pci: introduce library and driver
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_bus_pci.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_ethdev_pci.h>
50 #include <rte_memory.h>
51 #include <rte_memzone.h>
52 #include <rte_eal.h>
53 #include <rte_atomic.h>
54 #include <rte_malloc.h>
55 #include <rte_dev.h>
56
57 #include "e1000_logs.h"
58 #include "base/e1000_api.h"
59 #include "e1000_ethdev.h"
60
61 #define EM_EIAC                 0x000DC
62
63 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
64
65
66 static int eth_em_configure(struct rte_eth_dev *dev);
67 static int eth_em_start(struct rte_eth_dev *dev);
68 static void eth_em_stop(struct rte_eth_dev *dev);
69 static void eth_em_close(struct rte_eth_dev *dev);
70 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
71 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
72 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
73 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
74 static int eth_em_link_update(struct rte_eth_dev *dev,
75                                 int wait_to_complete);
76 static int eth_em_stats_get(struct rte_eth_dev *dev,
77                                 struct rte_eth_stats *rte_stats);
78 static void eth_em_stats_reset(struct rte_eth_dev *dev);
79 static void eth_em_infos_get(struct rte_eth_dev *dev,
80                                 struct rte_eth_dev_info *dev_info);
81 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
82                                 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
84                                 struct rte_eth_fc_conf *fc_conf);
85 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
86 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
87 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
88 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
89                                    struct rte_intr_handle *handle);
90 static void eth_em_interrupt_handler(void *param);
91
92 static int em_hw_init(struct e1000_hw *hw);
93 static int em_hardware_init(struct e1000_hw *hw);
94 static void em_hw_control_acquire(struct e1000_hw *hw);
95 static void em_hw_control_release(struct e1000_hw *hw);
96 static void em_init_manageability(struct e1000_hw *hw);
97 static void em_release_manageability(struct e1000_hw *hw);
98
99 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
100
101 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
102                 uint16_t vlan_id, int on);
103 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
104 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
106 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
107 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
108
109 /*
110 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
111                                         uint16_t vlan_id, int on);
112 */
113
114 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
115 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
116 static void em_lsc_intr_disable(struct e1000_hw *hw);
117 static void em_rxq_intr_enable(struct e1000_hw *hw);
118 static void em_rxq_intr_disable(struct e1000_hw *hw);
119
120 static int eth_em_led_on(struct rte_eth_dev *dev);
121 static int eth_em_led_off(struct rte_eth_dev *dev);
122
123 static int em_get_rx_buffer_size(struct e1000_hw *hw);
124 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
125                           uint32_t index, uint32_t pool);
126 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
127
128 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
129                                    struct ether_addr *mc_addr_set,
130                                    uint32_t nb_mc_addr);
131
132 #define EM_FC_PAUSE_TIME 0x0680
133 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
134 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
135
136 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
137
138 /*
139  * The set of PCI devices this driver supports
140  */
141 static const struct rte_pci_id pci_id_em_map[] = {
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
161         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
162         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
163         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
164         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
165         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
166         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
167         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
168         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
169         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
170         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
171         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
172         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
173         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
174         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
175         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
176         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
177         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
178         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
179         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
180         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
181         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
182         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
183         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
184         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
185         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
186         { .vendor_id = 0, /* sentinel */ },
187 };
188
189 static const struct eth_dev_ops eth_em_ops = {
190         .dev_configure        = eth_em_configure,
191         .dev_start            = eth_em_start,
192         .dev_stop             = eth_em_stop,
193         .dev_close            = eth_em_close,
194         .promiscuous_enable   = eth_em_promiscuous_enable,
195         .promiscuous_disable  = eth_em_promiscuous_disable,
196         .allmulticast_enable  = eth_em_allmulticast_enable,
197         .allmulticast_disable = eth_em_allmulticast_disable,
198         .link_update          = eth_em_link_update,
199         .stats_get            = eth_em_stats_get,
200         .stats_reset          = eth_em_stats_reset,
201         .dev_infos_get        = eth_em_infos_get,
202         .mtu_set              = eth_em_mtu_set,
203         .vlan_filter_set      = eth_em_vlan_filter_set,
204         .vlan_offload_set     = eth_em_vlan_offload_set,
205         .rx_queue_setup       = eth_em_rx_queue_setup,
206         .rx_queue_release     = eth_em_rx_queue_release,
207         .rx_queue_count       = eth_em_rx_queue_count,
208         .rx_descriptor_done   = eth_em_rx_descriptor_done,
209         .rx_descriptor_status = eth_em_rx_descriptor_status,
210         .tx_descriptor_status = eth_em_tx_descriptor_status,
211         .tx_queue_setup       = eth_em_tx_queue_setup,
212         .tx_queue_release     = eth_em_tx_queue_release,
213         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
214         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
215         .dev_led_on           = eth_em_led_on,
216         .dev_led_off          = eth_em_led_off,
217         .flow_ctrl_get        = eth_em_flow_ctrl_get,
218         .flow_ctrl_set        = eth_em_flow_ctrl_set,
219         .mac_addr_add         = eth_em_rar_set,
220         .mac_addr_remove      = eth_em_rar_clear,
221         .set_mc_addr_list     = eth_em_set_mc_addr_list,
222         .rxq_info_get         = em_rxq_info_get,
223         .txq_info_get         = em_txq_info_get,
224 };
225
226 /**
227  * Atomically reads the link status information from global
228  * structure rte_eth_dev.
229  *
230  * @param dev
231  *   - Pointer to the structure rte_eth_dev to read from.
232  *   - Pointer to the buffer to be saved with the link status.
233  *
234  * @return
235  *   - On success, zero.
236  *   - On failure, negative value.
237  */
238 static inline int
239 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
240                                 struct rte_eth_link *link)
241 {
242         struct rte_eth_link *dst = link;
243         struct rte_eth_link *src = &(dev->data->dev_link);
244
245         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
246                                         *(uint64_t *)src) == 0)
247                 return -1;
248
249         return 0;
250 }
251
252 /**
253  * Atomically writes the link status information into global
254  * structure rte_eth_dev.
255  *
256  * @param dev
257  *   - Pointer to the structure rte_eth_dev to read from.
258  *   - Pointer to the buffer to be saved with the link status.
259  *
260  * @return
261  *   - On success, zero.
262  *   - On failure, negative value.
263  */
264 static inline int
265 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
266                                 struct rte_eth_link *link)
267 {
268         struct rte_eth_link *dst = &(dev->data->dev_link);
269         struct rte_eth_link *src = link;
270
271         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
272                                         *(uint64_t *)src) == 0)
273                 return -1;
274
275         return 0;
276 }
277
278 /**
279  *  eth_em_dev_is_ich8 - Check for ICH8 device
280  *  @hw: pointer to the HW structure
281  *
282  *  return TRUE for ICH8, otherwise FALSE
283  **/
284 static bool
285 eth_em_dev_is_ich8(struct e1000_hw *hw)
286 {
287         DEBUGFUNC("eth_em_dev_is_ich8");
288
289         switch (hw->device_id) {
290         case E1000_DEV_ID_PCH_LPT_I217_LM:
291         case E1000_DEV_ID_PCH_LPT_I217_V:
292         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
293         case E1000_DEV_ID_PCH_LPTLP_I218_V:
294         case E1000_DEV_ID_PCH_I218_V2:
295         case E1000_DEV_ID_PCH_I218_LM2:
296         case E1000_DEV_ID_PCH_I218_V3:
297         case E1000_DEV_ID_PCH_I218_LM3:
298         case E1000_DEV_ID_PCH_SPT_I219_LM:
299         case E1000_DEV_ID_PCH_SPT_I219_V:
300         case E1000_DEV_ID_PCH_SPT_I219_LM2:
301         case E1000_DEV_ID_PCH_SPT_I219_V2:
302         case E1000_DEV_ID_PCH_LBG_I219_LM3:
303         case E1000_DEV_ID_PCH_SPT_I219_LM4:
304         case E1000_DEV_ID_PCH_SPT_I219_V4:
305         case E1000_DEV_ID_PCH_SPT_I219_LM5:
306         case E1000_DEV_ID_PCH_SPT_I219_V5:
307         case E1000_DEV_ID_PCH_CNP_I219_LM6:
308         case E1000_DEV_ID_PCH_CNP_I219_V6:
309         case E1000_DEV_ID_PCH_CNP_I219_LM7:
310         case E1000_DEV_ID_PCH_CNP_I219_V7:
311                 return 1;
312         default:
313                 return 0;
314         }
315 }
316
317 static int
318 eth_em_dev_init(struct rte_eth_dev *eth_dev)
319 {
320         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
321         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
322         struct e1000_adapter *adapter =
323                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
324         struct e1000_hw *hw =
325                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
326         struct e1000_vfta * shadow_vfta =
327                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
328
329         eth_dev->dev_ops = &eth_em_ops;
330         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
331         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
332         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
333
334         /* for secondary processes, we don't initialise any further as primary
335          * has already done this work. Only check we don't need a different
336          * RX function */
337         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
338                 if (eth_dev->data->scattered_rx)
339                         eth_dev->rx_pkt_burst =
340                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
341                 return 0;
342         }
343
344         rte_eth_copy_pci_info(eth_dev, pci_dev);
345
346         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
347         hw->device_id = pci_dev->id.device_id;
348         adapter->stopped = 0;
349
350         /* For ICH8 support we'll need to map the flash memory BAR */
351         if (eth_em_dev_is_ich8(hw))
352                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
353
354         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
355                         em_hw_init(hw) != 0) {
356                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
357                         "failed to init HW",
358                         eth_dev->data->port_id, pci_dev->id.vendor_id,
359                         pci_dev->id.device_id);
360                 return -ENODEV;
361         }
362
363         /* Allocate memory for storing MAC addresses */
364         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
365                         hw->mac.rar_entry_count, 0);
366         if (eth_dev->data->mac_addrs == NULL) {
367                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
368                         "store MAC addresses",
369                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
370                 return -ENOMEM;
371         }
372
373         /* Copy the permanent MAC address */
374         ether_addr_copy((struct ether_addr *) hw->mac.addr,
375                 eth_dev->data->mac_addrs);
376
377         /* initialize the vfta */
378         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
379
380         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
381                      eth_dev->data->port_id, pci_dev->id.vendor_id,
382                      pci_dev->id.device_id);
383
384         rte_intr_callback_register(intr_handle,
385                                    eth_em_interrupt_handler, eth_dev);
386
387         return 0;
388 }
389
390 static int
391 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
392 {
393         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
394         struct e1000_adapter *adapter =
395                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
396         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
397
398         PMD_INIT_FUNC_TRACE();
399
400         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
401                 return -EPERM;
402
403         if (adapter->stopped == 0)
404                 eth_em_close(eth_dev);
405
406         eth_dev->dev_ops = NULL;
407         eth_dev->rx_pkt_burst = NULL;
408         eth_dev->tx_pkt_burst = NULL;
409
410         rte_free(eth_dev->data->mac_addrs);
411         eth_dev->data->mac_addrs = NULL;
412
413         /* disable uio intr before callback unregister */
414         rte_intr_disable(intr_handle);
415         rte_intr_callback_unregister(intr_handle,
416                                      eth_em_interrupt_handler, eth_dev);
417
418         return 0;
419 }
420
421 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
422         struct rte_pci_device *pci_dev)
423 {
424         return rte_eth_dev_pci_generic_probe(pci_dev,
425                 sizeof(struct e1000_adapter), eth_em_dev_init);
426 }
427
428 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
429 {
430         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
431 }
432
433 static struct rte_pci_driver rte_em_pmd = {
434         .id_table = pci_id_em_map,
435         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
436                      RTE_PCI_DRV_IOVA_AS_VA,
437         .probe = eth_em_pci_probe,
438         .remove = eth_em_pci_remove,
439 };
440
441 static int
442 em_hw_init(struct e1000_hw *hw)
443 {
444         int diag;
445
446         diag = hw->mac.ops.init_params(hw);
447         if (diag != 0) {
448                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
449                 return diag;
450         }
451         diag = hw->nvm.ops.init_params(hw);
452         if (diag != 0) {
453                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
454                 return diag;
455         }
456         diag = hw->phy.ops.init_params(hw);
457         if (diag != 0) {
458                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
459                 return diag;
460         }
461         (void) e1000_get_bus_info(hw);
462
463         hw->mac.autoneg = 1;
464         hw->phy.autoneg_wait_to_complete = 0;
465         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
466
467         e1000_init_script_state_82541(hw, TRUE);
468         e1000_set_tbi_compatibility_82543(hw, TRUE);
469
470         /* Copper options */
471         if (hw->phy.media_type == e1000_media_type_copper) {
472                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
473                 hw->phy.disable_polarity_correction = 0;
474                 hw->phy.ms_type = e1000_ms_hw_default;
475         }
476
477         /*
478          * Start from a known state, this is important in reading the nvm
479          * and mac from that.
480          */
481         e1000_reset_hw(hw);
482
483         /* Make sure we have a good EEPROM before we read from it */
484         if (e1000_validate_nvm_checksum(hw) < 0) {
485                 /*
486                  * Some PCI-E parts fail the first check due to
487                  * the link being in sleep state, call it again,
488                  * if it fails a second time its a real issue.
489                  */
490                 diag = e1000_validate_nvm_checksum(hw);
491                 if (diag < 0) {
492                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
493                         goto error;
494                 }
495         }
496
497         /* Read the permanent MAC address out of the EEPROM */
498         diag = e1000_read_mac_addr(hw);
499         if (diag != 0) {
500                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
501                 goto error;
502         }
503
504         /* Now initialize the hardware */
505         diag = em_hardware_init(hw);
506         if (diag != 0) {
507                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
508                 goto error;
509         }
510
511         hw->mac.get_link_status = 1;
512
513         /* Indicate SOL/IDER usage */
514         diag = e1000_check_reset_block(hw);
515         if (diag < 0) {
516                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
517                         "SOL/IDER session");
518         }
519         return 0;
520
521 error:
522         em_hw_control_release(hw);
523         return diag;
524 }
525
526 static int
527 eth_em_configure(struct rte_eth_dev *dev)
528 {
529         struct e1000_interrupt *intr =
530                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
531
532         PMD_INIT_FUNC_TRACE();
533         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
534         PMD_INIT_FUNC_TRACE();
535
536         return 0;
537 }
538
539 static void
540 em_set_pba(struct e1000_hw *hw)
541 {
542         uint32_t pba;
543
544         /*
545          * Packet Buffer Allocation (PBA)
546          * Writing PBA sets the receive portion of the buffer
547          * the remainder is used for the transmit buffer.
548          * Devices before the 82547 had a Packet Buffer of 64K.
549          * After the 82547 the buffer was reduced to 40K.
550          */
551         switch (hw->mac.type) {
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                 /* 82547: Total Packet Buffer is 40K */
555                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_80003es2lan:
560                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
561                         break;
562                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
563                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
564                         break;
565                 case e1000_82574:
566                 case e1000_82583:
567                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
568                         break;
569                 case e1000_ich8lan:
570                         pba = E1000_PBA_8K;
571                         break;
572                 case e1000_ich9lan:
573                 case e1000_ich10lan:
574                         pba = E1000_PBA_10K;
575                         break;
576                 case e1000_pchlan:
577                 case e1000_pch2lan:
578                 case e1000_pch_lpt:
579                 case e1000_pch_spt:
580                 case e1000_pch_cnp:
581                         pba = E1000_PBA_26K;
582                         break;
583                 default:
584                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
585         }
586
587         E1000_WRITE_REG(hw, E1000_PBA, pba);
588 }
589
590 static int
591 eth_em_start(struct rte_eth_dev *dev)
592 {
593         struct e1000_adapter *adapter =
594                 E1000_DEV_PRIVATE(dev->data->dev_private);
595         struct e1000_hw *hw =
596                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
597         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
598         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
599         int ret, mask;
600         uint32_t intr_vector = 0;
601         uint32_t *speeds;
602         int num_speeds;
603         bool autoneg;
604
605         PMD_INIT_FUNC_TRACE();
606
607         eth_em_stop(dev);
608
609         e1000_power_up_phy(hw);
610
611         /* Set default PBA value */
612         em_set_pba(hw);
613
614         /* Put the address into the Receive Address Array */
615         e1000_rar_set(hw, hw->mac.addr, 0);
616
617         /*
618          * With the 82571 adapter, RAR[0] may be overwritten
619          * when the other port is reset, we make a duplicate
620          * in RAR[14] for that eventuality, this assures
621          * the interface continues to function.
622          */
623         if (hw->mac.type == e1000_82571) {
624                 e1000_set_laa_state_82571(hw, TRUE);
625                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
626         }
627
628         /* Initialize the hardware */
629         if (em_hardware_init(hw)) {
630                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
631                 return -EIO;
632         }
633
634         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
635
636         /* Configure for OS presence */
637         em_init_manageability(hw);
638
639         if (dev->data->dev_conf.intr_conf.rxq != 0) {
640                 intr_vector = dev->data->nb_rx_queues;
641                 if (rte_intr_efd_enable(intr_handle, intr_vector))
642                         return -1;
643         }
644
645         if (rte_intr_dp_is_en(intr_handle)) {
646                 intr_handle->intr_vec =
647                         rte_zmalloc("intr_vec",
648                                         dev->data->nb_rx_queues * sizeof(int), 0);
649                 if (intr_handle->intr_vec == NULL) {
650                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
651                                                 " intr_vec", dev->data->nb_rx_queues);
652                         return -ENOMEM;
653                 }
654
655                 /* enable rx interrupt */
656                 em_rxq_intr_enable(hw);
657         }
658
659         eth_em_tx_init(dev);
660
661         ret = eth_em_rx_init(dev);
662         if (ret) {
663                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
664                 em_dev_clear_queues(dev);
665                 return ret;
666         }
667
668         e1000_clear_hw_cntrs_base_generic(hw);
669
670         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
671                         ETH_VLAN_EXTEND_MASK;
672         ret = eth_em_vlan_offload_set(dev, mask);
673         if (ret) {
674                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
675                 em_dev_clear_queues(dev);
676                 return ret;
677         }
678
679         /* Set Interrupt Throttling Rate to maximum allowed value. */
680         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
681
682         /* Setup link speed and duplex */
683         speeds = &dev->data->dev_conf.link_speeds;
684         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
685                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
686                 hw->mac.autoneg = 1;
687         } else {
688                 num_speeds = 0;
689                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
690
691                 /* Reset */
692                 hw->phy.autoneg_advertised = 0;
693
694                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
695                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
696                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
697                         num_speeds = -1;
698                         goto error_invalid_config;
699                 }
700                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
701                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
702                         num_speeds++;
703                 }
704                 if (*speeds & ETH_LINK_SPEED_10M) {
705                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
706                         num_speeds++;
707                 }
708                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
709                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
710                         num_speeds++;
711                 }
712                 if (*speeds & ETH_LINK_SPEED_100M) {
713                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
714                         num_speeds++;
715                 }
716                 if (*speeds & ETH_LINK_SPEED_1G) {
717                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
718                         num_speeds++;
719                 }
720                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
721                         goto error_invalid_config;
722
723                 /* Set/reset the mac.autoneg based on the link speed,
724                  * fixed or not
725                  */
726                 if (!autoneg) {
727                         hw->mac.autoneg = 0;
728                         hw->mac.forced_speed_duplex =
729                                         hw->phy.autoneg_advertised;
730                 } else {
731                         hw->mac.autoneg = 1;
732                 }
733         }
734
735         e1000_setup_link(hw);
736
737         if (rte_intr_allow_others(intr_handle)) {
738                 /* check if lsc interrupt is enabled */
739                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
740                         ret = eth_em_interrupt_setup(dev);
741                         if (ret) {
742                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
743                                 em_dev_clear_queues(dev);
744                                 return ret;
745                         }
746                 }
747         } else {
748                 rte_intr_callback_unregister(intr_handle,
749                                                 eth_em_interrupt_handler,
750                                                 (void *)dev);
751                 if (dev->data->dev_conf.intr_conf.lsc != 0)
752                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
753                                      " no intr multiplexn");
754         }
755         /* check if rxq interrupt is enabled */
756         if (dev->data->dev_conf.intr_conf.rxq != 0)
757                 eth_em_rxq_interrupt_setup(dev);
758
759         rte_intr_enable(intr_handle);
760
761         adapter->stopped = 0;
762
763         PMD_INIT_LOG(DEBUG, "<<");
764
765         return 0;
766
767 error_invalid_config:
768         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
769                      dev->data->dev_conf.link_speeds, dev->data->port_id);
770         em_dev_clear_queues(dev);
771         return -EINVAL;
772 }
773
774 /*********************************************************************
775  *
776  *  This routine disables all traffic on the adapter by issuing a
777  *  global reset on the MAC.
778  *
779  **********************************************************************/
780 static void
781 eth_em_stop(struct rte_eth_dev *dev)
782 {
783         struct rte_eth_link link;
784         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
785         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
786         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
787
788         em_rxq_intr_disable(hw);
789         em_lsc_intr_disable(hw);
790
791         e1000_reset_hw(hw);
792         if (hw->mac.type >= e1000_82544)
793                 E1000_WRITE_REG(hw, E1000_WUC, 0);
794
795         /* Power down the phy. Needed to make the link go down */
796         e1000_power_down_phy(hw);
797
798         em_dev_clear_queues(dev);
799
800         /* clear the recorded link status */
801         memset(&link, 0, sizeof(link));
802         rte_em_dev_atomic_write_link_status(dev, &link);
803
804         if (!rte_intr_allow_others(intr_handle))
805                 /* resume to the default handler */
806                 rte_intr_callback_register(intr_handle,
807                                            eth_em_interrupt_handler,
808                                            (void *)dev);
809
810         /* Clean datapath event and queue/vec mapping */
811         rte_intr_efd_disable(intr_handle);
812         if (intr_handle->intr_vec != NULL) {
813                 rte_free(intr_handle->intr_vec);
814                 intr_handle->intr_vec = NULL;
815         }
816 }
817
818 static void
819 eth_em_close(struct rte_eth_dev *dev)
820 {
821         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
822         struct e1000_adapter *adapter =
823                 E1000_DEV_PRIVATE(dev->data->dev_private);
824
825         eth_em_stop(dev);
826         adapter->stopped = 1;
827         em_dev_free_queues(dev);
828         e1000_phy_hw_reset(hw);
829         em_release_manageability(hw);
830         em_hw_control_release(hw);
831 }
832
833 static int
834 em_get_rx_buffer_size(struct e1000_hw *hw)
835 {
836         uint32_t rx_buf_size;
837
838         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
839         return rx_buf_size;
840 }
841
842 /*********************************************************************
843  *
844  *  Initialize the hardware
845  *
846  **********************************************************************/
847 static int
848 em_hardware_init(struct e1000_hw *hw)
849 {
850         uint32_t rx_buf_size;
851         int diag;
852
853         /* Issue a global reset */
854         e1000_reset_hw(hw);
855
856         /* Let the firmware know the OS is in control */
857         em_hw_control_acquire(hw);
858
859         /*
860          * These parameters control the automatic generation (Tx) and
861          * response (Rx) to Ethernet PAUSE frames.
862          * - High water mark should allow for at least two standard size (1518)
863          *   frames to be received after sending an XOFF.
864          * - Low water mark works best when it is very near the high water mark.
865          *   This allows the receiver to restart by sending XON when it has
866          *   drained a bit. Here we use an arbitrary value of 1500 which will
867          *   restart after one full frame is pulled from the buffer. There
868          *   could be several smaller frames in the buffer and if so they will
869          *   not trigger the XON until their total number reduces the buffer
870          *   by 1500.
871          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
872          */
873         rx_buf_size = em_get_rx_buffer_size(hw);
874
875         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
876         hw->fc.low_water = hw->fc.high_water - 1500;
877
878         if (hw->mac.type == e1000_80003es2lan)
879                 hw->fc.pause_time = UINT16_MAX;
880         else
881                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
882
883         hw->fc.send_xon = 1;
884
885         /* Set Flow control, use the tunable location if sane */
886         if (em_fc_setting <= e1000_fc_full)
887                 hw->fc.requested_mode = em_fc_setting;
888         else
889                 hw->fc.requested_mode = e1000_fc_none;
890
891         /* Workaround: no TX flow ctrl for PCH */
892         if (hw->mac.type == e1000_pchlan)
893                 hw->fc.requested_mode = e1000_fc_rx_pause;
894
895         /* Override - settings for PCH2LAN, ya its magic :) */
896         if (hw->mac.type == e1000_pch2lan) {
897                 hw->fc.high_water = 0x5C20;
898                 hw->fc.low_water = 0x5048;
899                 hw->fc.pause_time = 0x0650;
900                 hw->fc.refresh_time = 0x0400;
901         } else if (hw->mac.type == e1000_pch_lpt ||
902                    hw->mac.type == e1000_pch_spt ||
903                    hw->mac.type == e1000_pch_cnp) {
904                 hw->fc.requested_mode = e1000_fc_full;
905         }
906
907         diag = e1000_init_hw(hw);
908         if (diag < 0)
909                 return diag;
910         e1000_check_for_link(hw);
911         return 0;
912 }
913
914 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
915 static int
916 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
917 {
918         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
919         struct e1000_hw_stats *stats =
920                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
921         int pause_frames;
922
923         if(hw->phy.media_type == e1000_media_type_copper ||
924                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
925                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
926                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
927         }
928
929         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
930         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
931         stats->scc += E1000_READ_REG(hw, E1000_SCC);
932         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
933
934         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
935         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
936         stats->colc += E1000_READ_REG(hw, E1000_COLC);
937         stats->dc += E1000_READ_REG(hw, E1000_DC);
938         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
939         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
940         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
941
942         /*
943          * For watchdog management we need to know if we have been
944          * paused during the last interval, so capture that here.
945          */
946         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
947         stats->xoffrxc += pause_frames;
948         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
949         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
950         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
951         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
952         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
953         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
954         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
955         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
956         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
957         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
958         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
959         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
960
961         /*
962          * For the 64-bit byte counters the low dword must be read first.
963          * Both registers clear on the read of the high dword.
964          */
965
966         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
967         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
968         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
969         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
970
971         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
972         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
973         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
974         stats->roc += E1000_READ_REG(hw, E1000_ROC);
975         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
976
977         stats->tor += E1000_READ_REG(hw, E1000_TORH);
978         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
979
980         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
981         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
982         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
983         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
984         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
985         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
986         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
987         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
988         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
989         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
990
991         /* Interrupt Counts */
992
993         if (hw->mac.type >= e1000_82571) {
994                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
995                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
996                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
997                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
998                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
999                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1000                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1001                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1002                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1003         }
1004
1005         if (hw->mac.type >= e1000_82543) {
1006                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1007                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1008                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1009                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1010                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1011                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1012         }
1013
1014         if (rte_stats == NULL)
1015                 return -EINVAL;
1016
1017         /* Rx Errors */
1018         rte_stats->imissed = stats->mpc;
1019         rte_stats->ierrors = stats->crcerrs +
1020                              stats->rlec + stats->ruc + stats->roc +
1021                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1022
1023         /* Tx Errors */
1024         rte_stats->oerrors = stats->ecol + stats->latecol;
1025
1026         rte_stats->ipackets = stats->gprc;
1027         rte_stats->opackets = stats->gptc;
1028         rte_stats->ibytes   = stats->gorc;
1029         rte_stats->obytes   = stats->gotc;
1030         return 0;
1031 }
1032
1033 static void
1034 eth_em_stats_reset(struct rte_eth_dev *dev)
1035 {
1036         struct e1000_hw_stats *hw_stats =
1037                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1038
1039         /* HW registers are cleared on read */
1040         eth_em_stats_get(dev, NULL);
1041
1042         /* Reset software totals */
1043         memset(hw_stats, 0, sizeof(*hw_stats));
1044 }
1045
1046 static int
1047 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1048 {
1049         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1050         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1051         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1052
1053         em_rxq_intr_enable(hw);
1054         rte_intr_enable(intr_handle);
1055
1056         return 0;
1057 }
1058
1059 static int
1060 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1061 {
1062         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1063
1064         em_rxq_intr_disable(hw);
1065
1066         return 0;
1067 }
1068
1069 static uint32_t
1070 em_get_max_pktlen(const struct e1000_hw *hw)
1071 {
1072         switch (hw->mac.type) {
1073         case e1000_82571:
1074         case e1000_82572:
1075         case e1000_ich9lan:
1076         case e1000_ich10lan:
1077         case e1000_pch2lan:
1078         case e1000_pch_lpt:
1079         case e1000_pch_spt:
1080         case e1000_pch_cnp:
1081         case e1000_82574:
1082         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1083         case e1000_82583:
1084                 return 0x2412;
1085         case e1000_pchlan:
1086                 return 0x1000;
1087         /* Adapters that do not support jumbo frames */
1088         case e1000_ich8lan:
1089                 return ETHER_MAX_LEN;
1090         default:
1091                 return MAX_JUMBO_FRAME_SIZE;
1092         }
1093 }
1094
1095 static void
1096 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1097 {
1098         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1099
1100         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1101         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1102         dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
1103         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1104         dev_info->rx_offload_capa =
1105                 DEV_RX_OFFLOAD_VLAN_STRIP |
1106                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1107                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1108                 DEV_RX_OFFLOAD_TCP_CKSUM;
1109         dev_info->tx_offload_capa =
1110                 DEV_TX_OFFLOAD_VLAN_INSERT |
1111                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1112                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1113                 DEV_TX_OFFLOAD_TCP_CKSUM;
1114
1115         /*
1116          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1117          * Unfortunatelly, all these nics have just one TX context.
1118          * So we have few choises for TX:
1119          * - Use just one TX queue.
1120          * - Allow cksum offload only for one TX queue.
1121          * - Don't allow TX cksum offload at all.
1122          * For now, option #1 was chosen.
1123          * To use second RX queue we have to use extended RX descriptor
1124          * (Multiple Receive Queues are mutually exclusive with UDP
1125          * fragmentation and are not supported when a legacy receive
1126          * descriptor format is used).
1127          * Which means separate RX routinies - as legacy nics (82540, 82545)
1128          * don't support extended RXD.
1129          * To avoid it we support just one RX queue for now (no RSS).
1130          */
1131
1132         dev_info->max_rx_queues = 1;
1133         dev_info->max_tx_queues = 1;
1134
1135         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1136                 .nb_max = E1000_MAX_RING_DESC,
1137                 .nb_min = E1000_MIN_RING_DESC,
1138                 .nb_align = EM_RXD_ALIGN,
1139         };
1140
1141         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1142                 .nb_max = E1000_MAX_RING_DESC,
1143                 .nb_min = E1000_MIN_RING_DESC,
1144                 .nb_align = EM_TXD_ALIGN,
1145                 .nb_seg_max = EM_TX_MAX_SEG,
1146                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1147         };
1148
1149         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1150                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1151                         ETH_LINK_SPEED_1G;
1152 }
1153
1154 /* return 0 means link status changed, -1 means not changed */
1155 static int
1156 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1157 {
1158         struct e1000_hw *hw =
1159                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1160         struct rte_eth_link link, old;
1161         int link_check, count;
1162
1163         link_check = 0;
1164         hw->mac.get_link_status = 1;
1165
1166         /* possible wait-to-complete in up to 9 seconds */
1167         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1168                 /* Read the real link status */
1169                 switch (hw->phy.media_type) {
1170                 case e1000_media_type_copper:
1171                         /* Do the work to read phy */
1172                         e1000_check_for_link(hw);
1173                         link_check = !hw->mac.get_link_status;
1174                         break;
1175
1176                 case e1000_media_type_fiber:
1177                         e1000_check_for_link(hw);
1178                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1179                                         E1000_STATUS_LU);
1180                         break;
1181
1182                 case e1000_media_type_internal_serdes:
1183                         e1000_check_for_link(hw);
1184                         link_check = hw->mac.serdes_has_link;
1185                         break;
1186
1187                 default:
1188                         break;
1189                 }
1190                 if (link_check || wait_to_complete == 0)
1191                         break;
1192                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1193         }
1194         memset(&link, 0, sizeof(link));
1195         rte_em_dev_atomic_read_link_status(dev, &link);
1196         old = link;
1197
1198         /* Now we check if a transition has happened */
1199         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1200                 uint16_t duplex, speed;
1201                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1202                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1203                                 ETH_LINK_FULL_DUPLEX :
1204                                 ETH_LINK_HALF_DUPLEX;
1205                 link.link_speed = speed;
1206                 link.link_status = ETH_LINK_UP;
1207                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1208                                 ETH_LINK_SPEED_FIXED);
1209         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1210                 link.link_speed = 0;
1211                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1212                 link.link_status = ETH_LINK_DOWN;
1213                 link.link_autoneg = ETH_LINK_SPEED_FIXED;
1214         }
1215         rte_em_dev_atomic_write_link_status(dev, &link);
1216
1217         /* not changed */
1218         if (old.link_status == link.link_status)
1219                 return -1;
1220
1221         /* changed */
1222         return 0;
1223 }
1224
1225 /*
1226  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1227  * For ASF and Pass Through versions of f/w this means
1228  * that the driver is loaded. For AMT version type f/w
1229  * this means that the network i/f is open.
1230  */
1231 static void
1232 em_hw_control_acquire(struct e1000_hw *hw)
1233 {
1234         uint32_t ctrl_ext, swsm;
1235
1236         /* Let firmware know the driver has taken over */
1237         if (hw->mac.type == e1000_82573) {
1238                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1239                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1240
1241         } else {
1242                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1243                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1244                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1245         }
1246 }
1247
1248 /*
1249  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1250  * For ASF and Pass Through versions of f/w this means that the
1251  * driver is no longer loaded. For AMT versions of the
1252  * f/w this means that the network i/f is closed.
1253  */
1254 static void
1255 em_hw_control_release(struct e1000_hw *hw)
1256 {
1257         uint32_t ctrl_ext, swsm;
1258
1259         /* Let firmware taken over control of h/w */
1260         if (hw->mac.type == e1000_82573) {
1261                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1262                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1263         } else {
1264                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1265                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1266                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1267         }
1268 }
1269
1270 /*
1271  * Bit of a misnomer, what this really means is
1272  * to enable OS management of the system... aka
1273  * to disable special hardware management features.
1274  */
1275 static void
1276 em_init_manageability(struct e1000_hw *hw)
1277 {
1278         if (e1000_enable_mng_pass_thru(hw)) {
1279                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1280                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1281
1282                 /* disable hardware interception of ARP */
1283                 manc &= ~(E1000_MANC_ARP_EN);
1284
1285                 /* enable receiving management packets to the host */
1286                 manc |= E1000_MANC_EN_MNG2HOST;
1287                 manc2h |= 1 << 5;  /* Mng Port 623 */
1288                 manc2h |= 1 << 6;  /* Mng Port 664 */
1289                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1290                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1291         }
1292 }
1293
1294 /*
1295  * Give control back to hardware management
1296  * controller if there is one.
1297  */
1298 static void
1299 em_release_manageability(struct e1000_hw *hw)
1300 {
1301         uint32_t manc;
1302
1303         if (e1000_enable_mng_pass_thru(hw)) {
1304                 manc = E1000_READ_REG(hw, E1000_MANC);
1305
1306                 /* re-enable hardware interception of ARP */
1307                 manc |= E1000_MANC_ARP_EN;
1308                 manc &= ~E1000_MANC_EN_MNG2HOST;
1309
1310                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1311         }
1312 }
1313
1314 static void
1315 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1316 {
1317         struct e1000_hw *hw =
1318                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1319         uint32_t rctl;
1320
1321         rctl = E1000_READ_REG(hw, E1000_RCTL);
1322         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1323         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1324 }
1325
1326 static void
1327 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1328 {
1329         struct e1000_hw *hw =
1330                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1331         uint32_t rctl;
1332
1333         rctl = E1000_READ_REG(hw, E1000_RCTL);
1334         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1335         if (dev->data->all_multicast == 1)
1336                 rctl |= E1000_RCTL_MPE;
1337         else
1338                 rctl &= (~E1000_RCTL_MPE);
1339         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1340 }
1341
1342 static void
1343 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1344 {
1345         struct e1000_hw *hw =
1346                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1347         uint32_t rctl;
1348
1349         rctl = E1000_READ_REG(hw, E1000_RCTL);
1350         rctl |= E1000_RCTL_MPE;
1351         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1352 }
1353
1354 static void
1355 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1356 {
1357         struct e1000_hw *hw =
1358                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1359         uint32_t rctl;
1360
1361         if (dev->data->promiscuous == 1)
1362                 return; /* must remain in all_multicast mode */
1363         rctl = E1000_READ_REG(hw, E1000_RCTL);
1364         rctl &= (~E1000_RCTL_MPE);
1365         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1366 }
1367
1368 static int
1369 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1370 {
1371         struct e1000_hw *hw =
1372                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1373         struct e1000_vfta * shadow_vfta =
1374                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1375         uint32_t vfta;
1376         uint32_t vid_idx;
1377         uint32_t vid_bit;
1378
1379         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1380                               E1000_VFTA_ENTRY_MASK);
1381         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1382         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1383         if (on)
1384                 vfta |= vid_bit;
1385         else
1386                 vfta &= ~vid_bit;
1387         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1388
1389         /* update local VFTA copy */
1390         shadow_vfta->vfta[vid_idx] = vfta;
1391
1392         return 0;
1393 }
1394
1395 static void
1396 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1397 {
1398         struct e1000_hw *hw =
1399                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1400         uint32_t reg;
1401
1402         /* Filter Table Disable */
1403         reg = E1000_READ_REG(hw, E1000_RCTL);
1404         reg &= ~E1000_RCTL_CFIEN;
1405         reg &= ~E1000_RCTL_VFE;
1406         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1407 }
1408
1409 static void
1410 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1411 {
1412         struct e1000_hw *hw =
1413                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1414         struct e1000_vfta * shadow_vfta =
1415                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1416         uint32_t reg;
1417         int i;
1418
1419         /* Filter Table Enable, CFI not used for packet acceptance */
1420         reg = E1000_READ_REG(hw, E1000_RCTL);
1421         reg &= ~E1000_RCTL_CFIEN;
1422         reg |= E1000_RCTL_VFE;
1423         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1424
1425         /* restore vfta from local copy */
1426         for (i = 0; i < IGB_VFTA_SIZE; i++)
1427                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1428 }
1429
1430 static void
1431 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1432 {
1433         struct e1000_hw *hw =
1434                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1435         uint32_t reg;
1436
1437         /* VLAN Mode Disable */
1438         reg = E1000_READ_REG(hw, E1000_CTRL);
1439         reg &= ~E1000_CTRL_VME;
1440         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1441
1442 }
1443
1444 static void
1445 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1446 {
1447         struct e1000_hw *hw =
1448                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1449         uint32_t reg;
1450
1451         /* VLAN Mode Enable */
1452         reg = E1000_READ_REG(hw, E1000_CTRL);
1453         reg |= E1000_CTRL_VME;
1454         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1455 }
1456
1457 static int
1458 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1459 {
1460         if(mask & ETH_VLAN_STRIP_MASK){
1461                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1462                         em_vlan_hw_strip_enable(dev);
1463                 else
1464                         em_vlan_hw_strip_disable(dev);
1465         }
1466
1467         if(mask & ETH_VLAN_FILTER_MASK){
1468                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1469                         em_vlan_hw_filter_enable(dev);
1470                 else
1471                         em_vlan_hw_filter_disable(dev);
1472         }
1473
1474         return 0;
1475 }
1476
1477 /*
1478  * It enables the interrupt mask and then enable the interrupt.
1479  *
1480  * @param dev
1481  *  Pointer to struct rte_eth_dev.
1482  *
1483  * @return
1484  *  - On success, zero.
1485  *  - On failure, a negative value.
1486  */
1487 static int
1488 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1489 {
1490         uint32_t regval;
1491         struct e1000_hw *hw =
1492                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1493
1494         /* clear interrupt */
1495         E1000_READ_REG(hw, E1000_ICR);
1496         regval = E1000_READ_REG(hw, E1000_IMS);
1497         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1498         return 0;
1499 }
1500
1501 /*
1502  * It clears the interrupt causes and enables the interrupt.
1503  * It will be called once only during nic initialized.
1504  *
1505  * @param dev
1506  *  Pointer to struct rte_eth_dev.
1507  *
1508  * @return
1509  *  - On success, zero.
1510  *  - On failure, a negative value.
1511  */
1512 static int
1513 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1514 {
1515         struct e1000_hw *hw =
1516         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1517
1518         E1000_READ_REG(hw, E1000_ICR);
1519         em_rxq_intr_enable(hw);
1520         return 0;
1521 }
1522
1523 /*
1524  * It enable receive packet interrupt.
1525  * @param hw
1526  * Pointer to struct e1000_hw
1527  *
1528  * @return
1529  */
1530 static void
1531 em_rxq_intr_enable(struct e1000_hw *hw)
1532 {
1533         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1534         E1000_WRITE_FLUSH(hw);
1535 }
1536
1537 /*
1538  * It disabled lsc interrupt.
1539  * @param hw
1540  * Pointer to struct e1000_hw
1541  *
1542  * @return
1543  */
1544 static void
1545 em_lsc_intr_disable(struct e1000_hw *hw)
1546 {
1547         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1548         E1000_WRITE_FLUSH(hw);
1549 }
1550
1551 /*
1552  * It disabled receive packet interrupt.
1553  * @param hw
1554  * Pointer to struct e1000_hw
1555  *
1556  * @return
1557  */
1558 static void
1559 em_rxq_intr_disable(struct e1000_hw *hw)
1560 {
1561         E1000_READ_REG(hw, E1000_ICR);
1562         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1563         E1000_WRITE_FLUSH(hw);
1564 }
1565
1566 /*
1567  * It reads ICR and gets interrupt causes, check it and set a bit flag
1568  * to update link status.
1569  *
1570  * @param dev
1571  *  Pointer to struct rte_eth_dev.
1572  *
1573  * @return
1574  *  - On success, zero.
1575  *  - On failure, a negative value.
1576  */
1577 static int
1578 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1579 {
1580         uint32_t icr;
1581         struct e1000_hw *hw =
1582                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1583         struct e1000_interrupt *intr =
1584                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1585
1586         /* read-on-clear nic registers here */
1587         icr = E1000_READ_REG(hw, E1000_ICR);
1588         if (icr & E1000_ICR_LSC) {
1589                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1590         }
1591
1592         return 0;
1593 }
1594
1595 /*
1596  * It executes link_update after knowing an interrupt is prsent.
1597  *
1598  * @param dev
1599  *  Pointer to struct rte_eth_dev.
1600  *
1601  * @return
1602  *  - On success, zero.
1603  *  - On failure, a negative value.
1604  */
1605 static int
1606 eth_em_interrupt_action(struct rte_eth_dev *dev,
1607                         struct rte_intr_handle *intr_handle)
1608 {
1609         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1610         struct e1000_hw *hw =
1611                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1612         struct e1000_interrupt *intr =
1613                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1614         uint32_t tctl, rctl;
1615         struct rte_eth_link link;
1616         int ret;
1617
1618         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1619                 return -1;
1620
1621         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1622         rte_intr_enable(intr_handle);
1623
1624         /* set get_link_status to check register later */
1625         hw->mac.get_link_status = 1;
1626         ret = eth_em_link_update(dev, 0);
1627
1628         /* check if link has changed */
1629         if (ret < 0)
1630                 return 0;
1631
1632         memset(&link, 0, sizeof(link));
1633         rte_em_dev_atomic_read_link_status(dev, &link);
1634         if (link.link_status) {
1635                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1636                              dev->data->port_id, link.link_speed,
1637                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1638                              "full-duplex" : "half-duplex");
1639         } else {
1640                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1641         }
1642         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1643                      pci_dev->addr.domain, pci_dev->addr.bus,
1644                      pci_dev->addr.devid, pci_dev->addr.function);
1645
1646         tctl = E1000_READ_REG(hw, E1000_TCTL);
1647         rctl = E1000_READ_REG(hw, E1000_RCTL);
1648         if (link.link_status) {
1649                 /* enable Tx/Rx */
1650                 tctl |= E1000_TCTL_EN;
1651                 rctl |= E1000_RCTL_EN;
1652         } else {
1653                 /* disable Tx/Rx */
1654                 tctl &= ~E1000_TCTL_EN;
1655                 rctl &= ~E1000_RCTL_EN;
1656         }
1657         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1658         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1659         E1000_WRITE_FLUSH(hw);
1660
1661         return 0;
1662 }
1663
1664 /**
1665  * Interrupt handler which shall be registered at first.
1666  *
1667  * @param handle
1668  *  Pointer to interrupt handle.
1669  * @param param
1670  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1671  *
1672  * @return
1673  *  void
1674  */
1675 static void
1676 eth_em_interrupt_handler(void *param)
1677 {
1678         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1679
1680         eth_em_interrupt_get_status(dev);
1681         eth_em_interrupt_action(dev, dev->intr_handle);
1682         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL, NULL);
1683 }
1684
1685 static int
1686 eth_em_led_on(struct rte_eth_dev *dev)
1687 {
1688         struct e1000_hw *hw;
1689
1690         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1691         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1692 }
1693
1694 static int
1695 eth_em_led_off(struct rte_eth_dev *dev)
1696 {
1697         struct e1000_hw *hw;
1698
1699         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1700         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1701 }
1702
1703 static int
1704 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1705 {
1706         struct e1000_hw *hw;
1707         uint32_t ctrl;
1708         int tx_pause;
1709         int rx_pause;
1710
1711         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1712         fc_conf->pause_time = hw->fc.pause_time;
1713         fc_conf->high_water = hw->fc.high_water;
1714         fc_conf->low_water = hw->fc.low_water;
1715         fc_conf->send_xon = hw->fc.send_xon;
1716         fc_conf->autoneg = hw->mac.autoneg;
1717
1718         /*
1719          * Return rx_pause and tx_pause status according to actual setting of
1720          * the TFCE and RFCE bits in the CTRL register.
1721          */
1722         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1723         if (ctrl & E1000_CTRL_TFCE)
1724                 tx_pause = 1;
1725         else
1726                 tx_pause = 0;
1727
1728         if (ctrl & E1000_CTRL_RFCE)
1729                 rx_pause = 1;
1730         else
1731                 rx_pause = 0;
1732
1733         if (rx_pause && tx_pause)
1734                 fc_conf->mode = RTE_FC_FULL;
1735         else if (rx_pause)
1736                 fc_conf->mode = RTE_FC_RX_PAUSE;
1737         else if (tx_pause)
1738                 fc_conf->mode = RTE_FC_TX_PAUSE;
1739         else
1740                 fc_conf->mode = RTE_FC_NONE;
1741
1742         return 0;
1743 }
1744
1745 static int
1746 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1747 {
1748         struct e1000_hw *hw;
1749         int err;
1750         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1751                 e1000_fc_none,
1752                 e1000_fc_rx_pause,
1753                 e1000_fc_tx_pause,
1754                 e1000_fc_full
1755         };
1756         uint32_t rx_buf_size;
1757         uint32_t max_high_water;
1758         uint32_t rctl;
1759
1760         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1761         if (fc_conf->autoneg != hw->mac.autoneg)
1762                 return -ENOTSUP;
1763         rx_buf_size = em_get_rx_buffer_size(hw);
1764         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1765
1766         /* At least reserve one Ethernet frame for watermark */
1767         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1768         if ((fc_conf->high_water > max_high_water) ||
1769             (fc_conf->high_water < fc_conf->low_water)) {
1770                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1771                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1772                 return -EINVAL;
1773         }
1774
1775         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1776         hw->fc.pause_time     = fc_conf->pause_time;
1777         hw->fc.high_water     = fc_conf->high_water;
1778         hw->fc.low_water      = fc_conf->low_water;
1779         hw->fc.send_xon       = fc_conf->send_xon;
1780
1781         err = e1000_setup_link_generic(hw);
1782         if (err == E1000_SUCCESS) {
1783
1784                 /* check if we want to forward MAC frames - driver doesn't have native
1785                  * capability to do that, so we'll write the registers ourselves */
1786
1787                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1788
1789                 /* set or clear MFLCN.PMCF bit depending on configuration */
1790                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1791                         rctl |= E1000_RCTL_PMCF;
1792                 else
1793                         rctl &= ~E1000_RCTL_PMCF;
1794
1795                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1796                 E1000_WRITE_FLUSH(hw);
1797
1798                 return 0;
1799         }
1800
1801         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1802         return -EIO;
1803 }
1804
1805 static int
1806 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1807                 uint32_t index, __rte_unused uint32_t pool)
1808 {
1809         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1810
1811         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1812 }
1813
1814 static void
1815 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1816 {
1817         uint8_t addr[ETHER_ADDR_LEN];
1818         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1819
1820         memset(addr, 0, sizeof(addr));
1821
1822         e1000_rar_set(hw, addr, index);
1823 }
1824
1825 static int
1826 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1827 {
1828         struct rte_eth_dev_info dev_info;
1829         struct e1000_hw *hw;
1830         uint32_t frame_size;
1831         uint32_t rctl;
1832
1833         eth_em_infos_get(dev, &dev_info);
1834         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1835
1836         /* check that mtu is within the allowed range */
1837         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1838                 return -EINVAL;
1839
1840         /* refuse mtu that requires the support of scattered packets when this
1841          * feature has not been enabled before. */
1842         if (!dev->data->scattered_rx &&
1843             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1844                 return -EINVAL;
1845
1846         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1847         rctl = E1000_READ_REG(hw, E1000_RCTL);
1848
1849         /* switch to jumbo mode if needed */
1850         if (frame_size > ETHER_MAX_LEN) {
1851                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1852                 rctl |= E1000_RCTL_LPE;
1853         } else {
1854                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1855                 rctl &= ~E1000_RCTL_LPE;
1856         }
1857         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1858
1859         /* update max frame size */
1860         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1861         return 0;
1862 }
1863
1864 static int
1865 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1866                         struct ether_addr *mc_addr_set,
1867                         uint32_t nb_mc_addr)
1868 {
1869         struct e1000_hw *hw;
1870
1871         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1872         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1873         return 0;
1874 }
1875
1876 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1877 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1878 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");