac.autoneg)
1696                 return -ENOTSUP;
1697         rx_buf_size = em_get_rx_buffer_size(hw);
1698         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1699
1700         /* At least reserve one Ethernet frame for watermark */
1701         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1702         if ((fc_conf->high_water > max_high_water) ||
1703             (fc_conf->high_water < fc_conf->low_water)) {
1704                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1705                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1706                 return -EINVAL;
1707         }
1708
1709         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1710         hw->fc.pause_time     = fc_conf->pause_time;
1711         hw->fc.high_water     = fc_conf->high_water;
1712         hw->fc.low_water      = fc_conf->low_water;
1713         hw->fc.send_xon       = fc_conf->send_xon;
1714
1715         err = e1000_setup_link_generic(hw);
1716         if (err == E1000_SUCCESS) {
1717
1718                 /* check if we want to forward MAC frames - driver doesn't have native
1719                  * capability to do that, so we'll write the registers ourselves */
1720
1721                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1722
1723                 /* set or clear MFLCN.PMCF bit depending on configuration */
1724                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1725                         rctl |= E1000_RCTL_PMCF;
1726                 else
1727                         rctl &= ~E1000_RCTL_PMCF;
1728
1729                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1730                 E1000_WRITE_FLUSH(hw);
1731
1732                 return 0;
1733         }
1734
1735         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1736         return -EIO;
1737 }
1738
1739 static int
1740 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1741                 uint32_t index, __rte_unused uint32_t pool)
1742 {
1743         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1744
1745         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1746 }
1747
1748 static void
1749 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1750 {
1751         uint8_t addr[RTE_ETHER_ADDR_LEN];
1752         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1753
1754         memset(addr, 0, sizeof(addr));
1755
1756         e1000_rar_set(hw, addr, index);
1757 }
1758
1759 static int
1760 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1761                             struct rte_ether_addr *addr)
1762 {
1763         eth_em_rar_clear(dev, 0);
1764
1765         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1766 }
1767
1768 static int
1769 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1770 {
1771         struct rte_eth_dev_info dev_info;
1772         struct e1000_hw *hw;
1773         uint32_t frame_size;
1774         uint32_t rctl;
1775
1776         eth_em_infos_get(dev, &dev_info);
1777         frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1778                 VLAN_TAG_SIZE;
1779
1780         /* check that mtu is within the allowed range */
1781         if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen)
1782                 return -EINVAL;
1783
1784         /* refuse mtu that requires the support of scattered packets when this
1785          * feature has not been enabled before. */
1786         if (!dev->data->scattered_rx &&
1787             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1788                 return -EINVAL;
1789
1790         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1791         rctl = E1000_READ_REG(hw, E1000_RCTL);
1792
1793         /* switch to jumbo mode if needed */
1794         if (frame_size > RTE_ETHER_MAX_LEN) {
1795                 dev->data->dev_conf.rxmode.offloads |=
1796                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1797                 rctl |= E1000_RCTL_LPE;
1798         } else {
1799                 dev->data->dev_conf.rxmode.offloads &=
1800                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1801                 rctl &= ~E1000_RCTL_LPE;
1802         }
1803         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1804
1805         /* update max frame size */
1806         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1807         return 0;
1808 }
1809
1810 static int
1811 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1812                         struct rte_ether_addr *mc_addr_set,
1813                         uint32_t nb_mc_addr)
1814 {
1815         struct e1000_hw *hw;
1816
1817         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1818         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1819         return 0;
1820 }
1821
1822 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1823 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1824 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1825
1826 /* see e1000_logs.c */
1827 RTE_INIT(igb_init_log)
1828 {
1829         e1000_igb_init_log();
1830 }