91db3032f57cb8cf3be9f9373da78dccc3ed4d84
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static int  eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static int eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int  eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int  eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int  eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
100                 unsigned int limit);
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct rte_ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct rte_ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static int igbvf_dev_stop(struct rte_eth_dev *dev);
158 static int igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
190                         struct rte_eth_ntuple_filter *ntuple_filter);
191 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_flow_ops_get(struct rte_eth_dev *dev,
198                                 const struct rte_flow_ops **ops);
199 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
200 static int eth_igb_get_regs(struct rte_eth_dev *dev,
201                 struct rte_dev_reg_info *regs);
202 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
203 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
204                 struct rte_dev_eeprom_info *eeprom);
205 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
206                 struct rte_dev_eeprom_info *eeprom);
207 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
208                                    struct rte_eth_dev_module_info *modinfo);
209 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
210                                      struct rte_dev_eeprom_info *info);
211 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
212                                     struct rte_ether_addr *mc_addr_set,
213                                     uint32_t nb_mc_addr);
214 static int igb_timesync_enable(struct rte_eth_dev *dev);
215 static int igb_timesync_disable(struct rte_eth_dev *dev);
216 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
217                                           struct timespec *timestamp,
218                                           uint32_t flags);
219 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
220                                           struct timespec *timestamp);
221 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
222 static int igb_timesync_read_time(struct rte_eth_dev *dev,
223                                   struct timespec *timestamp);
224 static int igb_timesync_write_time(struct rte_eth_dev *dev,
225                                    const struct timespec *timestamp);
226 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
227                                         uint16_t queue_id);
228 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
229                                          uint16_t queue_id);
230 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
231                                        uint8_t queue, uint8_t msix_vector);
232 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
233                                uint8_t index, uint8_t offset);
234 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
235 static void eth_igbvf_interrupt_handler(void *param);
236 static void igbvf_mbx_process(struct rte_eth_dev *dev);
237 static int igb_filter_restore(struct rte_eth_dev *dev);
238
239 /*
240  * Define VF Stats MACRO for Non "cleared on read" register
241  */
242 #define UPDATE_VF_STAT(reg, last, cur)            \
243 {                                                 \
244         u32 latest = E1000_READ_REG(hw, reg);     \
245         cur += (latest - last) & UINT_MAX;        \
246         last = latest;                            \
247 }
248
249 #define IGB_FC_PAUSE_TIME 0x0680
250 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
251 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
252
253 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
254
255 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
256
257 /*
258  * The set of PCI devices this driver supports
259  */
260 static const struct rte_pci_id pci_id_igb_map[] = {
261         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
262         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
263         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
264         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
265         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
266         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
267         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
268         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
269
270         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
271         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
272         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
273
274         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
275         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
276         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
277         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
278         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
280
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
302         { .vendor_id = 0, /* sentinel */ },
303 };
304
305 /*
306  * The set of PCI devices this driver supports (for 82576&I350 VF)
307  */
308 static const struct rte_pci_id pci_id_igbvf_map[] = {
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
313         { .vendor_id = 0, /* sentinel */ },
314 };
315
316 static const struct rte_eth_desc_lim rx_desc_lim = {
317         .nb_max = E1000_MAX_RING_DESC,
318         .nb_min = E1000_MIN_RING_DESC,
319         .nb_align = IGB_RXD_ALIGN,
320 };
321
322 static const struct rte_eth_desc_lim tx_desc_lim = {
323         .nb_max = E1000_MAX_RING_DESC,
324         .nb_min = E1000_MIN_RING_DESC,
325         .nb_align = IGB_RXD_ALIGN,
326         .nb_seg_max = IGB_TX_MAX_SEG,
327         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
328 };
329
330 static const struct eth_dev_ops eth_igb_ops = {
331         .dev_configure        = eth_igb_configure,
332         .dev_start            = eth_igb_start,
333         .dev_stop             = eth_igb_stop,
334         .dev_set_link_up      = eth_igb_dev_set_link_up,
335         .dev_set_link_down    = eth_igb_dev_set_link_down,
336         .dev_close            = eth_igb_close,
337         .dev_reset            = eth_igb_reset,
338         .promiscuous_enable   = eth_igb_promiscuous_enable,
339         .promiscuous_disable  = eth_igb_promiscuous_disable,
340         .allmulticast_enable  = eth_igb_allmulticast_enable,
341         .allmulticast_disable = eth_igb_allmulticast_disable,
342         .link_update          = eth_igb_link_update,
343         .stats_get            = eth_igb_stats_get,
344         .xstats_get           = eth_igb_xstats_get,
345         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
346         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
347         .xstats_get_names     = eth_igb_xstats_get_names,
348         .stats_reset          = eth_igb_stats_reset,
349         .xstats_reset         = eth_igb_xstats_reset,
350         .fw_version_get       = eth_igb_fw_version_get,
351         .dev_infos_get        = eth_igb_infos_get,
352         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
353         .mtu_set              = eth_igb_mtu_set,
354         .vlan_filter_set      = eth_igb_vlan_filter_set,
355         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
356         .vlan_offload_set     = eth_igb_vlan_offload_set,
357         .rx_queue_setup       = eth_igb_rx_queue_setup,
358         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
359         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
360         .rx_queue_release     = eth_igb_rx_queue_release,
361         .tx_queue_setup       = eth_igb_tx_queue_setup,
362         .tx_queue_release     = eth_igb_tx_queue_release,
363         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
364         .dev_led_on           = eth_igb_led_on,
365         .dev_led_off          = eth_igb_led_off,
366         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
367         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
368         .mac_addr_add         = eth_igb_rar_set,
369         .mac_addr_remove      = eth_igb_rar_clear,
370         .mac_addr_set         = eth_igb_default_mac_addr_set,
371         .reta_update          = eth_igb_rss_reta_update,
372         .reta_query           = eth_igb_rss_reta_query,
373         .rss_hash_update      = eth_igb_rss_hash_update,
374         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
375         .flow_ops_get         = eth_igb_flow_ops_get,
376         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
377         .rxq_info_get         = igb_rxq_info_get,
378         .txq_info_get         = igb_txq_info_get,
379         .timesync_enable      = igb_timesync_enable,
380         .timesync_disable     = igb_timesync_disable,
381         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
382         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
383         .get_reg              = eth_igb_get_regs,
384         .get_eeprom_length    = eth_igb_get_eeprom_length,
385         .get_eeprom           = eth_igb_get_eeprom,
386         .set_eeprom           = eth_igb_set_eeprom,
387         .get_module_info      = eth_igb_get_module_info,
388         .get_module_eeprom    = eth_igb_get_module_eeprom,
389         .timesync_adjust_time = igb_timesync_adjust_time,
390         .timesync_read_time   = igb_timesync_read_time,
391         .timesync_write_time  = igb_timesync_write_time,
392 };
393
394 /*
395  * dev_ops for virtual function, bare necessities for basic vf
396  * operation have been implemented
397  */
398 static const struct eth_dev_ops igbvf_eth_dev_ops = {
399         .dev_configure        = igbvf_dev_configure,
400         .dev_start            = igbvf_dev_start,
401         .dev_stop             = igbvf_dev_stop,
402         .dev_close            = igbvf_dev_close,
403         .promiscuous_enable   = igbvf_promiscuous_enable,
404         .promiscuous_disable  = igbvf_promiscuous_disable,
405         .allmulticast_enable  = igbvf_allmulticast_enable,
406         .allmulticast_disable = igbvf_allmulticast_disable,
407         .link_update          = eth_igb_link_update,
408         .stats_get            = eth_igbvf_stats_get,
409         .xstats_get           = eth_igbvf_xstats_get,
410         .xstats_get_names     = eth_igbvf_xstats_get_names,
411         .stats_reset          = eth_igbvf_stats_reset,
412         .xstats_reset         = eth_igbvf_stats_reset,
413         .vlan_filter_set      = igbvf_vlan_filter_set,
414         .dev_infos_get        = eth_igbvf_infos_get,
415         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
416         .rx_queue_setup       = eth_igb_rx_queue_setup,
417         .rx_queue_release     = eth_igb_rx_queue_release,
418         .tx_queue_setup       = eth_igb_tx_queue_setup,
419         .tx_queue_release     = eth_igb_tx_queue_release,
420         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
421         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
422         .rxq_info_get         = igb_rxq_info_get,
423         .txq_info_get         = igb_txq_info_get,
424         .mac_addr_set         = igbvf_default_mac_addr_set,
425         .get_reg              = igbvf_get_regs,
426 };
427
428 /* store statistics names and its offset in stats structure */
429 struct rte_igb_xstats_name_off {
430         char name[RTE_ETH_XSTATS_NAME_SIZE];
431         unsigned offset;
432 };
433
434 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
435         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
436         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
437         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
438         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
439         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
440         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
441         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
442                 ecol)},
443         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
444         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
445         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
446         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
447         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
448         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
449         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
450         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
451         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
452         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
453         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
454                 fcruc)},
455         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
456         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
457         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
458         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
459         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
460                 prc1023)},
461         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
462                 prc1522)},
463         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
464         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
465         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
466         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
467         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
468         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
469         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
470         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
471         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
472         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
473         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
474         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
475         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
476         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
477         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
478         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
479         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
480         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
481                 ptc1023)},
482         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
483                 ptc1522)},
484         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
485         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
486         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
487         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
488         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
489         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
490         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
491
492         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
493 };
494
495 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
496                 sizeof(rte_igb_stats_strings[0]))
497
498 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
499         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
500         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
501         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
502         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
503         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
504 };
505
506 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
507                 sizeof(rte_igbvf_stats_strings[0]))
508
509
510 static inline void
511 igb_intr_enable(struct rte_eth_dev *dev)
512 {
513         struct e1000_interrupt *intr =
514                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
515         struct e1000_hw *hw =
516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
517         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
518         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
519
520         if (rte_intr_allow_others(intr_handle) &&
521                 dev->data->dev_conf.intr_conf.lsc != 0) {
522                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
523         }
524
525         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
526         E1000_WRITE_FLUSH(hw);
527 }
528
529 static void
530 igb_intr_disable(struct rte_eth_dev *dev)
531 {
532         struct e1000_hw *hw =
533                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
534         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
535         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
536
537         if (rte_intr_allow_others(intr_handle) &&
538                 dev->data->dev_conf.intr_conf.lsc != 0) {
539                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
540         }
541
542         E1000_WRITE_REG(hw, E1000_IMC, ~0);
543         E1000_WRITE_FLUSH(hw);
544 }
545
546 static inline void
547 igbvf_intr_enable(struct rte_eth_dev *dev)
548 {
549         struct e1000_hw *hw =
550                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
551
552         /* only for mailbox */
553         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
554         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
555         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
556         E1000_WRITE_FLUSH(hw);
557 }
558
559 /* only for mailbox now. If RX/TX needed, should extend this function.  */
560 static void
561 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
562 {
563         uint32_t tmp = 0;
564
565         /* mailbox */
566         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
567         tmp |= E1000_VTIVAR_VALID;
568         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
569 }
570
571 static void
572 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
573 {
574         struct e1000_hw *hw =
575                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576
577         /* Configure VF other cause ivar */
578         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
579 }
580
581 static inline int32_t
582 igb_pf_reset_hw(struct e1000_hw *hw)
583 {
584         uint32_t ctrl_ext;
585         int32_t status;
586
587         status = e1000_reset_hw(hw);
588
589         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
590         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
591         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
592         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
593         E1000_WRITE_FLUSH(hw);
594
595         return status;
596 }
597
598 static void
599 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
600 {
601         struct e1000_hw *hw =
602                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603
604
605         hw->vendor_id = pci_dev->id.vendor_id;
606         hw->device_id = pci_dev->id.device_id;
607         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
608         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
609
610         e1000_set_mac_type(hw);
611
612         /* need to check if it is a vf device below */
613 }
614
615 static int
616 igb_reset_swfw_lock(struct e1000_hw *hw)
617 {
618         int ret_val;
619
620         /*
621          * Do mac ops initialization manually here, since we will need
622          * some function pointers set by this call.
623          */
624         ret_val = e1000_init_mac_params(hw);
625         if (ret_val)
626                 return ret_val;
627
628         /*
629          * SMBI lock should not fail in this early stage. If this is the case,
630          * it is due to an improper exit of the application.
631          * So force the release of the faulty lock.
632          */
633         if (e1000_get_hw_semaphore_generic(hw) < 0) {
634                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
635         }
636         e1000_put_hw_semaphore_generic(hw);
637
638         if (hw->mac.ops.acquire_swfw_sync != NULL) {
639                 uint16_t mask;
640
641                 /*
642                  * Phy lock should not fail in this early stage. If this is the case,
643                  * it is due to an improper exit of the application.
644                  * So force the release of the faulty lock.
645                  */
646                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
647                 if (hw->bus.func > E1000_FUNC_1)
648                         mask <<= 2;
649                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
650                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
651                                     hw->bus.func);
652                 }
653                 hw->mac.ops.release_swfw_sync(hw, mask);
654
655                 /*
656                  * This one is more tricky since it is common to all ports; but
657                  * swfw_sync retries last long enough (1s) to be almost sure that if
658                  * lock can not be taken it is due to an improper lock of the
659                  * semaphore.
660                  */
661                 mask = E1000_SWFW_EEP_SM;
662                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
663                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
664                 }
665                 hw->mac.ops.release_swfw_sync(hw, mask);
666         }
667
668         return E1000_SUCCESS;
669 }
670
671 /* Remove all ntuple filters of the device */
672 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
673 {
674         struct e1000_filter_info *filter_info =
675                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
676         struct e1000_5tuple_filter *p_5tuple;
677         struct e1000_2tuple_filter *p_2tuple;
678
679         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
680                 TAILQ_REMOVE(&filter_info->fivetuple_list,
681                         p_5tuple, entries);
682                         rte_free(p_5tuple);
683         }
684         filter_info->fivetuple_mask = 0;
685         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
686                 TAILQ_REMOVE(&filter_info->twotuple_list,
687                         p_2tuple, entries);
688                         rte_free(p_2tuple);
689         }
690         filter_info->twotuple_mask = 0;
691
692         return 0;
693 }
694
695 /* Remove all flex filters of the device */
696 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
697 {
698         struct e1000_filter_info *filter_info =
699                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
700         struct e1000_flex_filter *p_flex;
701
702         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
703                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
704                 rte_free(p_flex);
705         }
706         filter_info->flex_mask = 0;
707
708         return 0;
709 }
710
711 static int
712 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
713 {
714         int error = 0;
715         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
716         struct e1000_hw *hw =
717                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
718         struct e1000_vfta * shadow_vfta =
719                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
720         struct e1000_filter_info *filter_info =
721                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
722         struct e1000_adapter *adapter =
723                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
724
725         uint32_t ctrl_ext;
726
727         eth_dev->dev_ops = &eth_igb_ops;
728         eth_dev->rx_queue_count = eth_igb_rx_queue_count;
729         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
730         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
731         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
732         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
733         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
734         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
735
736         /* for secondary processes, we don't initialise any further as primary
737          * has already done this work. Only check we don't need a different
738          * RX function */
739         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
740                 if (eth_dev->data->scattered_rx)
741                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
742                 return 0;
743         }
744
745         rte_eth_copy_pci_info(eth_dev, pci_dev);
746         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
747
748         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
749
750         igb_identify_hardware(eth_dev, pci_dev);
751         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
752                 error = -EIO;
753                 goto err_late;
754         }
755
756         e1000_get_bus_info(hw);
757
758         /* Reset any pending lock */
759         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
760                 error = -EIO;
761                 goto err_late;
762         }
763
764         /* Finish initialization */
765         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
766                 error = -EIO;
767                 goto err_late;
768         }
769
770         hw->mac.autoneg = 1;
771         hw->phy.autoneg_wait_to_complete = 0;
772         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
773
774         /* Copper options */
775         if (hw->phy.media_type == e1000_media_type_copper) {
776                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
777                 hw->phy.disable_polarity_correction = 0;
778                 hw->phy.ms_type = e1000_ms_hw_default;
779         }
780
781         /*
782          * Start from a known state, this is important in reading the nvm
783          * and mac from that.
784          */
785         igb_pf_reset_hw(hw);
786
787         /* Make sure we have a good EEPROM before we read from it */
788         if (e1000_validate_nvm_checksum(hw) < 0) {
789                 /*
790                  * Some PCI-E parts fail the first check due to
791                  * the link being in sleep state, call it again,
792                  * if it fails a second time its a real issue.
793                  */
794                 if (e1000_validate_nvm_checksum(hw) < 0) {
795                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
796                         error = -EIO;
797                         goto err_late;
798                 }
799         }
800
801         /* Read the permanent MAC address out of the EEPROM */
802         if (e1000_read_mac_addr(hw) != 0) {
803                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
804                 error = -EIO;
805                 goto err_late;
806         }
807
808         /* Allocate memory for storing MAC addresses */
809         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
810                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
811         if (eth_dev->data->mac_addrs == NULL) {
812                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
813                                                 "store MAC addresses",
814                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
815                 error = -ENOMEM;
816                 goto err_late;
817         }
818
819         /* Copy the permanent MAC address */
820         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
821                         &eth_dev->data->mac_addrs[0]);
822
823         /* initialize the vfta */
824         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
825
826         /* Now initialize the hardware */
827         if (igb_hardware_init(hw) != 0) {
828                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
829                 rte_free(eth_dev->data->mac_addrs);
830                 eth_dev->data->mac_addrs = NULL;
831                 error = -ENODEV;
832                 goto err_late;
833         }
834         hw->mac.get_link_status = 1;
835         adapter->stopped = 0;
836
837         /* Indicate SOL/IDER usage */
838         if (e1000_check_reset_block(hw) < 0) {
839                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
840                                         "SOL/IDER session");
841         }
842
843         /* initialize PF if max_vfs not zero */
844         igb_pf_host_init(eth_dev);
845
846         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
847         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
848         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
849         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
850         E1000_WRITE_FLUSH(hw);
851
852         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
853                      eth_dev->data->port_id, pci_dev->id.vendor_id,
854                      pci_dev->id.device_id);
855
856         rte_intr_callback_register(&pci_dev->intr_handle,
857                                    eth_igb_interrupt_handler,
858                                    (void *)eth_dev);
859
860         /* enable uio/vfio intr/eventfd mapping */
861         rte_intr_enable(&pci_dev->intr_handle);
862
863         /* enable support intr */
864         igb_intr_enable(eth_dev);
865
866         eth_igb_dev_set_link_down(eth_dev);
867
868         /* initialize filter info */
869         memset(filter_info, 0,
870                sizeof(struct e1000_filter_info));
871
872         TAILQ_INIT(&filter_info->flex_list);
873         TAILQ_INIT(&filter_info->twotuple_list);
874         TAILQ_INIT(&filter_info->fivetuple_list);
875
876         TAILQ_INIT(&igb_filter_ntuple_list);
877         TAILQ_INIT(&igb_filter_ethertype_list);
878         TAILQ_INIT(&igb_filter_syn_list);
879         TAILQ_INIT(&igb_filter_flex_list);
880         TAILQ_INIT(&igb_filter_rss_list);
881         TAILQ_INIT(&igb_flow_list);
882
883         return 0;
884
885 err_late:
886         igb_hw_control_release(hw);
887
888         return error;
889 }
890
891 static int
892 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
893 {
894         PMD_INIT_FUNC_TRACE();
895
896         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
897                 return 0;
898
899         eth_igb_close(eth_dev);
900
901         return 0;
902 }
903
904 /*
905  * Virtual Function device init
906  */
907 static int
908 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
909 {
910         struct rte_pci_device *pci_dev;
911         struct rte_intr_handle *intr_handle;
912         struct e1000_adapter *adapter =
913                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
914         struct e1000_hw *hw =
915                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
916         int diag;
917         struct rte_ether_addr *perm_addr =
918                 (struct rte_ether_addr *)hw->mac.perm_addr;
919
920         PMD_INIT_FUNC_TRACE();
921
922         eth_dev->dev_ops = &igbvf_eth_dev_ops;
923         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
924         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
925         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
926         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
927         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
928         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
929
930         /* for secondary processes, we don't initialise any further as primary
931          * has already done this work. Only check we don't need a different
932          * RX function */
933         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
934                 if (eth_dev->data->scattered_rx)
935                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
936                 return 0;
937         }
938
939         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
940         rte_eth_copy_pci_info(eth_dev, pci_dev);
941         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
942
943         hw->device_id = pci_dev->id.device_id;
944         hw->vendor_id = pci_dev->id.vendor_id;
945         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
946         adapter->stopped = 0;
947
948         /* Initialize the shared code (base driver) */
949         diag = e1000_setup_init_funcs(hw, TRUE);
950         if (diag != 0) {
951                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
952                         diag);
953                 return -EIO;
954         }
955
956         /* init_mailbox_params */
957         hw->mbx.ops.init_params(hw);
958
959         /* Disable the interrupts for VF */
960         igbvf_intr_disable(hw);
961
962         diag = hw->mac.ops.reset_hw(hw);
963
964         /* Allocate memory for storing MAC addresses */
965         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
966                 hw->mac.rar_entry_count, 0);
967         if (eth_dev->data->mac_addrs == NULL) {
968                 PMD_INIT_LOG(ERR,
969                         "Failed to allocate %d bytes needed to store MAC "
970                         "addresses",
971                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
972                 return -ENOMEM;
973         }
974
975         /* Generate a random MAC address, if none was assigned by PF. */
976         if (rte_is_zero_ether_addr(perm_addr)) {
977                 rte_eth_random_addr(perm_addr->addr_bytes);
978                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
979                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
980                              RTE_ETHER_ADDR_PRT_FMT,
981                              perm_addr->addr_bytes[0],
982                              perm_addr->addr_bytes[1],
983                              perm_addr->addr_bytes[2],
984                              perm_addr->addr_bytes[3],
985                              perm_addr->addr_bytes[4],
986                              perm_addr->addr_bytes[5]);
987         }
988
989         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
990         if (diag) {
991                 rte_free(eth_dev->data->mac_addrs);
992                 eth_dev->data->mac_addrs = NULL;
993                 return diag;
994         }
995         /* Copy the permanent MAC address */
996         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
997                         &eth_dev->data->mac_addrs[0]);
998
999         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1000                      "mac.type=%s",
1001                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1002                      pci_dev->id.device_id, "igb_mac_82576_vf");
1003
1004         intr_handle = &pci_dev->intr_handle;
1005         rte_intr_callback_register(intr_handle,
1006                                    eth_igbvf_interrupt_handler, eth_dev);
1007
1008         return 0;
1009 }
1010
1011 static int
1012 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1013 {
1014         PMD_INIT_FUNC_TRACE();
1015
1016         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1017                 return 0;
1018
1019         igbvf_dev_close(eth_dev);
1020
1021         return 0;
1022 }
1023
1024 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1025         struct rte_pci_device *pci_dev)
1026 {
1027         return rte_eth_dev_pci_generic_probe(pci_dev,
1028                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1029 }
1030
1031 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1032 {
1033         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1034 }
1035
1036 static struct rte_pci_driver rte_igb_pmd = {
1037         .id_table = pci_id_igb_map,
1038         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1039         .probe = eth_igb_pci_probe,
1040         .remove = eth_igb_pci_remove,
1041 };
1042
1043
1044 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1045         struct rte_pci_device *pci_dev)
1046 {
1047         return rte_eth_dev_pci_generic_probe(pci_dev,
1048                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1049 }
1050
1051 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1052 {
1053         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1054 }
1055
1056 /*
1057  * virtual function driver struct
1058  */
1059 static struct rte_pci_driver rte_igbvf_pmd = {
1060         .id_table = pci_id_igbvf_map,
1061         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1062         .probe = eth_igbvf_pci_probe,
1063         .remove = eth_igbvf_pci_remove,
1064 };
1065
1066 static void
1067 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1068 {
1069         struct e1000_hw *hw =
1070                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1071         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1072         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1073         rctl |= E1000_RCTL_VFE;
1074         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1075 }
1076
1077 static int
1078 igb_check_mq_mode(struct rte_eth_dev *dev)
1079 {
1080         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1081         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1082         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1083         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1084
1085         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1086             tx_mq_mode == ETH_MQ_TX_DCB ||
1087             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1088                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1089                 return -EINVAL;
1090         }
1091         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1092                 /* Check multi-queue mode.
1093                  * To no break software we accept ETH_MQ_RX_NONE as this might
1094                  * be used to turn off VLAN filter.
1095                  */
1096
1097                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1098                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1099                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1100                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1101                 } else {
1102                         /* Only support one queue on VFs.
1103                          * RSS together with SRIOV is not supported.
1104                          */
1105                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1106                                         " wrong mq_mode rx %d.",
1107                                         rx_mq_mode);
1108                         return -EINVAL;
1109                 }
1110                 /* TX mode is not used here, so mode might be ignored.*/
1111                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1112                         /* SRIOV only works in VMDq enable mode */
1113                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1114                                         " TX mode %d is not supported. "
1115                                         " Driver will behave as %d mode.",
1116                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1117                 }
1118
1119                 /* check valid queue number */
1120                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1121                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1122                                         " only support one queue on VFs.");
1123                         return -EINVAL;
1124                 }
1125         } else {
1126                 /* To no break software that set invalid mode, only display
1127                  * warning if invalid mode is used.
1128                  */
1129                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1130                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1131                     rx_mq_mode != ETH_MQ_RX_RSS) {
1132                         /* RSS together with VMDq not supported*/
1133                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1134                                      rx_mq_mode);
1135                         return -EINVAL;
1136                 }
1137
1138                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1139                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1140                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1141                                         " Due to txmode is meaningless in this"
1142                                         " driver, just ignore.",
1143                                         tx_mq_mode);
1144                 }
1145         }
1146         return 0;
1147 }
1148
1149 static int
1150 eth_igb_configure(struct rte_eth_dev *dev)
1151 {
1152         struct e1000_interrupt *intr =
1153                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1154         int ret;
1155
1156         PMD_INIT_FUNC_TRACE();
1157
1158         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1159                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1160
1161         /* multipe queue mode checking */
1162         ret  = igb_check_mq_mode(dev);
1163         if (ret != 0) {
1164                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1165                             ret);
1166                 return ret;
1167         }
1168
1169         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1170         PMD_INIT_FUNC_TRACE();
1171
1172         return 0;
1173 }
1174
1175 static void
1176 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1177                      bool enable)
1178 {
1179         struct e1000_hw *hw =
1180                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1181         uint32_t tctl, rctl;
1182
1183         tctl = E1000_READ_REG(hw, E1000_TCTL);
1184         rctl = E1000_READ_REG(hw, E1000_RCTL);
1185
1186         if (enable) {
1187                 /* enable Tx/Rx */
1188                 tctl |= E1000_TCTL_EN;
1189                 rctl |= E1000_RCTL_EN;
1190         } else {
1191                 /* disable Tx/Rx */
1192                 tctl &= ~E1000_TCTL_EN;
1193                 rctl &= ~E1000_RCTL_EN;
1194         }
1195         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1196         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1197         E1000_WRITE_FLUSH(hw);
1198 }
1199
1200 static int
1201 eth_igb_start(struct rte_eth_dev *dev)
1202 {
1203         struct e1000_hw *hw =
1204                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1205         struct e1000_adapter *adapter =
1206                 E1000_DEV_PRIVATE(dev->data->dev_private);
1207         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1208         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1209         int ret, mask;
1210         uint32_t intr_vector = 0;
1211         uint32_t ctrl_ext;
1212         uint32_t *speeds;
1213         int num_speeds;
1214         bool autoneg;
1215
1216         PMD_INIT_FUNC_TRACE();
1217
1218         /* disable uio/vfio intr/eventfd mapping */
1219         rte_intr_disable(intr_handle);
1220
1221         /* Power up the phy. Needed to make the link go Up */
1222         eth_igb_dev_set_link_up(dev);
1223
1224         /*
1225          * Packet Buffer Allocation (PBA)
1226          * Writing PBA sets the receive portion of the buffer
1227          * the remainder is used for the transmit buffer.
1228          */
1229         if (hw->mac.type == e1000_82575) {
1230                 uint32_t pba;
1231
1232                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1233                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1234         }
1235
1236         /* Put the address into the Receive Address Array */
1237         e1000_rar_set(hw, hw->mac.addr, 0);
1238
1239         /* Initialize the hardware */
1240         if (igb_hardware_init(hw)) {
1241                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1242                 return -EIO;
1243         }
1244         adapter->stopped = 0;
1245
1246         E1000_WRITE_REG(hw, E1000_VET,
1247                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1248
1249         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1250         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1251         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1252         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1253         E1000_WRITE_FLUSH(hw);
1254
1255         /* configure PF module if SRIOV enabled */
1256         igb_pf_host_configure(dev);
1257
1258         /* check and configure queue intr-vector mapping */
1259         if ((rte_intr_cap_multiple(intr_handle) ||
1260              !RTE_ETH_DEV_SRIOV(dev).active) &&
1261             dev->data->dev_conf.intr_conf.rxq != 0) {
1262                 intr_vector = dev->data->nb_rx_queues;
1263                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1264                         return -1;
1265         }
1266
1267         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1268                 intr_handle->intr_vec =
1269                         rte_zmalloc("intr_vec",
1270                                     dev->data->nb_rx_queues * sizeof(int), 0);
1271                 if (intr_handle->intr_vec == NULL) {
1272                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1273                                      " intr_vec", dev->data->nb_rx_queues);
1274                         return -ENOMEM;
1275                 }
1276         }
1277
1278         /* confiugre msix for rx interrupt */
1279         eth_igb_configure_msix_intr(dev);
1280
1281         /* Configure for OS presence */
1282         igb_init_manageability(hw);
1283
1284         eth_igb_tx_init(dev);
1285
1286         /* This can fail when allocating mbufs for descriptor rings */
1287         ret = eth_igb_rx_init(dev);
1288         if (ret) {
1289                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1290                 igb_dev_clear_queues(dev);
1291                 return ret;
1292         }
1293
1294         e1000_clear_hw_cntrs_base_generic(hw);
1295
1296         /*
1297          * VLAN Offload Settings
1298          */
1299         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1300                         ETH_VLAN_EXTEND_MASK;
1301         ret = eth_igb_vlan_offload_set(dev, mask);
1302         if (ret) {
1303                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1304                 igb_dev_clear_queues(dev);
1305                 return ret;
1306         }
1307
1308         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1309                 /* Enable VLAN filter since VMDq always use VLAN filter */
1310                 igb_vmdq_vlan_hw_filter_enable(dev);
1311         }
1312
1313         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1314                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1315                 (hw->mac.type == e1000_i211)) {
1316                 /* Configure EITR with the maximum possible value (0xFFFF) */
1317                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1318         }
1319
1320         /* Setup link speed and duplex */
1321         speeds = &dev->data->dev_conf.link_speeds;
1322         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1323                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1324                 hw->mac.autoneg = 1;
1325         } else {
1326                 num_speeds = 0;
1327                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1328
1329                 /* Reset */
1330                 hw->phy.autoneg_advertised = 0;
1331
1332                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1333                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1334                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1335                         num_speeds = -1;
1336                         goto error_invalid_config;
1337                 }
1338                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1339                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1340                         num_speeds++;
1341                 }
1342                 if (*speeds & ETH_LINK_SPEED_10M) {
1343                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1344                         num_speeds++;
1345                 }
1346                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1347                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1348                         num_speeds++;
1349                 }
1350                 if (*speeds & ETH_LINK_SPEED_100M) {
1351                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1352                         num_speeds++;
1353                 }
1354                 if (*speeds & ETH_LINK_SPEED_1G) {
1355                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1356                         num_speeds++;
1357                 }
1358                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1359                         goto error_invalid_config;
1360
1361                 /* Set/reset the mac.autoneg based on the link speed,
1362                  * fixed or not
1363                  */
1364                 if (!autoneg) {
1365                         hw->mac.autoneg = 0;
1366                         hw->mac.forced_speed_duplex =
1367                                         hw->phy.autoneg_advertised;
1368                 } else {
1369                         hw->mac.autoneg = 1;
1370                 }
1371         }
1372
1373         e1000_setup_link(hw);
1374
1375         if (rte_intr_allow_others(intr_handle)) {
1376                 /* check if lsc interrupt is enabled */
1377                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1378                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1379                 else
1380                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1381         } else {
1382                 rte_intr_callback_unregister(intr_handle,
1383                                              eth_igb_interrupt_handler,
1384                                              (void *)dev);
1385                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1386                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1387                                      " no intr multiplex");
1388         }
1389
1390         /* check if rxq interrupt is enabled */
1391         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1392             rte_intr_dp_is_en(intr_handle))
1393                 eth_igb_rxq_interrupt_setup(dev);
1394
1395         /* enable uio/vfio intr/eventfd mapping */
1396         rte_intr_enable(intr_handle);
1397
1398         /* resume enabled intr since hw reset */
1399         igb_intr_enable(dev);
1400
1401         /* restore all types filter */
1402         igb_filter_restore(dev);
1403
1404         eth_igb_rxtx_control(dev, true);
1405         eth_igb_link_update(dev, 0);
1406
1407         PMD_INIT_LOG(DEBUG, "<<");
1408
1409         return 0;
1410
1411 error_invalid_config:
1412         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1413                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1414         igb_dev_clear_queues(dev);
1415         return -EINVAL;
1416 }
1417
1418 /*********************************************************************
1419  *
1420  *  This routine disables all traffic on the adapter by issuing a
1421  *  global reset on the MAC.
1422  *
1423  **********************************************************************/
1424 static int
1425 eth_igb_stop(struct rte_eth_dev *dev)
1426 {
1427         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1428         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1429         struct rte_eth_link link;
1430         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1431         struct e1000_adapter *adapter =
1432                 E1000_DEV_PRIVATE(dev->data->dev_private);
1433
1434         if (adapter->stopped)
1435                 return 0;
1436
1437         eth_igb_rxtx_control(dev, false);
1438
1439         igb_intr_disable(dev);
1440
1441         /* disable intr eventfd mapping */
1442         rte_intr_disable(intr_handle);
1443
1444         igb_pf_reset_hw(hw);
1445         E1000_WRITE_REG(hw, E1000_WUC, 0);
1446
1447         /* Set bit for Go Link disconnect if PHY reset is not blocked */
1448         if (hw->mac.type >= e1000_82580 &&
1449             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1450                 uint32_t phpm_reg;
1451
1452                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1453                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1454                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1455         }
1456
1457         /* Power down the phy. Needed to make the link go Down */
1458         eth_igb_dev_set_link_down(dev);
1459
1460         igb_dev_clear_queues(dev);
1461
1462         /* clear the recorded link status */
1463         memset(&link, 0, sizeof(link));
1464         rte_eth_linkstatus_set(dev, &link);
1465
1466         if (!rte_intr_allow_others(intr_handle))
1467                 /* resume to the default handler */
1468                 rte_intr_callback_register(intr_handle,
1469                                            eth_igb_interrupt_handler,
1470                                            (void *)dev);
1471
1472         /* Clean datapath event and queue/vec mapping */
1473         rte_intr_efd_disable(intr_handle);
1474         if (intr_handle->intr_vec != NULL) {
1475                 rte_free(intr_handle->intr_vec);
1476                 intr_handle->intr_vec = NULL;
1477         }
1478
1479         adapter->stopped = true;
1480         dev->data->dev_started = 0;
1481
1482         return 0;
1483 }
1484
1485 static int
1486 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1487 {
1488         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1489
1490         if (hw->phy.media_type == e1000_media_type_copper)
1491                 e1000_power_up_phy(hw);
1492         else
1493                 e1000_power_up_fiber_serdes_link(hw);
1494
1495         return 0;
1496 }
1497
1498 static int
1499 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1500 {
1501         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1502
1503         if (hw->phy.media_type == e1000_media_type_copper)
1504                 e1000_power_down_phy(hw);
1505         else
1506                 e1000_shutdown_fiber_serdes_link(hw);
1507
1508         return 0;
1509 }
1510
1511 static int
1512 eth_igb_close(struct rte_eth_dev *dev)
1513 {
1514         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1515         struct rte_eth_link link;
1516         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1517         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1518         struct e1000_filter_info *filter_info =
1519                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1520         int ret;
1521
1522         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1523                 return 0;
1524
1525         ret = eth_igb_stop(dev);
1526
1527         e1000_phy_hw_reset(hw);
1528         igb_release_manageability(hw);
1529         igb_hw_control_release(hw);
1530
1531         /* Clear bit for Go Link disconnect if PHY reset is not blocked */
1532         if (hw->mac.type >= e1000_82580 &&
1533             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1534                 uint32_t phpm_reg;
1535
1536                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1537                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1538                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1539         }
1540
1541         igb_dev_free_queues(dev);
1542
1543         if (intr_handle->intr_vec) {
1544                 rte_free(intr_handle->intr_vec);
1545                 intr_handle->intr_vec = NULL;
1546         }
1547
1548         memset(&link, 0, sizeof(link));
1549         rte_eth_linkstatus_set(dev, &link);
1550
1551         /* Reset any pending lock */
1552         igb_reset_swfw_lock(hw);
1553
1554         /* uninitialize PF if max_vfs not zero */
1555         igb_pf_host_uninit(dev);
1556
1557         rte_intr_callback_unregister(intr_handle,
1558                                      eth_igb_interrupt_handler, dev);
1559
1560         /* clear the SYN filter info */
1561         filter_info->syn_info = 0;
1562
1563         /* clear the ethertype filters info */
1564         filter_info->ethertype_mask = 0;
1565         memset(filter_info->ethertype_filters, 0,
1566                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1567
1568         /* clear the rss filter info */
1569         memset(&filter_info->rss_info, 0,
1570                 sizeof(struct igb_rte_flow_rss_conf));
1571
1572         /* remove all ntuple filters of the device */
1573         igb_ntuple_filter_uninit(dev);
1574
1575         /* remove all flex filters of the device */
1576         igb_flex_filter_uninit(dev);
1577
1578         /* clear all the filters list */
1579         igb_filterlist_flush(dev);
1580
1581         return ret;
1582 }
1583
1584 /*
1585  * Reset PF device.
1586  */
1587 static int
1588 eth_igb_reset(struct rte_eth_dev *dev)
1589 {
1590         int ret;
1591
1592         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1593          * its VF to make them align with it. The detailed notification
1594          * mechanism is PMD specific and is currently not implemented.
1595          * To avoid unexpected behavior in VF, currently reset of PF with
1596          * SR-IOV activation is not supported. It might be supported later.
1597          */
1598         if (dev->data->sriov.active)
1599                 return -ENOTSUP;
1600
1601         ret = eth_igb_dev_uninit(dev);
1602         if (ret)
1603                 return ret;
1604
1605         ret = eth_igb_dev_init(dev);
1606
1607         return ret;
1608 }
1609
1610
1611 static int
1612 igb_get_rx_buffer_size(struct e1000_hw *hw)
1613 {
1614         uint32_t rx_buf_size;
1615         if (hw->mac.type == e1000_82576) {
1616                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1617         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1618                 /* PBS needs to be translated according to a lookup table */
1619                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1620                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1621                 rx_buf_size = (rx_buf_size << 10);
1622         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1623                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1624         } else {
1625                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1626         }
1627
1628         return rx_buf_size;
1629 }
1630
1631 /*********************************************************************
1632  *
1633  *  Initialize the hardware
1634  *
1635  **********************************************************************/
1636 static int
1637 igb_hardware_init(struct e1000_hw *hw)
1638 {
1639         uint32_t rx_buf_size;
1640         int diag;
1641
1642         /* Let the firmware know the OS is in control */
1643         igb_hw_control_acquire(hw);
1644
1645         /*
1646          * These parameters control the automatic generation (Tx) and
1647          * response (Rx) to Ethernet PAUSE frames.
1648          * - High water mark should allow for at least two standard size (1518)
1649          *   frames to be received after sending an XOFF.
1650          * - Low water mark works best when it is very near the high water mark.
1651          *   This allows the receiver to restart by sending XON when it has
1652          *   drained a bit. Here we use an arbitrary value of 1500 which will
1653          *   restart after one full frame is pulled from the buffer. There
1654          *   could be several smaller frames in the buffer and if so they will
1655          *   not trigger the XON until their total number reduces the buffer
1656          *   by 1500.
1657          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1658          */
1659         rx_buf_size = igb_get_rx_buffer_size(hw);
1660
1661         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1662         hw->fc.low_water = hw->fc.high_water - 1500;
1663         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1664         hw->fc.send_xon = 1;
1665
1666         /* Set Flow control, use the tunable location if sane */
1667         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1668                 hw->fc.requested_mode = igb_fc_setting;
1669         else
1670                 hw->fc.requested_mode = e1000_fc_none;
1671
1672         /* Issue a global reset */
1673         igb_pf_reset_hw(hw);
1674         E1000_WRITE_REG(hw, E1000_WUC, 0);
1675
1676         diag = e1000_init_hw(hw);
1677         if (diag < 0)
1678                 return diag;
1679
1680         E1000_WRITE_REG(hw, E1000_VET,
1681                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1682         e1000_get_phy_info(hw);
1683         e1000_check_for_link(hw);
1684
1685         return 0;
1686 }
1687
1688 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1689 static void
1690 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1691 {
1692         int pause_frames;
1693
1694         uint64_t old_gprc  = stats->gprc;
1695         uint64_t old_gptc  = stats->gptc;
1696         uint64_t old_tpr   = stats->tpr;
1697         uint64_t old_tpt   = stats->tpt;
1698         uint64_t old_rpthc = stats->rpthc;
1699         uint64_t old_hgptc = stats->hgptc;
1700
1701         if(hw->phy.media_type == e1000_media_type_copper ||
1702             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1703                 stats->symerrs +=
1704                     E1000_READ_REG(hw,E1000_SYMERRS);
1705                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1706         }
1707
1708         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1709         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1710         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1711         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1712
1713         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1714         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1715         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1716         stats->dc += E1000_READ_REG(hw, E1000_DC);
1717         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1718         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1719         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1720         /*
1721         ** For watchdog management we need to know if we have been
1722         ** paused during the last interval, so capture that here.
1723         */
1724         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1725         stats->xoffrxc += pause_frames;
1726         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1727         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1728         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1729         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1730         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1731         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1732         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1733         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1734         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1735         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1736         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1737         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1738
1739         /* For the 64-bit byte counters the low dword must be read first. */
1740         /* Both registers clear on the read of the high dword */
1741
1742         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1743         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1744         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1745         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1746         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1747         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1748         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1749
1750         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1751         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1752         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1753         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1754         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1755
1756         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1757         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1758
1759         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1760         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1761         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1762         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1763         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1764         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1765
1766         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1767         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1768         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1769         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1770         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1771         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1772         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1773         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1774
1775         /* Interrupt Counts */
1776
1777         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1778         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1779         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1780         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1781         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1782         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1783         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1784         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1785         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1786
1787         /* Host to Card Statistics */
1788
1789         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1790         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1791         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1792         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1793         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1794         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1795         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1796         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1797         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1798         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1799         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1800         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1801         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1802         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1803         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1804         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1805
1806         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1807         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1808         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1809         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1810         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1811         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1812 }
1813
1814 static int
1815 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1816 {
1817         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1818         struct e1000_hw_stats *stats =
1819                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1820
1821         igb_read_stats_registers(hw, stats);
1822
1823         if (rte_stats == NULL)
1824                 return -EINVAL;
1825
1826         /* Rx Errors */
1827         rte_stats->imissed = stats->mpc;
1828         rte_stats->ierrors = stats->crcerrs + stats->rlec +
1829                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1830
1831         /* Tx Errors */
1832         rte_stats->oerrors = stats->ecol + stats->latecol;
1833
1834         rte_stats->ipackets = stats->gprc;
1835         rte_stats->opackets = stats->gptc;
1836         rte_stats->ibytes   = stats->gorc;
1837         rte_stats->obytes   = stats->gotc;
1838         return 0;
1839 }
1840
1841 static int
1842 eth_igb_stats_reset(struct rte_eth_dev *dev)
1843 {
1844         struct e1000_hw_stats *hw_stats =
1845                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1846
1847         /* HW registers are cleared on read */
1848         eth_igb_stats_get(dev, NULL);
1849
1850         /* Reset software totals */
1851         memset(hw_stats, 0, sizeof(*hw_stats));
1852
1853         return 0;
1854 }
1855
1856 static int
1857 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1858 {
1859         struct e1000_hw_stats *stats =
1860                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1861
1862         /* HW registers are cleared on read */
1863         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1864
1865         /* Reset software totals */
1866         memset(stats, 0, sizeof(*stats));
1867
1868         return 0;
1869 }
1870
1871 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1872         struct rte_eth_xstat_name *xstats_names,
1873         __rte_unused unsigned int size)
1874 {
1875         unsigned i;
1876
1877         if (xstats_names == NULL)
1878                 return IGB_NB_XSTATS;
1879
1880         /* Note: limit checked in rte_eth_xstats_names() */
1881
1882         for (i = 0; i < IGB_NB_XSTATS; i++) {
1883                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1884                         sizeof(xstats_names[i].name));
1885         }
1886
1887         return IGB_NB_XSTATS;
1888 }
1889
1890 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1891                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1892                 unsigned int limit)
1893 {
1894         unsigned int i;
1895
1896         if (!ids) {
1897                 if (xstats_names == NULL)
1898                         return IGB_NB_XSTATS;
1899
1900                 for (i = 0; i < IGB_NB_XSTATS; i++)
1901                         strlcpy(xstats_names[i].name,
1902                                 rte_igb_stats_strings[i].name,
1903                                 sizeof(xstats_names[i].name));
1904
1905                 return IGB_NB_XSTATS;
1906
1907         } else {
1908                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1909
1910                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1911                                 IGB_NB_XSTATS);
1912
1913                 for (i = 0; i < limit; i++) {
1914                         if (ids[i] >= IGB_NB_XSTATS) {
1915                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1916                                 return -1;
1917                         }
1918                         strcpy(xstats_names[i].name,
1919                                         xstats_names_copy[ids[i]].name);
1920                 }
1921                 return limit;
1922         }
1923 }
1924
1925 static int
1926 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1927                    unsigned n)
1928 {
1929         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1930         struct e1000_hw_stats *hw_stats =
1931                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1932         unsigned i;
1933
1934         if (n < IGB_NB_XSTATS)
1935                 return IGB_NB_XSTATS;
1936
1937         igb_read_stats_registers(hw, hw_stats);
1938
1939         /* If this is a reset xstats is NULL, and we have cleared the
1940          * registers by reading them.
1941          */
1942         if (!xstats)
1943                 return 0;
1944
1945         /* Extended stats */
1946         for (i = 0; i < IGB_NB_XSTATS; i++) {
1947                 xstats[i].id = i;
1948                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1949                         rte_igb_stats_strings[i].offset);
1950         }
1951
1952         return IGB_NB_XSTATS;
1953 }
1954
1955 static int
1956 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1957                 uint64_t *values, unsigned int n)
1958 {
1959         unsigned int i;
1960
1961         if (!ids) {
1962                 struct e1000_hw *hw =
1963                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1964                 struct e1000_hw_stats *hw_stats =
1965                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1966
1967                 if (n < IGB_NB_XSTATS)
1968                         return IGB_NB_XSTATS;
1969
1970                 igb_read_stats_registers(hw, hw_stats);
1971
1972                 /* If this is a reset xstats is NULL, and we have cleared the
1973                  * registers by reading them.
1974                  */
1975                 if (!values)
1976                         return 0;
1977
1978                 /* Extended stats */
1979                 for (i = 0; i < IGB_NB_XSTATS; i++)
1980                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1981                                         rte_igb_stats_strings[i].offset);
1982
1983                 return IGB_NB_XSTATS;
1984
1985         } else {
1986                 uint64_t values_copy[IGB_NB_XSTATS];
1987
1988                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1989                                 IGB_NB_XSTATS);
1990
1991                 for (i = 0; i < n; i++) {
1992                         if (ids[i] >= IGB_NB_XSTATS) {
1993                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1994                                 return -1;
1995                         }
1996                         values[i] = values_copy[ids[i]];
1997                 }
1998                 return n;
1999         }
2000 }
2001
2002 static void
2003 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2004 {
2005         /* Good Rx packets, include VF loopback */
2006         UPDATE_VF_STAT(E1000_VFGPRC,
2007             hw_stats->last_gprc, hw_stats->gprc);
2008
2009         /* Good Rx octets, include VF loopback */
2010         UPDATE_VF_STAT(E1000_VFGORC,
2011             hw_stats->last_gorc, hw_stats->gorc);
2012
2013         /* Good Tx packets, include VF loopback */
2014         UPDATE_VF_STAT(E1000_VFGPTC,
2015             hw_stats->last_gptc, hw_stats->gptc);
2016
2017         /* Good Tx octets, include VF loopback */
2018         UPDATE_VF_STAT(E1000_VFGOTC,
2019             hw_stats->last_gotc, hw_stats->gotc);
2020
2021         /* Rx Multicst packets */
2022         UPDATE_VF_STAT(E1000_VFMPRC,
2023             hw_stats->last_mprc, hw_stats->mprc);
2024
2025         /* Good Rx loopback packets */
2026         UPDATE_VF_STAT(E1000_VFGPRLBC,
2027             hw_stats->last_gprlbc, hw_stats->gprlbc);
2028
2029         /* Good Rx loopback octets */
2030         UPDATE_VF_STAT(E1000_VFGORLBC,
2031             hw_stats->last_gorlbc, hw_stats->gorlbc);
2032
2033         /* Good Tx loopback packets */
2034         UPDATE_VF_STAT(E1000_VFGPTLBC,
2035             hw_stats->last_gptlbc, hw_stats->gptlbc);
2036
2037         /* Good Tx loopback octets */
2038         UPDATE_VF_STAT(E1000_VFGOTLBC,
2039             hw_stats->last_gotlbc, hw_stats->gotlbc);
2040 }
2041
2042 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2043                                      struct rte_eth_xstat_name *xstats_names,
2044                                      __rte_unused unsigned limit)
2045 {
2046         unsigned i;
2047
2048         if (xstats_names != NULL)
2049                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2050                         strlcpy(xstats_names[i].name,
2051                                 rte_igbvf_stats_strings[i].name,
2052                                 sizeof(xstats_names[i].name));
2053                 }
2054         return IGBVF_NB_XSTATS;
2055 }
2056
2057 static int
2058 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2059                      unsigned n)
2060 {
2061         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2062         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2063                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2064         unsigned i;
2065
2066         if (n < IGBVF_NB_XSTATS)
2067                 return IGBVF_NB_XSTATS;
2068
2069         igbvf_read_stats_registers(hw, hw_stats);
2070
2071         if (!xstats)
2072                 return 0;
2073
2074         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2075                 xstats[i].id = i;
2076                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2077                         rte_igbvf_stats_strings[i].offset);
2078         }
2079
2080         return IGBVF_NB_XSTATS;
2081 }
2082
2083 static int
2084 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2085 {
2086         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2087         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2088                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2089
2090         igbvf_read_stats_registers(hw, hw_stats);
2091
2092         if (rte_stats == NULL)
2093                 return -EINVAL;
2094
2095         rte_stats->ipackets = hw_stats->gprc;
2096         rte_stats->ibytes = hw_stats->gorc;
2097         rte_stats->opackets = hw_stats->gptc;
2098         rte_stats->obytes = hw_stats->gotc;
2099         return 0;
2100 }
2101
2102 static int
2103 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2104 {
2105         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2106                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2107
2108         /* Sync HW register to the last stats */
2109         eth_igbvf_stats_get(dev, NULL);
2110
2111         /* reset HW current stats*/
2112         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2113                offsetof(struct e1000_vf_stats, gprc));
2114
2115         return 0;
2116 }
2117
2118 static int
2119 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2120                        size_t fw_size)
2121 {
2122         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2123         struct e1000_fw_version fw;
2124         int ret;
2125
2126         e1000_get_fw_version(hw, &fw);
2127
2128         switch (hw->mac.type) {
2129         case e1000_i210:
2130         case e1000_i211:
2131                 if (!(e1000_get_flash_presence_i210(hw))) {
2132                         ret = snprintf(fw_version, fw_size,
2133                                  "%2d.%2d-%d",
2134                                  fw.invm_major, fw.invm_minor,
2135                                  fw.invm_img_type);
2136                         break;
2137                 }
2138                 /* fall through */
2139         default:
2140                 /* if option rom is valid, display its version too */
2141                 if (fw.or_valid) {
2142                         ret = snprintf(fw_version, fw_size,
2143                                  "%d.%d, 0x%08x, %d.%d.%d",
2144                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2145                                  fw.or_major, fw.or_build, fw.or_patch);
2146                 /* no option rom */
2147                 } else {
2148                         if (fw.etrack_id != 0X0000) {
2149                                 ret = snprintf(fw_version, fw_size,
2150                                          "%d.%d, 0x%08x",
2151                                          fw.eep_major, fw.eep_minor,
2152                                          fw.etrack_id);
2153                         } else {
2154                                 ret = snprintf(fw_version, fw_size,
2155                                          "%d.%d.%d",
2156                                          fw.eep_major, fw.eep_minor,
2157                                          fw.eep_build);
2158                         }
2159                 }
2160                 break;
2161         }
2162         if (ret < 0)
2163                 return -EINVAL;
2164
2165         ret += 1; /* add the size of '\0' */
2166         if (fw_size < (size_t)ret)
2167                 return ret;
2168         else
2169                 return 0;
2170 }
2171
2172 static int
2173 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2174 {
2175         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2176
2177         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2178         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2179         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2180         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2181         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2182                                     dev_info->rx_queue_offload_capa;
2183         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2184         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2185                                     dev_info->tx_queue_offload_capa;
2186
2187         switch (hw->mac.type) {
2188         case e1000_82575:
2189                 dev_info->max_rx_queues = 4;
2190                 dev_info->max_tx_queues = 4;
2191                 dev_info->max_vmdq_pools = 0;
2192                 break;
2193
2194         case e1000_82576:
2195                 dev_info->max_rx_queues = 16;
2196                 dev_info->max_tx_queues = 16;
2197                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2198                 dev_info->vmdq_queue_num = 16;
2199                 break;
2200
2201         case e1000_82580:
2202                 dev_info->max_rx_queues = 8;
2203                 dev_info->max_tx_queues = 8;
2204                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2205                 dev_info->vmdq_queue_num = 8;
2206                 break;
2207
2208         case e1000_i350:
2209                 dev_info->max_rx_queues = 8;
2210                 dev_info->max_tx_queues = 8;
2211                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2212                 dev_info->vmdq_queue_num = 8;
2213                 break;
2214
2215         case e1000_i354:
2216                 dev_info->max_rx_queues = 8;
2217                 dev_info->max_tx_queues = 8;
2218                 break;
2219
2220         case e1000_i210:
2221                 dev_info->max_rx_queues = 4;
2222                 dev_info->max_tx_queues = 4;
2223                 dev_info->max_vmdq_pools = 0;
2224                 break;
2225
2226         case e1000_i211:
2227                 dev_info->max_rx_queues = 2;
2228                 dev_info->max_tx_queues = 2;
2229                 dev_info->max_vmdq_pools = 0;
2230                 break;
2231
2232         default:
2233                 /* Should not happen */
2234                 return -EINVAL;
2235         }
2236         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2237         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2238         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2239
2240         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2241                 .rx_thresh = {
2242                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2243                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2244                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2245                 },
2246                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2247                 .rx_drop_en = 0,
2248                 .offloads = 0,
2249         };
2250
2251         dev_info->default_txconf = (struct rte_eth_txconf) {
2252                 .tx_thresh = {
2253                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2254                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2255                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2256                 },
2257                 .offloads = 0,
2258         };
2259
2260         dev_info->rx_desc_lim = rx_desc_lim;
2261         dev_info->tx_desc_lim = tx_desc_lim;
2262
2263         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2264                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2265                         ETH_LINK_SPEED_1G;
2266
2267         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2268         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2269
2270         return 0;
2271 }
2272
2273 static const uint32_t *
2274 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2275 {
2276         static const uint32_t ptypes[] = {
2277                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2278                 RTE_PTYPE_L2_ETHER,
2279                 RTE_PTYPE_L3_IPV4,
2280                 RTE_PTYPE_L3_IPV4_EXT,
2281                 RTE_PTYPE_L3_IPV6,
2282                 RTE_PTYPE_L3_IPV6_EXT,
2283                 RTE_PTYPE_L4_TCP,
2284                 RTE_PTYPE_L4_UDP,
2285                 RTE_PTYPE_L4_SCTP,
2286                 RTE_PTYPE_TUNNEL_IP,
2287                 RTE_PTYPE_INNER_L3_IPV6,
2288                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2289                 RTE_PTYPE_INNER_L4_TCP,
2290                 RTE_PTYPE_INNER_L4_UDP,
2291                 RTE_PTYPE_UNKNOWN
2292         };
2293
2294         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2295             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2296                 return ptypes;
2297         return NULL;
2298 }
2299
2300 static int
2301 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2302 {
2303         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2304
2305         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2306         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2307         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2308         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2309                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2310                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2311                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2312                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2313                                 DEV_TX_OFFLOAD_TCP_TSO;
2314         switch (hw->mac.type) {
2315         case e1000_vfadapt:
2316                 dev_info->max_rx_queues = 2;
2317                 dev_info->max_tx_queues = 2;
2318                 break;
2319         case e1000_vfadapt_i350:
2320                 dev_info->max_rx_queues = 1;
2321                 dev_info->max_tx_queues = 1;
2322                 break;
2323         default:
2324                 /* Should not happen */
2325                 return -EINVAL;
2326         }
2327
2328         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2329         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2330                                     dev_info->rx_queue_offload_capa;
2331         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2332         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2333                                     dev_info->tx_queue_offload_capa;
2334
2335         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2336                 .rx_thresh = {
2337                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2338                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2339                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2340                 },
2341                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2342                 .rx_drop_en = 0,
2343                 .offloads = 0,
2344         };
2345
2346         dev_info->default_txconf = (struct rte_eth_txconf) {
2347                 .tx_thresh = {
2348                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2349                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2350                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2351                 },
2352                 .offloads = 0,
2353         };
2354
2355         dev_info->rx_desc_lim = rx_desc_lim;
2356         dev_info->tx_desc_lim = tx_desc_lim;
2357
2358         return 0;
2359 }
2360
2361 /* return 0 means link status changed, -1 means not changed */
2362 static int
2363 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2364 {
2365         struct e1000_hw *hw =
2366                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2367         struct rte_eth_link link;
2368         int link_check, count;
2369
2370         link_check = 0;
2371         hw->mac.get_link_status = 1;
2372
2373         /* possible wait-to-complete in up to 9 seconds */
2374         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2375                 /* Read the real link status */
2376                 switch (hw->phy.media_type) {
2377                 case e1000_media_type_copper:
2378                         /* Do the work to read phy */
2379                         e1000_check_for_link(hw);
2380                         link_check = !hw->mac.get_link_status;
2381                         break;
2382
2383                 case e1000_media_type_fiber:
2384                         e1000_check_for_link(hw);
2385                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2386                                       E1000_STATUS_LU);
2387                         break;
2388
2389                 case e1000_media_type_internal_serdes:
2390                         e1000_check_for_link(hw);
2391                         link_check = hw->mac.serdes_has_link;
2392                         break;
2393
2394                 /* VF device is type_unknown */
2395                 case e1000_media_type_unknown:
2396                         eth_igbvf_link_update(hw);
2397                         link_check = !hw->mac.get_link_status;
2398                         break;
2399
2400                 default:
2401                         break;
2402                 }
2403                 if (link_check || wait_to_complete == 0)
2404                         break;
2405                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2406         }
2407         memset(&link, 0, sizeof(link));
2408
2409         /* Now we check if a transition has happened */
2410         if (link_check) {
2411                 uint16_t duplex, speed;
2412                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2413                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2414                                 ETH_LINK_FULL_DUPLEX :
2415                                 ETH_LINK_HALF_DUPLEX;
2416                 link.link_speed = speed;
2417                 link.link_status = ETH_LINK_UP;
2418                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2419                                 ETH_LINK_SPEED_FIXED);
2420         } else if (!link_check) {
2421                 link.link_speed = 0;
2422                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2423                 link.link_status = ETH_LINK_DOWN;
2424                 link.link_autoneg = ETH_LINK_FIXED;
2425         }
2426
2427         return rte_eth_linkstatus_set(dev, &link);
2428 }
2429
2430 /*
2431  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2432  * For ASF and Pass Through versions of f/w this means
2433  * that the driver is loaded.
2434  */
2435 static void
2436 igb_hw_control_acquire(struct e1000_hw *hw)
2437 {
2438         uint32_t ctrl_ext;
2439
2440         /* Let firmware know the driver has taken over */
2441         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2442         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2443 }
2444
2445 /*
2446  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2447  * For ASF and Pass Through versions of f/w this means that the
2448  * driver is no longer loaded.
2449  */
2450 static void
2451 igb_hw_control_release(struct e1000_hw *hw)
2452 {
2453         uint32_t ctrl_ext;
2454
2455         /* Let firmware taken over control of h/w */
2456         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2457         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2458                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2459 }
2460
2461 /*
2462  * Bit of a misnomer, what this really means is
2463  * to enable OS management of the system... aka
2464  * to disable special hardware management features.
2465  */
2466 static void
2467 igb_init_manageability(struct e1000_hw *hw)
2468 {
2469         if (e1000_enable_mng_pass_thru(hw)) {
2470                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2471                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2472
2473                 /* disable hardware interception of ARP */
2474                 manc &= ~(E1000_MANC_ARP_EN);
2475
2476                 /* enable receiving management packets to the host */
2477                 manc |= E1000_MANC_EN_MNG2HOST;
2478                 manc2h |= 1 << 5;  /* Mng Port 623 */
2479                 manc2h |= 1 << 6;  /* Mng Port 664 */
2480                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2481                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2482         }
2483 }
2484
2485 static void
2486 igb_release_manageability(struct e1000_hw *hw)
2487 {
2488         if (e1000_enable_mng_pass_thru(hw)) {
2489                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2490
2491                 manc |= E1000_MANC_ARP_EN;
2492                 manc &= ~E1000_MANC_EN_MNG2HOST;
2493
2494                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2495         }
2496 }
2497
2498 static int
2499 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2500 {
2501         struct e1000_hw *hw =
2502                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2503         uint32_t rctl;
2504
2505         rctl = E1000_READ_REG(hw, E1000_RCTL);
2506         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2507         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2508
2509         return 0;
2510 }
2511
2512 static int
2513 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2514 {
2515         struct e1000_hw *hw =
2516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2517         uint32_t rctl;
2518
2519         rctl = E1000_READ_REG(hw, E1000_RCTL);
2520         rctl &= (~E1000_RCTL_UPE);
2521         if (dev->data->all_multicast == 1)
2522                 rctl |= E1000_RCTL_MPE;
2523         else
2524                 rctl &= (~E1000_RCTL_MPE);
2525         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2526
2527         return 0;
2528 }
2529
2530 static int
2531 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2532 {
2533         struct e1000_hw *hw =
2534                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2535         uint32_t rctl;
2536
2537         rctl = E1000_READ_REG(hw, E1000_RCTL);
2538         rctl |= E1000_RCTL_MPE;
2539         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2540
2541         return 0;
2542 }
2543
2544 static int
2545 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2546 {
2547         struct e1000_hw *hw =
2548                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2549         uint32_t rctl;
2550
2551         if (dev->data->promiscuous == 1)
2552                 return 0; /* must remain in all_multicast mode */
2553         rctl = E1000_READ_REG(hw, E1000_RCTL);
2554         rctl &= (~E1000_RCTL_MPE);
2555         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2556
2557         return 0;
2558 }
2559
2560 static int
2561 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2562 {
2563         struct e1000_hw *hw =
2564                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2565         struct e1000_vfta * shadow_vfta =
2566                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2567         uint32_t vfta;
2568         uint32_t vid_idx;
2569         uint32_t vid_bit;
2570
2571         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2572                               E1000_VFTA_ENTRY_MASK);
2573         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2574         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2575         if (on)
2576                 vfta |= vid_bit;
2577         else
2578                 vfta &= ~vid_bit;
2579         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2580
2581         /* update local VFTA copy */
2582         shadow_vfta->vfta[vid_idx] = vfta;
2583
2584         return 0;
2585 }
2586
2587 static int
2588 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2589                       enum rte_vlan_type vlan_type,
2590                       uint16_t tpid)
2591 {
2592         struct e1000_hw *hw =
2593                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2594         uint32_t reg, qinq;
2595
2596         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2597         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2598
2599         /* only outer TPID of double VLAN can be configured*/
2600         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2601                 reg = E1000_READ_REG(hw, E1000_VET);
2602                 reg = (reg & (~E1000_VET_VET_EXT)) |
2603                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2604                 E1000_WRITE_REG(hw, E1000_VET, reg);
2605
2606                 return 0;
2607         }
2608
2609         /* all other TPID values are read-only*/
2610         PMD_DRV_LOG(ERR, "Not supported");
2611
2612         return -ENOTSUP;
2613 }
2614
2615 static void
2616 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2617 {
2618         struct e1000_hw *hw =
2619                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2620         uint32_t reg;
2621
2622         /* Filter Table Disable */
2623         reg = E1000_READ_REG(hw, E1000_RCTL);
2624         reg &= ~E1000_RCTL_CFIEN;
2625         reg &= ~E1000_RCTL_VFE;
2626         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2627 }
2628
2629 static void
2630 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2631 {
2632         struct e1000_hw *hw =
2633                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2634         struct e1000_vfta * shadow_vfta =
2635                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2636         uint32_t reg;
2637         int i;
2638
2639         /* Filter Table Enable, CFI not used for packet acceptance */
2640         reg = E1000_READ_REG(hw, E1000_RCTL);
2641         reg &= ~E1000_RCTL_CFIEN;
2642         reg |= E1000_RCTL_VFE;
2643         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2644
2645         /* restore VFTA table */
2646         for (i = 0; i < IGB_VFTA_SIZE; i++)
2647                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2648 }
2649
2650 static void
2651 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2652 {
2653         struct e1000_hw *hw =
2654                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2655         uint32_t reg;
2656
2657         /* VLAN Mode Disable */
2658         reg = E1000_READ_REG(hw, E1000_CTRL);
2659         reg &= ~E1000_CTRL_VME;
2660         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2661 }
2662
2663 static void
2664 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2665 {
2666         struct e1000_hw *hw =
2667                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2668         uint32_t reg;
2669
2670         /* VLAN Mode Enable */
2671         reg = E1000_READ_REG(hw, E1000_CTRL);
2672         reg |= E1000_CTRL_VME;
2673         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2674 }
2675
2676 static void
2677 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2678 {
2679         struct e1000_hw *hw =
2680                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2681         uint32_t reg;
2682
2683         /* CTRL_EXT: Extended VLAN */
2684         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2685         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2686         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2687
2688         /* Update maximum packet length */
2689         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2690                 E1000_WRITE_REG(hw, E1000_RLPML,
2691                                 dev->data->dev_conf.rxmode.max_rx_pkt_len);
2692 }
2693
2694 static void
2695 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2696 {
2697         struct e1000_hw *hw =
2698                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2699         uint32_t reg;
2700
2701         /* CTRL_EXT: Extended VLAN */
2702         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2703         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2704         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2705
2706         /* Update maximum packet length */
2707         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2708                 E1000_WRITE_REG(hw, E1000_RLPML,
2709                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2710                                                 VLAN_TAG_SIZE);
2711 }
2712
2713 static int
2714 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2715 {
2716         struct rte_eth_rxmode *rxmode;
2717
2718         rxmode = &dev->data->dev_conf.rxmode;
2719         if(mask & ETH_VLAN_STRIP_MASK){
2720                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2721                         igb_vlan_hw_strip_enable(dev);
2722                 else
2723                         igb_vlan_hw_strip_disable(dev);
2724         }
2725
2726         if(mask & ETH_VLAN_FILTER_MASK){
2727                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2728                         igb_vlan_hw_filter_enable(dev);
2729                 else
2730                         igb_vlan_hw_filter_disable(dev);
2731         }
2732
2733         if(mask & ETH_VLAN_EXTEND_MASK){
2734                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2735                         igb_vlan_hw_extend_enable(dev);
2736                 else
2737                         igb_vlan_hw_extend_disable(dev);
2738         }
2739
2740         return 0;
2741 }
2742
2743
2744 /**
2745  * It enables the interrupt mask and then enable the interrupt.
2746  *
2747  * @param dev
2748  *  Pointer to struct rte_eth_dev.
2749  * @param on
2750  *  Enable or Disable
2751  *
2752  * @return
2753  *  - On success, zero.
2754  *  - On failure, a negative value.
2755  */
2756 static int
2757 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2758 {
2759         struct e1000_interrupt *intr =
2760                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2761
2762         if (on)
2763                 intr->mask |= E1000_ICR_LSC;
2764         else
2765                 intr->mask &= ~E1000_ICR_LSC;
2766
2767         return 0;
2768 }
2769
2770 /* It clears the interrupt causes and enables the interrupt.
2771  * It will be called once only during nic initialized.
2772  *
2773  * @param dev
2774  *  Pointer to struct rte_eth_dev.
2775  *
2776  * @return
2777  *  - On success, zero.
2778  *  - On failure, a negative value.
2779  */
2780 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2781 {
2782         uint32_t mask, regval;
2783         int ret;
2784         struct e1000_hw *hw =
2785                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2786         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2787         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2788         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2789         struct rte_eth_dev_info dev_info;
2790
2791         memset(&dev_info, 0, sizeof(dev_info));
2792         ret = eth_igb_infos_get(dev, &dev_info);
2793         if (ret != 0)
2794                 return ret;
2795
2796         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2797         regval = E1000_READ_REG(hw, E1000_EIMS);
2798         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2799
2800         return 0;
2801 }
2802
2803 /*
2804  * It reads ICR and gets interrupt causes, check it and set a bit flag
2805  * to update link status.
2806  *
2807  * @param dev
2808  *  Pointer to struct rte_eth_dev.
2809  *
2810  * @return
2811  *  - On success, zero.
2812  *  - On failure, a negative value.
2813  */
2814 static int
2815 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2816 {
2817         uint32_t icr;
2818         struct e1000_hw *hw =
2819                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2820         struct e1000_interrupt *intr =
2821                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2822
2823         igb_intr_disable(dev);
2824
2825         /* read-on-clear nic registers here */
2826         icr = E1000_READ_REG(hw, E1000_ICR);
2827
2828         intr->flags = 0;
2829         if (icr & E1000_ICR_LSC) {
2830                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2831         }
2832
2833         if (icr & E1000_ICR_VMMB)
2834                 intr->flags |= E1000_FLAG_MAILBOX;
2835
2836         return 0;
2837 }
2838
2839 /*
2840  * It executes link_update after knowing an interrupt is prsent.
2841  *
2842  * @param dev
2843  *  Pointer to struct rte_eth_dev.
2844  *
2845  * @return
2846  *  - On success, zero.
2847  *  - On failure, a negative value.
2848  */
2849 static int
2850 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2851                          struct rte_intr_handle *intr_handle)
2852 {
2853         struct e1000_hw *hw =
2854                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2855         struct e1000_interrupt *intr =
2856                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2857         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2858         struct rte_eth_link link;
2859         int ret;
2860
2861         if (intr->flags & E1000_FLAG_MAILBOX) {
2862                 igb_pf_mbx_process(dev);
2863                 intr->flags &= ~E1000_FLAG_MAILBOX;
2864         }
2865
2866         igb_intr_enable(dev);
2867         rte_intr_ack(intr_handle);
2868
2869         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2870                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2871
2872                 /* set get_link_status to check register later */
2873                 hw->mac.get_link_status = 1;
2874                 ret = eth_igb_link_update(dev, 0);
2875
2876                 /* check if link has changed */
2877                 if (ret < 0)
2878                         return 0;
2879
2880                 rte_eth_linkstatus_get(dev, &link);
2881                 if (link.link_status) {
2882                         PMD_INIT_LOG(INFO,
2883                                      " Port %d: Link Up - speed %u Mbps - %s",
2884                                      dev->data->port_id,
2885                                      (unsigned)link.link_speed,
2886                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2887                                      "full-duplex" : "half-duplex");
2888                 } else {
2889                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2890                                      dev->data->port_id);
2891                 }
2892
2893                 PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2894                              pci_dev->addr.domain,
2895                              pci_dev->addr.bus,
2896                              pci_dev->addr.devid,
2897                              pci_dev->addr.function);
2898                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2899         }
2900
2901         return 0;
2902 }
2903
2904 /**
2905  * Interrupt handler which shall be registered at first.
2906  *
2907  * @param handle
2908  *  Pointer to interrupt handle.
2909  * @param param
2910  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2911  *
2912  * @return
2913  *  void
2914  */
2915 static void
2916 eth_igb_interrupt_handler(void *param)
2917 {
2918         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2919
2920         eth_igb_interrupt_get_status(dev);
2921         eth_igb_interrupt_action(dev, dev->intr_handle);
2922 }
2923
2924 static int
2925 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2926 {
2927         uint32_t eicr;
2928         struct e1000_hw *hw =
2929                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2930         struct e1000_interrupt *intr =
2931                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2932
2933         igbvf_intr_disable(hw);
2934
2935         /* read-on-clear nic registers here */
2936         eicr = E1000_READ_REG(hw, E1000_EICR);
2937         intr->flags = 0;
2938
2939         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2940                 intr->flags |= E1000_FLAG_MAILBOX;
2941
2942         return 0;
2943 }
2944
2945 void igbvf_mbx_process(struct rte_eth_dev *dev)
2946 {
2947         struct e1000_hw *hw =
2948                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2949         struct e1000_mbx_info *mbx = &hw->mbx;
2950         u32 in_msg = 0;
2951
2952         /* peek the message first */
2953         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2954
2955         /* PF reset VF event */
2956         if (in_msg == E1000_PF_CONTROL_MSG) {
2957                 /* dummy mbx read to ack pf */
2958                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2959                         return;
2960                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2961                                              NULL);
2962         }
2963 }
2964
2965 static int
2966 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2967 {
2968         struct e1000_interrupt *intr =
2969                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2970
2971         if (intr->flags & E1000_FLAG_MAILBOX) {
2972                 igbvf_mbx_process(dev);
2973                 intr->flags &= ~E1000_FLAG_MAILBOX;
2974         }
2975
2976         igbvf_intr_enable(dev);
2977         rte_intr_ack(intr_handle);
2978
2979         return 0;
2980 }
2981
2982 static void
2983 eth_igbvf_interrupt_handler(void *param)
2984 {
2985         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2986
2987         eth_igbvf_interrupt_get_status(dev);
2988         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2989 }
2990
2991 static int
2992 eth_igb_led_on(struct rte_eth_dev *dev)
2993 {
2994         struct e1000_hw *hw;
2995
2996         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2997         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2998 }
2999
3000 static int
3001 eth_igb_led_off(struct rte_eth_dev *dev)
3002 {
3003         struct e1000_hw *hw;
3004
3005         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3006         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3007 }
3008
3009 static int
3010 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3011 {
3012         struct e1000_hw *hw;
3013         uint32_t ctrl;
3014         int tx_pause;
3015         int rx_pause;
3016
3017         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3018         fc_conf->pause_time = hw->fc.pause_time;
3019         fc_conf->high_water = hw->fc.high_water;
3020         fc_conf->low_water = hw->fc.low_water;
3021         fc_conf->send_xon = hw->fc.send_xon;
3022         fc_conf->autoneg = hw->mac.autoneg;
3023
3024         /*
3025          * Return rx_pause and tx_pause status according to actual setting of
3026          * the TFCE and RFCE bits in the CTRL register.
3027          */
3028         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3029         if (ctrl & E1000_CTRL_TFCE)
3030                 tx_pause = 1;
3031         else
3032                 tx_pause = 0;
3033
3034         if (ctrl & E1000_CTRL_RFCE)
3035                 rx_pause = 1;
3036         else
3037                 rx_pause = 0;
3038
3039         if (rx_pause && tx_pause)
3040                 fc_conf->mode = RTE_FC_FULL;
3041         else if (rx_pause)
3042                 fc_conf->mode = RTE_FC_RX_PAUSE;
3043         else if (tx_pause)
3044                 fc_conf->mode = RTE_FC_TX_PAUSE;
3045         else
3046                 fc_conf->mode = RTE_FC_NONE;
3047
3048         return 0;
3049 }
3050
3051 static int
3052 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3053 {
3054         struct e1000_hw *hw;
3055         int err;
3056         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3057                 e1000_fc_none,
3058                 e1000_fc_rx_pause,
3059                 e1000_fc_tx_pause,
3060                 e1000_fc_full
3061         };
3062         uint32_t rx_buf_size;
3063         uint32_t max_high_water;
3064         uint32_t rctl;
3065         uint32_t ctrl;
3066
3067         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3068         if (fc_conf->autoneg != hw->mac.autoneg)
3069                 return -ENOTSUP;
3070         rx_buf_size = igb_get_rx_buffer_size(hw);
3071         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3072
3073         /* At least reserve one Ethernet frame for watermark */
3074         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3075         if ((fc_conf->high_water > max_high_water) ||
3076             (fc_conf->high_water < fc_conf->low_water)) {
3077                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3078                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3079                 return -EINVAL;
3080         }
3081
3082         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3083         hw->fc.pause_time     = fc_conf->pause_time;
3084         hw->fc.high_water     = fc_conf->high_water;
3085         hw->fc.low_water      = fc_conf->low_water;
3086         hw->fc.send_xon       = fc_conf->send_xon;
3087
3088         err = e1000_setup_link_generic(hw);
3089         if (err == E1000_SUCCESS) {
3090
3091                 /* check if we want to forward MAC frames - driver doesn't have native
3092                  * capability to do that, so we'll write the registers ourselves */
3093
3094                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3095
3096                 /* set or clear MFLCN.PMCF bit depending on configuration */
3097                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3098                         rctl |= E1000_RCTL_PMCF;
3099                 else
3100                         rctl &= ~E1000_RCTL_PMCF;
3101
3102                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3103
3104                 /*
3105                  * check if we want to change flow control mode - driver doesn't have native
3106                  * capability to do that, so we'll write the registers ourselves
3107                  */
3108                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
3109
3110                 /*
3111                  * set or clear E1000_CTRL_RFCE and E1000_CTRL_TFCE bits depending
3112                  * on configuration
3113                  */
3114                 switch (fc_conf->mode) {
3115                 case RTE_FC_NONE:
3116                         ctrl &= ~E1000_CTRL_RFCE & ~E1000_CTRL_TFCE;
3117                         break;
3118                 case RTE_FC_RX_PAUSE:
3119                         ctrl |= E1000_CTRL_RFCE;
3120                         ctrl &= ~E1000_CTRL_TFCE;
3121                         break;
3122                 case RTE_FC_TX_PAUSE:
3123                         ctrl |= E1000_CTRL_TFCE;
3124                         ctrl &= ~E1000_CTRL_RFCE;
3125                         break;
3126                 case RTE_FC_FULL:
3127                         ctrl |= E1000_CTRL_RFCE | E1000_CTRL_TFCE;
3128                         break;
3129                 default:
3130                         PMD_INIT_LOG(ERR, "invalid flow control mode");
3131                         return -EINVAL;
3132                 }
3133
3134                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3135
3136                 E1000_WRITE_FLUSH(hw);
3137
3138                 return 0;
3139         }
3140
3141         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3142         return -EIO;
3143 }
3144
3145 #define E1000_RAH_POOLSEL_SHIFT      (18)
3146 static int
3147 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3148                 uint32_t index, uint32_t pool)
3149 {
3150         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3151         uint32_t rah;
3152
3153         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3154         rah = E1000_READ_REG(hw, E1000_RAH(index));
3155         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3156         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3157         return 0;
3158 }
3159
3160 static void
3161 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3162 {
3163         uint8_t addr[RTE_ETHER_ADDR_LEN];
3164         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3165
3166         memset(addr, 0, sizeof(addr));
3167
3168         e1000_rar_set(hw, addr, index);
3169 }
3170
3171 static int
3172 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3173                                 struct rte_ether_addr *addr)
3174 {
3175         eth_igb_rar_clear(dev, 0);
3176         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3177
3178         return 0;
3179 }
3180 /*
3181  * Virtual Function operations
3182  */
3183 static void
3184 igbvf_intr_disable(struct e1000_hw *hw)
3185 {
3186         PMD_INIT_FUNC_TRACE();
3187
3188         /* Clear interrupt mask to stop from interrupts being generated */
3189         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3190
3191         E1000_WRITE_FLUSH(hw);
3192 }
3193
3194 static void
3195 igbvf_stop_adapter(struct rte_eth_dev *dev)
3196 {
3197         u32 reg_val;
3198         u16 i;
3199         struct rte_eth_dev_info dev_info;
3200         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3201         int ret;
3202
3203         memset(&dev_info, 0, sizeof(dev_info));
3204         ret = eth_igbvf_infos_get(dev, &dev_info);
3205         if (ret != 0)
3206                 return;
3207
3208         /* Clear interrupt mask to stop from interrupts being generated */
3209         igbvf_intr_disable(hw);
3210
3211         /* Clear any pending interrupts, flush previous writes */
3212         E1000_READ_REG(hw, E1000_EICR);
3213
3214         /* Disable the transmit unit.  Each queue must be disabled. */
3215         for (i = 0; i < dev_info.max_tx_queues; i++)
3216                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3217
3218         /* Disable the receive unit by stopping each queue */
3219         for (i = 0; i < dev_info.max_rx_queues; i++) {
3220                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3221                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3222                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3223                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3224                         ;
3225         }
3226
3227         /* flush all queues disables */
3228         E1000_WRITE_FLUSH(hw);
3229         msec_delay(2);
3230 }
3231
3232 static int eth_igbvf_link_update(struct e1000_hw *hw)
3233 {
3234         struct e1000_mbx_info *mbx = &hw->mbx;
3235         struct e1000_mac_info *mac = &hw->mac;
3236         int ret_val = E1000_SUCCESS;
3237
3238         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3239
3240         /*
3241          * We only want to run this if there has been a rst asserted.
3242          * in this case that could mean a link change, device reset,
3243          * or a virtual function reset
3244          */
3245
3246         /* If we were hit with a reset or timeout drop the link */
3247         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3248                 mac->get_link_status = TRUE;
3249
3250         if (!mac->get_link_status)
3251                 goto out;
3252
3253         /* if link status is down no point in checking to see if pf is up */
3254         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3255                 goto out;
3256
3257         /* if we passed all the tests above then the link is up and we no
3258          * longer need to check for link */
3259         mac->get_link_status = FALSE;
3260
3261 out:
3262         return ret_val;
3263 }
3264
3265
3266 static int
3267 igbvf_dev_configure(struct rte_eth_dev *dev)
3268 {
3269         struct rte_eth_conf* conf = &dev->data->dev_conf;
3270
3271         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3272                      dev->data->port_id);
3273
3274         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3275                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3276
3277         /*
3278          * VF has no ability to enable/disable HW CRC
3279          * Keep the persistent behavior the same as Host PF
3280          */
3281 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3282         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3283                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3284                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3285         }
3286 #else
3287         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3288                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3289                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3290         }
3291 #endif
3292
3293         return 0;
3294 }
3295
3296 static int
3297 igbvf_dev_start(struct rte_eth_dev *dev)
3298 {
3299         struct e1000_hw *hw =
3300                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3301         struct e1000_adapter *adapter =
3302                 E1000_DEV_PRIVATE(dev->data->dev_private);
3303         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3304         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3305         int ret;
3306         uint32_t intr_vector = 0;
3307
3308         PMD_INIT_FUNC_TRACE();
3309
3310         hw->mac.ops.reset_hw(hw);
3311         adapter->stopped = 0;
3312
3313         /* Set all vfta */
3314         igbvf_set_vfta_all(dev,1);
3315
3316         eth_igbvf_tx_init(dev);
3317
3318         /* This can fail when allocating mbufs for descriptor rings */
3319         ret = eth_igbvf_rx_init(dev);
3320         if (ret) {
3321                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3322                 igb_dev_clear_queues(dev);
3323                 return ret;
3324         }
3325
3326         /* check and configure queue intr-vector mapping */
3327         if (rte_intr_cap_multiple(intr_handle) &&
3328             dev->data->dev_conf.intr_conf.rxq) {
3329                 intr_vector = dev->data->nb_rx_queues;
3330                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3331                 if (ret)
3332                         return ret;
3333         }
3334
3335         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3336                 intr_handle->intr_vec =
3337                         rte_zmalloc("intr_vec",
3338                                     dev->data->nb_rx_queues * sizeof(int), 0);
3339                 if (!intr_handle->intr_vec) {
3340                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3341                                      " intr_vec", dev->data->nb_rx_queues);
3342                         return -ENOMEM;
3343                 }
3344         }
3345
3346         eth_igbvf_configure_msix_intr(dev);
3347
3348         /* enable uio/vfio intr/eventfd mapping */
3349         rte_intr_enable(intr_handle);
3350
3351         /* resume enabled intr since hw reset */
3352         igbvf_intr_enable(dev);
3353
3354         return 0;
3355 }
3356
3357 static int
3358 igbvf_dev_stop(struct rte_eth_dev *dev)
3359 {
3360         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3361         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3362         struct e1000_adapter *adapter =
3363                 E1000_DEV_PRIVATE(dev->data->dev_private);
3364
3365         if (adapter->stopped)
3366                 return 0;
3367
3368         PMD_INIT_FUNC_TRACE();
3369
3370         igbvf_stop_adapter(dev);
3371
3372         /*
3373           * Clear what we set, but we still keep shadow_vfta to
3374           * restore after device starts
3375           */
3376         igbvf_set_vfta_all(dev,0);
3377
3378         igb_dev_clear_queues(dev);
3379
3380         /* disable intr eventfd mapping */
3381         rte_intr_disable(intr_handle);
3382
3383         /* Clean datapath event and queue/vec mapping */
3384         rte_intr_efd_disable(intr_handle);
3385         if (intr_handle->intr_vec) {
3386                 rte_free(intr_handle->intr_vec);
3387                 intr_handle->intr_vec = NULL;
3388         }
3389
3390         adapter->stopped = true;
3391         dev->data->dev_started = 0;
3392
3393         return 0;
3394 }
3395
3396 static int
3397 igbvf_dev_close(struct rte_eth_dev *dev)
3398 {
3399         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3400         struct rte_ether_addr addr;
3401         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3402         int ret;
3403
3404         PMD_INIT_FUNC_TRACE();
3405
3406         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3407                 return 0;
3408
3409         e1000_reset_hw(hw);
3410
3411         ret = igbvf_dev_stop(dev);
3412         if (ret != 0)
3413                 return ret;
3414
3415         igb_dev_free_queues(dev);
3416
3417         /**
3418          * reprogram the RAR with a zero mac address,
3419          * to ensure that the VF traffic goes to the PF
3420          * after stop, close and detach of the VF.
3421          **/
3422
3423         memset(&addr, 0, sizeof(addr));
3424         igbvf_default_mac_addr_set(dev, &addr);
3425
3426         rte_intr_callback_unregister(&pci_dev->intr_handle,
3427                                      eth_igbvf_interrupt_handler,
3428                                      (void *)dev);
3429
3430         return 0;
3431 }
3432
3433 static int
3434 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3435 {
3436         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3437
3438         /* Set both unicast and multicast promisc */
3439         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3440
3441         return 0;
3442 }
3443
3444 static int
3445 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3446 {
3447         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3448
3449         /* If in allmulticast mode leave multicast promisc */
3450         if (dev->data->all_multicast == 1)
3451                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3452         else
3453                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3454
3455         return 0;
3456 }
3457
3458 static int
3459 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3460 {
3461         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3462
3463         /* In promiscuous mode multicast promisc already set */
3464         if (dev->data->promiscuous == 0)
3465                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3466
3467         return 0;
3468 }
3469
3470 static int
3471 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3472 {
3473         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3474
3475         /* In promiscuous mode leave multicast promisc enabled */
3476         if (dev->data->promiscuous == 0)
3477                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3478
3479         return 0;
3480 }
3481
3482 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3483 {
3484         struct e1000_mbx_info *mbx = &hw->mbx;
3485         uint32_t msgbuf[2];
3486         s32 err;
3487
3488         /* After set vlan, vlan strip will also be enabled in igb driver*/
3489         msgbuf[0] = E1000_VF_SET_VLAN;
3490         msgbuf[1] = vid;
3491         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3492         if (on)
3493                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3494
3495         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3496         if (err)
3497                 goto mbx_err;
3498
3499         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3500         if (err)
3501                 goto mbx_err;
3502
3503         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3504         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3505                 err = -EINVAL;
3506
3507 mbx_err:
3508         return err;
3509 }
3510
3511 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3512 {
3513         struct e1000_hw *hw =
3514                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3515         struct e1000_vfta * shadow_vfta =
3516                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3517         int i = 0, j = 0, vfta = 0, mask = 1;
3518
3519         for (i = 0; i < IGB_VFTA_SIZE; i++){
3520                 vfta = shadow_vfta->vfta[i];
3521                 if(vfta){
3522                         mask = 1;
3523                         for (j = 0; j < 32; j++){
3524                                 if(vfta & mask)
3525                                         igbvf_set_vfta(hw,
3526                                                 (uint16_t)((i<<5)+j), on);
3527                                 mask<<=1;
3528                         }
3529                 }
3530         }
3531
3532 }
3533
3534 static int
3535 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3536 {
3537         struct e1000_hw *hw =
3538                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3539         struct e1000_vfta * shadow_vfta =
3540                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3541         uint32_t vid_idx = 0;
3542         uint32_t vid_bit = 0;
3543         int ret = 0;
3544
3545         PMD_INIT_FUNC_TRACE();
3546
3547         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3548         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3549         if(ret){
3550                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3551                 return ret;
3552         }
3553         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3554         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3555
3556         /*Save what we set and retore it after device reset*/
3557         if (on)
3558                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3559         else
3560                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3561
3562         return 0;
3563 }
3564
3565 static int
3566 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3567 {
3568         struct e1000_hw *hw =
3569                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3570
3571         /* index is not used by rar_set() */
3572         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3573         return 0;
3574 }
3575
3576
3577 static int
3578 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3579                         struct rte_eth_rss_reta_entry64 *reta_conf,
3580                         uint16_t reta_size)
3581 {
3582         uint8_t i, j, mask;
3583         uint32_t reta, r;
3584         uint16_t idx, shift;
3585         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3586
3587         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3588                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3589                         "(%d) doesn't match the number hardware can supported "
3590                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3591                 return -EINVAL;
3592         }
3593
3594         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3595                 idx = i / RTE_RETA_GROUP_SIZE;
3596                 shift = i % RTE_RETA_GROUP_SIZE;
3597                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3598                                                 IGB_4_BIT_MASK);
3599                 if (!mask)
3600                         continue;
3601                 if (mask == IGB_4_BIT_MASK)
3602                         r = 0;
3603                 else
3604                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3605                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3606                         if (mask & (0x1 << j))
3607                                 reta |= reta_conf[idx].reta[shift + j] <<
3608                                                         (CHAR_BIT * j);
3609                         else
3610                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3611                 }
3612                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3613         }
3614
3615         return 0;
3616 }
3617
3618 static int
3619 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3620                        struct rte_eth_rss_reta_entry64 *reta_conf,
3621                        uint16_t reta_size)
3622 {
3623         uint8_t i, j, mask;
3624         uint32_t reta;
3625         uint16_t idx, shift;
3626         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3627
3628         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3629                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3630                         "(%d) doesn't match the number hardware can supported "
3631                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3632                 return -EINVAL;
3633         }
3634
3635         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3636                 idx = i / RTE_RETA_GROUP_SIZE;
3637                 shift = i % RTE_RETA_GROUP_SIZE;
3638                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3639                                                 IGB_4_BIT_MASK);
3640                 if (!mask)
3641                         continue;
3642                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3643                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3644                         if (mask & (0x1 << j))
3645                                 reta_conf[idx].reta[shift + j] =
3646                                         ((reta >> (CHAR_BIT * j)) &
3647                                                 IGB_8_BIT_MASK);
3648                 }
3649         }
3650
3651         return 0;
3652 }
3653
3654 int
3655 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3656                         struct rte_eth_syn_filter *filter,
3657                         bool add)
3658 {
3659         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3660         struct e1000_filter_info *filter_info =
3661                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3662         uint32_t synqf, rfctl;
3663
3664         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3665                 return -EINVAL;
3666
3667         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3668
3669         if (add) {
3670                 if (synqf & E1000_SYN_FILTER_ENABLE)
3671                         return -EINVAL;
3672
3673                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3674                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3675
3676                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3677                 if (filter->hig_pri)
3678                         rfctl |= E1000_RFCTL_SYNQFP;
3679                 else
3680                         rfctl &= ~E1000_RFCTL_SYNQFP;
3681
3682                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3683         } else {
3684                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3685                         return -ENOENT;
3686                 synqf = 0;
3687         }
3688
3689         filter_info->syn_info = synqf;
3690         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3691         E1000_WRITE_FLUSH(hw);
3692         return 0;
3693 }
3694
3695 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3696 static inline int
3697 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3698                         struct e1000_2tuple_filter_info *filter_info)
3699 {
3700         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3701                 return -EINVAL;
3702         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3703                 return -EINVAL;  /* filter index is out of range. */
3704         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3705                 return -EINVAL;  /* flags is invalid. */
3706
3707         switch (filter->dst_port_mask) {
3708         case UINT16_MAX:
3709                 filter_info->dst_port_mask = 0;
3710                 filter_info->dst_port = filter->dst_port;
3711                 break;
3712         case 0:
3713                 filter_info->dst_port_mask = 1;
3714                 break;
3715         default:
3716                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3717                 return -EINVAL;
3718         }
3719
3720         switch (filter->proto_mask) {
3721         case UINT8_MAX:
3722                 filter_info->proto_mask = 0;
3723                 filter_info->proto = filter->proto;
3724                 break;
3725         case 0:
3726                 filter_info->proto_mask = 1;
3727                 break;
3728         default:
3729                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3730                 return -EINVAL;
3731         }
3732
3733         filter_info->priority = (uint8_t)filter->priority;
3734         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3735                 filter_info->tcp_flags = filter->tcp_flags;
3736         else
3737                 filter_info->tcp_flags = 0;
3738
3739         return 0;
3740 }
3741
3742 static inline struct e1000_2tuple_filter *
3743 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3744                         struct e1000_2tuple_filter_info *key)
3745 {
3746         struct e1000_2tuple_filter *it;
3747
3748         TAILQ_FOREACH(it, filter_list, entries) {
3749                 if (memcmp(key, &it->filter_info,
3750                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3751                         return it;
3752                 }
3753         }
3754         return NULL;
3755 }
3756
3757 /* inject a igb 2tuple filter to HW */
3758 static inline void
3759 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3760                            struct e1000_2tuple_filter *filter)
3761 {
3762         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3763         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3764         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3765         int i;
3766
3767         i = filter->index;
3768         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3769         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3770                 imir |= E1000_IMIR_PORT_BP;
3771         else
3772                 imir &= ~E1000_IMIR_PORT_BP;
3773
3774         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3775
3776         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3777         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3778         ttqf |= (uint32_t)(filter->filter_info.proto &
3779                                                 E1000_TTQF_PROTOCOL_MASK);
3780         if (filter->filter_info.proto_mask == 0)
3781                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3782
3783         /* tcp flags bits setting. */
3784         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3785                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3786                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3787                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3788                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3789                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3790                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3791                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3792                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3793                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3794                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3795                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3796                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3797         } else {
3798                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3799         }
3800         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3801         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3802         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3803 }
3804
3805 /*
3806  * igb_add_2tuple_filter - add a 2tuple filter
3807  *
3808  * @param
3809  * dev: Pointer to struct rte_eth_dev.
3810  * ntuple_filter: ponter to the filter that will be added.
3811  *
3812  * @return
3813  *    - On success, zero.
3814  *    - On failure, a negative value.
3815  */
3816 static int
3817 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3818                         struct rte_eth_ntuple_filter *ntuple_filter)
3819 {
3820         struct e1000_filter_info *filter_info =
3821                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3822         struct e1000_2tuple_filter *filter;
3823         int i, ret;
3824
3825         filter = rte_zmalloc("e1000_2tuple_filter",
3826                         sizeof(struct e1000_2tuple_filter), 0);
3827         if (filter == NULL)
3828                 return -ENOMEM;
3829
3830         ret = ntuple_filter_to_2tuple(ntuple_filter,
3831                                       &filter->filter_info);
3832         if (ret < 0) {
3833                 rte_free(filter);
3834                 return ret;
3835         }
3836         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3837                                          &filter->filter_info) != NULL) {
3838                 PMD_DRV_LOG(ERR, "filter exists.");
3839                 rte_free(filter);
3840                 return -EEXIST;
3841         }
3842         filter->queue = ntuple_filter->queue;
3843
3844         /*
3845          * look for an unused 2tuple filter index,
3846          * and insert the filter to list.
3847          */
3848         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3849                 if (!(filter_info->twotuple_mask & (1 << i))) {
3850                         filter_info->twotuple_mask |= 1 << i;
3851                         filter->index = i;
3852                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3853                                           filter,
3854                                           entries);
3855                         break;
3856                 }
3857         }
3858         if (i >= E1000_MAX_TTQF_FILTERS) {
3859                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3860                 rte_free(filter);
3861                 return -ENOSYS;
3862         }
3863
3864         igb_inject_2uple_filter(dev, filter);
3865         return 0;
3866 }
3867
3868 int
3869 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3870                         struct e1000_2tuple_filter *filter)
3871 {
3872         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3873         struct e1000_filter_info *filter_info =
3874                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3875
3876         filter_info->twotuple_mask &= ~(1 << filter->index);
3877         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3878         rte_free(filter);
3879
3880         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3881         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3882         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3883         return 0;
3884 }
3885
3886 /*
3887  * igb_remove_2tuple_filter - remove a 2tuple filter
3888  *
3889  * @param
3890  * dev: Pointer to struct rte_eth_dev.
3891  * ntuple_filter: ponter to the filter that will be removed.
3892  *
3893  * @return
3894  *    - On success, zero.
3895  *    - On failure, a negative value.
3896  */
3897 static int
3898 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3899                         struct rte_eth_ntuple_filter *ntuple_filter)
3900 {
3901         struct e1000_filter_info *filter_info =
3902                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3903         struct e1000_2tuple_filter_info filter_2tuple;
3904         struct e1000_2tuple_filter *filter;
3905         int ret;
3906
3907         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3908         ret = ntuple_filter_to_2tuple(ntuple_filter,
3909                                       &filter_2tuple);
3910         if (ret < 0)
3911                 return ret;
3912
3913         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3914                                          &filter_2tuple);
3915         if (filter == NULL) {
3916                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3917                 return -ENOENT;
3918         }
3919
3920         igb_delete_2tuple_filter(dev, filter);
3921
3922         return 0;
3923 }
3924
3925 /* inject a igb flex filter to HW */
3926 static inline void
3927 igb_inject_flex_filter(struct rte_eth_dev *dev,
3928                            struct e1000_flex_filter *filter)
3929 {
3930         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3931         uint32_t wufc, queueing;
3932         uint32_t reg_off;
3933         uint8_t i, j = 0;
3934
3935         wufc = E1000_READ_REG(hw, E1000_WUFC);
3936         if (filter->index < E1000_MAX_FHFT)
3937                 reg_off = E1000_FHFT(filter->index);
3938         else
3939                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3940
3941         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3942                         (E1000_WUFC_FLX0 << filter->index));
3943         queueing = filter->filter_info.len |
3944                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3945                 (filter->filter_info.priority <<
3946                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3947         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3948                         queueing);
3949
3950         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3951                 E1000_WRITE_REG(hw, reg_off,
3952                                 filter->filter_info.dwords[j]);
3953                 reg_off += sizeof(uint32_t);
3954                 E1000_WRITE_REG(hw, reg_off,
3955                                 filter->filter_info.dwords[++j]);
3956                 reg_off += sizeof(uint32_t);
3957                 E1000_WRITE_REG(hw, reg_off,
3958                         (uint32_t)filter->filter_info.mask[i]);
3959                 reg_off += sizeof(uint32_t) * 2;
3960                 ++j;
3961         }
3962 }
3963
3964 static inline struct e1000_flex_filter *
3965 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3966                         struct e1000_flex_filter_info *key)
3967 {
3968         struct e1000_flex_filter *it;
3969
3970         TAILQ_FOREACH(it, filter_list, entries) {
3971                 if (memcmp(key, &it->filter_info,
3972                         sizeof(struct e1000_flex_filter_info)) == 0)
3973                         return it;
3974         }
3975
3976         return NULL;
3977 }
3978
3979 /* remove a flex byte filter
3980  * @param
3981  * dev: Pointer to struct rte_eth_dev.
3982  * filter: the pointer of the filter will be removed.
3983  */
3984 void
3985 igb_remove_flex_filter(struct rte_eth_dev *dev,
3986                         struct e1000_flex_filter *filter)
3987 {
3988         struct e1000_filter_info *filter_info =
3989                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3990         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3991         uint32_t wufc, i;
3992         uint32_t reg_off;
3993
3994         wufc = E1000_READ_REG(hw, E1000_WUFC);
3995         if (filter->index < E1000_MAX_FHFT)
3996                 reg_off = E1000_FHFT(filter->index);
3997         else
3998                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3999
4000         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4001                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4002
4003         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4004                 (~(E1000_WUFC_FLX0 << filter->index)));
4005
4006         filter_info->flex_mask &= ~(1 << filter->index);
4007         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4008         rte_free(filter);
4009 }
4010
4011 int
4012 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4013                         struct igb_flex_filter *filter,
4014                         bool add)
4015 {
4016         struct e1000_filter_info *filter_info =
4017                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4018         struct e1000_flex_filter *flex_filter, *it;
4019         uint32_t mask;
4020         uint8_t shift, i;
4021
4022         flex_filter = rte_zmalloc("e1000_flex_filter",
4023                         sizeof(struct e1000_flex_filter), 0);
4024         if (flex_filter == NULL)
4025                 return -ENOMEM;
4026
4027         flex_filter->filter_info.len = filter->len;
4028         flex_filter->filter_info.priority = filter->priority;
4029         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4030         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4031                 mask = 0;
4032                 /* reverse bits in flex filter's mask*/
4033                 for (shift = 0; shift < CHAR_BIT; shift++) {
4034                         if (filter->mask[i] & (0x01 << shift))
4035                                 mask |= (0x80 >> shift);
4036                 }
4037                 flex_filter->filter_info.mask[i] = mask;
4038         }
4039
4040         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4041                                 &flex_filter->filter_info);
4042         if (it == NULL && !add) {
4043                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4044                 rte_free(flex_filter);
4045                 return -ENOENT;
4046         }
4047         if (it != NULL && add) {
4048                 PMD_DRV_LOG(ERR, "filter exists.");
4049                 rte_free(flex_filter);
4050                 return -EEXIST;
4051         }
4052
4053         if (add) {
4054                 flex_filter->queue = filter->queue;
4055                 /*
4056                  * look for an unused flex filter index
4057                  * and insert the filter into the list.
4058                  */
4059                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4060                         if (!(filter_info->flex_mask & (1 << i))) {
4061                                 filter_info->flex_mask |= 1 << i;
4062                                 flex_filter->index = i;
4063                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4064                                         flex_filter,
4065                                         entries);
4066                                 break;
4067                         }
4068                 }
4069                 if (i >= E1000_MAX_FLEX_FILTERS) {
4070                         PMD_DRV_LOG(ERR, "flex filters are full.");
4071                         rte_free(flex_filter);
4072                         return -ENOSYS;
4073                 }
4074
4075                 igb_inject_flex_filter(dev, flex_filter);
4076
4077         } else {
4078                 igb_remove_flex_filter(dev, it);
4079                 rte_free(flex_filter);
4080         }
4081
4082         return 0;
4083 }
4084
4085 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4086 static inline int
4087 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4088                         struct e1000_5tuple_filter_info *filter_info)
4089 {
4090         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4091                 return -EINVAL;
4092         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4093                 return -EINVAL;  /* filter index is out of range. */
4094         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4095                 return -EINVAL;  /* flags is invalid. */
4096
4097         switch (filter->dst_ip_mask) {
4098         case UINT32_MAX:
4099                 filter_info->dst_ip_mask = 0;
4100                 filter_info->dst_ip = filter->dst_ip;
4101                 break;
4102         case 0:
4103                 filter_info->dst_ip_mask = 1;
4104                 break;
4105         default:
4106                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4107                 return -EINVAL;
4108         }
4109
4110         switch (filter->src_ip_mask) {
4111         case UINT32_MAX:
4112                 filter_info->src_ip_mask = 0;
4113                 filter_info->src_ip = filter->src_ip;
4114                 break;
4115         case 0:
4116                 filter_info->src_ip_mask = 1;
4117                 break;
4118         default:
4119                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4120                 return -EINVAL;
4121         }
4122
4123         switch (filter->dst_port_mask) {
4124         case UINT16_MAX:
4125                 filter_info->dst_port_mask = 0;
4126                 filter_info->dst_port = filter->dst_port;
4127                 break;
4128         case 0:
4129                 filter_info->dst_port_mask = 1;
4130                 break;
4131         default:
4132                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4133                 return -EINVAL;
4134         }
4135
4136         switch (filter->src_port_mask) {
4137         case UINT16_MAX:
4138                 filter_info->src_port_mask = 0;
4139                 filter_info->src_port = filter->src_port;
4140                 break;
4141         case 0:
4142                 filter_info->src_port_mask = 1;
4143                 break;
4144         default:
4145                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4146                 return -EINVAL;
4147         }
4148
4149         switch (filter->proto_mask) {
4150         case UINT8_MAX:
4151                 filter_info->proto_mask = 0;
4152                 filter_info->proto = filter->proto;
4153                 break;
4154         case 0:
4155                 filter_info->proto_mask = 1;
4156                 break;
4157         default:
4158                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4159                 return -EINVAL;
4160         }
4161
4162         filter_info->priority = (uint8_t)filter->priority;
4163         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4164                 filter_info->tcp_flags = filter->tcp_flags;
4165         else
4166                 filter_info->tcp_flags = 0;
4167
4168         return 0;
4169 }
4170
4171 static inline struct e1000_5tuple_filter *
4172 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4173                         struct e1000_5tuple_filter_info *key)
4174 {
4175         struct e1000_5tuple_filter *it;
4176
4177         TAILQ_FOREACH(it, filter_list, entries) {
4178                 if (memcmp(key, &it->filter_info,
4179                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4180                         return it;
4181                 }
4182         }
4183         return NULL;
4184 }
4185
4186 /* inject a igb 5-tuple filter to HW */
4187 static inline void
4188 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4189                            struct e1000_5tuple_filter *filter)
4190 {
4191         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4192         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4193         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4194         uint8_t i;
4195
4196         i = filter->index;
4197         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4198         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4199                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4200         if (filter->filter_info.dst_ip_mask == 0)
4201                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4202         if (filter->filter_info.src_port_mask == 0)
4203                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4204         if (filter->filter_info.proto_mask == 0)
4205                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4206         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4207                 E1000_FTQF_QUEUE_MASK;
4208         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4209         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4210         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4211         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4212
4213         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4214         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4215
4216         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4217         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4218                 imir |= E1000_IMIR_PORT_BP;
4219         else
4220                 imir &= ~E1000_IMIR_PORT_BP;
4221         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4222
4223         /* tcp flags bits setting. */
4224         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4225                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4226                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4227                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4228                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4229                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4230                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4231                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4232                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4233                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4234                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4235                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4236                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4237         } else {
4238                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4239         }
4240         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4241         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4242 }
4243
4244 /*
4245  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4246  *
4247  * @param
4248  * dev: Pointer to struct rte_eth_dev.
4249  * ntuple_filter: ponter to the filter that will be added.
4250  *
4251  * @return
4252  *    - On success, zero.
4253  *    - On failure, a negative value.
4254  */
4255 static int
4256 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4257                         struct rte_eth_ntuple_filter *ntuple_filter)
4258 {
4259         struct e1000_filter_info *filter_info =
4260                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4261         struct e1000_5tuple_filter *filter;
4262         uint8_t i;
4263         int ret;
4264
4265         filter = rte_zmalloc("e1000_5tuple_filter",
4266                         sizeof(struct e1000_5tuple_filter), 0);
4267         if (filter == NULL)
4268                 return -ENOMEM;
4269
4270         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4271                                             &filter->filter_info);
4272         if (ret < 0) {
4273                 rte_free(filter);
4274                 return ret;
4275         }
4276
4277         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4278                                          &filter->filter_info) != NULL) {
4279                 PMD_DRV_LOG(ERR, "filter exists.");
4280                 rte_free(filter);
4281                 return -EEXIST;
4282         }
4283         filter->queue = ntuple_filter->queue;
4284
4285         /*
4286          * look for an unused 5tuple filter index,
4287          * and insert the filter to list.
4288          */
4289         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4290                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4291                         filter_info->fivetuple_mask |= 1 << i;
4292                         filter->index = i;
4293                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4294                                           filter,
4295                                           entries);
4296                         break;
4297                 }
4298         }
4299         if (i >= E1000_MAX_FTQF_FILTERS) {
4300                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4301                 rte_free(filter);
4302                 return -ENOSYS;
4303         }
4304
4305         igb_inject_5tuple_filter_82576(dev, filter);
4306         return 0;
4307 }
4308
4309 int
4310 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4311                                 struct e1000_5tuple_filter *filter)
4312 {
4313         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4314         struct e1000_filter_info *filter_info =
4315                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4316
4317         filter_info->fivetuple_mask &= ~(1 << filter->index);
4318         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4319         rte_free(filter);
4320
4321         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4322                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4323         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4324         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4325         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4326         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4327         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4328         return 0;
4329 }
4330
4331 /*
4332  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4333  *
4334  * @param
4335  * dev: Pointer to struct rte_eth_dev.
4336  * ntuple_filter: ponter to the filter that will be removed.
4337  *
4338  * @return
4339  *    - On success, zero.
4340  *    - On failure, a negative value.
4341  */
4342 static int
4343 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4344                                 struct rte_eth_ntuple_filter *ntuple_filter)
4345 {
4346         struct e1000_filter_info *filter_info =
4347                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4348         struct e1000_5tuple_filter_info filter_5tuple;
4349         struct e1000_5tuple_filter *filter;
4350         int ret;
4351
4352         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4353         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4354                                             &filter_5tuple);
4355         if (ret < 0)
4356                 return ret;
4357
4358         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4359                                          &filter_5tuple);
4360         if (filter == NULL) {
4361                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4362                 return -ENOENT;
4363         }
4364
4365         igb_delete_5tuple_filter_82576(dev, filter);
4366
4367         return 0;
4368 }
4369
4370 static int
4371 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4372 {
4373         uint32_t rctl;
4374         struct e1000_hw *hw;
4375         struct rte_eth_dev_info dev_info;
4376         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4377         int ret;
4378
4379         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4380
4381 #ifdef RTE_LIBRTE_82571_SUPPORT
4382         /* XXX: not bigger than max_rx_pktlen */
4383         if (hw->mac.type == e1000_82571)
4384                 return -ENOTSUP;
4385 #endif
4386         ret = eth_igb_infos_get(dev, &dev_info);
4387         if (ret != 0)
4388                 return ret;
4389
4390         /* check that mtu is within the allowed range */
4391         if (mtu < RTE_ETHER_MIN_MTU ||
4392                         frame_size > dev_info.max_rx_pktlen)
4393                 return -EINVAL;
4394
4395         /*
4396          * If device is started, refuse mtu that requires the support of
4397          * scattered packets when this feature has not been enabled before.
4398          */
4399         if (dev->data->dev_started && !dev->data->scattered_rx &&
4400             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
4401                 PMD_INIT_LOG(ERR, "Stop port first.");
4402                 return -EINVAL;
4403         }
4404
4405         rctl = E1000_READ_REG(hw, E1000_RCTL);
4406
4407         /* switch to jumbo mode if needed */
4408         if (frame_size > E1000_ETH_MAX_LEN) {
4409                 dev->data->dev_conf.rxmode.offloads |=
4410                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4411                 rctl |= E1000_RCTL_LPE;
4412         } else {
4413                 dev->data->dev_conf.rxmode.offloads &=
4414                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4415                 rctl &= ~E1000_RCTL_LPE;
4416         }
4417         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4418
4419         /* update max frame size */
4420         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4421
4422         E1000_WRITE_REG(hw, E1000_RLPML,
4423                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4424
4425         return 0;
4426 }
4427
4428 /*
4429  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4430  *
4431  * @param
4432  * dev: Pointer to struct rte_eth_dev.
4433  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4434  * add: if true, add filter, if false, remove filter
4435  *
4436  * @return
4437  *    - On success, zero.
4438  *    - On failure, a negative value.
4439  */
4440 int
4441 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4442                         struct rte_eth_ntuple_filter *ntuple_filter,
4443                         bool add)
4444 {
4445         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4446         int ret;
4447
4448         switch (ntuple_filter->flags) {
4449         case RTE_5TUPLE_FLAGS:
4450         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4451                 if (hw->mac.type != e1000_82576)
4452                         return -ENOTSUP;
4453                 if (add)
4454                         ret = igb_add_5tuple_filter_82576(dev,
4455                                                           ntuple_filter);
4456                 else
4457                         ret = igb_remove_5tuple_filter_82576(dev,
4458                                                              ntuple_filter);
4459                 break;
4460         case RTE_2TUPLE_FLAGS:
4461         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4462                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4463                         hw->mac.type != e1000_i210 &&
4464                         hw->mac.type != e1000_i211)
4465                         return -ENOTSUP;
4466                 if (add)
4467                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4468                 else
4469                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4470                 break;
4471         default:
4472                 ret = -EINVAL;
4473                 break;
4474         }
4475
4476         return ret;
4477 }
4478
4479 static inline int
4480 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4481                         uint16_t ethertype)
4482 {
4483         int i;
4484
4485         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4486                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4487                     (filter_info->ethertype_mask & (1 << i)))
4488                         return i;
4489         }
4490         return -1;
4491 }
4492
4493 static inline int
4494 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4495                         uint16_t ethertype, uint32_t etqf)
4496 {
4497         int i;
4498
4499         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4500                 if (!(filter_info->ethertype_mask & (1 << i))) {
4501                         filter_info->ethertype_mask |= 1 << i;
4502                         filter_info->ethertype_filters[i].ethertype = ethertype;
4503                         filter_info->ethertype_filters[i].etqf = etqf;
4504                         return i;
4505                 }
4506         }
4507         return -1;
4508 }
4509
4510 int
4511 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4512                         uint8_t idx)
4513 {
4514         if (idx >= E1000_MAX_ETQF_FILTERS)
4515                 return -1;
4516         filter_info->ethertype_mask &= ~(1 << idx);
4517         filter_info->ethertype_filters[idx].ethertype = 0;
4518         filter_info->ethertype_filters[idx].etqf = 0;
4519         return idx;
4520 }
4521
4522
4523 int
4524 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4525                         struct rte_eth_ethertype_filter *filter,
4526                         bool add)
4527 {
4528         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4529         struct e1000_filter_info *filter_info =
4530                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4531         uint32_t etqf = 0;
4532         int ret;
4533
4534         if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4535                 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4536                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4537                         " ethertype filter.", filter->ether_type);
4538                 return -EINVAL;
4539         }
4540
4541         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4542                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4543                 return -EINVAL;
4544         }
4545         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4546                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4547                 return -EINVAL;
4548         }
4549
4550         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4551         if (ret >= 0 && add) {
4552                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4553                             filter->ether_type);
4554                 return -EEXIST;
4555         }
4556         if (ret < 0 && !add) {
4557                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4558                             filter->ether_type);
4559                 return -ENOENT;
4560         }
4561
4562         if (add) {
4563                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4564                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4565                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4566                 ret = igb_ethertype_filter_insert(filter_info,
4567                                 filter->ether_type, etqf);
4568                 if (ret < 0) {
4569                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4570                         return -ENOSYS;
4571                 }
4572         } else {
4573                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4574                 if (ret < 0)
4575                         return -ENOSYS;
4576         }
4577         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4578         E1000_WRITE_FLUSH(hw);
4579
4580         return 0;
4581 }
4582
4583 static int
4584 eth_igb_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
4585                      const struct rte_flow_ops **ops)
4586 {
4587         *ops = &igb_flow_ops;
4588         return 0;
4589 }
4590
4591 static int
4592 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4593                          struct rte_ether_addr *mc_addr_set,
4594                          uint32_t nb_mc_addr)
4595 {
4596         struct e1000_hw *hw;
4597
4598         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4599         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4600         return 0;
4601 }
4602
4603 static uint64_t
4604 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4605 {
4606         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4607         uint64_t systime_cycles;
4608
4609         switch (hw->mac.type) {
4610         case e1000_i210:
4611         case e1000_i211:
4612                 /*
4613                  * Need to read System Time Residue Register to be able
4614                  * to read the other two registers.
4615                  */
4616                 E1000_READ_REG(hw, E1000_SYSTIMR);
4617                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4618                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4619                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4620                                 * NSEC_PER_SEC;
4621                 break;
4622         case e1000_82580:
4623         case e1000_i350:
4624         case e1000_i354:
4625                 /*
4626                  * Need to read System Time Residue Register to be able
4627                  * to read the other two registers.
4628                  */
4629                 E1000_READ_REG(hw, E1000_SYSTIMR);
4630                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4631                 /* Only the 8 LSB are valid. */
4632                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4633                                 & 0xff) << 32;
4634                 break;
4635         default:
4636                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4637                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4638                                 << 32;
4639                 break;
4640         }
4641
4642         return systime_cycles;
4643 }
4644
4645 static uint64_t
4646 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4647 {
4648         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4649         uint64_t rx_tstamp_cycles;
4650
4651         switch (hw->mac.type) {
4652         case e1000_i210:
4653         case e1000_i211:
4654                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4655                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4656                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4657                                 * NSEC_PER_SEC;
4658                 break;
4659         case e1000_82580:
4660         case e1000_i350:
4661         case e1000_i354:
4662                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4663                 /* Only the 8 LSB are valid. */
4664                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4665                                 & 0xff) << 32;
4666                 break;
4667         default:
4668                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4669                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4670                                 << 32;
4671                 break;
4672         }
4673
4674         return rx_tstamp_cycles;
4675 }
4676
4677 static uint64_t
4678 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4679 {
4680         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4681         uint64_t tx_tstamp_cycles;
4682
4683         switch (hw->mac.type) {
4684         case e1000_i210:
4685         case e1000_i211:
4686                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4687                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4688                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4689                                 * NSEC_PER_SEC;
4690                 break;
4691         case e1000_82580:
4692         case e1000_i350:
4693         case e1000_i354:
4694                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4695                 /* Only the 8 LSB are valid. */
4696                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4697                                 & 0xff) << 32;
4698                 break;
4699         default:
4700                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4701                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4702                                 << 32;
4703                 break;
4704         }
4705
4706         return tx_tstamp_cycles;
4707 }
4708
4709 static void
4710 igb_start_timecounters(struct rte_eth_dev *dev)
4711 {
4712         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4713         struct e1000_adapter *adapter = dev->data->dev_private;
4714         uint32_t incval = 1;
4715         uint32_t shift = 0;
4716         uint64_t mask = E1000_CYCLECOUNTER_MASK;
4717
4718         switch (hw->mac.type) {
4719         case e1000_82580:
4720         case e1000_i350:
4721         case e1000_i354:
4722                 /* 32 LSB bits + 8 MSB bits = 40 bits */
4723                 mask = (1ULL << 40) - 1;
4724                 /* fall-through */
4725         case e1000_i210:
4726         case e1000_i211:
4727                 /*
4728                  * Start incrementing the register
4729                  * used to timestamp PTP packets.
4730                  */
4731                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4732                 break;
4733         case e1000_82576:
4734                 incval = E1000_INCVALUE_82576;
4735                 shift = IGB_82576_TSYNC_SHIFT;
4736                 E1000_WRITE_REG(hw, E1000_TIMINCA,
4737                                 E1000_INCPERIOD_82576 | incval);
4738                 break;
4739         default:
4740                 /* Not supported */
4741                 return;
4742         }
4743
4744         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
4745         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4746         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4747
4748         adapter->systime_tc.cc_mask = mask;
4749         adapter->systime_tc.cc_shift = shift;
4750         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
4751
4752         adapter->rx_tstamp_tc.cc_mask = mask;
4753         adapter->rx_tstamp_tc.cc_shift = shift;
4754         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4755
4756         adapter->tx_tstamp_tc.cc_mask = mask;
4757         adapter->tx_tstamp_tc.cc_shift = shift;
4758         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4759 }
4760
4761 static int
4762 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4763 {
4764         struct e1000_adapter *adapter = dev->data->dev_private;
4765
4766         adapter->systime_tc.nsec += delta;
4767         adapter->rx_tstamp_tc.nsec += delta;
4768         adapter->tx_tstamp_tc.nsec += delta;
4769
4770         return 0;
4771 }
4772
4773 static int
4774 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
4775 {
4776         uint64_t ns;
4777         struct e1000_adapter *adapter = dev->data->dev_private;
4778
4779         ns = rte_timespec_to_ns(ts);
4780
4781         /* Set the timecounters to a new value. */
4782         adapter->systime_tc.nsec = ns;
4783         adapter->rx_tstamp_tc.nsec = ns;
4784         adapter->tx_tstamp_tc.nsec = ns;
4785
4786         return 0;
4787 }
4788
4789 static int
4790 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
4791 {
4792         uint64_t ns, systime_cycles;
4793         struct e1000_adapter *adapter = dev->data->dev_private;
4794
4795         systime_cycles = igb_read_systime_cyclecounter(dev);
4796         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
4797         *ts = rte_ns_to_timespec(ns);
4798
4799         return 0;
4800 }
4801
4802 static int
4803 igb_timesync_enable(struct rte_eth_dev *dev)
4804 {
4805         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4806         uint32_t tsync_ctl;
4807         uint32_t tsauxc;
4808
4809         /* Stop the timesync system time. */
4810         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
4811         /* Reset the timesync system time value. */
4812         switch (hw->mac.type) {
4813         case e1000_82580:
4814         case e1000_i350:
4815         case e1000_i354:
4816         case e1000_i210:
4817         case e1000_i211:
4818                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
4819                 /* fall-through */
4820         case e1000_82576:
4821                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
4822                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
4823                 break;
4824         default:
4825                 /* Not supported. */
4826                 return -ENOTSUP;
4827         }
4828
4829         /* Enable system time for it isn't on by default. */
4830         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
4831         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
4832         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
4833
4834         igb_start_timecounters(dev);
4835
4836         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4837         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
4838                         (RTE_ETHER_TYPE_1588 |
4839                          E1000_ETQF_FILTER_ENABLE |
4840                          E1000_ETQF_1588));
4841
4842         /* Enable timestamping of received PTP packets. */
4843         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4844         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
4845         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4846
4847         /* Enable Timestamping of transmitted PTP packets. */
4848         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4849         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
4850         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4851
4852         return 0;
4853 }
4854
4855 static int
4856 igb_timesync_disable(struct rte_eth_dev *dev)
4857 {
4858         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4859         uint32_t tsync_ctl;
4860
4861         /* Disable timestamping of transmitted PTP packets. */
4862         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4863         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
4864         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4865
4866         /* Disable timestamping of received PTP packets. */
4867         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4868         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
4869         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4870
4871         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4872         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
4873
4874         /* Stop incrementating the System Time registers. */
4875         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
4876
4877         return 0;
4878 }
4879
4880 static int
4881 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4882                                struct timespec *timestamp,
4883                                uint32_t flags __rte_unused)
4884 {
4885         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4886         struct e1000_adapter *adapter = dev->data->dev_private;
4887         uint32_t tsync_rxctl;
4888         uint64_t rx_tstamp_cycles;
4889         uint64_t ns;
4890
4891         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4892         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
4893                 return -EINVAL;
4894
4895         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
4896         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
4897         *timestamp = rte_ns_to_timespec(ns);
4898
4899         return  0;
4900 }
4901
4902 static int
4903 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4904                                struct timespec *timestamp)
4905 {
4906         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4907         struct e1000_adapter *adapter = dev->data->dev_private;
4908         uint32_t tsync_txctl;
4909         uint64_t tx_tstamp_cycles;
4910         uint64_t ns;
4911
4912         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4913         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
4914                 return -EINVAL;
4915
4916         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
4917         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
4918         *timestamp = rte_ns_to_timespec(ns);
4919
4920         return  0;
4921 }
4922
4923 static int
4924 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4925 {
4926         int count = 0;
4927         int g_ind = 0;
4928         const struct reg_info *reg_group;
4929
4930         while ((reg_group = igb_regs[g_ind++]))
4931                 count += igb_reg_group_count(reg_group);
4932
4933         return count;
4934 }
4935
4936 static int
4937 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4938 {
4939         int count = 0;
4940         int g_ind = 0;
4941         const struct reg_info *reg_group;
4942
4943         while ((reg_group = igbvf_regs[g_ind++]))
4944                 count += igb_reg_group_count(reg_group);
4945
4946         return count;
4947 }
4948
4949 static int
4950 eth_igb_get_regs(struct rte_eth_dev *dev,
4951         struct rte_dev_reg_info *regs)
4952 {
4953         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4954         uint32_t *data = regs->data;
4955         int g_ind = 0;
4956         int count = 0;
4957         const struct reg_info *reg_group;
4958
4959         if (data == NULL) {
4960                 regs->length = eth_igb_get_reg_length(dev);
4961                 regs->width = sizeof(uint32_t);
4962                 return 0;
4963         }
4964
4965         /* Support only full register dump */
4966         if ((regs->length == 0) ||
4967             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4968                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4969                         hw->device_id;
4970                 while ((reg_group = igb_regs[g_ind++]))
4971                         count += igb_read_regs_group(dev, &data[count],
4972                                                         reg_group);
4973                 return 0;
4974         }
4975
4976         return -ENOTSUP;
4977 }
4978
4979 static int
4980 igbvf_get_regs(struct rte_eth_dev *dev,
4981         struct rte_dev_reg_info *regs)
4982 {
4983         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4984         uint32_t *data = regs->data;
4985         int g_ind = 0;
4986         int count = 0;
4987         const struct reg_info *reg_group;
4988
4989         if (data == NULL) {
4990                 regs->length = igbvf_get_reg_length(dev);
4991                 regs->width = sizeof(uint32_t);
4992                 return 0;
4993         }
4994
4995         /* Support only full register dump */
4996         if ((regs->length == 0) ||
4997             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4998                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4999                         hw->device_id;
5000                 while ((reg_group = igbvf_regs[g_ind++]))
5001                         count += igb_read_regs_group(dev, &data[count],
5002                                                         reg_group);
5003                 return 0;
5004         }
5005
5006         return -ENOTSUP;
5007 }
5008
5009 static int
5010 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5011 {
5012         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5013
5014         /* Return unit is byte count */
5015         return hw->nvm.word_size * 2;
5016 }
5017
5018 static int
5019 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5020         struct rte_dev_eeprom_info *in_eeprom)
5021 {
5022         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5023         struct e1000_nvm_info *nvm = &hw->nvm;
5024         uint16_t *data = in_eeprom->data;
5025         int first, length;
5026
5027         first = in_eeprom->offset >> 1;
5028         length = in_eeprom->length >> 1;
5029         if ((first >= hw->nvm.word_size) ||
5030             ((first + length) >= hw->nvm.word_size))
5031                 return -EINVAL;
5032
5033         in_eeprom->magic = hw->vendor_id |
5034                 ((uint32_t)hw->device_id << 16);
5035
5036         if ((nvm->ops.read) == NULL)
5037                 return -ENOTSUP;
5038
5039         return nvm->ops.read(hw, first, length, data);
5040 }
5041
5042 static int
5043 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5044         struct rte_dev_eeprom_info *in_eeprom)
5045 {
5046         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5047         struct e1000_nvm_info *nvm = &hw->nvm;
5048         uint16_t *data = in_eeprom->data;
5049         int first, length;
5050
5051         first = in_eeprom->offset >> 1;
5052         length = in_eeprom->length >> 1;
5053         if ((first >= hw->nvm.word_size) ||
5054             ((first + length) >= hw->nvm.word_size))
5055                 return -EINVAL;
5056
5057         in_eeprom->magic = (uint32_t)hw->vendor_id |
5058                 ((uint32_t)hw->device_id << 16);
5059
5060         if ((nvm->ops.write) == NULL)
5061                 return -ENOTSUP;
5062         return nvm->ops.write(hw,  first, length, data);
5063 }
5064
5065 static int
5066 eth_igb_get_module_info(struct rte_eth_dev *dev,
5067                         struct rte_eth_dev_module_info *modinfo)
5068 {
5069         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5070
5071         uint32_t status = 0;
5072         uint16_t sff8472_rev, addr_mode;
5073         bool page_swap = false;
5074
5075         if (hw->phy.media_type == e1000_media_type_copper ||
5076             hw->phy.media_type == e1000_media_type_unknown)
5077                 return -EOPNOTSUPP;
5078
5079         /* Check whether we support SFF-8472 or not */
5080         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5081         if (status)
5082                 return -EIO;
5083
5084         /* addressing mode is not supported */
5085         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5086         if (status)
5087                 return -EIO;
5088
5089         /* addressing mode is not supported */
5090         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5091                 PMD_DRV_LOG(ERR,
5092                             "Address change required to access page 0xA2, "
5093                             "but not supported. Please report the module "
5094                             "type to the driver maintainers.\n");
5095                 page_swap = true;
5096         }
5097
5098         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5099                 /* We have an SFP, but it does not support SFF-8472 */
5100                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5101                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5102         } else {
5103                 /* We have an SFP which supports a revision of SFF-8472 */
5104                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5105                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5106         }
5107
5108         return 0;
5109 }
5110
5111 static int
5112 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5113                           struct rte_dev_eeprom_info *info)
5114 {
5115         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5116
5117         uint32_t status = 0;
5118         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5119         u16 first_word, last_word;
5120         int i = 0;
5121
5122         first_word = info->offset >> 1;
5123         last_word = (info->offset + info->length - 1) >> 1;
5124
5125         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5126         for (i = 0; i < last_word - first_word + 1; i++) {
5127                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5128                                                 &dataword[i]);
5129                 if (status) {
5130                         /* Error occurred while reading module */
5131                         return -EIO;
5132                 }
5133
5134                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5135         }
5136
5137         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5138
5139         return 0;
5140 }
5141
5142 static int
5143 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5144 {
5145         struct e1000_hw *hw =
5146                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5147         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5148         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5149         uint32_t vec = E1000_MISC_VEC_ID;
5150
5151         if (rte_intr_allow_others(intr_handle))
5152                 vec = E1000_RX_VEC_START;
5153
5154         uint32_t mask = 1 << (queue_id + vec);
5155
5156         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5157         E1000_WRITE_FLUSH(hw);
5158
5159         return 0;
5160 }
5161
5162 static int
5163 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5164 {
5165         struct e1000_hw *hw =
5166                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5167         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5168         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5169         uint32_t vec = E1000_MISC_VEC_ID;
5170
5171         if (rte_intr_allow_others(intr_handle))
5172                 vec = E1000_RX_VEC_START;
5173
5174         uint32_t mask = 1 << (queue_id + vec);
5175         uint32_t regval;
5176
5177         regval = E1000_READ_REG(hw, E1000_EIMS);
5178         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5179         E1000_WRITE_FLUSH(hw);
5180
5181         rte_intr_ack(intr_handle);
5182
5183         return 0;
5184 }
5185
5186 static void
5187 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5188                    uint8_t index, uint8_t offset)
5189 {
5190         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5191
5192         /* clear bits */
5193         val &= ~((uint32_t)0xFF << offset);
5194
5195         /* write vector and valid bit */
5196         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5197
5198         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5199 }
5200
5201 static void
5202 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5203                            uint8_t queue, uint8_t msix_vector)
5204 {
5205         uint32_t tmp = 0;
5206
5207         if (hw->mac.type == e1000_82575) {
5208                 if (direction == 0)
5209                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5210                 else if (direction == 1)
5211                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5212                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5213         } else if (hw->mac.type == e1000_82576) {
5214                 if ((direction == 0) || (direction == 1))
5215                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5216                                            ((queue & 0x8) << 1) +
5217                                            8 * direction);
5218         } else if ((hw->mac.type == e1000_82580) ||
5219                         (hw->mac.type == e1000_i350) ||
5220                         (hw->mac.type == e1000_i354) ||
5221                         (hw->mac.type == e1000_i210) ||
5222                         (hw->mac.type == e1000_i211)) {
5223                 if ((direction == 0) || (direction == 1))
5224                         eth_igb_write_ivar(hw, msix_vector,
5225                                            queue >> 1,
5226                                            ((queue & 0x1) << 4) +
5227                                            8 * direction);
5228         }
5229 }
5230
5231 /* Sets up the hardware to generate MSI-X interrupts properly
5232  * @hw
5233  *  board private structure
5234  */
5235 static void
5236 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5237 {
5238         int queue_id;
5239         uint32_t tmpval, regval, intr_mask;
5240         struct e1000_hw *hw =
5241                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5242         uint32_t vec = E1000_MISC_VEC_ID;
5243         uint32_t base = E1000_MISC_VEC_ID;
5244         uint32_t misc_shift = 0;
5245         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5246         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5247
5248         /* won't configure msix register if no mapping is done
5249          * between intr vector and event fd
5250          */
5251         if (!rte_intr_dp_is_en(intr_handle))
5252                 return;
5253
5254         if (rte_intr_allow_others(intr_handle)) {
5255                 vec = base = E1000_RX_VEC_START;
5256                 misc_shift = 1;
5257         }
5258
5259         /* set interrupt vector for other causes */
5260         if (hw->mac.type == e1000_82575) {
5261                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5262                 /* enable MSI-X PBA support */
5263                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5264
5265                 /* Auto-Mask interrupts upon ICR read */
5266                 tmpval |= E1000_CTRL_EXT_EIAME;
5267                 tmpval |= E1000_CTRL_EXT_IRCA;
5268
5269                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5270
5271                 /* enable msix_other interrupt */
5272                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5273                 regval = E1000_READ_REG(hw, E1000_EIAC);
5274                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5275                 regval = E1000_READ_REG(hw, E1000_EIAM);
5276                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5277         } else if ((hw->mac.type == e1000_82576) ||
5278                         (hw->mac.type == e1000_82580) ||
5279                         (hw->mac.type == e1000_i350) ||
5280                         (hw->mac.type == e1000_i354) ||
5281                         (hw->mac.type == e1000_i210) ||
5282                         (hw->mac.type == e1000_i211)) {
5283                 /* turn on MSI-X capability first */
5284                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5285                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5286                                         E1000_GPIE_NSICR);
5287                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5288                         misc_shift;
5289
5290                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5291                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5292
5293                 regval = E1000_READ_REG(hw, E1000_EIAC);
5294                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5295
5296                 /* enable msix_other interrupt */
5297                 regval = E1000_READ_REG(hw, E1000_EIMS);
5298                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5299                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5300                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5301         }
5302
5303         /* use EIAM to auto-mask when MSI-X interrupt
5304          * is asserted, this saves a register write for every interrupt
5305          */
5306         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5307                 misc_shift;
5308
5309         if (dev->data->dev_conf.intr_conf.lsc != 0)
5310                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5311
5312         regval = E1000_READ_REG(hw, E1000_EIAM);
5313         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5314
5315         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5316                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5317                 intr_handle->intr_vec[queue_id] = vec;
5318                 if (vec < base + intr_handle->nb_efd - 1)
5319                         vec++;
5320         }
5321
5322         E1000_WRITE_FLUSH(hw);
5323 }
5324
5325 /* restore n-tuple filter */
5326 static inline void
5327 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5328 {
5329         struct e1000_filter_info *filter_info =
5330                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5331         struct e1000_5tuple_filter *p_5tuple;
5332         struct e1000_2tuple_filter *p_2tuple;
5333
5334         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5335                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5336         }
5337
5338         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5339                 igb_inject_2uple_filter(dev, p_2tuple);
5340         }
5341 }
5342
5343 /* restore SYN filter */
5344 static inline void
5345 igb_syn_filter_restore(struct rte_eth_dev *dev)
5346 {
5347         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5348         struct e1000_filter_info *filter_info =
5349                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5350         uint32_t synqf;
5351
5352         synqf = filter_info->syn_info;
5353
5354         if (synqf & E1000_SYN_FILTER_ENABLE) {
5355                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5356                 E1000_WRITE_FLUSH(hw);
5357         }
5358 }
5359
5360 /* restore ethernet type filter */
5361 static inline void
5362 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5363 {
5364         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5365         struct e1000_filter_info *filter_info =
5366                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5367         int i;
5368
5369         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5370                 if (filter_info->ethertype_mask & (1 << i)) {
5371                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5372                                 filter_info->ethertype_filters[i].etqf);
5373                         E1000_WRITE_FLUSH(hw);
5374                 }
5375         }
5376 }
5377
5378 /* restore flex byte filter */
5379 static inline void
5380 igb_flex_filter_restore(struct rte_eth_dev *dev)
5381 {
5382         struct e1000_filter_info *filter_info =
5383                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5384         struct e1000_flex_filter *flex_filter;
5385
5386         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5387                 igb_inject_flex_filter(dev, flex_filter);
5388         }
5389 }
5390
5391 /* restore rss filter */
5392 static inline void
5393 igb_rss_filter_restore(struct rte_eth_dev *dev)
5394 {
5395         struct e1000_filter_info *filter_info =
5396                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5397
5398         if (filter_info->rss_info.conf.queue_num)
5399                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5400 }
5401
5402 /* restore all types filter */
5403 static int
5404 igb_filter_restore(struct rte_eth_dev *dev)
5405 {
5406         igb_ntuple_filter_restore(dev);
5407         igb_ethertype_filter_restore(dev);
5408         igb_syn_filter_restore(dev);
5409         igb_flex_filter_restore(dev);
5410         igb_rss_filter_restore(dev);
5411
5412         return 0;
5413 }
5414
5415 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5416 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5417 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5418 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5419 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5420 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");