e1000: separate link and Rx interrupt disabling
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58
59 #define EM_EIAC                 0x000DC
60
61 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
62
63
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73                                 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75                                 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78                                 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
86 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
87                                                         void *param);
88
89 static int em_hw_init(struct e1000_hw *hw);
90 static int em_hardware_init(struct e1000_hw *hw);
91 static void em_hw_control_acquire(struct e1000_hw *hw);
92 static void em_hw_control_release(struct e1000_hw *hw);
93 static void em_init_manageability(struct e1000_hw *hw);
94 static void em_release_manageability(struct e1000_hw *hw);
95
96 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
97
98 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
99                 uint16_t vlan_id, int on);
100 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
101 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
102 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
105
106 /*
107 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
108                                         uint16_t vlan_id, int on);
109 */
110 static void em_lsc_intr_disable(struct e1000_hw *hw);
111 static void em_rxq_intr_disable(struct e1000_hw *hw);
112 static int eth_em_led_on(struct rte_eth_dev *dev);
113 static int eth_em_led_off(struct rte_eth_dev *dev);
114
115 static int em_get_rx_buffer_size(struct e1000_hw *hw);
116 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
117                 uint32_t index, uint32_t pool);
118 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
119
120 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
121                                    struct ether_addr *mc_addr_set,
122                                    uint32_t nb_mc_addr);
123
124 #define EM_FC_PAUSE_TIME 0x0680
125 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
126 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
127
128 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
129
130 /*
131  * The set of PCI devices this driver supports
132  */
133 static const struct rte_pci_id pci_id_em_map[] = {
134
135 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
136 #include "rte_pci_dev_ids.h"
137
138 {0},
139 };
140
141 static const struct eth_dev_ops eth_em_ops = {
142         .dev_configure        = eth_em_configure,
143         .dev_start            = eth_em_start,
144         .dev_stop             = eth_em_stop,
145         .dev_close            = eth_em_close,
146         .promiscuous_enable   = eth_em_promiscuous_enable,
147         .promiscuous_disable  = eth_em_promiscuous_disable,
148         .allmulticast_enable  = eth_em_allmulticast_enable,
149         .allmulticast_disable = eth_em_allmulticast_disable,
150         .link_update          = eth_em_link_update,
151         .stats_get            = eth_em_stats_get,
152         .stats_reset          = eth_em_stats_reset,
153         .dev_infos_get        = eth_em_infos_get,
154         .mtu_set              = eth_em_mtu_set,
155         .vlan_filter_set      = eth_em_vlan_filter_set,
156         .vlan_offload_set     = eth_em_vlan_offload_set,
157         .rx_queue_setup       = eth_em_rx_queue_setup,
158         .rx_queue_release     = eth_em_rx_queue_release,
159         .rx_queue_count       = eth_em_rx_queue_count,
160         .rx_descriptor_done   = eth_em_rx_descriptor_done,
161         .tx_queue_setup       = eth_em_tx_queue_setup,
162         .tx_queue_release     = eth_em_tx_queue_release,
163         .dev_led_on           = eth_em_led_on,
164         .dev_led_off          = eth_em_led_off,
165         .flow_ctrl_get        = eth_em_flow_ctrl_get,
166         .flow_ctrl_set        = eth_em_flow_ctrl_set,
167         .mac_addr_add         = eth_em_rar_set,
168         .mac_addr_remove      = eth_em_rar_clear,
169         .set_mc_addr_list     = eth_em_set_mc_addr_list,
170 };
171
172 /**
173  * Atomically reads the link status information from global
174  * structure rte_eth_dev.
175  *
176  * @param dev
177  *   - Pointer to the structure rte_eth_dev to read from.
178  *   - Pointer to the buffer to be saved with the link status.
179  *
180  * @return
181  *   - On success, zero.
182  *   - On failure, negative value.
183  */
184 static inline int
185 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
186                                 struct rte_eth_link *link)
187 {
188         struct rte_eth_link *dst = link;
189         struct rte_eth_link *src = &(dev->data->dev_link);
190
191         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
192                                         *(uint64_t *)src) == 0)
193                 return -1;
194
195         return 0;
196 }
197
198 /**
199  * Atomically writes the link status information into global
200  * structure rte_eth_dev.
201  *
202  * @param dev
203  *   - Pointer to the structure rte_eth_dev to read from.
204  *   - Pointer to the buffer to be saved with the link status.
205  *
206  * @return
207  *   - On success, zero.
208  *   - On failure, negative value.
209  */
210 static inline int
211 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
212                                 struct rte_eth_link *link)
213 {
214         struct rte_eth_link *dst = &(dev->data->dev_link);
215         struct rte_eth_link *src = link;
216
217         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
218                                         *(uint64_t *)src) == 0)
219                 return -1;
220
221         return 0;
222 }
223
224 static int
225 eth_em_dev_init(struct rte_eth_dev *eth_dev)
226 {
227         struct rte_pci_device *pci_dev;
228         struct e1000_adapter *adapter =
229                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
230         struct e1000_hw *hw =
231                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
232         struct e1000_vfta * shadow_vfta =
233                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
234
235         pci_dev = eth_dev->pci_dev;
236         eth_dev->dev_ops = &eth_em_ops;
237         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
238         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
239
240         /* for secondary processes, we don't initialise any further as primary
241          * has already done this work. Only check we don't need a different
242          * RX function */
243         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
244                 if (eth_dev->data->scattered_rx)
245                         eth_dev->rx_pkt_burst =
246                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
247                 return 0;
248         }
249
250         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
251         hw->device_id = pci_dev->id.device_id;
252         adapter->stopped = 0;
253
254         /* For ICH8 support we'll need to map the flash memory BAR */
255
256         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
257                         em_hw_init(hw) != 0) {
258                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
259                         "failed to init HW",
260                         eth_dev->data->port_id, pci_dev->id.vendor_id,
261                         pci_dev->id.device_id);
262                 return -(ENODEV);
263         }
264
265         /* Allocate memory for storing MAC addresses */
266         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
267                         hw->mac.rar_entry_count, 0);
268         if (eth_dev->data->mac_addrs == NULL) {
269                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
270                         "store MAC addresses",
271                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
272                 return -(ENOMEM);
273         }
274
275         /* Copy the permanent MAC address */
276         ether_addr_copy((struct ether_addr *) hw->mac.addr,
277                 eth_dev->data->mac_addrs);
278
279         /* initialize the vfta */
280         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
281
282         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
283                      eth_dev->data->port_id, pci_dev->id.vendor_id,
284                      pci_dev->id.device_id);
285
286         rte_intr_callback_register(&(pci_dev->intr_handle),
287                 eth_em_interrupt_handler, (void *)eth_dev);
288
289         return (0);
290 }
291
292 static int
293 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
294 {
295         struct rte_pci_device *pci_dev;
296         struct e1000_adapter *adapter =
297                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
298
299         PMD_INIT_FUNC_TRACE();
300
301         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
302                 return -EPERM;
303
304         pci_dev = eth_dev->pci_dev;
305
306         if (adapter->stopped == 0)
307                 eth_em_close(eth_dev);
308
309         eth_dev->dev_ops = NULL;
310         eth_dev->rx_pkt_burst = NULL;
311         eth_dev->tx_pkt_burst = NULL;
312
313         rte_free(eth_dev->data->mac_addrs);
314         eth_dev->data->mac_addrs = NULL;
315
316         /* disable uio intr before callback unregister */
317         rte_intr_disable(&(pci_dev->intr_handle));
318         rte_intr_callback_unregister(&(pci_dev->intr_handle),
319                 eth_em_interrupt_handler, (void *)eth_dev);
320
321         return 0;
322 }
323
324 static struct eth_driver rte_em_pmd = {
325         .pci_drv = {
326                 .name = "rte_em_pmd",
327                 .id_table = pci_id_em_map,
328                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
329                         RTE_PCI_DRV_DETACHABLE,
330         },
331         .eth_dev_init = eth_em_dev_init,
332         .eth_dev_uninit = eth_em_dev_uninit,
333         .dev_private_size = sizeof(struct e1000_adapter),
334 };
335
336 static int
337 rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
338 {
339         rte_eth_driver_register(&rte_em_pmd);
340         return 0;
341 }
342
343 static int
344 em_hw_init(struct e1000_hw *hw)
345 {
346         int diag;
347
348         diag = hw->mac.ops.init_params(hw);
349         if (diag != 0) {
350                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
351                 return diag;
352         }
353         diag = hw->nvm.ops.init_params(hw);
354         if (diag != 0) {
355                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
356                 return diag;
357         }
358         diag = hw->phy.ops.init_params(hw);
359         if (diag != 0) {
360                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
361                 return diag;
362         }
363         (void) e1000_get_bus_info(hw);
364
365         hw->mac.autoneg = 1;
366         hw->phy.autoneg_wait_to_complete = 0;
367         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
368
369         e1000_init_script_state_82541(hw, TRUE);
370         e1000_set_tbi_compatibility_82543(hw, TRUE);
371
372         /* Copper options */
373         if (hw->phy.media_type == e1000_media_type_copper) {
374                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
375                 hw->phy.disable_polarity_correction = 0;
376                 hw->phy.ms_type = e1000_ms_hw_default;
377         }
378
379         /*
380          * Start from a known state, this is important in reading the nvm
381          * and mac from that.
382          */
383         e1000_reset_hw(hw);
384
385         /* Make sure we have a good EEPROM before we read from it */
386         if (e1000_validate_nvm_checksum(hw) < 0) {
387                 /*
388                  * Some PCI-E parts fail the first check due to
389                  * the link being in sleep state, call it again,
390                  * if it fails a second time its a real issue.
391                  */
392                 diag = e1000_validate_nvm_checksum(hw);
393                 if (diag < 0) {
394                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
395                         goto error;
396                 }
397         }
398
399         /* Read the permanent MAC address out of the EEPROM */
400         diag = e1000_read_mac_addr(hw);
401         if (diag != 0) {
402                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
403                 goto error;
404         }
405
406         /* Now initialize the hardware */
407         diag = em_hardware_init(hw);
408         if (diag != 0) {
409                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
410                 goto error;
411         }
412
413         hw->mac.get_link_status = 1;
414
415         /* Indicate SOL/IDER usage */
416         diag = e1000_check_reset_block(hw);
417         if (diag < 0) {
418                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
419                         "SOL/IDER session");
420         }
421         return (0);
422
423 error:
424         em_hw_control_release(hw);
425         return (diag);
426 }
427
428 static int
429 eth_em_configure(struct rte_eth_dev *dev)
430 {
431         struct e1000_interrupt *intr =
432                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
433
434         PMD_INIT_FUNC_TRACE();
435         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
436         PMD_INIT_FUNC_TRACE();
437
438         return (0);
439 }
440
441 static void
442 em_set_pba(struct e1000_hw *hw)
443 {
444         uint32_t pba;
445
446         /*
447          * Packet Buffer Allocation (PBA)
448          * Writing PBA sets the receive portion of the buffer
449          * the remainder is used for the transmit buffer.
450          * Devices before the 82547 had a Packet Buffer of 64K.
451          * After the 82547 the buffer was reduced to 40K.
452          */
453         switch (hw->mac.type) {
454                 case e1000_82547:
455                 case e1000_82547_rev_2:
456                 /* 82547: Total Packet Buffer is 40K */
457                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
458                         break;
459                 case e1000_82571:
460                 case e1000_82572:
461                 case e1000_80003es2lan:
462                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
463                         break;
464                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
465                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
466                         break;
467                 case e1000_82574:
468                 case e1000_82583:
469                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
470                         break;
471                 case e1000_ich8lan:
472                         pba = E1000_PBA_8K;
473                         break;
474                 case e1000_ich9lan:
475                 case e1000_ich10lan:
476                         pba = E1000_PBA_10K;
477                         break;
478                 case e1000_pchlan:
479                 case e1000_pch2lan:
480                         pba = E1000_PBA_26K;
481                         break;
482                 default:
483                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
484         }
485
486         E1000_WRITE_REG(hw, E1000_PBA, pba);
487 }
488
489 static int
490 eth_em_start(struct rte_eth_dev *dev)
491 {
492         struct e1000_adapter *adapter =
493                 E1000_DEV_PRIVATE(dev->data->dev_private);
494         struct e1000_hw *hw =
495                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
496         int ret, mask;
497
498         PMD_INIT_FUNC_TRACE();
499
500         eth_em_stop(dev);
501
502         e1000_power_up_phy(hw);
503
504         /* Set default PBA value */
505         em_set_pba(hw);
506
507         /* Put the address into the Receive Address Array */
508         e1000_rar_set(hw, hw->mac.addr, 0);
509
510         /*
511          * With the 82571 adapter, RAR[0] may be overwritten
512          * when the other port is reset, we make a duplicate
513          * in RAR[14] for that eventuality, this assures
514          * the interface continues to function.
515          */
516         if (hw->mac.type == e1000_82571) {
517                 e1000_set_laa_state_82571(hw, TRUE);
518                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
519         }
520
521         /* Initialize the hardware */
522         if (em_hardware_init(hw)) {
523                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
524                 return (-EIO);
525         }
526
527         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
528
529         /* Configure for OS presence */
530         em_init_manageability(hw);
531
532         eth_em_tx_init(dev);
533
534         ret = eth_em_rx_init(dev);
535         if (ret) {
536                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
537                 em_dev_clear_queues(dev);
538                 return ret;
539         }
540
541         e1000_clear_hw_cntrs_base_generic(hw);
542
543         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
544                         ETH_VLAN_EXTEND_MASK;
545         eth_em_vlan_offload_set(dev, mask);
546
547         /* Set Interrupt Throttling Rate to maximum allowed value. */
548         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
549
550         /* Setup link speed and duplex */
551         switch (dev->data->dev_conf.link_speed) {
552         case ETH_LINK_SPEED_AUTONEG:
553                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
554                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
555                 else if (dev->data->dev_conf.link_duplex ==
556                                         ETH_LINK_HALF_DUPLEX)
557                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
558                 else if (dev->data->dev_conf.link_duplex ==
559                                         ETH_LINK_FULL_DUPLEX)
560                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
561                 else
562                         goto error_invalid_config;
563                 break;
564         case ETH_LINK_SPEED_10:
565                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
566                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
567                 else if (dev->data->dev_conf.link_duplex ==
568                                         ETH_LINK_HALF_DUPLEX)
569                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
570                 else if (dev->data->dev_conf.link_duplex ==
571                                         ETH_LINK_FULL_DUPLEX)
572                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
573                 else
574                         goto error_invalid_config;
575                 break;
576         case ETH_LINK_SPEED_100:
577                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
578                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
579                 else if (dev->data->dev_conf.link_duplex ==
580                                         ETH_LINK_HALF_DUPLEX)
581                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
582                 else if (dev->data->dev_conf.link_duplex ==
583                                         ETH_LINK_FULL_DUPLEX)
584                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
585                 else
586                         goto error_invalid_config;
587                 break;
588         case ETH_LINK_SPEED_1000:
589                 if ((dev->data->dev_conf.link_duplex ==
590                                 ETH_LINK_AUTONEG_DUPLEX) ||
591                         (dev->data->dev_conf.link_duplex ==
592                                         ETH_LINK_FULL_DUPLEX))
593                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
594                 else
595                         goto error_invalid_config;
596                 break;
597         case ETH_LINK_SPEED_10000:
598         default:
599                 goto error_invalid_config;
600         }
601         e1000_setup_link(hw);
602
603         /* check if lsc interrupt feature is enabled */
604         if (dev->data->dev_conf.intr_conf.lsc != 0) {
605                 ret = eth_em_interrupt_setup(dev);
606                 if (ret) {
607                         PMD_INIT_LOG(ERR, "Unable to setup interrupts");
608                         em_dev_clear_queues(dev);
609                         return ret;
610                 }
611         }
612
613         adapter->stopped = 0;
614
615         PMD_INIT_LOG(DEBUG, "<<");
616
617         return (0);
618
619 error_invalid_config:
620         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
621                      dev->data->dev_conf.link_speed,
622                      dev->data->dev_conf.link_duplex, dev->data->port_id);
623         em_dev_clear_queues(dev);
624         return (-EINVAL);
625 }
626
627 /*********************************************************************
628  *
629  *  This routine disables all traffic on the adapter by issuing a
630  *  global reset on the MAC.
631  *
632  **********************************************************************/
633 static void
634 eth_em_stop(struct rte_eth_dev *dev)
635 {
636         struct rte_eth_link link;
637         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
638
639         em_rxq_intr_disable(hw);
640         em_lsc_intr_disable(hw);
641
642         e1000_reset_hw(hw);
643         if (hw->mac.type >= e1000_82544)
644                 E1000_WRITE_REG(hw, E1000_WUC, 0);
645
646         /* Power down the phy. Needed to make the link go down */
647         e1000_power_down_phy(hw);
648
649         em_dev_clear_queues(dev);
650
651         /* clear the recorded link status */
652         memset(&link, 0, sizeof(link));
653         rte_em_dev_atomic_write_link_status(dev, &link);
654 }
655
656 static void
657 eth_em_close(struct rte_eth_dev *dev)
658 {
659         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
660         struct e1000_adapter *adapter =
661                 E1000_DEV_PRIVATE(dev->data->dev_private);
662
663         eth_em_stop(dev);
664         adapter->stopped = 1;
665         em_dev_free_queues(dev);
666         e1000_phy_hw_reset(hw);
667         em_release_manageability(hw);
668         em_hw_control_release(hw);
669 }
670
671 static int
672 em_get_rx_buffer_size(struct e1000_hw *hw)
673 {
674         uint32_t rx_buf_size;
675
676         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
677         return rx_buf_size;
678 }
679
680 /*********************************************************************
681  *
682  *  Initialize the hardware
683  *
684  **********************************************************************/
685 static int
686 em_hardware_init(struct e1000_hw *hw)
687 {
688         uint32_t rx_buf_size;
689         int diag;
690
691         /* Issue a global reset */
692         e1000_reset_hw(hw);
693
694         /* Let the firmware know the OS is in control */
695         em_hw_control_acquire(hw);
696
697         /*
698          * These parameters control the automatic generation (Tx) and
699          * response (Rx) to Ethernet PAUSE frames.
700          * - High water mark should allow for at least two standard size (1518)
701          *   frames to be received after sending an XOFF.
702          * - Low water mark works best when it is very near the high water mark.
703          *   This allows the receiver to restart by sending XON when it has
704          *   drained a bit. Here we use an arbitrary value of 1500 which will
705          *   restart after one full frame is pulled from the buffer. There
706          *   could be several smaller frames in the buffer and if so they will
707          *   not trigger the XON until their total number reduces the buffer
708          *   by 1500.
709          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
710          */
711         rx_buf_size = em_get_rx_buffer_size(hw);
712
713         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
714         hw->fc.low_water = hw->fc.high_water - 1500;
715
716         if (hw->mac.type == e1000_80003es2lan)
717                 hw->fc.pause_time = UINT16_MAX;
718         else
719                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
720
721         hw->fc.send_xon = 1;
722
723         /* Set Flow control, use the tunable location if sane */
724         if (em_fc_setting <= e1000_fc_full)
725                 hw->fc.requested_mode = em_fc_setting;
726         else
727                 hw->fc.requested_mode = e1000_fc_none;
728
729         /* Workaround: no TX flow ctrl for PCH */
730         if (hw->mac.type == e1000_pchlan)
731                 hw->fc.requested_mode = e1000_fc_rx_pause;
732
733         /* Override - settings for PCH2LAN, ya its magic :) */
734         if (hw->mac.type == e1000_pch2lan) {
735                 hw->fc.high_water = 0x5C20;
736                 hw->fc.low_water = 0x5048;
737                 hw->fc.pause_time = 0x0650;
738                 hw->fc.refresh_time = 0x0400;
739         }
740
741         diag = e1000_init_hw(hw);
742         if (diag < 0)
743                 return (diag);
744         e1000_check_for_link(hw);
745         return (0);
746 }
747
748 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
749 static void
750 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
751 {
752         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
753         struct e1000_hw_stats *stats =
754                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
755         int pause_frames;
756
757         if(hw->phy.media_type == e1000_media_type_copper ||
758                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
759                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
760                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
761         }
762
763         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
764         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
765         stats->scc += E1000_READ_REG(hw, E1000_SCC);
766         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
767
768         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
769         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
770         stats->colc += E1000_READ_REG(hw, E1000_COLC);
771         stats->dc += E1000_READ_REG(hw, E1000_DC);
772         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
773         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
774         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
775
776         /*
777          * For watchdog management we need to know if we have been
778          * paused during the last interval, so capture that here.
779          */
780         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
781         stats->xoffrxc += pause_frames;
782         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
783         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
784         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
785         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
786         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
787         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
788         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
789         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
790         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
791         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
792         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
793         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
794
795         /*
796          * For the 64-bit byte counters the low dword must be read first.
797          * Both registers clear on the read of the high dword.
798          */
799
800         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
801         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
802         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
803         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
804
805         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
806         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
807         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
808         stats->roc += E1000_READ_REG(hw, E1000_ROC);
809         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
810
811         stats->tor += E1000_READ_REG(hw, E1000_TORH);
812         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
813
814         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
815         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
816         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
817         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
818         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
819         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
820         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
821         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
822         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
823         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
824
825         /* Interrupt Counts */
826
827         if (hw->mac.type >= e1000_82571) {
828                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
829                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
830                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
831                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
832                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
833                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
834                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
835                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
836                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
837         }
838
839         if (hw->mac.type >= e1000_82543) {
840                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
841                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
842                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
843                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
844                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
845                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
846         }
847
848         if (rte_stats == NULL)
849                 return;
850
851         /* Rx Errors */
852         rte_stats->ibadcrc = stats->crcerrs;
853         rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
854         rte_stats->imissed = stats->mpc;
855         rte_stats->ierrors = rte_stats->ibadcrc +
856                              rte_stats->ibadlen +
857                              rte_stats->imissed +
858                              stats->rxerrc + stats->algnerrc + stats->cexterr;
859
860         /* Tx Errors */
861         rte_stats->oerrors = stats->ecol + stats->latecol;
862
863         rte_stats->ipackets = stats->gprc;
864         rte_stats->opackets = stats->gptc;
865         rte_stats->ibytes   = stats->gorc;
866         rte_stats->obytes   = stats->gotc;
867
868         /* XON/XOFF pause frames stats registers */
869         rte_stats->tx_pause_xon  = stats->xontxc;
870         rte_stats->rx_pause_xon  = stats->xonrxc;
871         rte_stats->tx_pause_xoff = stats->xofftxc;
872         rte_stats->rx_pause_xoff = stats->xoffrxc;
873 }
874
875 static void
876 eth_em_stats_reset(struct rte_eth_dev *dev)
877 {
878         struct e1000_hw_stats *hw_stats =
879                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
880
881         /* HW registers are cleared on read */
882         eth_em_stats_get(dev, NULL);
883
884         /* Reset software totals */
885         memset(hw_stats, 0, sizeof(*hw_stats));
886 }
887
888 static uint32_t
889 em_get_max_pktlen(const struct e1000_hw *hw)
890 {
891         switch (hw->mac.type) {
892         case e1000_82571:
893         case e1000_82572:
894         case e1000_ich9lan:
895         case e1000_ich10lan:
896         case e1000_pch2lan:
897         case e1000_82574:
898         case e1000_80003es2lan: /* 9K Jumbo Frame size */
899         case e1000_82583:
900                 return (0x2412);
901         case e1000_pchlan:
902                 return (0x1000);
903         /* Adapters that do not support jumbo frames */
904         case e1000_ich8lan:
905                 return (ETHER_MAX_LEN);
906         default:
907                 return (MAX_JUMBO_FRAME_SIZE);
908         }
909 }
910
911 static void
912 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
913 {
914         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
915
916         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
917         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
918         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
919
920         /*
921          * Starting with 631xESB hw supports 2 TX/RX queues per port.
922          * Unfortunatelly, all these nics have just one TX context.
923          * So we have few choises for TX:
924          * - Use just one TX queue.
925          * - Allow cksum offload only for one TX queue.
926          * - Don't allow TX cksum offload at all.
927          * For now, option #1 was chosen.
928          * To use second RX queue we have to use extended RX descriptor
929          * (Multiple Receive Queues are mutually exclusive with UDP
930          * fragmentation and are not supported when a legacy receive
931          * descriptor format is used).
932          * Which means separate RX routinies - as legacy nics (82540, 82545)
933          * don't support extended RXD.
934          * To avoid it we support just one RX queue for now (no RSS).
935          */
936
937         dev_info->max_rx_queues = 1;
938         dev_info->max_tx_queues = 1;
939 }
940
941 /* return 0 means link status changed, -1 means not changed */
942 static int
943 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
944 {
945         struct e1000_hw *hw =
946                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
947         struct rte_eth_link link, old;
948         int link_check, count;
949
950         link_check = 0;
951         hw->mac.get_link_status = 1;
952
953         /* possible wait-to-complete in up to 9 seconds */
954         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
955                 /* Read the real link status */
956                 switch (hw->phy.media_type) {
957                 case e1000_media_type_copper:
958                         /* Do the work to read phy */
959                         e1000_check_for_link(hw);
960                         link_check = !hw->mac.get_link_status;
961                         break;
962
963                 case e1000_media_type_fiber:
964                         e1000_check_for_link(hw);
965                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
966                                         E1000_STATUS_LU);
967                         break;
968
969                 case e1000_media_type_internal_serdes:
970                         e1000_check_for_link(hw);
971                         link_check = hw->mac.serdes_has_link;
972                         break;
973
974                 default:
975                         break;
976                 }
977                 if (link_check || wait_to_complete == 0)
978                         break;
979                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
980         }
981         memset(&link, 0, sizeof(link));
982         rte_em_dev_atomic_read_link_status(dev, &link);
983         old = link;
984
985         /* Now we check if a transition has happened */
986         if (link_check && (link.link_status == 0)) {
987                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
988                         &link.link_duplex);
989                 link.link_status = 1;
990         } else if (!link_check && (link.link_status == 1)) {
991                 link.link_speed = 0;
992                 link.link_duplex = 0;
993                 link.link_status = 0;
994         }
995         rte_em_dev_atomic_write_link_status(dev, &link);
996
997         /* not changed */
998         if (old.link_status == link.link_status)
999                 return -1;
1000
1001         /* changed */
1002         return 0;
1003 }
1004
1005 /*
1006  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1007  * For ASF and Pass Through versions of f/w this means
1008  * that the driver is loaded. For AMT version type f/w
1009  * this means that the network i/f is open.
1010  */
1011 static void
1012 em_hw_control_acquire(struct e1000_hw *hw)
1013 {
1014         uint32_t ctrl_ext, swsm;
1015
1016         /* Let firmware know the driver has taken over */
1017         if (hw->mac.type == e1000_82573) {
1018                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1019                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1020
1021         } else {
1022                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1023                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1024                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1025         }
1026 }
1027
1028 /*
1029  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1030  * For ASF and Pass Through versions of f/w this means that the
1031  * driver is no longer loaded. For AMT versions of the
1032  * f/w this means that the network i/f is closed.
1033  */
1034 static void
1035 em_hw_control_release(struct e1000_hw *hw)
1036 {
1037         uint32_t ctrl_ext, swsm;
1038
1039         /* Let firmware taken over control of h/w */
1040         if (hw->mac.type == e1000_82573) {
1041                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1042                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1043         } else {
1044                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1045                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1046                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1047         }
1048 }
1049
1050 /*
1051  * Bit of a misnomer, what this really means is
1052  * to enable OS management of the system... aka
1053  * to disable special hardware management features.
1054  */
1055 static void
1056 em_init_manageability(struct e1000_hw *hw)
1057 {
1058         if (e1000_enable_mng_pass_thru(hw)) {
1059                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1060                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1061
1062                 /* disable hardware interception of ARP */
1063                 manc &= ~(E1000_MANC_ARP_EN);
1064
1065                 /* enable receiving management packets to the host */
1066                 manc |= E1000_MANC_EN_MNG2HOST;
1067                 manc2h |= 1 << 5;  /* Mng Port 623 */
1068                 manc2h |= 1 << 6;  /* Mng Port 664 */
1069                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1070                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1071         }
1072 }
1073
1074 /*
1075  * Give control back to hardware management
1076  * controller if there is one.
1077  */
1078 static void
1079 em_release_manageability(struct e1000_hw *hw)
1080 {
1081         uint32_t manc;
1082
1083         if (e1000_enable_mng_pass_thru(hw)) {
1084                 manc = E1000_READ_REG(hw, E1000_MANC);
1085
1086                 /* re-enable hardware interception of ARP */
1087                 manc |= E1000_MANC_ARP_EN;
1088                 manc &= ~E1000_MANC_EN_MNG2HOST;
1089
1090                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1091         }
1092 }
1093
1094 static void
1095 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1096 {
1097         struct e1000_hw *hw =
1098                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1099         uint32_t rctl;
1100
1101         rctl = E1000_READ_REG(hw, E1000_RCTL);
1102         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1103         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1104 }
1105
1106 static void
1107 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1108 {
1109         struct e1000_hw *hw =
1110                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1111         uint32_t rctl;
1112
1113         rctl = E1000_READ_REG(hw, E1000_RCTL);
1114         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1115         if (dev->data->all_multicast == 1)
1116                 rctl |= E1000_RCTL_MPE;
1117         else
1118                 rctl &= (~E1000_RCTL_MPE);
1119         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1120 }
1121
1122 static void
1123 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1124 {
1125         struct e1000_hw *hw =
1126                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1127         uint32_t rctl;
1128
1129         rctl = E1000_READ_REG(hw, E1000_RCTL);
1130         rctl |= E1000_RCTL_MPE;
1131         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1132 }
1133
1134 static void
1135 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1136 {
1137         struct e1000_hw *hw =
1138                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1139         uint32_t rctl;
1140
1141         if (dev->data->promiscuous == 1)
1142                 return; /* must remain in all_multicast mode */
1143         rctl = E1000_READ_REG(hw, E1000_RCTL);
1144         rctl &= (~E1000_RCTL_MPE);
1145         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1146 }
1147
1148 static int
1149 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1150 {
1151         struct e1000_hw *hw =
1152                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1153         struct e1000_vfta * shadow_vfta =
1154                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1155         uint32_t vfta;
1156         uint32_t vid_idx;
1157         uint32_t vid_bit;
1158
1159         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1160                               E1000_VFTA_ENTRY_MASK);
1161         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1162         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1163         if (on)
1164                 vfta |= vid_bit;
1165         else
1166                 vfta &= ~vid_bit;
1167         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1168
1169         /* update local VFTA copy */
1170         shadow_vfta->vfta[vid_idx] = vfta;
1171
1172         return 0;
1173 }
1174
1175 static void
1176 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1177 {
1178         struct e1000_hw *hw =
1179                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1180         uint32_t reg;
1181
1182         /* Filter Table Disable */
1183         reg = E1000_READ_REG(hw, E1000_RCTL);
1184         reg &= ~E1000_RCTL_CFIEN;
1185         reg &= ~E1000_RCTL_VFE;
1186         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1187 }
1188
1189 static void
1190 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1191 {
1192         struct e1000_hw *hw =
1193                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1194         struct e1000_vfta * shadow_vfta =
1195                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1196         uint32_t reg;
1197         int i;
1198
1199         /* Filter Table Enable, CFI not used for packet acceptance */
1200         reg = E1000_READ_REG(hw, E1000_RCTL);
1201         reg &= ~E1000_RCTL_CFIEN;
1202         reg |= E1000_RCTL_VFE;
1203         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1204
1205         /* restore vfta from local copy */
1206         for (i = 0; i < IGB_VFTA_SIZE; i++)
1207                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1208 }
1209
1210 static void
1211 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1212 {
1213         struct e1000_hw *hw =
1214                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1215         uint32_t reg;
1216
1217         /* VLAN Mode Disable */
1218         reg = E1000_READ_REG(hw, E1000_CTRL);
1219         reg &= ~E1000_CTRL_VME;
1220         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1221
1222 }
1223
1224 static void
1225 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1226 {
1227         struct e1000_hw *hw =
1228                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1229         uint32_t reg;
1230
1231         /* VLAN Mode Enable */
1232         reg = E1000_READ_REG(hw, E1000_CTRL);
1233         reg |= E1000_CTRL_VME;
1234         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1235 }
1236
1237 static void
1238 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1239 {
1240         if(mask & ETH_VLAN_STRIP_MASK){
1241                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1242                         em_vlan_hw_strip_enable(dev);
1243                 else
1244                         em_vlan_hw_strip_disable(dev);
1245         }
1246
1247         if(mask & ETH_VLAN_FILTER_MASK){
1248                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1249                         em_vlan_hw_filter_enable(dev);
1250                 else
1251                         em_vlan_hw_filter_disable(dev);
1252         }
1253 }
1254
1255 /*
1256  * It enables the interrupt mask and then enable the interrupt.
1257  *
1258  * @param dev
1259  *  Pointer to struct rte_eth_dev.
1260  *
1261  * @return
1262  *  - On success, zero.
1263  *  - On failure, a negative value.
1264  */
1265 static int
1266 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1267 {
1268         uint32_t regval;
1269         struct e1000_hw *hw =
1270                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1271
1272         /* clear interrupt */
1273         E1000_READ_REG(hw, E1000_ICR);
1274         regval = E1000_READ_REG(hw, E1000_IMS);
1275         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1276         return (0);
1277 }
1278
1279 /*
1280  * It disabled lsc interrupt.
1281  * @param hw
1282  * Pointer to struct e1000_hw
1283  *
1284  * @return
1285  */
1286 static void
1287 em_lsc_intr_disable(struct e1000_hw *hw)
1288 {
1289         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1290         E1000_WRITE_FLUSH(hw);
1291 }
1292
1293 /*
1294  * It disabled receive packet interrupt.
1295  * @param hw
1296  * Pointer to struct e1000_hw
1297  *
1298  * @return
1299  */
1300 static void
1301 em_rxq_intr_disable(struct e1000_hw *hw)
1302 {
1303         E1000_READ_REG(hw, E1000_ICR);
1304         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1305         E1000_WRITE_FLUSH(hw);
1306 }
1307
1308 /*
1309  * It reads ICR and gets interrupt causes, check it and set a bit flag
1310  * to update link status.
1311  *
1312  * @param dev
1313  *  Pointer to struct rte_eth_dev.
1314  *
1315  * @return
1316  *  - On success, zero.
1317  *  - On failure, a negative value.
1318  */
1319 static int
1320 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1321 {
1322         uint32_t icr;
1323         struct e1000_hw *hw =
1324                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1325         struct e1000_interrupt *intr =
1326                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1327
1328         /* read-on-clear nic registers here */
1329         icr = E1000_READ_REG(hw, E1000_ICR);
1330         if (icr & E1000_ICR_LSC) {
1331                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1332         }
1333
1334         return 0;
1335 }
1336
1337 /*
1338  * It executes link_update after knowing an interrupt is prsent.
1339  *
1340  * @param dev
1341  *  Pointer to struct rte_eth_dev.
1342  *
1343  * @return
1344  *  - On success, zero.
1345  *  - On failure, a negative value.
1346  */
1347 static int
1348 eth_em_interrupt_action(struct rte_eth_dev *dev)
1349 {
1350         struct e1000_hw *hw =
1351                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1352         struct e1000_interrupt *intr =
1353                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1354         uint32_t tctl, rctl;
1355         struct rte_eth_link link;
1356         int ret;
1357
1358         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1359                 return -1;
1360
1361         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1362         rte_intr_enable(&(dev->pci_dev->intr_handle));
1363
1364         /* set get_link_status to check register later */
1365         hw->mac.get_link_status = 1;
1366         ret = eth_em_link_update(dev, 0);
1367
1368         /* check if link has changed */
1369         if (ret < 0)
1370                 return 0;
1371
1372         memset(&link, 0, sizeof(link));
1373         rte_em_dev_atomic_read_link_status(dev, &link);
1374         if (link.link_status) {
1375                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1376                              dev->data->port_id, (unsigned)link.link_speed,
1377                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1378                              "full-duplex" : "half-duplex");
1379         } else {
1380                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1381         }
1382         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1383                      dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1384                      dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1385
1386         tctl = E1000_READ_REG(hw, E1000_TCTL);
1387         rctl = E1000_READ_REG(hw, E1000_RCTL);
1388         if (link.link_status) {
1389                 /* enable Tx/Rx */
1390                 tctl |= E1000_TCTL_EN;
1391                 rctl |= E1000_RCTL_EN;
1392         } else {
1393                 /* disable Tx/Rx */
1394                 tctl &= ~E1000_TCTL_EN;
1395                 rctl &= ~E1000_RCTL_EN;
1396         }
1397         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1398         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1399         E1000_WRITE_FLUSH(hw);
1400
1401         return 0;
1402 }
1403
1404 /**
1405  * Interrupt handler which shall be registered at first.
1406  *
1407  * @param handle
1408  *  Pointer to interrupt handle.
1409  * @param param
1410  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1411  *
1412  * @return
1413  *  void
1414  */
1415 static void
1416 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1417                                                         void *param)
1418 {
1419         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1420
1421         eth_em_interrupt_get_status(dev);
1422         eth_em_interrupt_action(dev);
1423         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1424 }
1425
1426 static int
1427 eth_em_led_on(struct rte_eth_dev *dev)
1428 {
1429         struct e1000_hw *hw;
1430
1431         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1432         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1433 }
1434
1435 static int
1436 eth_em_led_off(struct rte_eth_dev *dev)
1437 {
1438         struct e1000_hw *hw;
1439
1440         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1441         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1442 }
1443
1444 static int
1445 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1446 {
1447         struct e1000_hw *hw;
1448         uint32_t ctrl;
1449         int tx_pause;
1450         int rx_pause;
1451
1452         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1453         fc_conf->pause_time = hw->fc.pause_time;
1454         fc_conf->high_water = hw->fc.high_water;
1455         fc_conf->low_water = hw->fc.low_water;
1456         fc_conf->send_xon = hw->fc.send_xon;
1457         fc_conf->autoneg = hw->mac.autoneg;
1458
1459         /*
1460          * Return rx_pause and tx_pause status according to actual setting of
1461          * the TFCE and RFCE bits in the CTRL register.
1462          */
1463         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1464         if (ctrl & E1000_CTRL_TFCE)
1465                 tx_pause = 1;
1466         else
1467                 tx_pause = 0;
1468
1469         if (ctrl & E1000_CTRL_RFCE)
1470                 rx_pause = 1;
1471         else
1472                 rx_pause = 0;
1473
1474         if (rx_pause && tx_pause)
1475                 fc_conf->mode = RTE_FC_FULL;
1476         else if (rx_pause)
1477                 fc_conf->mode = RTE_FC_RX_PAUSE;
1478         else if (tx_pause)
1479                 fc_conf->mode = RTE_FC_TX_PAUSE;
1480         else
1481                 fc_conf->mode = RTE_FC_NONE;
1482
1483         return 0;
1484 }
1485
1486 static int
1487 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1488 {
1489         struct e1000_hw *hw;
1490         int err;
1491         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1492                 e1000_fc_none,
1493                 e1000_fc_rx_pause,
1494                 e1000_fc_tx_pause,
1495                 e1000_fc_full
1496         };
1497         uint32_t rx_buf_size;
1498         uint32_t max_high_water;
1499         uint32_t rctl;
1500
1501         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1502         if (fc_conf->autoneg != hw->mac.autoneg)
1503                 return -ENOTSUP;
1504         rx_buf_size = em_get_rx_buffer_size(hw);
1505         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1506
1507         /* At least reserve one Ethernet frame for watermark */
1508         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1509         if ((fc_conf->high_water > max_high_water) ||
1510             (fc_conf->high_water < fc_conf->low_water)) {
1511                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1512                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1513                 return (-EINVAL);
1514         }
1515
1516         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1517         hw->fc.pause_time     = fc_conf->pause_time;
1518         hw->fc.high_water     = fc_conf->high_water;
1519         hw->fc.low_water      = fc_conf->low_water;
1520         hw->fc.send_xon       = fc_conf->send_xon;
1521
1522         err = e1000_setup_link_generic(hw);
1523         if (err == E1000_SUCCESS) {
1524
1525                 /* check if we want to forward MAC frames - driver doesn't have native
1526                  * capability to do that, so we'll write the registers ourselves */
1527
1528                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1529
1530                 /* set or clear MFLCN.PMCF bit depending on configuration */
1531                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1532                         rctl |= E1000_RCTL_PMCF;
1533                 else
1534                         rctl &= ~E1000_RCTL_PMCF;
1535
1536                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1537                 E1000_WRITE_FLUSH(hw);
1538
1539                 return 0;
1540         }
1541
1542         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1543         return (-EIO);
1544 }
1545
1546 static void
1547 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1548                 uint32_t index, __rte_unused uint32_t pool)
1549 {
1550         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1551
1552         e1000_rar_set(hw, mac_addr->addr_bytes, index);
1553 }
1554
1555 static void
1556 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1557 {
1558         uint8_t addr[ETHER_ADDR_LEN];
1559         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1560
1561         memset(addr, 0, sizeof(addr));
1562
1563         e1000_rar_set(hw, addr, index);
1564 }
1565
1566 static int
1567 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1568 {
1569         struct rte_eth_dev_info dev_info;
1570         struct e1000_hw *hw;
1571         uint32_t frame_size;
1572         uint32_t rctl;
1573
1574         eth_em_infos_get(dev, &dev_info);
1575         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1576
1577         /* check that mtu is within the allowed range */
1578         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1579                 return -EINVAL;
1580
1581         /* refuse mtu that requires the support of scattered packets when this
1582          * feature has not been enabled before. */
1583         if (!dev->data->scattered_rx &&
1584             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1585                 return -EINVAL;
1586
1587         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1588         rctl = E1000_READ_REG(hw, E1000_RCTL);
1589
1590         /* switch to jumbo mode if needed */
1591         if (frame_size > ETHER_MAX_LEN) {
1592                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1593                 rctl |= E1000_RCTL_LPE;
1594         } else {
1595                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1596                 rctl &= ~E1000_RCTL_LPE;
1597         }
1598         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1599
1600         /* update max frame size */
1601         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1602         return 0;
1603 }
1604
1605 static int
1606 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1607                         struct ether_addr *mc_addr_set,
1608                         uint32_t nb_mc_addr)
1609 {
1610         struct e1000_hw *hw;
1611
1612         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1613         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1614         return 0;
1615 }
1616
1617 struct rte_driver em_pmd_drv = {
1618         .type = PMD_PDEV,
1619         .init = rte_em_pmd_init,
1620 };
1621
1622 PMD_REGISTER_DRIVER(em_pmd_drv);