ethdev: new Rx/Tx offloads API
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29
30 #define EM_EIAC                 0x000DC
31
32 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
33
34
35 static int eth_em_configure(struct rte_eth_dev *dev);
36 static int eth_em_start(struct rte_eth_dev *dev);
37 static void eth_em_stop(struct rte_eth_dev *dev);
38 static void eth_em_close(struct rte_eth_dev *dev);
39 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
40 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
42 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
43 static int eth_em_link_update(struct rte_eth_dev *dev,
44                                 int wait_to_complete);
45 static int eth_em_stats_get(struct rte_eth_dev *dev,
46                                 struct rte_eth_stats *rte_stats);
47 static void eth_em_stats_reset(struct rte_eth_dev *dev);
48 static void eth_em_infos_get(struct rte_eth_dev *dev,
49                                 struct rte_eth_dev_info *dev_info);
50 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
51                                 struct rte_eth_fc_conf *fc_conf);
52 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
53                                 struct rte_eth_fc_conf *fc_conf);
54 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
57 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
58                                    struct rte_intr_handle *handle);
59 static void eth_em_interrupt_handler(void *param);
60
61 static int em_hw_init(struct e1000_hw *hw);
62 static int em_hardware_init(struct e1000_hw *hw);
63 static void em_hw_control_acquire(struct e1000_hw *hw);
64 static void em_hw_control_release(struct e1000_hw *hw);
65 static void em_init_manageability(struct e1000_hw *hw);
66 static void em_release_manageability(struct e1000_hw *hw);
67
68 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69
70 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
71                 uint16_t vlan_id, int on);
72 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
73 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
76 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
77
78 /*
79 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
80                                         uint16_t vlan_id, int on);
81 */
82
83 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
85 static void em_lsc_intr_disable(struct e1000_hw *hw);
86 static void em_rxq_intr_enable(struct e1000_hw *hw);
87 static void em_rxq_intr_disable(struct e1000_hw *hw);
88
89 static int eth_em_led_on(struct rte_eth_dev *dev);
90 static int eth_em_led_off(struct rte_eth_dev *dev);
91
92 static int em_get_rx_buffer_size(struct e1000_hw *hw);
93 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
94                           uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 int e1000_logtype_init;
110 int e1000_logtype_driver;
111
112 /*
113  * The set of PCI devices this driver supports
114  */
115 static const struct rte_pci_id pci_id_em_map[] = {
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
161         { .vendor_id = 0, /* sentinel */ },
162 };
163
164 static const struct eth_dev_ops eth_em_ops = {
165         .dev_configure        = eth_em_configure,
166         .dev_start            = eth_em_start,
167         .dev_stop             = eth_em_stop,
168         .dev_close            = eth_em_close,
169         .promiscuous_enable   = eth_em_promiscuous_enable,
170         .promiscuous_disable  = eth_em_promiscuous_disable,
171         .allmulticast_enable  = eth_em_allmulticast_enable,
172         .allmulticast_disable = eth_em_allmulticast_disable,
173         .link_update          = eth_em_link_update,
174         .stats_get            = eth_em_stats_get,
175         .stats_reset          = eth_em_stats_reset,
176         .dev_infos_get        = eth_em_infos_get,
177         .mtu_set              = eth_em_mtu_set,
178         .vlan_filter_set      = eth_em_vlan_filter_set,
179         .vlan_offload_set     = eth_em_vlan_offload_set,
180         .rx_queue_setup       = eth_em_rx_queue_setup,
181         .rx_queue_release     = eth_em_rx_queue_release,
182         .rx_queue_count       = eth_em_rx_queue_count,
183         .rx_descriptor_done   = eth_em_rx_descriptor_done,
184         .rx_descriptor_status = eth_em_rx_descriptor_status,
185         .tx_descriptor_status = eth_em_tx_descriptor_status,
186         .tx_queue_setup       = eth_em_tx_queue_setup,
187         .tx_queue_release     = eth_em_tx_queue_release,
188         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
189         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
190         .dev_led_on           = eth_em_led_on,
191         .dev_led_off          = eth_em_led_off,
192         .flow_ctrl_get        = eth_em_flow_ctrl_get,
193         .flow_ctrl_set        = eth_em_flow_ctrl_set,
194         .mac_addr_set         = eth_em_default_mac_addr_set,
195         .mac_addr_add         = eth_em_rar_set,
196         .mac_addr_remove      = eth_em_rar_clear,
197         .set_mc_addr_list     = eth_em_set_mc_addr_list,
198         .rxq_info_get         = em_rxq_info_get,
199         .txq_info_get         = em_txq_info_get,
200 };
201
202
203 /**
204  *  eth_em_dev_is_ich8 - Check for ICH8 device
205  *  @hw: pointer to the HW structure
206  *
207  *  return TRUE for ICH8, otherwise FALSE
208  **/
209 static bool
210 eth_em_dev_is_ich8(struct e1000_hw *hw)
211 {
212         DEBUGFUNC("eth_em_dev_is_ich8");
213
214         switch (hw->device_id) {
215         case E1000_DEV_ID_PCH2_LV_LM:
216         case E1000_DEV_ID_PCH_LPT_I217_LM:
217         case E1000_DEV_ID_PCH_LPT_I217_V:
218         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
219         case E1000_DEV_ID_PCH_LPTLP_I218_V:
220         case E1000_DEV_ID_PCH_I218_V2:
221         case E1000_DEV_ID_PCH_I218_LM2:
222         case E1000_DEV_ID_PCH_I218_V3:
223         case E1000_DEV_ID_PCH_I218_LM3:
224         case E1000_DEV_ID_PCH_SPT_I219_LM:
225         case E1000_DEV_ID_PCH_SPT_I219_V:
226         case E1000_DEV_ID_PCH_SPT_I219_LM2:
227         case E1000_DEV_ID_PCH_SPT_I219_V2:
228         case E1000_DEV_ID_PCH_LBG_I219_LM3:
229         case E1000_DEV_ID_PCH_SPT_I219_LM4:
230         case E1000_DEV_ID_PCH_SPT_I219_V4:
231         case E1000_DEV_ID_PCH_SPT_I219_LM5:
232         case E1000_DEV_ID_PCH_SPT_I219_V5:
233         case E1000_DEV_ID_PCH_CNP_I219_LM6:
234         case E1000_DEV_ID_PCH_CNP_I219_V6:
235         case E1000_DEV_ID_PCH_CNP_I219_LM7:
236         case E1000_DEV_ID_PCH_CNP_I219_V7:
237                 return 1;
238         default:
239                 return 0;
240         }
241 }
242
243 static int
244 eth_em_dev_init(struct rte_eth_dev *eth_dev)
245 {
246         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
247         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
248         struct e1000_adapter *adapter =
249                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
250         struct e1000_hw *hw =
251                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
252         struct e1000_vfta * shadow_vfta =
253                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
254
255         eth_dev->dev_ops = &eth_em_ops;
256         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
257         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
258         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
259
260         /* for secondary processes, we don't initialise any further as primary
261          * has already done this work. Only check we don't need a different
262          * RX function */
263         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
264                 if (eth_dev->data->scattered_rx)
265                         eth_dev->rx_pkt_burst =
266                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
267                 return 0;
268         }
269
270         rte_eth_copy_pci_info(eth_dev, pci_dev);
271
272         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
273         hw->device_id = pci_dev->id.device_id;
274         adapter->stopped = 0;
275
276         /* For ICH8 support we'll need to map the flash memory BAR */
277         if (eth_em_dev_is_ich8(hw))
278                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
279
280         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
281                         em_hw_init(hw) != 0) {
282                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
283                         "failed to init HW",
284                         eth_dev->data->port_id, pci_dev->id.vendor_id,
285                         pci_dev->id.device_id);
286                 return -ENODEV;
287         }
288
289         /* Allocate memory for storing MAC addresses */
290         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
291                         hw->mac.rar_entry_count, 0);
292         if (eth_dev->data->mac_addrs == NULL) {
293                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
294                         "store MAC addresses",
295                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
296                 return -ENOMEM;
297         }
298
299         /* Copy the permanent MAC address */
300         ether_addr_copy((struct ether_addr *) hw->mac.addr,
301                 eth_dev->data->mac_addrs);
302
303         /* initialize the vfta */
304         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
305
306         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
307                      eth_dev->data->port_id, pci_dev->id.vendor_id,
308                      pci_dev->id.device_id);
309
310         rte_intr_callback_register(intr_handle,
311                                    eth_em_interrupt_handler, eth_dev);
312
313         return 0;
314 }
315
316 static int
317 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
318 {
319         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
320         struct e1000_adapter *adapter =
321                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
322         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
323
324         PMD_INIT_FUNC_TRACE();
325
326         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
327                 return -EPERM;
328
329         if (adapter->stopped == 0)
330                 eth_em_close(eth_dev);
331
332         eth_dev->dev_ops = NULL;
333         eth_dev->rx_pkt_burst = NULL;
334         eth_dev->tx_pkt_burst = NULL;
335
336         rte_free(eth_dev->data->mac_addrs);
337         eth_dev->data->mac_addrs = NULL;
338
339         /* disable uio intr before callback unregister */
340         rte_intr_disable(intr_handle);
341         rte_intr_callback_unregister(intr_handle,
342                                      eth_em_interrupt_handler, eth_dev);
343
344         return 0;
345 }
346
347 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
348         struct rte_pci_device *pci_dev)
349 {
350         return rte_eth_dev_pci_generic_probe(pci_dev,
351                 sizeof(struct e1000_adapter), eth_em_dev_init);
352 }
353
354 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
355 {
356         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
357 }
358
359 static struct rte_pci_driver rte_em_pmd = {
360         .id_table = pci_id_em_map,
361         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
362                      RTE_PCI_DRV_IOVA_AS_VA,
363         .probe = eth_em_pci_probe,
364         .remove = eth_em_pci_remove,
365 };
366
367 static int
368 em_hw_init(struct e1000_hw *hw)
369 {
370         int diag;
371
372         diag = hw->mac.ops.init_params(hw);
373         if (diag != 0) {
374                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
375                 return diag;
376         }
377         diag = hw->nvm.ops.init_params(hw);
378         if (diag != 0) {
379                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
380                 return diag;
381         }
382         diag = hw->phy.ops.init_params(hw);
383         if (diag != 0) {
384                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
385                 return diag;
386         }
387         (void) e1000_get_bus_info(hw);
388
389         hw->mac.autoneg = 1;
390         hw->phy.autoneg_wait_to_complete = 0;
391         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
392
393         e1000_init_script_state_82541(hw, TRUE);
394         e1000_set_tbi_compatibility_82543(hw, TRUE);
395
396         /* Copper options */
397         if (hw->phy.media_type == e1000_media_type_copper) {
398                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
399                 hw->phy.disable_polarity_correction = 0;
400                 hw->phy.ms_type = e1000_ms_hw_default;
401         }
402
403         /*
404          * Start from a known state, this is important in reading the nvm
405          * and mac from that.
406          */
407         e1000_reset_hw(hw);
408
409         /* Make sure we have a good EEPROM before we read from it */
410         if (e1000_validate_nvm_checksum(hw) < 0) {
411                 /*
412                  * Some PCI-E parts fail the first check due to
413                  * the link being in sleep state, call it again,
414                  * if it fails a second time its a real issue.
415                  */
416                 diag = e1000_validate_nvm_checksum(hw);
417                 if (diag < 0) {
418                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
419                         goto error;
420                 }
421         }
422
423         /* Read the permanent MAC address out of the EEPROM */
424         diag = e1000_read_mac_addr(hw);
425         if (diag != 0) {
426                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
427                 goto error;
428         }
429
430         /* Now initialize the hardware */
431         diag = em_hardware_init(hw);
432         if (diag != 0) {
433                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
434                 goto error;
435         }
436
437         hw->mac.get_link_status = 1;
438
439         /* Indicate SOL/IDER usage */
440         diag = e1000_check_reset_block(hw);
441         if (diag < 0) {
442                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
443                         "SOL/IDER session");
444         }
445         return 0;
446
447 error:
448         em_hw_control_release(hw);
449         return diag;
450 }
451
452 static int
453 eth_em_configure(struct rte_eth_dev *dev)
454 {
455         struct e1000_interrupt *intr =
456                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
457
458         PMD_INIT_FUNC_TRACE();
459         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
460
461         PMD_INIT_FUNC_TRACE();
462
463         return 0;
464 }
465
466 static void
467 em_set_pba(struct e1000_hw *hw)
468 {
469         uint32_t pba;
470
471         /*
472          * Packet Buffer Allocation (PBA)
473          * Writing PBA sets the receive portion of the buffer
474          * the remainder is used for the transmit buffer.
475          * Devices before the 82547 had a Packet Buffer of 64K.
476          * After the 82547 the buffer was reduced to 40K.
477          */
478         switch (hw->mac.type) {
479                 case e1000_82547:
480                 case e1000_82547_rev_2:
481                 /* 82547: Total Packet Buffer is 40K */
482                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
483                         break;
484                 case e1000_82571:
485                 case e1000_82572:
486                 case e1000_80003es2lan:
487                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
488                         break;
489                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
490                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
491                         break;
492                 case e1000_82574:
493                 case e1000_82583:
494                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
495                         break;
496                 case e1000_ich8lan:
497                         pba = E1000_PBA_8K;
498                         break;
499                 case e1000_ich9lan:
500                 case e1000_ich10lan:
501                         pba = E1000_PBA_10K;
502                         break;
503                 case e1000_pchlan:
504                 case e1000_pch2lan:
505                 case e1000_pch_lpt:
506                 case e1000_pch_spt:
507                 case e1000_pch_cnp:
508                         pba = E1000_PBA_26K;
509                         break;
510                 default:
511                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
512         }
513
514         E1000_WRITE_REG(hw, E1000_PBA, pba);
515 }
516
517 static void
518 eth_em_rxtx_control(struct rte_eth_dev *dev,
519                     bool enable)
520 {
521         struct e1000_hw *hw =
522                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
523         uint32_t tctl, rctl;
524
525         tctl = E1000_READ_REG(hw, E1000_TCTL);
526         rctl = E1000_READ_REG(hw, E1000_RCTL);
527         if (enable) {
528                 /* enable Tx/Rx */
529                 tctl |= E1000_TCTL_EN;
530                 rctl |= E1000_RCTL_EN;
531         } else {
532                 /* disable Tx/Rx */
533                 tctl &= ~E1000_TCTL_EN;
534                 rctl &= ~E1000_RCTL_EN;
535         }
536         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
537         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
538         E1000_WRITE_FLUSH(hw);
539 }
540
541 static int
542 eth_em_start(struct rte_eth_dev *dev)
543 {
544         struct e1000_adapter *adapter =
545                 E1000_DEV_PRIVATE(dev->data->dev_private);
546         struct e1000_hw *hw =
547                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
548         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
549         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
550         int ret, mask;
551         uint32_t intr_vector = 0;
552         uint32_t *speeds;
553         int num_speeds;
554         bool autoneg;
555
556         PMD_INIT_FUNC_TRACE();
557
558         eth_em_stop(dev);
559
560         e1000_power_up_phy(hw);
561
562         /* Set default PBA value */
563         em_set_pba(hw);
564
565         /* Put the address into the Receive Address Array */
566         e1000_rar_set(hw, hw->mac.addr, 0);
567
568         /*
569          * With the 82571 adapter, RAR[0] may be overwritten
570          * when the other port is reset, we make a duplicate
571          * in RAR[14] for that eventuality, this assures
572          * the interface continues to function.
573          */
574         if (hw->mac.type == e1000_82571) {
575                 e1000_set_laa_state_82571(hw, TRUE);
576                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
577         }
578
579         /* Initialize the hardware */
580         if (em_hardware_init(hw)) {
581                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
582                 return -EIO;
583         }
584
585         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
586
587         /* Configure for OS presence */
588         em_init_manageability(hw);
589
590         if (dev->data->dev_conf.intr_conf.rxq != 0) {
591                 intr_vector = dev->data->nb_rx_queues;
592                 if (rte_intr_efd_enable(intr_handle, intr_vector))
593                         return -1;
594         }
595
596         if (rte_intr_dp_is_en(intr_handle)) {
597                 intr_handle->intr_vec =
598                         rte_zmalloc("intr_vec",
599                                         dev->data->nb_rx_queues * sizeof(int), 0);
600                 if (intr_handle->intr_vec == NULL) {
601                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
602                                                 " intr_vec", dev->data->nb_rx_queues);
603                         return -ENOMEM;
604                 }
605
606                 /* enable rx interrupt */
607                 em_rxq_intr_enable(hw);
608         }
609
610         eth_em_tx_init(dev);
611
612         ret = eth_em_rx_init(dev);
613         if (ret) {
614                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
615                 em_dev_clear_queues(dev);
616                 return ret;
617         }
618
619         e1000_clear_hw_cntrs_base_generic(hw);
620
621         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
622                         ETH_VLAN_EXTEND_MASK;
623         ret = eth_em_vlan_offload_set(dev, mask);
624         if (ret) {
625                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
626                 em_dev_clear_queues(dev);
627                 return ret;
628         }
629
630         /* Set Interrupt Throttling Rate to maximum allowed value. */
631         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
632
633         /* Setup link speed and duplex */
634         speeds = &dev->data->dev_conf.link_speeds;
635         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
636                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
637                 hw->mac.autoneg = 1;
638         } else {
639                 num_speeds = 0;
640                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
641
642                 /* Reset */
643                 hw->phy.autoneg_advertised = 0;
644
645                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
646                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
647                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
648                         num_speeds = -1;
649                         goto error_invalid_config;
650                 }
651                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
652                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
653                         num_speeds++;
654                 }
655                 if (*speeds & ETH_LINK_SPEED_10M) {
656                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
657                         num_speeds++;
658                 }
659                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
660                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
661                         num_speeds++;
662                 }
663                 if (*speeds & ETH_LINK_SPEED_100M) {
664                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
665                         num_speeds++;
666                 }
667                 if (*speeds & ETH_LINK_SPEED_1G) {
668                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
669                         num_speeds++;
670                 }
671                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
672                         goto error_invalid_config;
673
674                 /* Set/reset the mac.autoneg based on the link speed,
675                  * fixed or not
676                  */
677                 if (!autoneg) {
678                         hw->mac.autoneg = 0;
679                         hw->mac.forced_speed_duplex =
680                                         hw->phy.autoneg_advertised;
681                 } else {
682                         hw->mac.autoneg = 1;
683                 }
684         }
685
686         e1000_setup_link(hw);
687
688         if (rte_intr_allow_others(intr_handle)) {
689                 /* check if lsc interrupt is enabled */
690                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
691                         ret = eth_em_interrupt_setup(dev);
692                         if (ret) {
693                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
694                                 em_dev_clear_queues(dev);
695                                 return ret;
696                         }
697                 }
698         } else {
699                 rte_intr_callback_unregister(intr_handle,
700                                                 eth_em_interrupt_handler,
701                                                 (void *)dev);
702                 if (dev->data->dev_conf.intr_conf.lsc != 0)
703                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
704                                      " no intr multiplexn");
705         }
706         /* check if rxq interrupt is enabled */
707         if (dev->data->dev_conf.intr_conf.rxq != 0)
708                 eth_em_rxq_interrupt_setup(dev);
709
710         rte_intr_enable(intr_handle);
711
712         adapter->stopped = 0;
713
714         eth_em_rxtx_control(dev, true);
715         eth_em_link_update(dev, 0);
716
717         PMD_INIT_LOG(DEBUG, "<<");
718
719         return 0;
720
721 error_invalid_config:
722         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
723                      dev->data->dev_conf.link_speeds, dev->data->port_id);
724         em_dev_clear_queues(dev);
725         return -EINVAL;
726 }
727
728 /*********************************************************************
729  *
730  *  This routine disables all traffic on the adapter by issuing a
731  *  global reset on the MAC.
732  *
733  **********************************************************************/
734 static void
735 eth_em_stop(struct rte_eth_dev *dev)
736 {
737         struct rte_eth_link link;
738         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
739         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
740         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
741
742         eth_em_rxtx_control(dev, false);
743         em_rxq_intr_disable(hw);
744         em_lsc_intr_disable(hw);
745
746         e1000_reset_hw(hw);
747         if (hw->mac.type >= e1000_82544)
748                 E1000_WRITE_REG(hw, E1000_WUC, 0);
749
750         /* Power down the phy. Needed to make the link go down */
751         e1000_power_down_phy(hw);
752
753         em_dev_clear_queues(dev);
754
755         /* clear the recorded link status */
756         memset(&link, 0, sizeof(link));
757         rte_eth_linkstatus_set(dev, &link);
758
759         if (!rte_intr_allow_others(intr_handle))
760                 /* resume to the default handler */
761                 rte_intr_callback_register(intr_handle,
762                                            eth_em_interrupt_handler,
763                                            (void *)dev);
764
765         /* Clean datapath event and queue/vec mapping */
766         rte_intr_efd_disable(intr_handle);
767         if (intr_handle->intr_vec != NULL) {
768                 rte_free(intr_handle->intr_vec);
769                 intr_handle->intr_vec = NULL;
770         }
771 }
772
773 static void
774 eth_em_close(struct rte_eth_dev *dev)
775 {
776         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
777         struct e1000_adapter *adapter =
778                 E1000_DEV_PRIVATE(dev->data->dev_private);
779
780         eth_em_stop(dev);
781         adapter->stopped = 1;
782         em_dev_free_queues(dev);
783         e1000_phy_hw_reset(hw);
784         em_release_manageability(hw);
785         em_hw_control_release(hw);
786 }
787
788 static int
789 em_get_rx_buffer_size(struct e1000_hw *hw)
790 {
791         uint32_t rx_buf_size;
792
793         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
794         return rx_buf_size;
795 }
796
797 /*********************************************************************
798  *
799  *  Initialize the hardware
800  *
801  **********************************************************************/
802 static int
803 em_hardware_init(struct e1000_hw *hw)
804 {
805         uint32_t rx_buf_size;
806         int diag;
807
808         /* Issue a global reset */
809         e1000_reset_hw(hw);
810
811         /* Let the firmware know the OS is in control */
812         em_hw_control_acquire(hw);
813
814         /*
815          * These parameters control the automatic generation (Tx) and
816          * response (Rx) to Ethernet PAUSE frames.
817          * - High water mark should allow for at least two standard size (1518)
818          *   frames to be received after sending an XOFF.
819          * - Low water mark works best when it is very near the high water mark.
820          *   This allows the receiver to restart by sending XON when it has
821          *   drained a bit. Here we use an arbitrary value of 1500 which will
822          *   restart after one full frame is pulled from the buffer. There
823          *   could be several smaller frames in the buffer and if so they will
824          *   not trigger the XON until their total number reduces the buffer
825          *   by 1500.
826          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
827          */
828         rx_buf_size = em_get_rx_buffer_size(hw);
829
830         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
831         hw->fc.low_water = hw->fc.high_water - 1500;
832
833         if (hw->mac.type == e1000_80003es2lan)
834                 hw->fc.pause_time = UINT16_MAX;
835         else
836                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
837
838         hw->fc.send_xon = 1;
839
840         /* Set Flow control, use the tunable location if sane */
841         if (em_fc_setting <= e1000_fc_full)
842                 hw->fc.requested_mode = em_fc_setting;
843         else
844                 hw->fc.requested_mode = e1000_fc_none;
845
846         /* Workaround: no TX flow ctrl for PCH */
847         if (hw->mac.type == e1000_pchlan)
848                 hw->fc.requested_mode = e1000_fc_rx_pause;
849
850         /* Override - settings for PCH2LAN, ya its magic :) */
851         if (hw->mac.type == e1000_pch2lan) {
852                 hw->fc.high_water = 0x5C20;
853                 hw->fc.low_water = 0x5048;
854                 hw->fc.pause_time = 0x0650;
855                 hw->fc.refresh_time = 0x0400;
856         } else if (hw->mac.type == e1000_pch_lpt ||
857                    hw->mac.type == e1000_pch_spt ||
858                    hw->mac.type == e1000_pch_cnp) {
859                 hw->fc.requested_mode = e1000_fc_full;
860         }
861
862         diag = e1000_init_hw(hw);
863         if (diag < 0)
864                 return diag;
865         e1000_check_for_link(hw);
866         return 0;
867 }
868
869 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
870 static int
871 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
872 {
873         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
874         struct e1000_hw_stats *stats =
875                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
876         int pause_frames;
877
878         if(hw->phy.media_type == e1000_media_type_copper ||
879                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
880                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
881                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
882         }
883
884         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
885         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
886         stats->scc += E1000_READ_REG(hw, E1000_SCC);
887         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
888
889         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
890         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
891         stats->colc += E1000_READ_REG(hw, E1000_COLC);
892         stats->dc += E1000_READ_REG(hw, E1000_DC);
893         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
894         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
895         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
896
897         /*
898          * For watchdog management we need to know if we have been
899          * paused during the last interval, so capture that here.
900          */
901         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
902         stats->xoffrxc += pause_frames;
903         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
904         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
905         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
906         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
907         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
908         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
909         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
910         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
911         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
912         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
913         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
914         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
915
916         /*
917          * For the 64-bit byte counters the low dword must be read first.
918          * Both registers clear on the read of the high dword.
919          */
920
921         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
922         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
923         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
924         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
925
926         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
927         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
928         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
929         stats->roc += E1000_READ_REG(hw, E1000_ROC);
930         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
931
932         stats->tor += E1000_READ_REG(hw, E1000_TORH);
933         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
934
935         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
936         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
937         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
938         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
939         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
940         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
941         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
942         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
943         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
944         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
945
946         /* Interrupt Counts */
947
948         if (hw->mac.type >= e1000_82571) {
949                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
950                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
951                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
952                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
953                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
954                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
955                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
956                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
957                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
958         }
959
960         if (hw->mac.type >= e1000_82543) {
961                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
962                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
963                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
964                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
965                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
966                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
967         }
968
969         if (rte_stats == NULL)
970                 return -EINVAL;
971
972         /* Rx Errors */
973         rte_stats->imissed = stats->mpc;
974         rte_stats->ierrors = stats->crcerrs +
975                              stats->rlec + stats->ruc + stats->roc +
976                              stats->rxerrc + stats->algnerrc + stats->cexterr;
977
978         /* Tx Errors */
979         rte_stats->oerrors = stats->ecol + stats->latecol;
980
981         rte_stats->ipackets = stats->gprc;
982         rte_stats->opackets = stats->gptc;
983         rte_stats->ibytes   = stats->gorc;
984         rte_stats->obytes   = stats->gotc;
985         return 0;
986 }
987
988 static void
989 eth_em_stats_reset(struct rte_eth_dev *dev)
990 {
991         struct e1000_hw_stats *hw_stats =
992                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
993
994         /* HW registers are cleared on read */
995         eth_em_stats_get(dev, NULL);
996
997         /* Reset software totals */
998         memset(hw_stats, 0, sizeof(*hw_stats));
999 }
1000
1001 static int
1002 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1003 {
1004         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1005         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1006         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1007
1008         em_rxq_intr_enable(hw);
1009         rte_intr_enable(intr_handle);
1010
1011         return 0;
1012 }
1013
1014 static int
1015 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1016 {
1017         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1018
1019         em_rxq_intr_disable(hw);
1020
1021         return 0;
1022 }
1023
1024 uint32_t
1025 em_get_max_pktlen(struct rte_eth_dev *dev)
1026 {
1027         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1028
1029         switch (hw->mac.type) {
1030         case e1000_82571:
1031         case e1000_82572:
1032         case e1000_ich9lan:
1033         case e1000_ich10lan:
1034         case e1000_pch2lan:
1035         case e1000_pch_lpt:
1036         case e1000_pch_spt:
1037         case e1000_pch_cnp:
1038         case e1000_82574:
1039         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1040         case e1000_82583:
1041                 return 0x2412;
1042         case e1000_pchlan:
1043                 return 0x1000;
1044         /* Adapters that do not support jumbo frames */
1045         case e1000_ich8lan:
1046                 return ETHER_MAX_LEN;
1047         default:
1048                 return MAX_JUMBO_FRAME_SIZE;
1049         }
1050 }
1051
1052 static void
1053 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1054 {
1055         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1056
1057         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1058         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1059         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1060
1061         /*
1062          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1063          * Unfortunatelly, all these nics have just one TX context.
1064          * So we have few choises for TX:
1065          * - Use just one TX queue.
1066          * - Allow cksum offload only for one TX queue.
1067          * - Don't allow TX cksum offload at all.
1068          * For now, option #1 was chosen.
1069          * To use second RX queue we have to use extended RX descriptor
1070          * (Multiple Receive Queues are mutually exclusive with UDP
1071          * fragmentation and are not supported when a legacy receive
1072          * descriptor format is used).
1073          * Which means separate RX routinies - as legacy nics (82540, 82545)
1074          * don't support extended RXD.
1075          * To avoid it we support just one RX queue for now (no RSS).
1076          */
1077
1078         dev_info->max_rx_queues = 1;
1079         dev_info->max_tx_queues = 1;
1080
1081         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1082         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1083                                     dev_info->rx_queue_offload_capa;
1084         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1085         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1086                                     dev_info->tx_queue_offload_capa;
1087
1088         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1089                 .nb_max = E1000_MAX_RING_DESC,
1090                 .nb_min = E1000_MIN_RING_DESC,
1091                 .nb_align = EM_RXD_ALIGN,
1092         };
1093
1094         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1095                 .nb_max = E1000_MAX_RING_DESC,
1096                 .nb_min = E1000_MIN_RING_DESC,
1097                 .nb_align = EM_TXD_ALIGN,
1098                 .nb_seg_max = EM_TX_MAX_SEG,
1099                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1100         };
1101
1102         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1103                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1104                         ETH_LINK_SPEED_1G;
1105
1106         /* Preferred queue parameters */
1107         dev_info->default_rxportconf.nb_queues = 1;
1108         dev_info->default_txportconf.nb_queues = 1;
1109         dev_info->default_txportconf.ring_size = 256;
1110         dev_info->default_rxportconf.ring_size = 256;
1111 }
1112
1113 /* return 0 means link status changed, -1 means not changed */
1114 static int
1115 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1116 {
1117         struct e1000_hw *hw =
1118                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1119         struct rte_eth_link link;
1120         int link_check, count;
1121
1122         link_check = 0;
1123         hw->mac.get_link_status = 1;
1124
1125         /* possible wait-to-complete in up to 9 seconds */
1126         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1127                 /* Read the real link status */
1128                 switch (hw->phy.media_type) {
1129                 case e1000_media_type_copper:
1130                         /* Do the work to read phy */
1131                         e1000_check_for_link(hw);
1132                         link_check = !hw->mac.get_link_status;
1133                         break;
1134
1135                 case e1000_media_type_fiber:
1136                         e1000_check_for_link(hw);
1137                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1138                                         E1000_STATUS_LU);
1139                         break;
1140
1141                 case e1000_media_type_internal_serdes:
1142                         e1000_check_for_link(hw);
1143                         link_check = hw->mac.serdes_has_link;
1144                         break;
1145
1146                 default:
1147                         break;
1148                 }
1149                 if (link_check || wait_to_complete == 0)
1150                         break;
1151                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1152         }
1153         memset(&link, 0, sizeof(link));
1154
1155         /* Now we check if a transition has happened */
1156         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1157                 uint16_t duplex, speed;
1158                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1159                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1160                                 ETH_LINK_FULL_DUPLEX :
1161                                 ETH_LINK_HALF_DUPLEX;
1162                 link.link_speed = speed;
1163                 link.link_status = ETH_LINK_UP;
1164                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1165                                 ETH_LINK_SPEED_FIXED);
1166         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1167                 link.link_speed = ETH_SPEED_NUM_NONE;
1168                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1169                 link.link_status = ETH_LINK_DOWN;
1170                 link.link_autoneg = ETH_LINK_FIXED;
1171         }
1172
1173         return rte_eth_linkstatus_set(dev, &link);
1174 }
1175
1176 /*
1177  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1178  * For ASF and Pass Through versions of f/w this means
1179  * that the driver is loaded. For AMT version type f/w
1180  * this means that the network i/f is open.
1181  */
1182 static void
1183 em_hw_control_acquire(struct e1000_hw *hw)
1184 {
1185         uint32_t ctrl_ext, swsm;
1186
1187         /* Let firmware know the driver has taken over */
1188         if (hw->mac.type == e1000_82573) {
1189                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1190                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1191
1192         } else {
1193                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1194                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1195                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1196         }
1197 }
1198
1199 /*
1200  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1201  * For ASF and Pass Through versions of f/w this means that the
1202  * driver is no longer loaded. For AMT versions of the
1203  * f/w this means that the network i/f is closed.
1204  */
1205 static void
1206 em_hw_control_release(struct e1000_hw *hw)
1207 {
1208         uint32_t ctrl_ext, swsm;
1209
1210         /* Let firmware taken over control of h/w */
1211         if (hw->mac.type == e1000_82573) {
1212                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1213                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1214         } else {
1215                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1216                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1217                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1218         }
1219 }
1220
1221 /*
1222  * Bit of a misnomer, what this really means is
1223  * to enable OS management of the system... aka
1224  * to disable special hardware management features.
1225  */
1226 static void
1227 em_init_manageability(struct e1000_hw *hw)
1228 {
1229         if (e1000_enable_mng_pass_thru(hw)) {
1230                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1231                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1232
1233                 /* disable hardware interception of ARP */
1234                 manc &= ~(E1000_MANC_ARP_EN);
1235
1236                 /* enable receiving management packets to the host */
1237                 manc |= E1000_MANC_EN_MNG2HOST;
1238                 manc2h |= 1 << 5;  /* Mng Port 623 */
1239                 manc2h |= 1 << 6;  /* Mng Port 664 */
1240                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1241                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1242         }
1243 }
1244
1245 /*
1246  * Give control back to hardware management
1247  * controller if there is one.
1248  */
1249 static void
1250 em_release_manageability(struct e1000_hw *hw)
1251 {
1252         uint32_t manc;
1253
1254         if (e1000_enable_mng_pass_thru(hw)) {
1255                 manc = E1000_READ_REG(hw, E1000_MANC);
1256
1257                 /* re-enable hardware interception of ARP */
1258                 manc |= E1000_MANC_ARP_EN;
1259                 manc &= ~E1000_MANC_EN_MNG2HOST;
1260
1261                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1262         }
1263 }
1264
1265 static void
1266 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1267 {
1268         struct e1000_hw *hw =
1269                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1270         uint32_t rctl;
1271
1272         rctl = E1000_READ_REG(hw, E1000_RCTL);
1273         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1274         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1275 }
1276
1277 static void
1278 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1279 {
1280         struct e1000_hw *hw =
1281                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1282         uint32_t rctl;
1283
1284         rctl = E1000_READ_REG(hw, E1000_RCTL);
1285         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1286         if (dev->data->all_multicast == 1)
1287                 rctl |= E1000_RCTL_MPE;
1288         else
1289                 rctl &= (~E1000_RCTL_MPE);
1290         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1291 }
1292
1293 static void
1294 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1295 {
1296         struct e1000_hw *hw =
1297                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1298         uint32_t rctl;
1299
1300         rctl = E1000_READ_REG(hw, E1000_RCTL);
1301         rctl |= E1000_RCTL_MPE;
1302         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1303 }
1304
1305 static void
1306 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1307 {
1308         struct e1000_hw *hw =
1309                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1310         uint32_t rctl;
1311
1312         if (dev->data->promiscuous == 1)
1313                 return; /* must remain in all_multicast mode */
1314         rctl = E1000_READ_REG(hw, E1000_RCTL);
1315         rctl &= (~E1000_RCTL_MPE);
1316         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1317 }
1318
1319 static int
1320 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1321 {
1322         struct e1000_hw *hw =
1323                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1324         struct e1000_vfta * shadow_vfta =
1325                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1326         uint32_t vfta;
1327         uint32_t vid_idx;
1328         uint32_t vid_bit;
1329
1330         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1331                               E1000_VFTA_ENTRY_MASK);
1332         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1333         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1334         if (on)
1335                 vfta |= vid_bit;
1336         else
1337                 vfta &= ~vid_bit;
1338         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1339
1340         /* update local VFTA copy */
1341         shadow_vfta->vfta[vid_idx] = vfta;
1342
1343         return 0;
1344 }
1345
1346 static void
1347 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1348 {
1349         struct e1000_hw *hw =
1350                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1351         uint32_t reg;
1352
1353         /* Filter Table Disable */
1354         reg = E1000_READ_REG(hw, E1000_RCTL);
1355         reg &= ~E1000_RCTL_CFIEN;
1356         reg &= ~E1000_RCTL_VFE;
1357         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1358 }
1359
1360 static void
1361 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1362 {
1363         struct e1000_hw *hw =
1364                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1365         struct e1000_vfta * shadow_vfta =
1366                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1367         uint32_t reg;
1368         int i;
1369
1370         /* Filter Table Enable, CFI not used for packet acceptance */
1371         reg = E1000_READ_REG(hw, E1000_RCTL);
1372         reg &= ~E1000_RCTL_CFIEN;
1373         reg |= E1000_RCTL_VFE;
1374         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1375
1376         /* restore vfta from local copy */
1377         for (i = 0; i < IGB_VFTA_SIZE; i++)
1378                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1379 }
1380
1381 static void
1382 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1383 {
1384         struct e1000_hw *hw =
1385                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1386         uint32_t reg;
1387
1388         /* VLAN Mode Disable */
1389         reg = E1000_READ_REG(hw, E1000_CTRL);
1390         reg &= ~E1000_CTRL_VME;
1391         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1392
1393 }
1394
1395 static void
1396 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1397 {
1398         struct e1000_hw *hw =
1399                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1400         uint32_t reg;
1401
1402         /* VLAN Mode Enable */
1403         reg = E1000_READ_REG(hw, E1000_CTRL);
1404         reg |= E1000_CTRL_VME;
1405         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1406 }
1407
1408 static int
1409 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1410 {
1411         struct rte_eth_rxmode *rxmode;
1412
1413         rxmode = &dev->data->dev_conf.rxmode;
1414         if(mask & ETH_VLAN_STRIP_MASK){
1415                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1416                         em_vlan_hw_strip_enable(dev);
1417                 else
1418                         em_vlan_hw_strip_disable(dev);
1419         }
1420
1421         if(mask & ETH_VLAN_FILTER_MASK){
1422                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1423                         em_vlan_hw_filter_enable(dev);
1424                 else
1425                         em_vlan_hw_filter_disable(dev);
1426         }
1427
1428         return 0;
1429 }
1430
1431 /*
1432  * It enables the interrupt mask and then enable the interrupt.
1433  *
1434  * @param dev
1435  *  Pointer to struct rte_eth_dev.
1436  *
1437  * @return
1438  *  - On success, zero.
1439  *  - On failure, a negative value.
1440  */
1441 static int
1442 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1443 {
1444         uint32_t regval;
1445         struct e1000_hw *hw =
1446                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1447
1448         /* clear interrupt */
1449         E1000_READ_REG(hw, E1000_ICR);
1450         regval = E1000_READ_REG(hw, E1000_IMS);
1451         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1452         return 0;
1453 }
1454
1455 /*
1456  * It clears the interrupt causes and enables the interrupt.
1457  * It will be called once only during nic initialized.
1458  *
1459  * @param dev
1460  *  Pointer to struct rte_eth_dev.
1461  *
1462  * @return
1463  *  - On success, zero.
1464  *  - On failure, a negative value.
1465  */
1466 static int
1467 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1468 {
1469         struct e1000_hw *hw =
1470         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1471
1472         E1000_READ_REG(hw, E1000_ICR);
1473         em_rxq_intr_enable(hw);
1474         return 0;
1475 }
1476
1477 /*
1478  * It enable receive packet interrupt.
1479  * @param hw
1480  * Pointer to struct e1000_hw
1481  *
1482  * @return
1483  */
1484 static void
1485 em_rxq_intr_enable(struct e1000_hw *hw)
1486 {
1487         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1488         E1000_WRITE_FLUSH(hw);
1489 }
1490
1491 /*
1492  * It disabled lsc interrupt.
1493  * @param hw
1494  * Pointer to struct e1000_hw
1495  *
1496  * @return
1497  */
1498 static void
1499 em_lsc_intr_disable(struct e1000_hw *hw)
1500 {
1501         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1502         E1000_WRITE_FLUSH(hw);
1503 }
1504
1505 /*
1506  * It disabled receive packet interrupt.
1507  * @param hw
1508  * Pointer to struct e1000_hw
1509  *
1510  * @return
1511  */
1512 static void
1513 em_rxq_intr_disable(struct e1000_hw *hw)
1514 {
1515         E1000_READ_REG(hw, E1000_ICR);
1516         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1517         E1000_WRITE_FLUSH(hw);
1518 }
1519
1520 /*
1521  * It reads ICR and gets interrupt causes, check it and set a bit flag
1522  * to update link status.
1523  *
1524  * @param dev
1525  *  Pointer to struct rte_eth_dev.
1526  *
1527  * @return
1528  *  - On success, zero.
1529  *  - On failure, a negative value.
1530  */
1531 static int
1532 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1533 {
1534         uint32_t icr;
1535         struct e1000_hw *hw =
1536                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1537         struct e1000_interrupt *intr =
1538                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1539
1540         /* read-on-clear nic registers here */
1541         icr = E1000_READ_REG(hw, E1000_ICR);
1542         if (icr & E1000_ICR_LSC) {
1543                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1544         }
1545
1546         return 0;
1547 }
1548
1549 /*
1550  * It executes link_update after knowing an interrupt is prsent.
1551  *
1552  * @param dev
1553  *  Pointer to struct rte_eth_dev.
1554  *
1555  * @return
1556  *  - On success, zero.
1557  *  - On failure, a negative value.
1558  */
1559 static int
1560 eth_em_interrupt_action(struct rte_eth_dev *dev,
1561                         struct rte_intr_handle *intr_handle)
1562 {
1563         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1564         struct e1000_hw *hw =
1565                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1566         struct e1000_interrupt *intr =
1567                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1568         struct rte_eth_link link;
1569         int ret;
1570
1571         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1572                 return -1;
1573
1574         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1575         rte_intr_enable(intr_handle);
1576
1577         /* set get_link_status to check register later */
1578         hw->mac.get_link_status = 1;
1579         ret = eth_em_link_update(dev, 0);
1580
1581         /* check if link has changed */
1582         if (ret < 0)
1583                 return 0;
1584
1585         rte_eth_linkstatus_get(dev, &link);
1586
1587         if (link.link_status) {
1588                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1589                              dev->data->port_id, link.link_speed,
1590                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1591                              "full-duplex" : "half-duplex");
1592         } else {
1593                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1594         }
1595         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1596                      pci_dev->addr.domain, pci_dev->addr.bus,
1597                      pci_dev->addr.devid, pci_dev->addr.function);
1598
1599         return 0;
1600 }
1601
1602 /**
1603  * Interrupt handler which shall be registered at first.
1604  *
1605  * @param handle
1606  *  Pointer to interrupt handle.
1607  * @param param
1608  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1609  *
1610  * @return
1611  *  void
1612  */
1613 static void
1614 eth_em_interrupt_handler(void *param)
1615 {
1616         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1617
1618         eth_em_interrupt_get_status(dev);
1619         eth_em_interrupt_action(dev, dev->intr_handle);
1620         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1621 }
1622
1623 static int
1624 eth_em_led_on(struct rte_eth_dev *dev)
1625 {
1626         struct e1000_hw *hw;
1627
1628         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1629         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1630 }
1631
1632 static int
1633 eth_em_led_off(struct rte_eth_dev *dev)
1634 {
1635         struct e1000_hw *hw;
1636
1637         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1638         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1639 }
1640
1641 static int
1642 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1643 {
1644         struct e1000_hw *hw;
1645         uint32_t ctrl;
1646         int tx_pause;
1647         int rx_pause;
1648
1649         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1650         fc_conf->pause_time = hw->fc.pause_time;
1651         fc_conf->high_water = hw->fc.high_water;
1652         fc_conf->low_water = hw->fc.low_water;
1653         fc_conf->send_xon = hw->fc.send_xon;
1654         fc_conf->autoneg = hw->mac.autoneg;
1655
1656         /*
1657          * Return rx_pause and tx_pause status according to actual setting of
1658          * the TFCE and RFCE bits in the CTRL register.
1659          */
1660         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1661         if (ctrl & E1000_CTRL_TFCE)
1662                 tx_pause = 1;
1663         else
1664                 tx_pause = 0;
1665
1666         if (ctrl & E1000_CTRL_RFCE)
1667                 rx_pause = 1;
1668         else
1669                 rx_pause = 0;
1670
1671         if (rx_pause && tx_pause)
1672                 fc_conf->mode = RTE_FC_FULL;
1673         else if (rx_pause)
1674                 fc_conf->mode = RTE_FC_RX_PAUSE;
1675         else if (tx_pause)
1676                 fc_conf->mode = RTE_FC_TX_PAUSE;
1677         else
1678                 fc_conf->mode = RTE_FC_NONE;
1679
1680         return 0;
1681 }
1682
1683 static int
1684 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1685 {
1686         struct e1000_hw *hw;
1687         int err;
1688         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1689                 e1000_fc_none,
1690                 e1000_fc_rx_pause,
1691                 e1000_fc_tx_pause,
1692                 e1000_fc_full
1693         };
1694         uint32_t rx_buf_size;
1695         uint32_t max_high_water;
1696         uint32_t rctl;
1697
1698         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1699         if (fc_conf->autoneg != hw->mac.autoneg)
1700                 return -ENOTSUP;
1701         rx_buf_size = em_get_rx_buffer_size(hw);
1702         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1703
1704         /* At least reserve one Ethernet frame for watermark */
1705         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1706         if ((fc_conf->high_water > max_high_water) ||
1707             (fc_conf->high_water < fc_conf->low_water)) {
1708                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1709                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1710                 return -EINVAL;
1711         }
1712
1713         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1714         hw->fc.pause_time     = fc_conf->pause_time;
1715         hw->fc.high_water     = fc_conf->high_water;
1716         hw->fc.low_water      = fc_conf->low_water;
1717         hw->fc.send_xon       = fc_conf->send_xon;
1718
1719         err = e1000_setup_link_generic(hw);
1720         if (err == E1000_SUCCESS) {
1721
1722                 /* check if we want to forward MAC frames - driver doesn't have native
1723                  * capability to do that, so we'll write the registers ourselves */
1724
1725                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1726
1727                 /* set or clear MFLCN.PMCF bit depending on configuration */
1728                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1729                         rctl |= E1000_RCTL_PMCF;
1730                 else
1731                         rctl &= ~E1000_RCTL_PMCF;
1732
1733                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1734                 E1000_WRITE_FLUSH(hw);
1735
1736                 return 0;
1737         }
1738
1739         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1740         return -EIO;
1741 }
1742
1743 static int
1744 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1745                 uint32_t index, __rte_unused uint32_t pool)
1746 {
1747         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1748
1749         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1750 }
1751
1752 static void
1753 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1754 {
1755         uint8_t addr[ETHER_ADDR_LEN];
1756         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1757
1758         memset(addr, 0, sizeof(addr));
1759
1760         e1000_rar_set(hw, addr, index);
1761 }
1762
1763 static int
1764 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1765                             struct ether_addr *addr)
1766 {
1767         eth_em_rar_clear(dev, 0);
1768
1769         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1770 }
1771
1772 static int
1773 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1774 {
1775         struct rte_eth_dev_info dev_info;
1776         struct e1000_hw *hw;
1777         uint32_t frame_size;
1778         uint32_t rctl;
1779
1780         eth_em_infos_get(dev, &dev_info);
1781         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1782
1783         /* check that mtu is within the allowed range */
1784         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1785                 return -EINVAL;
1786
1787         /* refuse mtu that requires the support of scattered packets when this
1788          * feature has not been enabled before. */
1789         if (!dev->data->scattered_rx &&
1790             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1791                 return -EINVAL;
1792
1793         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1794         rctl = E1000_READ_REG(hw, E1000_RCTL);
1795
1796         /* switch to jumbo mode if needed */
1797         if (frame_size > ETHER_MAX_LEN) {
1798                 dev->data->dev_conf.rxmode.offloads |=
1799                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1800                 rctl |= E1000_RCTL_LPE;
1801         } else {
1802                 dev->data->dev_conf.rxmode.offloads &=
1803                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1804                 rctl &= ~E1000_RCTL_LPE;
1805         }
1806         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1807
1808         /* update max frame size */
1809         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1810         return 0;
1811 }
1812
1813 static int
1814 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1815                         struct ether_addr *mc_addr_set,
1816                         uint32_t nb_mc_addr)
1817 {
1818         struct e1000_hw *hw;
1819
1820         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1821         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1822         return 0;
1823 }
1824
1825 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1826 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1827 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1828
1829 RTE_INIT(e1000_init_log);
1830 static void
1831 e1000_init_log(void)
1832 {
1833         e1000_logtype_init = rte_log_register("pmd.net.e1000.init");
1834         if (e1000_logtype_init >= 0)
1835                 rte_log_set_level(e1000_logtype_init, RTE_LOG_NOTICE);
1836         e1000_logtype_driver = rte_log_register("pmd.net.e1000.driver");
1837         if (e1000_logtype_driver >= 0)
1838                 rte_log_set_level(e1000_logtype_driver, RTE_LOG_NOTICE);
1839 }