d3a8f5bf4ca46827fbe88e27ebf1854a6797da3b
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static void eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static void eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
100                 unsigned int limit);
101 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static void eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static void igbvf_dev_stop(struct rte_eth_dev *dev);
158 static void igbvf_dev_close(struct rte_eth_dev *dev);
159 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
190                         struct rte_eth_syn_filter *filter);
191 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
192                         enum rte_filter_op filter_op,
193                         void *arg);
194 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_ntuple_filter *ntuple_filter);
196 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
197                         struct rte_eth_ntuple_filter *ntuple_filter);
198 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
199                         struct rte_eth_flex_filter *filter);
200 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
201                         enum rte_filter_op filter_op,
202                         void *arg);
203 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
204                         struct rte_eth_ntuple_filter *ntuple_filter);
205 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
206                         struct rte_eth_ntuple_filter *ntuple_filter);
207 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
208                         struct rte_eth_ntuple_filter *filter);
209 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
210                                 enum rte_filter_op filter_op,
211                                 void *arg);
212 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
213                                 enum rte_filter_op filter_op,
214                                 void *arg);
215 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
216                         struct rte_eth_ethertype_filter *filter);
217 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
218                      enum rte_filter_type filter_type,
219                      enum rte_filter_op filter_op,
220                      void *arg);
221 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
222 static int eth_igb_get_regs(struct rte_eth_dev *dev,
223                 struct rte_dev_reg_info *regs);
224 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
225 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
226                 struct rte_dev_eeprom_info *eeprom);
227 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
228                 struct rte_dev_eeprom_info *eeprom);
229 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
230                                    struct rte_eth_dev_module_info *modinfo);
231 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
232                                      struct rte_dev_eeprom_info *info);
233 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
234                                     struct ether_addr *mc_addr_set,
235                                     uint32_t nb_mc_addr);
236 static int igb_timesync_enable(struct rte_eth_dev *dev);
237 static int igb_timesync_disable(struct rte_eth_dev *dev);
238 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
239                                           struct timespec *timestamp,
240                                           uint32_t flags);
241 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
242                                           struct timespec *timestamp);
243 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
244 static int igb_timesync_read_time(struct rte_eth_dev *dev,
245                                   struct timespec *timestamp);
246 static int igb_timesync_write_time(struct rte_eth_dev *dev,
247                                    const struct timespec *timestamp);
248 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
249                                         uint16_t queue_id);
250 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
251                                          uint16_t queue_id);
252 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
253                                        uint8_t queue, uint8_t msix_vector);
254 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
255                                uint8_t index, uint8_t offset);
256 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
257 static void eth_igbvf_interrupt_handler(void *param);
258 static void igbvf_mbx_process(struct rte_eth_dev *dev);
259 static int igb_filter_restore(struct rte_eth_dev *dev);
260
261 /*
262  * Define VF Stats MACRO for Non "cleared on read" register
263  */
264 #define UPDATE_VF_STAT(reg, last, cur)            \
265 {                                                 \
266         u32 latest = E1000_READ_REG(hw, reg);     \
267         cur += (latest - last) & UINT_MAX;        \
268         last = latest;                            \
269 }
270
271 #define IGB_FC_PAUSE_TIME 0x0680
272 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
273 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
274
275 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
276
277 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
278
279 /*
280  * The set of PCI devices this driver supports
281  */
282 static const struct rte_pci_id pci_id_igb_map[] = {
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
291
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
295
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
302
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
320         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
321         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
322         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
323         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
324         { .vendor_id = 0, /* sentinel */ },
325 };
326
327 /*
328  * The set of PCI devices this driver supports (for 82576&I350 VF)
329  */
330 static const struct rte_pci_id pci_id_igbvf_map[] = {
331         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
332         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
333         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
334         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
335         { .vendor_id = 0, /* sentinel */ },
336 };
337
338 static const struct rte_eth_desc_lim rx_desc_lim = {
339         .nb_max = E1000_MAX_RING_DESC,
340         .nb_min = E1000_MIN_RING_DESC,
341         .nb_align = IGB_RXD_ALIGN,
342 };
343
344 static const struct rte_eth_desc_lim tx_desc_lim = {
345         .nb_max = E1000_MAX_RING_DESC,
346         .nb_min = E1000_MIN_RING_DESC,
347         .nb_align = IGB_RXD_ALIGN,
348         .nb_seg_max = IGB_TX_MAX_SEG,
349         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
350 };
351
352 static const struct eth_dev_ops eth_igb_ops = {
353         .dev_configure        = eth_igb_configure,
354         .dev_start            = eth_igb_start,
355         .dev_stop             = eth_igb_stop,
356         .dev_set_link_up      = eth_igb_dev_set_link_up,
357         .dev_set_link_down    = eth_igb_dev_set_link_down,
358         .dev_close            = eth_igb_close,
359         .dev_reset            = eth_igb_reset,
360         .promiscuous_enable   = eth_igb_promiscuous_enable,
361         .promiscuous_disable  = eth_igb_promiscuous_disable,
362         .allmulticast_enable  = eth_igb_allmulticast_enable,
363         .allmulticast_disable = eth_igb_allmulticast_disable,
364         .link_update          = eth_igb_link_update,
365         .stats_get            = eth_igb_stats_get,
366         .xstats_get           = eth_igb_xstats_get,
367         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
368         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
369         .xstats_get_names     = eth_igb_xstats_get_names,
370         .stats_reset          = eth_igb_stats_reset,
371         .xstats_reset         = eth_igb_xstats_reset,
372         .fw_version_get       = eth_igb_fw_version_get,
373         .dev_infos_get        = eth_igb_infos_get,
374         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
375         .mtu_set              = eth_igb_mtu_set,
376         .vlan_filter_set      = eth_igb_vlan_filter_set,
377         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
378         .vlan_offload_set     = eth_igb_vlan_offload_set,
379         .rx_queue_setup       = eth_igb_rx_queue_setup,
380         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
381         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
382         .rx_queue_release     = eth_igb_rx_queue_release,
383         .rx_queue_count       = eth_igb_rx_queue_count,
384         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
385         .rx_descriptor_status = eth_igb_rx_descriptor_status,
386         .tx_descriptor_status = eth_igb_tx_descriptor_status,
387         .tx_queue_setup       = eth_igb_tx_queue_setup,
388         .tx_queue_release     = eth_igb_tx_queue_release,
389         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
390         .dev_led_on           = eth_igb_led_on,
391         .dev_led_off          = eth_igb_led_off,
392         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
393         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
394         .mac_addr_add         = eth_igb_rar_set,
395         .mac_addr_remove      = eth_igb_rar_clear,
396         .mac_addr_set         = eth_igb_default_mac_addr_set,
397         .reta_update          = eth_igb_rss_reta_update,
398         .reta_query           = eth_igb_rss_reta_query,
399         .rss_hash_update      = eth_igb_rss_hash_update,
400         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
401         .filter_ctrl          = eth_igb_filter_ctrl,
402         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
403         .rxq_info_get         = igb_rxq_info_get,
404         .txq_info_get         = igb_txq_info_get,
405         .timesync_enable      = igb_timesync_enable,
406         .timesync_disable     = igb_timesync_disable,
407         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
408         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
409         .get_reg              = eth_igb_get_regs,
410         .get_eeprom_length    = eth_igb_get_eeprom_length,
411         .get_eeprom           = eth_igb_get_eeprom,
412         .set_eeprom           = eth_igb_set_eeprom,
413         .get_module_info      = eth_igb_get_module_info,
414         .get_module_eeprom    = eth_igb_get_module_eeprom,
415         .timesync_adjust_time = igb_timesync_adjust_time,
416         .timesync_read_time   = igb_timesync_read_time,
417         .timesync_write_time  = igb_timesync_write_time,
418 };
419
420 /*
421  * dev_ops for virtual function, bare necessities for basic vf
422  * operation have been implemented
423  */
424 static const struct eth_dev_ops igbvf_eth_dev_ops = {
425         .dev_configure        = igbvf_dev_configure,
426         .dev_start            = igbvf_dev_start,
427         .dev_stop             = igbvf_dev_stop,
428         .dev_close            = igbvf_dev_close,
429         .promiscuous_enable   = igbvf_promiscuous_enable,
430         .promiscuous_disable  = igbvf_promiscuous_disable,
431         .allmulticast_enable  = igbvf_allmulticast_enable,
432         .allmulticast_disable = igbvf_allmulticast_disable,
433         .link_update          = eth_igb_link_update,
434         .stats_get            = eth_igbvf_stats_get,
435         .xstats_get           = eth_igbvf_xstats_get,
436         .xstats_get_names     = eth_igbvf_xstats_get_names,
437         .stats_reset          = eth_igbvf_stats_reset,
438         .xstats_reset         = eth_igbvf_stats_reset,
439         .vlan_filter_set      = igbvf_vlan_filter_set,
440         .dev_infos_get        = eth_igbvf_infos_get,
441         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
442         .rx_queue_setup       = eth_igb_rx_queue_setup,
443         .rx_queue_release     = eth_igb_rx_queue_release,
444         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
445         .rx_descriptor_status = eth_igb_rx_descriptor_status,
446         .tx_descriptor_status = eth_igb_tx_descriptor_status,
447         .tx_queue_setup       = eth_igb_tx_queue_setup,
448         .tx_queue_release     = eth_igb_tx_queue_release,
449         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
450         .rxq_info_get         = igb_rxq_info_get,
451         .txq_info_get         = igb_txq_info_get,
452         .mac_addr_set         = igbvf_default_mac_addr_set,
453         .get_reg              = igbvf_get_regs,
454 };
455
456 /* store statistics names and its offset in stats structure */
457 struct rte_igb_xstats_name_off {
458         char name[RTE_ETH_XSTATS_NAME_SIZE];
459         unsigned offset;
460 };
461
462 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
463         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
464         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
465         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
466         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
467         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
468         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
469         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
470                 ecol)},
471         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
472         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
473         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
474         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
475         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
476         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
477         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
478         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
479         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
480         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
481         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
482                 fcruc)},
483         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
484         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
485         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
486         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
487         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
488                 prc1023)},
489         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
490                 prc1522)},
491         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
492         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
493         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
494         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
495         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
496         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
497         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
498         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
499         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
500         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
501         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
502         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
503         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
504         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
505         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
506         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
507         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
508         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
509                 ptc1023)},
510         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
511                 ptc1522)},
512         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
513         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
514         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
515         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
516         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
517         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
518         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
519
520         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
521 };
522
523 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
524                 sizeof(rte_igb_stats_strings[0]))
525
526 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
527         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
528         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
529         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
530         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
531         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
532 };
533
534 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
535                 sizeof(rte_igbvf_stats_strings[0]))
536
537
538 static inline void
539 igb_intr_enable(struct rte_eth_dev *dev)
540 {
541         struct e1000_interrupt *intr =
542                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
543         struct e1000_hw *hw =
544                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
545         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
546         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
547
548         if (rte_intr_allow_others(intr_handle) &&
549                 dev->data->dev_conf.intr_conf.lsc != 0) {
550                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
551         }
552
553         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
554         E1000_WRITE_FLUSH(hw);
555 }
556
557 static void
558 igb_intr_disable(struct rte_eth_dev *dev)
559 {
560         struct e1000_hw *hw =
561                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
562         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
563         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
564
565         if (rte_intr_allow_others(intr_handle) &&
566                 dev->data->dev_conf.intr_conf.lsc != 0) {
567                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
568         }
569
570         E1000_WRITE_REG(hw, E1000_IMC, ~0);
571         E1000_WRITE_FLUSH(hw);
572 }
573
574 static inline void
575 igbvf_intr_enable(struct rte_eth_dev *dev)
576 {
577         struct e1000_hw *hw =
578                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
579
580         /* only for mailbox */
581         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
582         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
583         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
584         E1000_WRITE_FLUSH(hw);
585 }
586
587 /* only for mailbox now. If RX/TX needed, should extend this function.  */
588 static void
589 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
590 {
591         uint32_t tmp = 0;
592
593         /* mailbox */
594         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
595         tmp |= E1000_VTIVAR_VALID;
596         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
597 }
598
599 static void
600 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
601 {
602         struct e1000_hw *hw =
603                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
604
605         /* Configure VF other cause ivar */
606         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
607 }
608
609 static inline int32_t
610 igb_pf_reset_hw(struct e1000_hw *hw)
611 {
612         uint32_t ctrl_ext;
613         int32_t status;
614
615         status = e1000_reset_hw(hw);
616
617         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
618         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
619         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
620         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
621         E1000_WRITE_FLUSH(hw);
622
623         return status;
624 }
625
626 static void
627 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
628 {
629         struct e1000_hw *hw =
630                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
631
632
633         hw->vendor_id = pci_dev->id.vendor_id;
634         hw->device_id = pci_dev->id.device_id;
635         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
636         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
637
638         e1000_set_mac_type(hw);
639
640         /* need to check if it is a vf device below */
641 }
642
643 static int
644 igb_reset_swfw_lock(struct e1000_hw *hw)
645 {
646         int ret_val;
647
648         /*
649          * Do mac ops initialization manually here, since we will need
650          * some function pointers set by this call.
651          */
652         ret_val = e1000_init_mac_params(hw);
653         if (ret_val)
654                 return ret_val;
655
656         /*
657          * SMBI lock should not fail in this early stage. If this is the case,
658          * it is due to an improper exit of the application.
659          * So force the release of the faulty lock.
660          */
661         if (e1000_get_hw_semaphore_generic(hw) < 0) {
662                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
663         }
664         e1000_put_hw_semaphore_generic(hw);
665
666         if (hw->mac.ops.acquire_swfw_sync != NULL) {
667                 uint16_t mask;
668
669                 /*
670                  * Phy lock should not fail in this early stage. If this is the case,
671                  * it is due to an improper exit of the application.
672                  * So force the release of the faulty lock.
673                  */
674                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
675                 if (hw->bus.func > E1000_FUNC_1)
676                         mask <<= 2;
677                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
678                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
679                                     hw->bus.func);
680                 }
681                 hw->mac.ops.release_swfw_sync(hw, mask);
682
683                 /*
684                  * This one is more tricky since it is common to all ports; but
685                  * swfw_sync retries last long enough (1s) to be almost sure that if
686                  * lock can not be taken it is due to an improper lock of the
687                  * semaphore.
688                  */
689                 mask = E1000_SWFW_EEP_SM;
690                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
691                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
692                 }
693                 hw->mac.ops.release_swfw_sync(hw, mask);
694         }
695
696         return E1000_SUCCESS;
697 }
698
699 /* Remove all ntuple filters of the device */
700 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
701 {
702         struct e1000_filter_info *filter_info =
703                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
704         struct e1000_5tuple_filter *p_5tuple;
705         struct e1000_2tuple_filter *p_2tuple;
706
707         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
708                 TAILQ_REMOVE(&filter_info->fivetuple_list,
709                         p_5tuple, entries);
710                         rte_free(p_5tuple);
711         }
712         filter_info->fivetuple_mask = 0;
713         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
714                 TAILQ_REMOVE(&filter_info->twotuple_list,
715                         p_2tuple, entries);
716                         rte_free(p_2tuple);
717         }
718         filter_info->twotuple_mask = 0;
719
720         return 0;
721 }
722
723 /* Remove all flex filters of the device */
724 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
725 {
726         struct e1000_filter_info *filter_info =
727                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
728         struct e1000_flex_filter *p_flex;
729
730         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
731                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
732                 rte_free(p_flex);
733         }
734         filter_info->flex_mask = 0;
735
736         return 0;
737 }
738
739 static int
740 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
741 {
742         int error = 0;
743         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
744         struct e1000_hw *hw =
745                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
746         struct e1000_vfta * shadow_vfta =
747                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
748         struct e1000_filter_info *filter_info =
749                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
750         struct e1000_adapter *adapter =
751                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
752
753         uint32_t ctrl_ext;
754
755         eth_dev->dev_ops = &eth_igb_ops;
756         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
757         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
758         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
759
760         /* for secondary processes, we don't initialise any further as primary
761          * has already done this work. Only check we don't need a different
762          * RX function */
763         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
764                 if (eth_dev->data->scattered_rx)
765                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
766                 return 0;
767         }
768
769         rte_eth_copy_pci_info(eth_dev, pci_dev);
770
771         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
772
773         igb_identify_hardware(eth_dev, pci_dev);
774         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
775                 error = -EIO;
776                 goto err_late;
777         }
778
779         e1000_get_bus_info(hw);
780
781         /* Reset any pending lock */
782         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
783                 error = -EIO;
784                 goto err_late;
785         }
786
787         /* Finish initialization */
788         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
789                 error = -EIO;
790                 goto err_late;
791         }
792
793         hw->mac.autoneg = 1;
794         hw->phy.autoneg_wait_to_complete = 0;
795         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
796
797         /* Copper options */
798         if (hw->phy.media_type == e1000_media_type_copper) {
799                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
800                 hw->phy.disable_polarity_correction = 0;
801                 hw->phy.ms_type = e1000_ms_hw_default;
802         }
803
804         /*
805          * Start from a known state, this is important in reading the nvm
806          * and mac from that.
807          */
808         igb_pf_reset_hw(hw);
809
810         /* Make sure we have a good EEPROM before we read from it */
811         if (e1000_validate_nvm_checksum(hw) < 0) {
812                 /*
813                  * Some PCI-E parts fail the first check due to
814                  * the link being in sleep state, call it again,
815                  * if it fails a second time its a real issue.
816                  */
817                 if (e1000_validate_nvm_checksum(hw) < 0) {
818                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
819                         error = -EIO;
820                         goto err_late;
821                 }
822         }
823
824         /* Read the permanent MAC address out of the EEPROM */
825         if (e1000_read_mac_addr(hw) != 0) {
826                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
827                 error = -EIO;
828                 goto err_late;
829         }
830
831         /* Allocate memory for storing MAC addresses */
832         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
833                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
834         if (eth_dev->data->mac_addrs == NULL) {
835                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
836                                                 "store MAC addresses",
837                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
838                 error = -ENOMEM;
839                 goto err_late;
840         }
841
842         /* Copy the permanent MAC address */
843         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
844
845         /* initialize the vfta */
846         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
847
848         /* Now initialize the hardware */
849         if (igb_hardware_init(hw) != 0) {
850                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
851                 rte_free(eth_dev->data->mac_addrs);
852                 eth_dev->data->mac_addrs = NULL;
853                 error = -ENODEV;
854                 goto err_late;
855         }
856         hw->mac.get_link_status = 1;
857         adapter->stopped = 0;
858
859         /* Indicate SOL/IDER usage */
860         if (e1000_check_reset_block(hw) < 0) {
861                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
862                                         "SOL/IDER session");
863         }
864
865         /* initialize PF if max_vfs not zero */
866         igb_pf_host_init(eth_dev);
867
868         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
869         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
870         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
871         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
872         E1000_WRITE_FLUSH(hw);
873
874         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
875                      eth_dev->data->port_id, pci_dev->id.vendor_id,
876                      pci_dev->id.device_id);
877
878         rte_intr_callback_register(&pci_dev->intr_handle,
879                                    eth_igb_interrupt_handler,
880                                    (void *)eth_dev);
881
882         /* enable uio/vfio intr/eventfd mapping */
883         rte_intr_enable(&pci_dev->intr_handle);
884
885         /* enable support intr */
886         igb_intr_enable(eth_dev);
887
888         /* initialize filter info */
889         memset(filter_info, 0,
890                sizeof(struct e1000_filter_info));
891
892         TAILQ_INIT(&filter_info->flex_list);
893         TAILQ_INIT(&filter_info->twotuple_list);
894         TAILQ_INIT(&filter_info->fivetuple_list);
895
896         TAILQ_INIT(&igb_filter_ntuple_list);
897         TAILQ_INIT(&igb_filter_ethertype_list);
898         TAILQ_INIT(&igb_filter_syn_list);
899         TAILQ_INIT(&igb_filter_flex_list);
900         TAILQ_INIT(&igb_filter_rss_list);
901         TAILQ_INIT(&igb_flow_list);
902
903         return 0;
904
905 err_late:
906         igb_hw_control_release(hw);
907
908         return error;
909 }
910
911 static int
912 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
913 {
914         struct rte_pci_device *pci_dev;
915         struct rte_intr_handle *intr_handle;
916         struct e1000_hw *hw;
917         struct e1000_adapter *adapter =
918                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
919         struct e1000_filter_info *filter_info =
920                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
921
922         PMD_INIT_FUNC_TRACE();
923
924         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
925                 return -EPERM;
926
927         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
928         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
929         intr_handle = &pci_dev->intr_handle;
930
931         if (adapter->stopped == 0)
932                 eth_igb_close(eth_dev);
933
934         eth_dev->dev_ops = NULL;
935         eth_dev->rx_pkt_burst = NULL;
936         eth_dev->tx_pkt_burst = NULL;
937
938         /* Reset any pending lock */
939         igb_reset_swfw_lock(hw);
940
941         /* uninitialize PF if max_vfs not zero */
942         igb_pf_host_uninit(eth_dev);
943
944         /* disable uio intr before callback unregister */
945         rte_intr_disable(intr_handle);
946         rte_intr_callback_unregister(intr_handle,
947                                      eth_igb_interrupt_handler, eth_dev);
948
949         /* clear the SYN filter info */
950         filter_info->syn_info = 0;
951
952         /* clear the ethertype filters info */
953         filter_info->ethertype_mask = 0;
954         memset(filter_info->ethertype_filters, 0,
955                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
956
957         /* clear the rss filter info */
958         memset(&filter_info->rss_info, 0,
959                 sizeof(struct igb_rte_flow_rss_conf));
960
961         /* remove all ntuple filters of the device */
962         igb_ntuple_filter_uninit(eth_dev);
963
964         /* remove all flex filters of the device */
965         igb_flex_filter_uninit(eth_dev);
966
967         /* clear all the filters list */
968         igb_filterlist_flush(eth_dev);
969
970         return 0;
971 }
972
973 /*
974  * Virtual Function device init
975  */
976 static int
977 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
978 {
979         struct rte_pci_device *pci_dev;
980         struct rte_intr_handle *intr_handle;
981         struct e1000_adapter *adapter =
982                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
983         struct e1000_hw *hw =
984                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
985         int diag;
986         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
987
988         PMD_INIT_FUNC_TRACE();
989
990         eth_dev->dev_ops = &igbvf_eth_dev_ops;
991         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
992         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
993         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
994
995         /* for secondary processes, we don't initialise any further as primary
996          * has already done this work. Only check we don't need a different
997          * RX function */
998         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
999                 if (eth_dev->data->scattered_rx)
1000                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
1001                 return 0;
1002         }
1003
1004         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1005         rte_eth_copy_pci_info(eth_dev, pci_dev);
1006
1007         hw->device_id = pci_dev->id.device_id;
1008         hw->vendor_id = pci_dev->id.vendor_id;
1009         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1010         adapter->stopped = 0;
1011
1012         /* Initialize the shared code (base driver) */
1013         diag = e1000_setup_init_funcs(hw, TRUE);
1014         if (diag != 0) {
1015                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
1016                         diag);
1017                 return -EIO;
1018         }
1019
1020         /* init_mailbox_params */
1021         hw->mbx.ops.init_params(hw);
1022
1023         /* Disable the interrupts for VF */
1024         igbvf_intr_disable(hw);
1025
1026         diag = hw->mac.ops.reset_hw(hw);
1027
1028         /* Allocate memory for storing MAC addresses */
1029         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1030                 hw->mac.rar_entry_count, 0);
1031         if (eth_dev->data->mac_addrs == NULL) {
1032                 PMD_INIT_LOG(ERR,
1033                         "Failed to allocate %d bytes needed to store MAC "
1034                         "addresses",
1035                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1036                 return -ENOMEM;
1037         }
1038
1039         /* Generate a random MAC address, if none was assigned by PF. */
1040         if (is_zero_ether_addr(perm_addr)) {
1041                 eth_random_addr(perm_addr->addr_bytes);
1042                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1043                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1044                              "%02x:%02x:%02x:%02x:%02x:%02x",
1045                              perm_addr->addr_bytes[0],
1046                              perm_addr->addr_bytes[1],
1047                              perm_addr->addr_bytes[2],
1048                              perm_addr->addr_bytes[3],
1049                              perm_addr->addr_bytes[4],
1050                              perm_addr->addr_bytes[5]);
1051         }
1052
1053         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1054         if (diag) {
1055                 rte_free(eth_dev->data->mac_addrs);
1056                 eth_dev->data->mac_addrs = NULL;
1057                 return diag;
1058         }
1059         /* Copy the permanent MAC address */
1060         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1061                         &eth_dev->data->mac_addrs[0]);
1062
1063         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1064                      "mac.type=%s",
1065                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1066                      pci_dev->id.device_id, "igb_mac_82576_vf");
1067
1068         intr_handle = &pci_dev->intr_handle;
1069         rte_intr_callback_register(intr_handle,
1070                                    eth_igbvf_interrupt_handler, eth_dev);
1071
1072         return 0;
1073 }
1074
1075 static int
1076 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1077 {
1078         struct e1000_adapter *adapter =
1079                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1080         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1081
1082         PMD_INIT_FUNC_TRACE();
1083
1084         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1085                 return -EPERM;
1086
1087         if (adapter->stopped == 0)
1088                 igbvf_dev_close(eth_dev);
1089
1090         eth_dev->dev_ops = NULL;
1091         eth_dev->rx_pkt_burst = NULL;
1092         eth_dev->tx_pkt_burst = NULL;
1093
1094         /* disable uio intr before callback unregister */
1095         rte_intr_disable(&pci_dev->intr_handle);
1096         rte_intr_callback_unregister(&pci_dev->intr_handle,
1097                                      eth_igbvf_interrupt_handler,
1098                                      (void *)eth_dev);
1099
1100         return 0;
1101 }
1102
1103 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1104         struct rte_pci_device *pci_dev)
1105 {
1106         return rte_eth_dev_pci_generic_probe(pci_dev,
1107                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1108 }
1109
1110 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1111 {
1112         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1113 }
1114
1115 static struct rte_pci_driver rte_igb_pmd = {
1116         .id_table = pci_id_igb_map,
1117         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1118                      RTE_PCI_DRV_IOVA_AS_VA,
1119         .probe = eth_igb_pci_probe,
1120         .remove = eth_igb_pci_remove,
1121 };
1122
1123
1124 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1125         struct rte_pci_device *pci_dev)
1126 {
1127         return rte_eth_dev_pci_generic_probe(pci_dev,
1128                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1129 }
1130
1131 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1132 {
1133         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1134 }
1135
1136 /*
1137  * virtual function driver struct
1138  */
1139 static struct rte_pci_driver rte_igbvf_pmd = {
1140         .id_table = pci_id_igbvf_map,
1141         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1142         .probe = eth_igbvf_pci_probe,
1143         .remove = eth_igbvf_pci_remove,
1144 };
1145
1146 static void
1147 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1148 {
1149         struct e1000_hw *hw =
1150                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1151         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1152         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1153         rctl |= E1000_RCTL_VFE;
1154         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1155 }
1156
1157 static int
1158 igb_check_mq_mode(struct rte_eth_dev *dev)
1159 {
1160         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1161         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1162         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1163         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1164
1165         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1166             tx_mq_mode == ETH_MQ_TX_DCB ||
1167             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1168                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1169                 return -EINVAL;
1170         }
1171         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1172                 /* Check multi-queue mode.
1173                  * To no break software we accept ETH_MQ_RX_NONE as this might
1174                  * be used to turn off VLAN filter.
1175                  */
1176
1177                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1178                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1179                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1180                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1181                 } else {
1182                         /* Only support one queue on VFs.
1183                          * RSS together with SRIOV is not supported.
1184                          */
1185                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1186                                         " wrong mq_mode rx %d.",
1187                                         rx_mq_mode);
1188                         return -EINVAL;
1189                 }
1190                 /* TX mode is not used here, so mode might be ignored.*/
1191                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1192                         /* SRIOV only works in VMDq enable mode */
1193                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1194                                         " TX mode %d is not supported. "
1195                                         " Driver will behave as %d mode.",
1196                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1197                 }
1198
1199                 /* check valid queue number */
1200                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1201                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1202                                         " only support one queue on VFs.");
1203                         return -EINVAL;
1204                 }
1205         } else {
1206                 /* To no break software that set invalid mode, only display
1207                  * warning if invalid mode is used.
1208                  */
1209                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1210                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1211                     rx_mq_mode != ETH_MQ_RX_RSS) {
1212                         /* RSS together with VMDq not supported*/
1213                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1214                                      rx_mq_mode);
1215                         return -EINVAL;
1216                 }
1217
1218                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1219                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1220                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1221                                         " Due to txmode is meaningless in this"
1222                                         " driver, just ignore.",
1223                                         tx_mq_mode);
1224                 }
1225         }
1226         return 0;
1227 }
1228
1229 static int
1230 eth_igb_configure(struct rte_eth_dev *dev)
1231 {
1232         struct e1000_interrupt *intr =
1233                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1234         int ret;
1235
1236         PMD_INIT_FUNC_TRACE();
1237
1238         /* multipe queue mode checking */
1239         ret  = igb_check_mq_mode(dev);
1240         if (ret != 0) {
1241                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1242                             ret);
1243                 return ret;
1244         }
1245
1246         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1247         PMD_INIT_FUNC_TRACE();
1248
1249         return 0;
1250 }
1251
1252 static void
1253 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1254                      bool enable)
1255 {
1256         struct e1000_hw *hw =
1257                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1258         uint32_t tctl, rctl;
1259
1260         tctl = E1000_READ_REG(hw, E1000_TCTL);
1261         rctl = E1000_READ_REG(hw, E1000_RCTL);
1262
1263         if (enable) {
1264                 /* enable Tx/Rx */
1265                 tctl |= E1000_TCTL_EN;
1266                 rctl |= E1000_RCTL_EN;
1267         } else {
1268                 /* disable Tx/Rx */
1269                 tctl &= ~E1000_TCTL_EN;
1270                 rctl &= ~E1000_RCTL_EN;
1271         }
1272         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1273         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1274         E1000_WRITE_FLUSH(hw);
1275 }
1276
1277 static int
1278 eth_igb_start(struct rte_eth_dev *dev)
1279 {
1280         struct e1000_hw *hw =
1281                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1282         struct e1000_adapter *adapter =
1283                 E1000_DEV_PRIVATE(dev->data->dev_private);
1284         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1285         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1286         int ret, mask;
1287         uint32_t intr_vector = 0;
1288         uint32_t ctrl_ext;
1289         uint32_t *speeds;
1290         int num_speeds;
1291         bool autoneg;
1292
1293         PMD_INIT_FUNC_TRACE();
1294
1295         /* disable uio/vfio intr/eventfd mapping */
1296         rte_intr_disable(intr_handle);
1297
1298         /* Power up the phy. Needed to make the link go Up */
1299         eth_igb_dev_set_link_up(dev);
1300
1301         /*
1302          * Packet Buffer Allocation (PBA)
1303          * Writing PBA sets the receive portion of the buffer
1304          * the remainder is used for the transmit buffer.
1305          */
1306         if (hw->mac.type == e1000_82575) {
1307                 uint32_t pba;
1308
1309                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1310                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1311         }
1312
1313         /* Put the address into the Receive Address Array */
1314         e1000_rar_set(hw, hw->mac.addr, 0);
1315
1316         /* Initialize the hardware */
1317         if (igb_hardware_init(hw)) {
1318                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1319                 return -EIO;
1320         }
1321         adapter->stopped = 0;
1322
1323         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1324
1325         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1326         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1327         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1328         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1329         E1000_WRITE_FLUSH(hw);
1330
1331         /* configure PF module if SRIOV enabled */
1332         igb_pf_host_configure(dev);
1333
1334         /* check and configure queue intr-vector mapping */
1335         if ((rte_intr_cap_multiple(intr_handle) ||
1336              !RTE_ETH_DEV_SRIOV(dev).active) &&
1337             dev->data->dev_conf.intr_conf.rxq != 0) {
1338                 intr_vector = dev->data->nb_rx_queues;
1339                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1340                         return -1;
1341         }
1342
1343         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1344                 intr_handle->intr_vec =
1345                         rte_zmalloc("intr_vec",
1346                                     dev->data->nb_rx_queues * sizeof(int), 0);
1347                 if (intr_handle->intr_vec == NULL) {
1348                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1349                                      " intr_vec", dev->data->nb_rx_queues);
1350                         return -ENOMEM;
1351                 }
1352         }
1353
1354         /* confiugre msix for rx interrupt */
1355         eth_igb_configure_msix_intr(dev);
1356
1357         /* Configure for OS presence */
1358         igb_init_manageability(hw);
1359
1360         eth_igb_tx_init(dev);
1361
1362         /* This can fail when allocating mbufs for descriptor rings */
1363         ret = eth_igb_rx_init(dev);
1364         if (ret) {
1365                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1366                 igb_dev_clear_queues(dev);
1367                 return ret;
1368         }
1369
1370         e1000_clear_hw_cntrs_base_generic(hw);
1371
1372         /*
1373          * VLAN Offload Settings
1374          */
1375         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1376                         ETH_VLAN_EXTEND_MASK;
1377         ret = eth_igb_vlan_offload_set(dev, mask);
1378         if (ret) {
1379                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1380                 igb_dev_clear_queues(dev);
1381                 return ret;
1382         }
1383
1384         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1385                 /* Enable VLAN filter since VMDq always use VLAN filter */
1386                 igb_vmdq_vlan_hw_filter_enable(dev);
1387         }
1388
1389         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1390                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1391                 (hw->mac.type == e1000_i211)) {
1392                 /* Configure EITR with the maximum possible value (0xFFFF) */
1393                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1394         }
1395
1396         /* Setup link speed and duplex */
1397         speeds = &dev->data->dev_conf.link_speeds;
1398         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1399                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1400                 hw->mac.autoneg = 1;
1401         } else {
1402                 num_speeds = 0;
1403                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1404
1405                 /* Reset */
1406                 hw->phy.autoneg_advertised = 0;
1407
1408                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1409                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1410                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1411                         num_speeds = -1;
1412                         goto error_invalid_config;
1413                 }
1414                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1415                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1416                         num_speeds++;
1417                 }
1418                 if (*speeds & ETH_LINK_SPEED_10M) {
1419                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1420                         num_speeds++;
1421                 }
1422                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1423                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1424                         num_speeds++;
1425                 }
1426                 if (*speeds & ETH_LINK_SPEED_100M) {
1427                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1428                         num_speeds++;
1429                 }
1430                 if (*speeds & ETH_LINK_SPEED_1G) {
1431                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1432                         num_speeds++;
1433                 }
1434                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1435                         goto error_invalid_config;
1436
1437                 /* Set/reset the mac.autoneg based on the link speed,
1438                  * fixed or not
1439                  */
1440                 if (!autoneg) {
1441                         hw->mac.autoneg = 0;
1442                         hw->mac.forced_speed_duplex =
1443                                         hw->phy.autoneg_advertised;
1444                 } else {
1445                         hw->mac.autoneg = 1;
1446                 }
1447         }
1448
1449         e1000_setup_link(hw);
1450
1451         if (rte_intr_allow_others(intr_handle)) {
1452                 /* check if lsc interrupt is enabled */
1453                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1454                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1455                 else
1456                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1457         } else {
1458                 rte_intr_callback_unregister(intr_handle,
1459                                              eth_igb_interrupt_handler,
1460                                              (void *)dev);
1461                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1462                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1463                                      " no intr multiplex");
1464         }
1465
1466         /* check if rxq interrupt is enabled */
1467         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1468             rte_intr_dp_is_en(intr_handle))
1469                 eth_igb_rxq_interrupt_setup(dev);
1470
1471         /* enable uio/vfio intr/eventfd mapping */
1472         rte_intr_enable(intr_handle);
1473
1474         /* resume enabled intr since hw reset */
1475         igb_intr_enable(dev);
1476
1477         /* restore all types filter */
1478         igb_filter_restore(dev);
1479
1480         eth_igb_rxtx_control(dev, true);
1481         eth_igb_link_update(dev, 0);
1482
1483         PMD_INIT_LOG(DEBUG, "<<");
1484
1485         return 0;
1486
1487 error_invalid_config:
1488         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1489                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1490         igb_dev_clear_queues(dev);
1491         return -EINVAL;
1492 }
1493
1494 /*********************************************************************
1495  *
1496  *  This routine disables all traffic on the adapter by issuing a
1497  *  global reset on the MAC.
1498  *
1499  **********************************************************************/
1500 static void
1501 eth_igb_stop(struct rte_eth_dev *dev)
1502 {
1503         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1504         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1505         struct rte_eth_link link;
1506         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1507
1508         eth_igb_rxtx_control(dev, false);
1509
1510         igb_intr_disable(dev);
1511
1512         /* disable intr eventfd mapping */
1513         rte_intr_disable(intr_handle);
1514
1515         igb_pf_reset_hw(hw);
1516         E1000_WRITE_REG(hw, E1000_WUC, 0);
1517
1518         /* Set bit for Go Link disconnect */
1519         if (hw->mac.type >= e1000_82580) {
1520                 uint32_t phpm_reg;
1521
1522                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1523                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1524                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1525         }
1526
1527         /* Power down the phy. Needed to make the link go Down */
1528         eth_igb_dev_set_link_down(dev);
1529
1530         igb_dev_clear_queues(dev);
1531
1532         /* clear the recorded link status */
1533         memset(&link, 0, sizeof(link));
1534         rte_eth_linkstatus_set(dev, &link);
1535
1536         if (!rte_intr_allow_others(intr_handle))
1537                 /* resume to the default handler */
1538                 rte_intr_callback_register(intr_handle,
1539                                            eth_igb_interrupt_handler,
1540                                            (void *)dev);
1541
1542         /* Clean datapath event and queue/vec mapping */
1543         rte_intr_efd_disable(intr_handle);
1544         if (intr_handle->intr_vec != NULL) {
1545                 rte_free(intr_handle->intr_vec);
1546                 intr_handle->intr_vec = NULL;
1547         }
1548 }
1549
1550 static int
1551 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1552 {
1553         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1554
1555         if (hw->phy.media_type == e1000_media_type_copper)
1556                 e1000_power_up_phy(hw);
1557         else
1558                 e1000_power_up_fiber_serdes_link(hw);
1559
1560         return 0;
1561 }
1562
1563 static int
1564 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1565 {
1566         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1567
1568         if (hw->phy.media_type == e1000_media_type_copper)
1569                 e1000_power_down_phy(hw);
1570         else
1571                 e1000_shutdown_fiber_serdes_link(hw);
1572
1573         return 0;
1574 }
1575
1576 static void
1577 eth_igb_close(struct rte_eth_dev *dev)
1578 {
1579         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1580         struct e1000_adapter *adapter =
1581                 E1000_DEV_PRIVATE(dev->data->dev_private);
1582         struct rte_eth_link link;
1583         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1584         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1585
1586         eth_igb_stop(dev);
1587         adapter->stopped = 1;
1588
1589         e1000_phy_hw_reset(hw);
1590         igb_release_manageability(hw);
1591         igb_hw_control_release(hw);
1592
1593         /* Clear bit for Go Link disconnect */
1594         if (hw->mac.type >= e1000_82580) {
1595                 uint32_t phpm_reg;
1596
1597                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1598                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1599                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1600         }
1601
1602         igb_dev_free_queues(dev);
1603
1604         if (intr_handle->intr_vec) {
1605                 rte_free(intr_handle->intr_vec);
1606                 intr_handle->intr_vec = NULL;
1607         }
1608
1609         memset(&link, 0, sizeof(link));
1610         rte_eth_linkstatus_set(dev, &link);
1611 }
1612
1613 /*
1614  * Reset PF device.
1615  */
1616 static int
1617 eth_igb_reset(struct rte_eth_dev *dev)
1618 {
1619         int ret;
1620
1621         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1622          * its VF to make them align with it. The detailed notification
1623          * mechanism is PMD specific and is currently not implemented.
1624          * To avoid unexpected behavior in VF, currently reset of PF with
1625          * SR-IOV activation is not supported. It might be supported later.
1626          */
1627         if (dev->data->sriov.active)
1628                 return -ENOTSUP;
1629
1630         ret = eth_igb_dev_uninit(dev);
1631         if (ret)
1632                 return ret;
1633
1634         ret = eth_igb_dev_init(dev);
1635
1636         return ret;
1637 }
1638
1639
1640 static int
1641 igb_get_rx_buffer_size(struct e1000_hw *hw)
1642 {
1643         uint32_t rx_buf_size;
1644         if (hw->mac.type == e1000_82576) {
1645                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1646         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1647                 /* PBS needs to be translated according to a lookup table */
1648                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1649                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1650                 rx_buf_size = (rx_buf_size << 10);
1651         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1652                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1653         } else {
1654                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1655         }
1656
1657         return rx_buf_size;
1658 }
1659
1660 /*********************************************************************
1661  *
1662  *  Initialize the hardware
1663  *
1664  **********************************************************************/
1665 static int
1666 igb_hardware_init(struct e1000_hw *hw)
1667 {
1668         uint32_t rx_buf_size;
1669         int diag;
1670
1671         /* Let the firmware know the OS is in control */
1672         igb_hw_control_acquire(hw);
1673
1674         /*
1675          * These parameters control the automatic generation (Tx) and
1676          * response (Rx) to Ethernet PAUSE frames.
1677          * - High water mark should allow for at least two standard size (1518)
1678          *   frames to be received after sending an XOFF.
1679          * - Low water mark works best when it is very near the high water mark.
1680          *   This allows the receiver to restart by sending XON when it has
1681          *   drained a bit. Here we use an arbitrary value of 1500 which will
1682          *   restart after one full frame is pulled from the buffer. There
1683          *   could be several smaller frames in the buffer and if so they will
1684          *   not trigger the XON until their total number reduces the buffer
1685          *   by 1500.
1686          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1687          */
1688         rx_buf_size = igb_get_rx_buffer_size(hw);
1689
1690         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1691         hw->fc.low_water = hw->fc.high_water - 1500;
1692         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1693         hw->fc.send_xon = 1;
1694
1695         /* Set Flow control, use the tunable location if sane */
1696         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1697                 hw->fc.requested_mode = igb_fc_setting;
1698         else
1699                 hw->fc.requested_mode = e1000_fc_none;
1700
1701         /* Issue a global reset */
1702         igb_pf_reset_hw(hw);
1703         E1000_WRITE_REG(hw, E1000_WUC, 0);
1704
1705         diag = e1000_init_hw(hw);
1706         if (diag < 0)
1707                 return diag;
1708
1709         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1710         e1000_get_phy_info(hw);
1711         e1000_check_for_link(hw);
1712
1713         return 0;
1714 }
1715
1716 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1717 static void
1718 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1719 {
1720         int pause_frames;
1721
1722         uint64_t old_gprc  = stats->gprc;
1723         uint64_t old_gptc  = stats->gptc;
1724         uint64_t old_tpr   = stats->tpr;
1725         uint64_t old_tpt   = stats->tpt;
1726         uint64_t old_rpthc = stats->rpthc;
1727         uint64_t old_hgptc = stats->hgptc;
1728
1729         if(hw->phy.media_type == e1000_media_type_copper ||
1730             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1731                 stats->symerrs +=
1732                     E1000_READ_REG(hw,E1000_SYMERRS);
1733                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1734         }
1735
1736         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1737         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1738         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1739         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1740
1741         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1742         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1743         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1744         stats->dc += E1000_READ_REG(hw, E1000_DC);
1745         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1746         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1747         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1748         /*
1749         ** For watchdog management we need to know if we have been
1750         ** paused during the last interval, so capture that here.
1751         */
1752         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1753         stats->xoffrxc += pause_frames;
1754         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1755         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1756         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1757         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1758         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1759         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1760         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1761         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1762         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1763         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1764         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1765         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1766
1767         /* For the 64-bit byte counters the low dword must be read first. */
1768         /* Both registers clear on the read of the high dword */
1769
1770         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1771         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1772         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1773         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1774         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1775         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1776         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1777
1778         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1779         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1780         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1781         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1782         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1783
1784         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1785         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1786
1787         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1788         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1789         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1790         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1791         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1792         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1793
1794         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1795         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1796         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1797         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1798         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1799         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1800         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1801         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1802
1803         /* Interrupt Counts */
1804
1805         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1806         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1807         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1808         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1809         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1810         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1811         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1812         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1813         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1814
1815         /* Host to Card Statistics */
1816
1817         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1818         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1819         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1820         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1821         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1822         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1823         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1824         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1825         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1826         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1827         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1828         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1829         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1830         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1831         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1832         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1833
1834         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1835         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1836         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1837         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1838         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1839         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1840 }
1841
1842 static int
1843 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1844 {
1845         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1846         struct e1000_hw_stats *stats =
1847                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1848
1849         igb_read_stats_registers(hw, stats);
1850
1851         if (rte_stats == NULL)
1852                 return -EINVAL;
1853
1854         /* Rx Errors */
1855         rte_stats->imissed = stats->mpc;
1856         rte_stats->ierrors = stats->crcerrs +
1857                              stats->rlec + stats->ruc + stats->roc +
1858                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1859
1860         /* Tx Errors */
1861         rte_stats->oerrors = stats->ecol + stats->latecol;
1862
1863         rte_stats->ipackets = stats->gprc;
1864         rte_stats->opackets = stats->gptc;
1865         rte_stats->ibytes   = stats->gorc;
1866         rte_stats->obytes   = stats->gotc;
1867         return 0;
1868 }
1869
1870 static void
1871 eth_igb_stats_reset(struct rte_eth_dev *dev)
1872 {
1873         struct e1000_hw_stats *hw_stats =
1874                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1875
1876         /* HW registers are cleared on read */
1877         eth_igb_stats_get(dev, NULL);
1878
1879         /* Reset software totals */
1880         memset(hw_stats, 0, sizeof(*hw_stats));
1881 }
1882
1883 static void
1884 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1885 {
1886         struct e1000_hw_stats *stats =
1887                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1888
1889         /* HW registers are cleared on read */
1890         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1891
1892         /* Reset software totals */
1893         memset(stats, 0, sizeof(*stats));
1894 }
1895
1896 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1897         struct rte_eth_xstat_name *xstats_names,
1898         __rte_unused unsigned int size)
1899 {
1900         unsigned i;
1901
1902         if (xstats_names == NULL)
1903                 return IGB_NB_XSTATS;
1904
1905         /* Note: limit checked in rte_eth_xstats_names() */
1906
1907         for (i = 0; i < IGB_NB_XSTATS; i++) {
1908                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1909                         sizeof(xstats_names[i].name));
1910         }
1911
1912         return IGB_NB_XSTATS;
1913 }
1914
1915 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1916                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1917                 unsigned int limit)
1918 {
1919         unsigned int i;
1920
1921         if (!ids) {
1922                 if (xstats_names == NULL)
1923                         return IGB_NB_XSTATS;
1924
1925                 for (i = 0; i < IGB_NB_XSTATS; i++)
1926                         strlcpy(xstats_names[i].name,
1927                                 rte_igb_stats_strings[i].name,
1928                                 sizeof(xstats_names[i].name));
1929
1930                 return IGB_NB_XSTATS;
1931
1932         } else {
1933                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1934
1935                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1936                                 IGB_NB_XSTATS);
1937
1938                 for (i = 0; i < limit; i++) {
1939                         if (ids[i] >= IGB_NB_XSTATS) {
1940                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1941                                 return -1;
1942                         }
1943                         strcpy(xstats_names[i].name,
1944                                         xstats_names_copy[ids[i]].name);
1945                 }
1946                 return limit;
1947         }
1948 }
1949
1950 static int
1951 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1952                    unsigned n)
1953 {
1954         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1955         struct e1000_hw_stats *hw_stats =
1956                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1957         unsigned i;
1958
1959         if (n < IGB_NB_XSTATS)
1960                 return IGB_NB_XSTATS;
1961
1962         igb_read_stats_registers(hw, hw_stats);
1963
1964         /* If this is a reset xstats is NULL, and we have cleared the
1965          * registers by reading them.
1966          */
1967         if (!xstats)
1968                 return 0;
1969
1970         /* Extended stats */
1971         for (i = 0; i < IGB_NB_XSTATS; i++) {
1972                 xstats[i].id = i;
1973                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1974                         rte_igb_stats_strings[i].offset);
1975         }
1976
1977         return IGB_NB_XSTATS;
1978 }
1979
1980 static int
1981 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1982                 uint64_t *values, unsigned int n)
1983 {
1984         unsigned int i;
1985
1986         if (!ids) {
1987                 struct e1000_hw *hw =
1988                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1989                 struct e1000_hw_stats *hw_stats =
1990                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1991
1992                 if (n < IGB_NB_XSTATS)
1993                         return IGB_NB_XSTATS;
1994
1995                 igb_read_stats_registers(hw, hw_stats);
1996
1997                 /* If this is a reset xstats is NULL, and we have cleared the
1998                  * registers by reading them.
1999                  */
2000                 if (!values)
2001                         return 0;
2002
2003                 /* Extended stats */
2004                 for (i = 0; i < IGB_NB_XSTATS; i++)
2005                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2006                                         rte_igb_stats_strings[i].offset);
2007
2008                 return IGB_NB_XSTATS;
2009
2010         } else {
2011                 uint64_t values_copy[IGB_NB_XSTATS];
2012
2013                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2014                                 IGB_NB_XSTATS);
2015
2016                 for (i = 0; i < n; i++) {
2017                         if (ids[i] >= IGB_NB_XSTATS) {
2018                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2019                                 return -1;
2020                         }
2021                         values[i] = values_copy[ids[i]];
2022                 }
2023                 return n;
2024         }
2025 }
2026
2027 static void
2028 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2029 {
2030         /* Good Rx packets, include VF loopback */
2031         UPDATE_VF_STAT(E1000_VFGPRC,
2032             hw_stats->last_gprc, hw_stats->gprc);
2033
2034         /* Good Rx octets, include VF loopback */
2035         UPDATE_VF_STAT(E1000_VFGORC,
2036             hw_stats->last_gorc, hw_stats->gorc);
2037
2038         /* Good Tx packets, include VF loopback */
2039         UPDATE_VF_STAT(E1000_VFGPTC,
2040             hw_stats->last_gptc, hw_stats->gptc);
2041
2042         /* Good Tx octets, include VF loopback */
2043         UPDATE_VF_STAT(E1000_VFGOTC,
2044             hw_stats->last_gotc, hw_stats->gotc);
2045
2046         /* Rx Multicst packets */
2047         UPDATE_VF_STAT(E1000_VFMPRC,
2048             hw_stats->last_mprc, hw_stats->mprc);
2049
2050         /* Good Rx loopback packets */
2051         UPDATE_VF_STAT(E1000_VFGPRLBC,
2052             hw_stats->last_gprlbc, hw_stats->gprlbc);
2053
2054         /* Good Rx loopback octets */
2055         UPDATE_VF_STAT(E1000_VFGORLBC,
2056             hw_stats->last_gorlbc, hw_stats->gorlbc);
2057
2058         /* Good Tx loopback packets */
2059         UPDATE_VF_STAT(E1000_VFGPTLBC,
2060             hw_stats->last_gptlbc, hw_stats->gptlbc);
2061
2062         /* Good Tx loopback octets */
2063         UPDATE_VF_STAT(E1000_VFGOTLBC,
2064             hw_stats->last_gotlbc, hw_stats->gotlbc);
2065 }
2066
2067 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2068                                      struct rte_eth_xstat_name *xstats_names,
2069                                      __rte_unused unsigned limit)
2070 {
2071         unsigned i;
2072
2073         if (xstats_names != NULL)
2074                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2075                         strlcpy(xstats_names[i].name,
2076                                 rte_igbvf_stats_strings[i].name,
2077                                 sizeof(xstats_names[i].name));
2078                 }
2079         return IGBVF_NB_XSTATS;
2080 }
2081
2082 static int
2083 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2084                      unsigned n)
2085 {
2086         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2087         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2088                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2089         unsigned i;
2090
2091         if (n < IGBVF_NB_XSTATS)
2092                 return IGBVF_NB_XSTATS;
2093
2094         igbvf_read_stats_registers(hw, hw_stats);
2095
2096         if (!xstats)
2097                 return 0;
2098
2099         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2100                 xstats[i].id = i;
2101                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2102                         rte_igbvf_stats_strings[i].offset);
2103         }
2104
2105         return IGBVF_NB_XSTATS;
2106 }
2107
2108 static int
2109 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2110 {
2111         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2112         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2113                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2114
2115         igbvf_read_stats_registers(hw, hw_stats);
2116
2117         if (rte_stats == NULL)
2118                 return -EINVAL;
2119
2120         rte_stats->ipackets = hw_stats->gprc;
2121         rte_stats->ibytes = hw_stats->gorc;
2122         rte_stats->opackets = hw_stats->gptc;
2123         rte_stats->obytes = hw_stats->gotc;
2124         return 0;
2125 }
2126
2127 static void
2128 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2129 {
2130         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2131                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2132
2133         /* Sync HW register to the last stats */
2134         eth_igbvf_stats_get(dev, NULL);
2135
2136         /* reset HW current stats*/
2137         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2138                offsetof(struct e1000_vf_stats, gprc));
2139 }
2140
2141 static int
2142 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2143                        size_t fw_size)
2144 {
2145         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2146         struct e1000_fw_version fw;
2147         int ret;
2148
2149         e1000_get_fw_version(hw, &fw);
2150
2151         switch (hw->mac.type) {
2152         case e1000_i210:
2153         case e1000_i211:
2154                 if (!(e1000_get_flash_presence_i210(hw))) {
2155                         ret = snprintf(fw_version, fw_size,
2156                                  "%2d.%2d-%d",
2157                                  fw.invm_major, fw.invm_minor,
2158                                  fw.invm_img_type);
2159                         break;
2160                 }
2161                 /* fall through */
2162         default:
2163                 /* if option rom is valid, display its version too */
2164                 if (fw.or_valid) {
2165                         ret = snprintf(fw_version, fw_size,
2166                                  "%d.%d, 0x%08x, %d.%d.%d",
2167                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2168                                  fw.or_major, fw.or_build, fw.or_patch);
2169                 /* no option rom */
2170                 } else {
2171                         if (fw.etrack_id != 0X0000) {
2172                                 ret = snprintf(fw_version, fw_size,
2173                                          "%d.%d, 0x%08x",
2174                                          fw.eep_major, fw.eep_minor,
2175                                          fw.etrack_id);
2176                         } else {
2177                                 ret = snprintf(fw_version, fw_size,
2178                                          "%d.%d.%d",
2179                                          fw.eep_major, fw.eep_minor,
2180                                          fw.eep_build);
2181                         }
2182                 }
2183                 break;
2184         }
2185
2186         ret += 1; /* add the size of '\0' */
2187         if (fw_size < (u32)ret)
2188                 return ret;
2189         else
2190                 return 0;
2191 }
2192
2193 static void
2194 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2195 {
2196         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2197
2198         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2199         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2200         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2201         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2202         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2203                                     dev_info->rx_queue_offload_capa;
2204         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2205         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2206                                     dev_info->tx_queue_offload_capa;
2207
2208         switch (hw->mac.type) {
2209         case e1000_82575:
2210                 dev_info->max_rx_queues = 4;
2211                 dev_info->max_tx_queues = 4;
2212                 dev_info->max_vmdq_pools = 0;
2213                 break;
2214
2215         case e1000_82576:
2216                 dev_info->max_rx_queues = 16;
2217                 dev_info->max_tx_queues = 16;
2218                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2219                 dev_info->vmdq_queue_num = 16;
2220                 break;
2221
2222         case e1000_82580:
2223                 dev_info->max_rx_queues = 8;
2224                 dev_info->max_tx_queues = 8;
2225                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2226                 dev_info->vmdq_queue_num = 8;
2227                 break;
2228
2229         case e1000_i350:
2230                 dev_info->max_rx_queues = 8;
2231                 dev_info->max_tx_queues = 8;
2232                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2233                 dev_info->vmdq_queue_num = 8;
2234                 break;
2235
2236         case e1000_i354:
2237                 dev_info->max_rx_queues = 8;
2238                 dev_info->max_tx_queues = 8;
2239                 break;
2240
2241         case e1000_i210:
2242                 dev_info->max_rx_queues = 4;
2243                 dev_info->max_tx_queues = 4;
2244                 dev_info->max_vmdq_pools = 0;
2245                 break;
2246
2247         case e1000_i211:
2248                 dev_info->max_rx_queues = 2;
2249                 dev_info->max_tx_queues = 2;
2250                 dev_info->max_vmdq_pools = 0;
2251                 break;
2252
2253         default:
2254                 /* Should not happen */
2255                 break;
2256         }
2257         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2258         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2259         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2260
2261         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2262                 .rx_thresh = {
2263                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2264                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2265                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2266                 },
2267                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2268                 .rx_drop_en = 0,
2269                 .offloads = 0,
2270         };
2271
2272         dev_info->default_txconf = (struct rte_eth_txconf) {
2273                 .tx_thresh = {
2274                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2275                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2276                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2277                 },
2278                 .offloads = 0,
2279         };
2280
2281         dev_info->rx_desc_lim = rx_desc_lim;
2282         dev_info->tx_desc_lim = tx_desc_lim;
2283
2284         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2285                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2286                         ETH_LINK_SPEED_1G;
2287
2288         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2289         dev_info->min_mtu = ETHER_MIN_MTU;
2290
2291 }
2292
2293 static const uint32_t *
2294 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2295 {
2296         static const uint32_t ptypes[] = {
2297                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2298                 RTE_PTYPE_L2_ETHER,
2299                 RTE_PTYPE_L3_IPV4,
2300                 RTE_PTYPE_L3_IPV4_EXT,
2301                 RTE_PTYPE_L3_IPV6,
2302                 RTE_PTYPE_L3_IPV6_EXT,
2303                 RTE_PTYPE_L4_TCP,
2304                 RTE_PTYPE_L4_UDP,
2305                 RTE_PTYPE_L4_SCTP,
2306                 RTE_PTYPE_TUNNEL_IP,
2307                 RTE_PTYPE_INNER_L3_IPV6,
2308                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2309                 RTE_PTYPE_INNER_L4_TCP,
2310                 RTE_PTYPE_INNER_L4_UDP,
2311                 RTE_PTYPE_UNKNOWN
2312         };
2313
2314         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2315             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2316                 return ptypes;
2317         return NULL;
2318 }
2319
2320 static void
2321 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2322 {
2323         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2324
2325         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2326         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2327         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2328         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2329                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2330                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2331                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2332                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2333                                 DEV_TX_OFFLOAD_TCP_TSO;
2334         switch (hw->mac.type) {
2335         case e1000_vfadapt:
2336                 dev_info->max_rx_queues = 2;
2337                 dev_info->max_tx_queues = 2;
2338                 break;
2339         case e1000_vfadapt_i350:
2340                 dev_info->max_rx_queues = 1;
2341                 dev_info->max_tx_queues = 1;
2342                 break;
2343         default:
2344                 /* Should not happen */
2345                 break;
2346         }
2347
2348         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2349         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2350                                     dev_info->rx_queue_offload_capa;
2351         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2352         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2353                                     dev_info->tx_queue_offload_capa;
2354
2355         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2356                 .rx_thresh = {
2357                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2358                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2359                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2360                 },
2361                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2362                 .rx_drop_en = 0,
2363                 .offloads = 0,
2364         };
2365
2366         dev_info->default_txconf = (struct rte_eth_txconf) {
2367                 .tx_thresh = {
2368                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2369                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2370                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2371                 },
2372                 .offloads = 0,
2373         };
2374
2375         dev_info->rx_desc_lim = rx_desc_lim;
2376         dev_info->tx_desc_lim = tx_desc_lim;
2377 }
2378
2379 /* return 0 means link status changed, -1 means not changed */
2380 static int
2381 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2382 {
2383         struct e1000_hw *hw =
2384                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2385         struct rte_eth_link link;
2386         int link_check, count;
2387
2388         link_check = 0;
2389         hw->mac.get_link_status = 1;
2390
2391         /* possible wait-to-complete in up to 9 seconds */
2392         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2393                 /* Read the real link status */
2394                 switch (hw->phy.media_type) {
2395                 case e1000_media_type_copper:
2396                         /* Do the work to read phy */
2397                         e1000_check_for_link(hw);
2398                         link_check = !hw->mac.get_link_status;
2399                         break;
2400
2401                 case e1000_media_type_fiber:
2402                         e1000_check_for_link(hw);
2403                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2404                                       E1000_STATUS_LU);
2405                         break;
2406
2407                 case e1000_media_type_internal_serdes:
2408                         e1000_check_for_link(hw);
2409                         link_check = hw->mac.serdes_has_link;
2410                         break;
2411
2412                 /* VF device is type_unknown */
2413                 case e1000_media_type_unknown:
2414                         eth_igbvf_link_update(hw);
2415                         link_check = !hw->mac.get_link_status;
2416                         break;
2417
2418                 default:
2419                         break;
2420                 }
2421                 if (link_check || wait_to_complete == 0)
2422                         break;
2423                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2424         }
2425         memset(&link, 0, sizeof(link));
2426
2427         /* Now we check if a transition has happened */
2428         if (link_check) {
2429                 uint16_t duplex, speed;
2430                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2431                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2432                                 ETH_LINK_FULL_DUPLEX :
2433                                 ETH_LINK_HALF_DUPLEX;
2434                 link.link_speed = speed;
2435                 link.link_status = ETH_LINK_UP;
2436                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2437                                 ETH_LINK_SPEED_FIXED);
2438         } else if (!link_check) {
2439                 link.link_speed = 0;
2440                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2441                 link.link_status = ETH_LINK_DOWN;
2442                 link.link_autoneg = ETH_LINK_FIXED;
2443         }
2444
2445         return rte_eth_linkstatus_set(dev, &link);
2446 }
2447
2448 /*
2449  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2450  * For ASF and Pass Through versions of f/w this means
2451  * that the driver is loaded.
2452  */
2453 static void
2454 igb_hw_control_acquire(struct e1000_hw *hw)
2455 {
2456         uint32_t ctrl_ext;
2457
2458         /* Let firmware know the driver has taken over */
2459         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2460         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2461 }
2462
2463 /*
2464  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2465  * For ASF and Pass Through versions of f/w this means that the
2466  * driver is no longer loaded.
2467  */
2468 static void
2469 igb_hw_control_release(struct e1000_hw *hw)
2470 {
2471         uint32_t ctrl_ext;
2472
2473         /* Let firmware taken over control of h/w */
2474         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2475         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2476                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2477 }
2478
2479 /*
2480  * Bit of a misnomer, what this really means is
2481  * to enable OS management of the system... aka
2482  * to disable special hardware management features.
2483  */
2484 static void
2485 igb_init_manageability(struct e1000_hw *hw)
2486 {
2487         if (e1000_enable_mng_pass_thru(hw)) {
2488                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2489                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2490
2491                 /* disable hardware interception of ARP */
2492                 manc &= ~(E1000_MANC_ARP_EN);
2493
2494                 /* enable receiving management packets to the host */
2495                 manc |= E1000_MANC_EN_MNG2HOST;
2496                 manc2h |= 1 << 5;  /* Mng Port 623 */
2497                 manc2h |= 1 << 6;  /* Mng Port 664 */
2498                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2499                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2500         }
2501 }
2502
2503 static void
2504 igb_release_manageability(struct e1000_hw *hw)
2505 {
2506         if (e1000_enable_mng_pass_thru(hw)) {
2507                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2508
2509                 manc |= E1000_MANC_ARP_EN;
2510                 manc &= ~E1000_MANC_EN_MNG2HOST;
2511
2512                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2513         }
2514 }
2515
2516 static void
2517 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2518 {
2519         struct e1000_hw *hw =
2520                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2521         uint32_t rctl;
2522
2523         rctl = E1000_READ_REG(hw, E1000_RCTL);
2524         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2525         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2526 }
2527
2528 static void
2529 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2530 {
2531         struct e1000_hw *hw =
2532                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2533         uint32_t rctl;
2534
2535         rctl = E1000_READ_REG(hw, E1000_RCTL);
2536         rctl &= (~E1000_RCTL_UPE);
2537         if (dev->data->all_multicast == 1)
2538                 rctl |= E1000_RCTL_MPE;
2539         else
2540                 rctl &= (~E1000_RCTL_MPE);
2541         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2542 }
2543
2544 static void
2545 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2546 {
2547         struct e1000_hw *hw =
2548                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2549         uint32_t rctl;
2550
2551         rctl = E1000_READ_REG(hw, E1000_RCTL);
2552         rctl |= E1000_RCTL_MPE;
2553         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2554 }
2555
2556 static void
2557 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2558 {
2559         struct e1000_hw *hw =
2560                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2561         uint32_t rctl;
2562
2563         if (dev->data->promiscuous == 1)
2564                 return; /* must remain in all_multicast mode */
2565         rctl = E1000_READ_REG(hw, E1000_RCTL);
2566         rctl &= (~E1000_RCTL_MPE);
2567         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2568 }
2569
2570 static int
2571 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2572 {
2573         struct e1000_hw *hw =
2574                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2575         struct e1000_vfta * shadow_vfta =
2576                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2577         uint32_t vfta;
2578         uint32_t vid_idx;
2579         uint32_t vid_bit;
2580
2581         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2582                               E1000_VFTA_ENTRY_MASK);
2583         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2584         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2585         if (on)
2586                 vfta |= vid_bit;
2587         else
2588                 vfta &= ~vid_bit;
2589         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2590
2591         /* update local VFTA copy */
2592         shadow_vfta->vfta[vid_idx] = vfta;
2593
2594         return 0;
2595 }
2596
2597 static int
2598 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2599                       enum rte_vlan_type vlan_type,
2600                       uint16_t tpid)
2601 {
2602         struct e1000_hw *hw =
2603                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2604         uint32_t reg, qinq;
2605
2606         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2607         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2608
2609         /* only outer TPID of double VLAN can be configured*/
2610         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2611                 reg = E1000_READ_REG(hw, E1000_VET);
2612                 reg = (reg & (~E1000_VET_VET_EXT)) |
2613                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2614                 E1000_WRITE_REG(hw, E1000_VET, reg);
2615
2616                 return 0;
2617         }
2618
2619         /* all other TPID values are read-only*/
2620         PMD_DRV_LOG(ERR, "Not supported");
2621
2622         return -ENOTSUP;
2623 }
2624
2625 static void
2626 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2627 {
2628         struct e1000_hw *hw =
2629                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2630         uint32_t reg;
2631
2632         /* Filter Table Disable */
2633         reg = E1000_READ_REG(hw, E1000_RCTL);
2634         reg &= ~E1000_RCTL_CFIEN;
2635         reg &= ~E1000_RCTL_VFE;
2636         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2637 }
2638
2639 static void
2640 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2641 {
2642         struct e1000_hw *hw =
2643                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2644         struct e1000_vfta * shadow_vfta =
2645                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2646         uint32_t reg;
2647         int i;
2648
2649         /* Filter Table Enable, CFI not used for packet acceptance */
2650         reg = E1000_READ_REG(hw, E1000_RCTL);
2651         reg &= ~E1000_RCTL_CFIEN;
2652         reg |= E1000_RCTL_VFE;
2653         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2654
2655         /* restore VFTA table */
2656         for (i = 0; i < IGB_VFTA_SIZE; i++)
2657                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2658 }
2659
2660 static void
2661 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2662 {
2663         struct e1000_hw *hw =
2664                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2665         uint32_t reg;
2666
2667         /* VLAN Mode Disable */
2668         reg = E1000_READ_REG(hw, E1000_CTRL);
2669         reg &= ~E1000_CTRL_VME;
2670         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2671 }
2672
2673 static void
2674 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2675 {
2676         struct e1000_hw *hw =
2677                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2678         uint32_t reg;
2679
2680         /* VLAN Mode Enable */
2681         reg = E1000_READ_REG(hw, E1000_CTRL);
2682         reg |= E1000_CTRL_VME;
2683         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2684 }
2685
2686 static void
2687 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2688 {
2689         struct e1000_hw *hw =
2690                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2691         uint32_t reg;
2692
2693         /* CTRL_EXT: Extended VLAN */
2694         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2695         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2696         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2697
2698         /* Update maximum packet length */
2699         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2700                 E1000_WRITE_REG(hw, E1000_RLPML,
2701                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2702                                                 VLAN_TAG_SIZE);
2703 }
2704
2705 static void
2706 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2707 {
2708         struct e1000_hw *hw =
2709                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2710         uint32_t reg;
2711
2712         /* CTRL_EXT: Extended VLAN */
2713         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2714         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2715         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2716
2717         /* Update maximum packet length */
2718         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2719                 E1000_WRITE_REG(hw, E1000_RLPML,
2720                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2721                                                 2 * VLAN_TAG_SIZE);
2722 }
2723
2724 static int
2725 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2726 {
2727         struct rte_eth_rxmode *rxmode;
2728
2729         rxmode = &dev->data->dev_conf.rxmode;
2730         if(mask & ETH_VLAN_STRIP_MASK){
2731                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2732                         igb_vlan_hw_strip_enable(dev);
2733                 else
2734                         igb_vlan_hw_strip_disable(dev);
2735         }
2736
2737         if(mask & ETH_VLAN_FILTER_MASK){
2738                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2739                         igb_vlan_hw_filter_enable(dev);
2740                 else
2741                         igb_vlan_hw_filter_disable(dev);
2742         }
2743
2744         if(mask & ETH_VLAN_EXTEND_MASK){
2745                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2746                         igb_vlan_hw_extend_enable(dev);
2747                 else
2748                         igb_vlan_hw_extend_disable(dev);
2749         }
2750
2751         return 0;
2752 }
2753
2754
2755 /**
2756  * It enables the interrupt mask and then enable the interrupt.
2757  *
2758  * @param dev
2759  *  Pointer to struct rte_eth_dev.
2760  * @param on
2761  *  Enable or Disable
2762  *
2763  * @return
2764  *  - On success, zero.
2765  *  - On failure, a negative value.
2766  */
2767 static int
2768 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2769 {
2770         struct e1000_interrupt *intr =
2771                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2772
2773         if (on)
2774                 intr->mask |= E1000_ICR_LSC;
2775         else
2776                 intr->mask &= ~E1000_ICR_LSC;
2777
2778         return 0;
2779 }
2780
2781 /* It clears the interrupt causes and enables the interrupt.
2782  * It will be called once only during nic initialized.
2783  *
2784  * @param dev
2785  *  Pointer to struct rte_eth_dev.
2786  *
2787  * @return
2788  *  - On success, zero.
2789  *  - On failure, a negative value.
2790  */
2791 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2792 {
2793         uint32_t mask, regval;
2794         struct e1000_hw *hw =
2795                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2796         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2797         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2798         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2799         struct rte_eth_dev_info dev_info;
2800
2801         memset(&dev_info, 0, sizeof(dev_info));
2802         eth_igb_infos_get(dev, &dev_info);
2803
2804         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2805         regval = E1000_READ_REG(hw, E1000_EIMS);
2806         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2807
2808         return 0;
2809 }
2810
2811 /*
2812  * It reads ICR and gets interrupt causes, check it and set a bit flag
2813  * to update link status.
2814  *
2815  * @param dev
2816  *  Pointer to struct rte_eth_dev.
2817  *
2818  * @return
2819  *  - On success, zero.
2820  *  - On failure, a negative value.
2821  */
2822 static int
2823 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2824 {
2825         uint32_t icr;
2826         struct e1000_hw *hw =
2827                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2828         struct e1000_interrupt *intr =
2829                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2830
2831         igb_intr_disable(dev);
2832
2833         /* read-on-clear nic registers here */
2834         icr = E1000_READ_REG(hw, E1000_ICR);
2835
2836         intr->flags = 0;
2837         if (icr & E1000_ICR_LSC) {
2838                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2839         }
2840
2841         if (icr & E1000_ICR_VMMB)
2842                 intr->flags |= E1000_FLAG_MAILBOX;
2843
2844         return 0;
2845 }
2846
2847 /*
2848  * It executes link_update after knowing an interrupt is prsent.
2849  *
2850  * @param dev
2851  *  Pointer to struct rte_eth_dev.
2852  *
2853  * @return
2854  *  - On success, zero.
2855  *  - On failure, a negative value.
2856  */
2857 static int
2858 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2859                          struct rte_intr_handle *intr_handle)
2860 {
2861         struct e1000_hw *hw =
2862                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2863         struct e1000_interrupt *intr =
2864                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2865         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2866         struct rte_eth_link link;
2867         int ret;
2868
2869         if (intr->flags & E1000_FLAG_MAILBOX) {
2870                 igb_pf_mbx_process(dev);
2871                 intr->flags &= ~E1000_FLAG_MAILBOX;
2872         }
2873
2874         igb_intr_enable(dev);
2875         rte_intr_enable(intr_handle);
2876
2877         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2878                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2879
2880                 /* set get_link_status to check register later */
2881                 hw->mac.get_link_status = 1;
2882                 ret = eth_igb_link_update(dev, 0);
2883
2884                 /* check if link has changed */
2885                 if (ret < 0)
2886                         return 0;
2887
2888                 rte_eth_linkstatus_get(dev, &link);
2889                 if (link.link_status) {
2890                         PMD_INIT_LOG(INFO,
2891                                      " Port %d: Link Up - speed %u Mbps - %s",
2892                                      dev->data->port_id,
2893                                      (unsigned)link.link_speed,
2894                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2895                                      "full-duplex" : "half-duplex");
2896                 } else {
2897                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2898                                      dev->data->port_id);
2899                 }
2900
2901                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2902                              pci_dev->addr.domain,
2903                              pci_dev->addr.bus,
2904                              pci_dev->addr.devid,
2905                              pci_dev->addr.function);
2906                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2907                                               NULL);
2908         }
2909
2910         return 0;
2911 }
2912
2913 /**
2914  * Interrupt handler which shall be registered at first.
2915  *
2916  * @param handle
2917  *  Pointer to interrupt handle.
2918  * @param param
2919  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2920  *
2921  * @return
2922  *  void
2923  */
2924 static void
2925 eth_igb_interrupt_handler(void *param)
2926 {
2927         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2928
2929         eth_igb_interrupt_get_status(dev);
2930         eth_igb_interrupt_action(dev, dev->intr_handle);
2931 }
2932
2933 static int
2934 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2935 {
2936         uint32_t eicr;
2937         struct e1000_hw *hw =
2938                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2939         struct e1000_interrupt *intr =
2940                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2941
2942         igbvf_intr_disable(hw);
2943
2944         /* read-on-clear nic registers here */
2945         eicr = E1000_READ_REG(hw, E1000_EICR);
2946         intr->flags = 0;
2947
2948         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2949                 intr->flags |= E1000_FLAG_MAILBOX;
2950
2951         return 0;
2952 }
2953
2954 void igbvf_mbx_process(struct rte_eth_dev *dev)
2955 {
2956         struct e1000_hw *hw =
2957                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2958         struct e1000_mbx_info *mbx = &hw->mbx;
2959         u32 in_msg = 0;
2960
2961         /* peek the message first */
2962         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2963
2964         /* PF reset VF event */
2965         if (in_msg == E1000_PF_CONTROL_MSG) {
2966                 /* dummy mbx read to ack pf */
2967                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2968                         return;
2969                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2970                                               NULL);
2971         }
2972 }
2973
2974 static int
2975 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2976 {
2977         struct e1000_interrupt *intr =
2978                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2979
2980         if (intr->flags & E1000_FLAG_MAILBOX) {
2981                 igbvf_mbx_process(dev);
2982                 intr->flags &= ~E1000_FLAG_MAILBOX;
2983         }
2984
2985         igbvf_intr_enable(dev);
2986         rte_intr_enable(intr_handle);
2987
2988         return 0;
2989 }
2990
2991 static void
2992 eth_igbvf_interrupt_handler(void *param)
2993 {
2994         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2995
2996         eth_igbvf_interrupt_get_status(dev);
2997         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2998 }
2999
3000 static int
3001 eth_igb_led_on(struct rte_eth_dev *dev)
3002 {
3003         struct e1000_hw *hw;
3004
3005         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3006         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3007 }
3008
3009 static int
3010 eth_igb_led_off(struct rte_eth_dev *dev)
3011 {
3012         struct e1000_hw *hw;
3013
3014         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3015         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3016 }
3017
3018 static int
3019 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3020 {
3021         struct e1000_hw *hw;
3022         uint32_t ctrl;
3023         int tx_pause;
3024         int rx_pause;
3025
3026         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3027         fc_conf->pause_time = hw->fc.pause_time;
3028         fc_conf->high_water = hw->fc.high_water;
3029         fc_conf->low_water = hw->fc.low_water;
3030         fc_conf->send_xon = hw->fc.send_xon;
3031         fc_conf->autoneg = hw->mac.autoneg;
3032
3033         /*
3034          * Return rx_pause and tx_pause status according to actual setting of
3035          * the TFCE and RFCE bits in the CTRL register.
3036          */
3037         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3038         if (ctrl & E1000_CTRL_TFCE)
3039                 tx_pause = 1;
3040         else
3041                 tx_pause = 0;
3042
3043         if (ctrl & E1000_CTRL_RFCE)
3044                 rx_pause = 1;
3045         else
3046                 rx_pause = 0;
3047
3048         if (rx_pause && tx_pause)
3049                 fc_conf->mode = RTE_FC_FULL;
3050         else if (rx_pause)
3051                 fc_conf->mode = RTE_FC_RX_PAUSE;
3052         else if (tx_pause)
3053                 fc_conf->mode = RTE_FC_TX_PAUSE;
3054         else
3055                 fc_conf->mode = RTE_FC_NONE;
3056
3057         return 0;
3058 }
3059
3060 static int
3061 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3062 {
3063         struct e1000_hw *hw;
3064         int err;
3065         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3066                 e1000_fc_none,
3067                 e1000_fc_rx_pause,
3068                 e1000_fc_tx_pause,
3069                 e1000_fc_full
3070         };
3071         uint32_t rx_buf_size;
3072         uint32_t max_high_water;
3073         uint32_t rctl;
3074
3075         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3076         if (fc_conf->autoneg != hw->mac.autoneg)
3077                 return -ENOTSUP;
3078         rx_buf_size = igb_get_rx_buffer_size(hw);
3079         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3080
3081         /* At least reserve one Ethernet frame for watermark */
3082         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3083         if ((fc_conf->high_water > max_high_water) ||
3084             (fc_conf->high_water < fc_conf->low_water)) {
3085                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3086                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3087                 return -EINVAL;
3088         }
3089
3090         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3091         hw->fc.pause_time     = fc_conf->pause_time;
3092         hw->fc.high_water     = fc_conf->high_water;
3093         hw->fc.low_water      = fc_conf->low_water;
3094         hw->fc.send_xon       = fc_conf->send_xon;
3095
3096         err = e1000_setup_link_generic(hw);
3097         if (err == E1000_SUCCESS) {
3098
3099                 /* check if we want to forward MAC frames - driver doesn't have native
3100                  * capability to do that, so we'll write the registers ourselves */
3101
3102                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3103
3104                 /* set or clear MFLCN.PMCF bit depending on configuration */
3105                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3106                         rctl |= E1000_RCTL_PMCF;
3107                 else
3108                         rctl &= ~E1000_RCTL_PMCF;
3109
3110                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3111                 E1000_WRITE_FLUSH(hw);
3112
3113                 return 0;
3114         }
3115
3116         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3117         return -EIO;
3118 }
3119
3120 #define E1000_RAH_POOLSEL_SHIFT      (18)
3121 static int
3122 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3123                 uint32_t index, uint32_t pool)
3124 {
3125         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3126         uint32_t rah;
3127
3128         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3129         rah = E1000_READ_REG(hw, E1000_RAH(index));
3130         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3131         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3132         return 0;
3133 }
3134
3135 static void
3136 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3137 {
3138         uint8_t addr[ETHER_ADDR_LEN];
3139         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3140
3141         memset(addr, 0, sizeof(addr));
3142
3143         e1000_rar_set(hw, addr, index);
3144 }
3145
3146 static int
3147 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3148                                 struct ether_addr *addr)
3149 {
3150         eth_igb_rar_clear(dev, 0);
3151         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3152
3153         return 0;
3154 }
3155 /*
3156  * Virtual Function operations
3157  */
3158 static void
3159 igbvf_intr_disable(struct e1000_hw *hw)
3160 {
3161         PMD_INIT_FUNC_TRACE();
3162
3163         /* Clear interrupt mask to stop from interrupts being generated */
3164         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3165
3166         E1000_WRITE_FLUSH(hw);
3167 }
3168
3169 static void
3170 igbvf_stop_adapter(struct rte_eth_dev *dev)
3171 {
3172         u32 reg_val;
3173         u16 i;
3174         struct rte_eth_dev_info dev_info;
3175         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3176
3177         memset(&dev_info, 0, sizeof(dev_info));
3178         eth_igbvf_infos_get(dev, &dev_info);
3179
3180         /* Clear interrupt mask to stop from interrupts being generated */
3181         igbvf_intr_disable(hw);
3182
3183         /* Clear any pending interrupts, flush previous writes */
3184         E1000_READ_REG(hw, E1000_EICR);
3185
3186         /* Disable the transmit unit.  Each queue must be disabled. */
3187         for (i = 0; i < dev_info.max_tx_queues; i++)
3188                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3189
3190         /* Disable the receive unit by stopping each queue */
3191         for (i = 0; i < dev_info.max_rx_queues; i++) {
3192                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3193                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3194                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3195                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3196                         ;
3197         }
3198
3199         /* flush all queues disables */
3200         E1000_WRITE_FLUSH(hw);
3201         msec_delay(2);
3202 }
3203
3204 static int eth_igbvf_link_update(struct e1000_hw *hw)
3205 {
3206         struct e1000_mbx_info *mbx = &hw->mbx;
3207         struct e1000_mac_info *mac = &hw->mac;
3208         int ret_val = E1000_SUCCESS;
3209
3210         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3211
3212         /*
3213          * We only want to run this if there has been a rst asserted.
3214          * in this case that could mean a link change, device reset,
3215          * or a virtual function reset
3216          */
3217
3218         /* If we were hit with a reset or timeout drop the link */
3219         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3220                 mac->get_link_status = TRUE;
3221
3222         if (!mac->get_link_status)
3223                 goto out;
3224
3225         /* if link status is down no point in checking to see if pf is up */
3226         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3227                 goto out;
3228
3229         /* if we passed all the tests above then the link is up and we no
3230          * longer need to check for link */
3231         mac->get_link_status = FALSE;
3232
3233 out:
3234         return ret_val;
3235 }
3236
3237
3238 static int
3239 igbvf_dev_configure(struct rte_eth_dev *dev)
3240 {
3241         struct rte_eth_conf* conf = &dev->data->dev_conf;
3242
3243         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3244                      dev->data->port_id);
3245
3246         /*
3247          * VF has no ability to enable/disable HW CRC
3248          * Keep the persistent behavior the same as Host PF
3249          */
3250 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3251         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3252                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3253                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3254         }
3255 #else
3256         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3257                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3258                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3259         }
3260 #endif
3261
3262         return 0;
3263 }
3264
3265 static int
3266 igbvf_dev_start(struct rte_eth_dev *dev)
3267 {
3268         struct e1000_hw *hw =
3269                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3270         struct e1000_adapter *adapter =
3271                 E1000_DEV_PRIVATE(dev->data->dev_private);
3272         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3273         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3274         int ret;
3275         uint32_t intr_vector = 0;
3276
3277         PMD_INIT_FUNC_TRACE();
3278
3279         hw->mac.ops.reset_hw(hw);
3280         adapter->stopped = 0;
3281
3282         /* Set all vfta */
3283         igbvf_set_vfta_all(dev,1);
3284
3285         eth_igbvf_tx_init(dev);
3286
3287         /* This can fail when allocating mbufs for descriptor rings */
3288         ret = eth_igbvf_rx_init(dev);
3289         if (ret) {
3290                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3291                 igb_dev_clear_queues(dev);
3292                 return ret;
3293         }
3294
3295         /* check and configure queue intr-vector mapping */
3296         if (rte_intr_cap_multiple(intr_handle) &&
3297             dev->data->dev_conf.intr_conf.rxq) {
3298                 intr_vector = dev->data->nb_rx_queues;
3299                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3300                 if (ret)
3301                         return ret;
3302         }
3303
3304         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3305                 intr_handle->intr_vec =
3306                         rte_zmalloc("intr_vec",
3307                                     dev->data->nb_rx_queues * sizeof(int), 0);
3308                 if (!intr_handle->intr_vec) {
3309                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3310                                      " intr_vec", dev->data->nb_rx_queues);
3311                         return -ENOMEM;
3312                 }
3313         }
3314
3315         eth_igbvf_configure_msix_intr(dev);
3316
3317         /* enable uio/vfio intr/eventfd mapping */
3318         rte_intr_enable(intr_handle);
3319
3320         /* resume enabled intr since hw reset */
3321         igbvf_intr_enable(dev);
3322
3323         return 0;
3324 }
3325
3326 static void
3327 igbvf_dev_stop(struct rte_eth_dev *dev)
3328 {
3329         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3330         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3331
3332         PMD_INIT_FUNC_TRACE();
3333
3334         igbvf_stop_adapter(dev);
3335
3336         /*
3337           * Clear what we set, but we still keep shadow_vfta to
3338           * restore after device starts
3339           */
3340         igbvf_set_vfta_all(dev,0);
3341
3342         igb_dev_clear_queues(dev);
3343
3344         /* disable intr eventfd mapping */
3345         rte_intr_disable(intr_handle);
3346
3347         /* Clean datapath event and queue/vec mapping */
3348         rte_intr_efd_disable(intr_handle);
3349         if (intr_handle->intr_vec) {
3350                 rte_free(intr_handle->intr_vec);
3351                 intr_handle->intr_vec = NULL;
3352         }
3353 }
3354
3355 static void
3356 igbvf_dev_close(struct rte_eth_dev *dev)
3357 {
3358         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3359         struct e1000_adapter *adapter =
3360                 E1000_DEV_PRIVATE(dev->data->dev_private);
3361         struct ether_addr addr;
3362
3363         PMD_INIT_FUNC_TRACE();
3364
3365         e1000_reset_hw(hw);
3366
3367         igbvf_dev_stop(dev);
3368         adapter->stopped = 1;
3369         igb_dev_free_queues(dev);
3370
3371         /**
3372          * reprogram the RAR with a zero mac address,
3373          * to ensure that the VF traffic goes to the PF
3374          * after stop, close and detach of the VF.
3375          **/
3376
3377         memset(&addr, 0, sizeof(addr));
3378         igbvf_default_mac_addr_set(dev, &addr);
3379 }
3380
3381 static void
3382 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3383 {
3384         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3385
3386         /* Set both unicast and multicast promisc */
3387         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3388 }
3389
3390 static void
3391 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3392 {
3393         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3394
3395         /* If in allmulticast mode leave multicast promisc */
3396         if (dev->data->all_multicast == 1)
3397                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3398         else
3399                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3400 }
3401
3402 static void
3403 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3404 {
3405         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3406
3407         /* In promiscuous mode multicast promisc already set */
3408         if (dev->data->promiscuous == 0)
3409                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3410 }
3411
3412 static void
3413 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3414 {
3415         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3416
3417         /* In promiscuous mode leave multicast promisc enabled */
3418         if (dev->data->promiscuous == 0)
3419                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3420 }
3421
3422 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3423 {
3424         struct e1000_mbx_info *mbx = &hw->mbx;
3425         uint32_t msgbuf[2];
3426         s32 err;
3427
3428         /* After set vlan, vlan strip will also be enabled in igb driver*/
3429         msgbuf[0] = E1000_VF_SET_VLAN;
3430         msgbuf[1] = vid;
3431         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3432         if (on)
3433                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3434
3435         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3436         if (err)
3437                 goto mbx_err;
3438
3439         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3440         if (err)
3441                 goto mbx_err;
3442
3443         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3444         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3445                 err = -EINVAL;
3446
3447 mbx_err:
3448         return err;
3449 }
3450
3451 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3452 {
3453         struct e1000_hw *hw =
3454                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3455         struct e1000_vfta * shadow_vfta =
3456                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3457         int i = 0, j = 0, vfta = 0, mask = 1;
3458
3459         for (i = 0; i < IGB_VFTA_SIZE; i++){
3460                 vfta = shadow_vfta->vfta[i];
3461                 if(vfta){
3462                         mask = 1;
3463                         for (j = 0; j < 32; j++){
3464                                 if(vfta & mask)
3465                                         igbvf_set_vfta(hw,
3466                                                 (uint16_t)((i<<5)+j), on);
3467                                 mask<<=1;
3468                         }
3469                 }
3470         }
3471
3472 }
3473
3474 static int
3475 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3476 {
3477         struct e1000_hw *hw =
3478                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3479         struct e1000_vfta * shadow_vfta =
3480                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3481         uint32_t vid_idx = 0;
3482         uint32_t vid_bit = 0;
3483         int ret = 0;
3484
3485         PMD_INIT_FUNC_TRACE();
3486
3487         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3488         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3489         if(ret){
3490                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3491                 return ret;
3492         }
3493         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3494         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3495
3496         /*Save what we set and retore it after device reset*/
3497         if (on)
3498                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3499         else
3500                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3501
3502         return 0;
3503 }
3504
3505 static int
3506 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3507 {
3508         struct e1000_hw *hw =
3509                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3510
3511         /* index is not used by rar_set() */
3512         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3513         return 0;
3514 }
3515
3516
3517 static int
3518 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3519                         struct rte_eth_rss_reta_entry64 *reta_conf,
3520                         uint16_t reta_size)
3521 {
3522         uint8_t i, j, mask;
3523         uint32_t reta, r;
3524         uint16_t idx, shift;
3525         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3526
3527         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3528                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3529                         "(%d) doesn't match the number hardware can supported "
3530                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3531                 return -EINVAL;
3532         }
3533
3534         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3535                 idx = i / RTE_RETA_GROUP_SIZE;
3536                 shift = i % RTE_RETA_GROUP_SIZE;
3537                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3538                                                 IGB_4_BIT_MASK);
3539                 if (!mask)
3540                         continue;
3541                 if (mask == IGB_4_BIT_MASK)
3542                         r = 0;
3543                 else
3544                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3545                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3546                         if (mask & (0x1 << j))
3547                                 reta |= reta_conf[idx].reta[shift + j] <<
3548                                                         (CHAR_BIT * j);
3549                         else
3550                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3551                 }
3552                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3553         }
3554
3555         return 0;
3556 }
3557
3558 static int
3559 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3560                        struct rte_eth_rss_reta_entry64 *reta_conf,
3561                        uint16_t reta_size)
3562 {
3563         uint8_t i, j, mask;
3564         uint32_t reta;
3565         uint16_t idx, shift;
3566         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3567
3568         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3569                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3570                         "(%d) doesn't match the number hardware can supported "
3571                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3572                 return -EINVAL;
3573         }
3574
3575         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3576                 idx = i / RTE_RETA_GROUP_SIZE;
3577                 shift = i % RTE_RETA_GROUP_SIZE;
3578                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3579                                                 IGB_4_BIT_MASK);
3580                 if (!mask)
3581                         continue;
3582                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3583                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3584                         if (mask & (0x1 << j))
3585                                 reta_conf[idx].reta[shift + j] =
3586                                         ((reta >> (CHAR_BIT * j)) &
3587                                                 IGB_8_BIT_MASK);
3588                 }
3589         }
3590
3591         return 0;
3592 }
3593
3594 int
3595 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3596                         struct rte_eth_syn_filter *filter,
3597                         bool add)
3598 {
3599         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3600         struct e1000_filter_info *filter_info =
3601                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3602         uint32_t synqf, rfctl;
3603
3604         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3605                 return -EINVAL;
3606
3607         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3608
3609         if (add) {
3610                 if (synqf & E1000_SYN_FILTER_ENABLE)
3611                         return -EINVAL;
3612
3613                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3614                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3615
3616                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3617                 if (filter->hig_pri)
3618                         rfctl |= E1000_RFCTL_SYNQFP;
3619                 else
3620                         rfctl &= ~E1000_RFCTL_SYNQFP;
3621
3622                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3623         } else {
3624                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3625                         return -ENOENT;
3626                 synqf = 0;
3627         }
3628
3629         filter_info->syn_info = synqf;
3630         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3631         E1000_WRITE_FLUSH(hw);
3632         return 0;
3633 }
3634
3635 static int
3636 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3637                         struct rte_eth_syn_filter *filter)
3638 {
3639         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3640         uint32_t synqf, rfctl;
3641
3642         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3643         if (synqf & E1000_SYN_FILTER_ENABLE) {
3644                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3645                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3646                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3647                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3648                 return 0;
3649         }
3650
3651         return -ENOENT;
3652 }
3653
3654 static int
3655 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3656                         enum rte_filter_op filter_op,
3657                         void *arg)
3658 {
3659         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3660         int ret;
3661
3662         MAC_TYPE_FILTER_SUP(hw->mac.type);
3663
3664         if (filter_op == RTE_ETH_FILTER_NOP)
3665                 return 0;
3666
3667         if (arg == NULL) {
3668                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3669                             filter_op);
3670                 return -EINVAL;
3671         }
3672
3673         switch (filter_op) {
3674         case RTE_ETH_FILTER_ADD:
3675                 ret = eth_igb_syn_filter_set(dev,
3676                                 (struct rte_eth_syn_filter *)arg,
3677                                 TRUE);
3678                 break;
3679         case RTE_ETH_FILTER_DELETE:
3680                 ret = eth_igb_syn_filter_set(dev,
3681                                 (struct rte_eth_syn_filter *)arg,
3682                                 FALSE);
3683                 break;
3684         case RTE_ETH_FILTER_GET:
3685                 ret = eth_igb_syn_filter_get(dev,
3686                                 (struct rte_eth_syn_filter *)arg);
3687                 break;
3688         default:
3689                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3690                 ret = -EINVAL;
3691                 break;
3692         }
3693
3694         return ret;
3695 }
3696
3697 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3698 static inline int
3699 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3700                         struct e1000_2tuple_filter_info *filter_info)
3701 {
3702         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3703                 return -EINVAL;
3704         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3705                 return -EINVAL;  /* filter index is out of range. */
3706         if (filter->tcp_flags > TCP_FLAG_ALL)
3707                 return -EINVAL;  /* flags is invalid. */
3708
3709         switch (filter->dst_port_mask) {
3710         case UINT16_MAX:
3711                 filter_info->dst_port_mask = 0;
3712                 filter_info->dst_port = filter->dst_port;
3713                 break;
3714         case 0:
3715                 filter_info->dst_port_mask = 1;
3716                 break;
3717         default:
3718                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3719                 return -EINVAL;
3720         }
3721
3722         switch (filter->proto_mask) {
3723         case UINT8_MAX:
3724                 filter_info->proto_mask = 0;
3725                 filter_info->proto = filter->proto;
3726                 break;
3727         case 0:
3728                 filter_info->proto_mask = 1;
3729                 break;
3730         default:
3731                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3732                 return -EINVAL;
3733         }
3734
3735         filter_info->priority = (uint8_t)filter->priority;
3736         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3737                 filter_info->tcp_flags = filter->tcp_flags;
3738         else
3739                 filter_info->tcp_flags = 0;
3740
3741         return 0;
3742 }
3743
3744 static inline struct e1000_2tuple_filter *
3745 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3746                         struct e1000_2tuple_filter_info *key)
3747 {
3748         struct e1000_2tuple_filter *it;
3749
3750         TAILQ_FOREACH(it, filter_list, entries) {
3751                 if (memcmp(key, &it->filter_info,
3752                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3753                         return it;
3754                 }
3755         }
3756         return NULL;
3757 }
3758
3759 /* inject a igb 2tuple filter to HW */
3760 static inline void
3761 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3762                            struct e1000_2tuple_filter *filter)
3763 {
3764         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3765         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3766         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3767         int i;
3768
3769         i = filter->index;
3770         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3771         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3772                 imir |= E1000_IMIR_PORT_BP;
3773         else
3774                 imir &= ~E1000_IMIR_PORT_BP;
3775
3776         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3777
3778         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3779         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3780         ttqf |= (uint32_t)(filter->filter_info.proto &
3781                                                 E1000_TTQF_PROTOCOL_MASK);
3782         if (filter->filter_info.proto_mask == 0)
3783                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3784
3785         /* tcp flags bits setting. */
3786         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3787                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3788                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3789                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3790                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3791                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3792                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3793                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3794                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3795                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3796                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3797                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3798                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3799         } else {
3800                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3801         }
3802         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3803         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3804         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3805 }
3806
3807 /*
3808  * igb_add_2tuple_filter - add a 2tuple filter
3809  *
3810  * @param
3811  * dev: Pointer to struct rte_eth_dev.
3812  * ntuple_filter: ponter to the filter that will be added.
3813  *
3814  * @return
3815  *    - On success, zero.
3816  *    - On failure, a negative value.
3817  */
3818 static int
3819 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3820                         struct rte_eth_ntuple_filter *ntuple_filter)
3821 {
3822         struct e1000_filter_info *filter_info =
3823                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3824         struct e1000_2tuple_filter *filter;
3825         int i, ret;
3826
3827         filter = rte_zmalloc("e1000_2tuple_filter",
3828                         sizeof(struct e1000_2tuple_filter), 0);
3829         if (filter == NULL)
3830                 return -ENOMEM;
3831
3832         ret = ntuple_filter_to_2tuple(ntuple_filter,
3833                                       &filter->filter_info);
3834         if (ret < 0) {
3835                 rte_free(filter);
3836                 return ret;
3837         }
3838         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3839                                          &filter->filter_info) != NULL) {
3840                 PMD_DRV_LOG(ERR, "filter exists.");
3841                 rte_free(filter);
3842                 return -EEXIST;
3843         }
3844         filter->queue = ntuple_filter->queue;
3845
3846         /*
3847          * look for an unused 2tuple filter index,
3848          * and insert the filter to list.
3849          */
3850         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3851                 if (!(filter_info->twotuple_mask & (1 << i))) {
3852                         filter_info->twotuple_mask |= 1 << i;
3853                         filter->index = i;
3854                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3855                                           filter,
3856                                           entries);
3857                         break;
3858                 }
3859         }
3860         if (i >= E1000_MAX_TTQF_FILTERS) {
3861                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3862                 rte_free(filter);
3863                 return -ENOSYS;
3864         }
3865
3866         igb_inject_2uple_filter(dev, filter);
3867         return 0;
3868 }
3869
3870 int
3871 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3872                         struct e1000_2tuple_filter *filter)
3873 {
3874         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3875         struct e1000_filter_info *filter_info =
3876                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3877
3878         filter_info->twotuple_mask &= ~(1 << filter->index);
3879         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3880         rte_free(filter);
3881
3882         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3883         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3884         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3885         return 0;
3886 }
3887
3888 /*
3889  * igb_remove_2tuple_filter - remove a 2tuple filter
3890  *
3891  * @param
3892  * dev: Pointer to struct rte_eth_dev.
3893  * ntuple_filter: ponter to the filter that will be removed.
3894  *
3895  * @return
3896  *    - On success, zero.
3897  *    - On failure, a negative value.
3898  */
3899 static int
3900 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3901                         struct rte_eth_ntuple_filter *ntuple_filter)
3902 {
3903         struct e1000_filter_info *filter_info =
3904                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3905         struct e1000_2tuple_filter_info filter_2tuple;
3906         struct e1000_2tuple_filter *filter;
3907         int ret;
3908
3909         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3910         ret = ntuple_filter_to_2tuple(ntuple_filter,
3911                                       &filter_2tuple);
3912         if (ret < 0)
3913                 return ret;
3914
3915         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3916                                          &filter_2tuple);
3917         if (filter == NULL) {
3918                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3919                 return -ENOENT;
3920         }
3921
3922         igb_delete_2tuple_filter(dev, filter);
3923
3924         return 0;
3925 }
3926
3927 /* inject a igb flex filter to HW */
3928 static inline void
3929 igb_inject_flex_filter(struct rte_eth_dev *dev,
3930                            struct e1000_flex_filter *filter)
3931 {
3932         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3933         uint32_t wufc, queueing;
3934         uint32_t reg_off;
3935         uint8_t i, j = 0;
3936
3937         wufc = E1000_READ_REG(hw, E1000_WUFC);
3938         if (filter->index < E1000_MAX_FHFT)
3939                 reg_off = E1000_FHFT(filter->index);
3940         else
3941                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3942
3943         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3944                         (E1000_WUFC_FLX0 << filter->index));
3945         queueing = filter->filter_info.len |
3946                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3947                 (filter->filter_info.priority <<
3948                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3949         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3950                         queueing);
3951
3952         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3953                 E1000_WRITE_REG(hw, reg_off,
3954                                 filter->filter_info.dwords[j]);
3955                 reg_off += sizeof(uint32_t);
3956                 E1000_WRITE_REG(hw, reg_off,
3957                                 filter->filter_info.dwords[++j]);
3958                 reg_off += sizeof(uint32_t);
3959                 E1000_WRITE_REG(hw, reg_off,
3960                         (uint32_t)filter->filter_info.mask[i]);
3961                 reg_off += sizeof(uint32_t) * 2;
3962                 ++j;
3963         }
3964 }
3965
3966 static inline struct e1000_flex_filter *
3967 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3968                         struct e1000_flex_filter_info *key)
3969 {
3970         struct e1000_flex_filter *it;
3971
3972         TAILQ_FOREACH(it, filter_list, entries) {
3973                 if (memcmp(key, &it->filter_info,
3974                         sizeof(struct e1000_flex_filter_info)) == 0)
3975                         return it;
3976         }
3977
3978         return NULL;
3979 }
3980
3981 /* remove a flex byte filter
3982  * @param
3983  * dev: Pointer to struct rte_eth_dev.
3984  * filter: the pointer of the filter will be removed.
3985  */
3986 void
3987 igb_remove_flex_filter(struct rte_eth_dev *dev,
3988                         struct e1000_flex_filter *filter)
3989 {
3990         struct e1000_filter_info *filter_info =
3991                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3992         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3993         uint32_t wufc, i;
3994         uint32_t reg_off;
3995
3996         wufc = E1000_READ_REG(hw, E1000_WUFC);
3997         if (filter->index < E1000_MAX_FHFT)
3998                 reg_off = E1000_FHFT(filter->index);
3999         else
4000                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4001
4002         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4003                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4004
4005         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4006                 (~(E1000_WUFC_FLX0 << filter->index)));
4007
4008         filter_info->flex_mask &= ~(1 << filter->index);
4009         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4010         rte_free(filter);
4011 }
4012
4013 int
4014 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4015                         struct rte_eth_flex_filter *filter,
4016                         bool add)
4017 {
4018         struct e1000_filter_info *filter_info =
4019                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4020         struct e1000_flex_filter *flex_filter, *it;
4021         uint32_t mask;
4022         uint8_t shift, i;
4023
4024         flex_filter = rte_zmalloc("e1000_flex_filter",
4025                         sizeof(struct e1000_flex_filter), 0);
4026         if (flex_filter == NULL)
4027                 return -ENOMEM;
4028
4029         flex_filter->filter_info.len = filter->len;
4030         flex_filter->filter_info.priority = filter->priority;
4031         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4032         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4033                 mask = 0;
4034                 /* reverse bits in flex filter's mask*/
4035                 for (shift = 0; shift < CHAR_BIT; shift++) {
4036                         if (filter->mask[i] & (0x01 << shift))
4037                                 mask |= (0x80 >> shift);
4038                 }
4039                 flex_filter->filter_info.mask[i] = mask;
4040         }
4041
4042         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4043                                 &flex_filter->filter_info);
4044         if (it == NULL && !add) {
4045                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4046                 rte_free(flex_filter);
4047                 return -ENOENT;
4048         }
4049         if (it != NULL && add) {
4050                 PMD_DRV_LOG(ERR, "filter exists.");
4051                 rte_free(flex_filter);
4052                 return -EEXIST;
4053         }
4054
4055         if (add) {
4056                 flex_filter->queue = filter->queue;
4057                 /*
4058                  * look for an unused flex filter index
4059                  * and insert the filter into the list.
4060                  */
4061                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4062                         if (!(filter_info->flex_mask & (1 << i))) {
4063                                 filter_info->flex_mask |= 1 << i;
4064                                 flex_filter->index = i;
4065                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4066                                         flex_filter,
4067                                         entries);
4068                                 break;
4069                         }
4070                 }
4071                 if (i >= E1000_MAX_FLEX_FILTERS) {
4072                         PMD_DRV_LOG(ERR, "flex filters are full.");
4073                         rte_free(flex_filter);
4074                         return -ENOSYS;
4075                 }
4076
4077                 igb_inject_flex_filter(dev, flex_filter);
4078
4079         } else {
4080                 igb_remove_flex_filter(dev, it);
4081                 rte_free(flex_filter);
4082         }
4083
4084         return 0;
4085 }
4086
4087 static int
4088 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4089                         struct rte_eth_flex_filter *filter)
4090 {
4091         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4092         struct e1000_filter_info *filter_info =
4093                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4094         struct e1000_flex_filter flex_filter, *it;
4095         uint32_t wufc, queueing, wufc_en = 0;
4096
4097         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4098         flex_filter.filter_info.len = filter->len;
4099         flex_filter.filter_info.priority = filter->priority;
4100         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4101         memcpy(flex_filter.filter_info.mask, filter->mask,
4102                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4103
4104         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4105                                 &flex_filter.filter_info);
4106         if (it == NULL) {
4107                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4108                 return -ENOENT;
4109         }
4110
4111         wufc = E1000_READ_REG(hw, E1000_WUFC);
4112         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4113
4114         if ((wufc & wufc_en) == wufc_en) {
4115                 uint32_t reg_off = 0;
4116                 if (it->index < E1000_MAX_FHFT)
4117                         reg_off = E1000_FHFT(it->index);
4118                 else
4119                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4120
4121                 queueing = E1000_READ_REG(hw,
4122                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4123                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4124                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4125                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4126                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4127                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4128                 return 0;
4129         }
4130         return -ENOENT;
4131 }
4132
4133 static int
4134 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4135                         enum rte_filter_op filter_op,
4136                         void *arg)
4137 {
4138         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4139         struct rte_eth_flex_filter *filter;
4140         int ret = 0;
4141
4142         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4143
4144         if (filter_op == RTE_ETH_FILTER_NOP)
4145                 return ret;
4146
4147         if (arg == NULL) {
4148                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4149                             filter_op);
4150                 return -EINVAL;
4151         }
4152
4153         filter = (struct rte_eth_flex_filter *)arg;
4154         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4155             || filter->len % sizeof(uint64_t) != 0) {
4156                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4157                 return -EINVAL;
4158         }
4159         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4160                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4161                 return -EINVAL;
4162         }
4163
4164         switch (filter_op) {
4165         case RTE_ETH_FILTER_ADD:
4166                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4167                 break;
4168         case RTE_ETH_FILTER_DELETE:
4169                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4170                 break;
4171         case RTE_ETH_FILTER_GET:
4172                 ret = eth_igb_get_flex_filter(dev, filter);
4173                 break;
4174         default:
4175                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4176                 ret = -EINVAL;
4177                 break;
4178         }
4179
4180         return ret;
4181 }
4182
4183 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4184 static inline int
4185 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4186                         struct e1000_5tuple_filter_info *filter_info)
4187 {
4188         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4189                 return -EINVAL;
4190         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4191                 return -EINVAL;  /* filter index is out of range. */
4192         if (filter->tcp_flags > TCP_FLAG_ALL)
4193                 return -EINVAL;  /* flags is invalid. */
4194
4195         switch (filter->dst_ip_mask) {
4196         case UINT32_MAX:
4197                 filter_info->dst_ip_mask = 0;
4198                 filter_info->dst_ip = filter->dst_ip;
4199                 break;
4200         case 0:
4201                 filter_info->dst_ip_mask = 1;
4202                 break;
4203         default:
4204                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4205                 return -EINVAL;
4206         }
4207
4208         switch (filter->src_ip_mask) {
4209         case UINT32_MAX:
4210                 filter_info->src_ip_mask = 0;
4211                 filter_info->src_ip = filter->src_ip;
4212                 break;
4213         case 0:
4214                 filter_info->src_ip_mask = 1;
4215                 break;
4216         default:
4217                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4218                 return -EINVAL;
4219         }
4220
4221         switch (filter->dst_port_mask) {
4222         case UINT16_MAX:
4223                 filter_info->dst_port_mask = 0;
4224                 filter_info->dst_port = filter->dst_port;
4225                 break;
4226         case 0:
4227                 filter_info->dst_port_mask = 1;
4228                 break;
4229         default:
4230                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4231                 return -EINVAL;
4232         }
4233
4234         switch (filter->src_port_mask) {
4235         case UINT16_MAX:
4236                 filter_info->src_port_mask = 0;
4237                 filter_info->src_port = filter->src_port;
4238                 break;
4239         case 0:
4240                 filter_info->src_port_mask = 1;
4241                 break;
4242         default:
4243                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4244                 return -EINVAL;
4245         }
4246
4247         switch (filter->proto_mask) {
4248         case UINT8_MAX:
4249                 filter_info->proto_mask = 0;
4250                 filter_info->proto = filter->proto;
4251                 break;
4252         case 0:
4253                 filter_info->proto_mask = 1;
4254                 break;
4255         default:
4256                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4257                 return -EINVAL;
4258         }
4259
4260         filter_info->priority = (uint8_t)filter->priority;
4261         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4262                 filter_info->tcp_flags = filter->tcp_flags;
4263         else
4264                 filter_info->tcp_flags = 0;
4265
4266         return 0;
4267 }
4268
4269 static inline struct e1000_5tuple_filter *
4270 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4271                         struct e1000_5tuple_filter_info *key)
4272 {
4273         struct e1000_5tuple_filter *it;
4274
4275         TAILQ_FOREACH(it, filter_list, entries) {
4276                 if (memcmp(key, &it->filter_info,
4277                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4278                         return it;
4279                 }
4280         }
4281         return NULL;
4282 }
4283
4284 /* inject a igb 5-tuple filter to HW */
4285 static inline void
4286 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4287                            struct e1000_5tuple_filter *filter)
4288 {
4289         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4290         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4291         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4292         uint8_t i;
4293
4294         i = filter->index;
4295         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4296         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4297                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4298         if (filter->filter_info.dst_ip_mask == 0)
4299                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4300         if (filter->filter_info.src_port_mask == 0)
4301                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4302         if (filter->filter_info.proto_mask == 0)
4303                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4304         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4305                 E1000_FTQF_QUEUE_MASK;
4306         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4307         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4308         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4309         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4310
4311         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4312         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4313
4314         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4315         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4316                 imir |= E1000_IMIR_PORT_BP;
4317         else
4318                 imir &= ~E1000_IMIR_PORT_BP;
4319         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4320
4321         /* tcp flags bits setting. */
4322         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4323                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4324                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4325                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4326                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4327                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4328                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4329                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4330                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4331                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4332                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4333                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4334                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4335         } else {
4336                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4337         }
4338         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4339         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4340 }
4341
4342 /*
4343  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4344  *
4345  * @param
4346  * dev: Pointer to struct rte_eth_dev.
4347  * ntuple_filter: ponter to the filter that will be added.
4348  *
4349  * @return
4350  *    - On success, zero.
4351  *    - On failure, a negative value.
4352  */
4353 static int
4354 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4355                         struct rte_eth_ntuple_filter *ntuple_filter)
4356 {
4357         struct e1000_filter_info *filter_info =
4358                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4359         struct e1000_5tuple_filter *filter;
4360         uint8_t i;
4361         int ret;
4362
4363         filter = rte_zmalloc("e1000_5tuple_filter",
4364                         sizeof(struct e1000_5tuple_filter), 0);
4365         if (filter == NULL)
4366                 return -ENOMEM;
4367
4368         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4369                                             &filter->filter_info);
4370         if (ret < 0) {
4371                 rte_free(filter);
4372                 return ret;
4373         }
4374
4375         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4376                                          &filter->filter_info) != NULL) {
4377                 PMD_DRV_LOG(ERR, "filter exists.");
4378                 rte_free(filter);
4379                 return -EEXIST;
4380         }
4381         filter->queue = ntuple_filter->queue;
4382
4383         /*
4384          * look for an unused 5tuple filter index,
4385          * and insert the filter to list.
4386          */
4387         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4388                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4389                         filter_info->fivetuple_mask |= 1 << i;
4390                         filter->index = i;
4391                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4392                                           filter,
4393                                           entries);
4394                         break;
4395                 }
4396         }
4397         if (i >= E1000_MAX_FTQF_FILTERS) {
4398                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4399                 rte_free(filter);
4400                 return -ENOSYS;
4401         }
4402
4403         igb_inject_5tuple_filter_82576(dev, filter);
4404         return 0;
4405 }
4406
4407 int
4408 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4409                                 struct e1000_5tuple_filter *filter)
4410 {
4411         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4412         struct e1000_filter_info *filter_info =
4413                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4414
4415         filter_info->fivetuple_mask &= ~(1 << filter->index);
4416         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4417         rte_free(filter);
4418
4419         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4420                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4421         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4422         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4423         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4424         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4425         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4426         return 0;
4427 }
4428
4429 /*
4430  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4431  *
4432  * @param
4433  * dev: Pointer to struct rte_eth_dev.
4434  * ntuple_filter: ponter to the filter that will be removed.
4435  *
4436  * @return
4437  *    - On success, zero.
4438  *    - On failure, a negative value.
4439  */
4440 static int
4441 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4442                                 struct rte_eth_ntuple_filter *ntuple_filter)
4443 {
4444         struct e1000_filter_info *filter_info =
4445                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4446         struct e1000_5tuple_filter_info filter_5tuple;
4447         struct e1000_5tuple_filter *filter;
4448         int ret;
4449
4450         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4451         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4452                                             &filter_5tuple);
4453         if (ret < 0)
4454                 return ret;
4455
4456         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4457                                          &filter_5tuple);
4458         if (filter == NULL) {
4459                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4460                 return -ENOENT;
4461         }
4462
4463         igb_delete_5tuple_filter_82576(dev, filter);
4464
4465         return 0;
4466 }
4467
4468 static int
4469 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4470 {
4471         uint32_t rctl;
4472         struct e1000_hw *hw;
4473         struct rte_eth_dev_info dev_info;
4474         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4475
4476         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4477
4478 #ifdef RTE_LIBRTE_82571_SUPPORT
4479         /* XXX: not bigger than max_rx_pktlen */
4480         if (hw->mac.type == e1000_82571)
4481                 return -ENOTSUP;
4482 #endif
4483         eth_igb_infos_get(dev, &dev_info);
4484
4485         /* check that mtu is within the allowed range */
4486         if ((mtu < ETHER_MIN_MTU) ||
4487             (frame_size > dev_info.max_rx_pktlen))
4488                 return -EINVAL;
4489
4490         /* refuse mtu that requires the support of scattered packets when this
4491          * feature has not been enabled before. */
4492         if (!dev->data->scattered_rx &&
4493             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4494                 return -EINVAL;
4495
4496         rctl = E1000_READ_REG(hw, E1000_RCTL);
4497
4498         /* switch to jumbo mode if needed */
4499         if (frame_size > ETHER_MAX_LEN) {
4500                 dev->data->dev_conf.rxmode.offloads |=
4501                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4502                 rctl |= E1000_RCTL_LPE;
4503         } else {
4504                 dev->data->dev_conf.rxmode.offloads &=
4505                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4506                 rctl &= ~E1000_RCTL_LPE;
4507         }
4508         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4509
4510         /* update max frame size */
4511         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4512
4513         E1000_WRITE_REG(hw, E1000_RLPML,
4514                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4515
4516         return 0;
4517 }
4518
4519 /*
4520  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4521  *
4522  * @param
4523  * dev: Pointer to struct rte_eth_dev.
4524  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4525  * add: if true, add filter, if false, remove filter
4526  *
4527  * @return
4528  *    - On success, zero.
4529  *    - On failure, a negative value.
4530  */
4531 int
4532 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4533                         struct rte_eth_ntuple_filter *ntuple_filter,
4534                         bool add)
4535 {
4536         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4537         int ret;
4538
4539         switch (ntuple_filter->flags) {
4540         case RTE_5TUPLE_FLAGS:
4541         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4542                 if (hw->mac.type != e1000_82576)
4543                         return -ENOTSUP;
4544                 if (add)
4545                         ret = igb_add_5tuple_filter_82576(dev,
4546                                                           ntuple_filter);
4547                 else
4548                         ret = igb_remove_5tuple_filter_82576(dev,
4549                                                              ntuple_filter);
4550                 break;
4551         case RTE_2TUPLE_FLAGS:
4552         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4553                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4554                         hw->mac.type != e1000_i210 &&
4555                         hw->mac.type != e1000_i211)
4556                         return -ENOTSUP;
4557                 if (add)
4558                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4559                 else
4560                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4561                 break;
4562         default:
4563                 ret = -EINVAL;
4564                 break;
4565         }
4566
4567         return ret;
4568 }
4569
4570 /*
4571  * igb_get_ntuple_filter - get a ntuple filter
4572  *
4573  * @param
4574  * dev: Pointer to struct rte_eth_dev.
4575  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4576  *
4577  * @return
4578  *    - On success, zero.
4579  *    - On failure, a negative value.
4580  */
4581 static int
4582 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4583                         struct rte_eth_ntuple_filter *ntuple_filter)
4584 {
4585         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4586         struct e1000_filter_info *filter_info =
4587                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4588         struct e1000_5tuple_filter_info filter_5tuple;
4589         struct e1000_2tuple_filter_info filter_2tuple;
4590         struct e1000_5tuple_filter *p_5tuple_filter;
4591         struct e1000_2tuple_filter *p_2tuple_filter;
4592         int ret;
4593
4594         switch (ntuple_filter->flags) {
4595         case RTE_5TUPLE_FLAGS:
4596         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4597                 if (hw->mac.type != e1000_82576)
4598                         return -ENOTSUP;
4599                 memset(&filter_5tuple,
4600                         0,
4601                         sizeof(struct e1000_5tuple_filter_info));
4602                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4603                                                     &filter_5tuple);
4604                 if (ret < 0)
4605                         return ret;
4606                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4607                                         &filter_info->fivetuple_list,
4608                                         &filter_5tuple);
4609                 if (p_5tuple_filter == NULL) {
4610                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4611                         return -ENOENT;
4612                 }
4613                 ntuple_filter->queue = p_5tuple_filter->queue;
4614                 break;
4615         case RTE_2TUPLE_FLAGS:
4616         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4617                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4618                         return -ENOTSUP;
4619                 memset(&filter_2tuple,
4620                         0,
4621                         sizeof(struct e1000_2tuple_filter_info));
4622                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4623                 if (ret < 0)
4624                         return ret;
4625                 p_2tuple_filter = igb_2tuple_filter_lookup(
4626                                         &filter_info->twotuple_list,
4627                                         &filter_2tuple);
4628                 if (p_2tuple_filter == NULL) {
4629                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4630                         return -ENOENT;
4631                 }
4632                 ntuple_filter->queue = p_2tuple_filter->queue;
4633                 break;
4634         default:
4635                 ret = -EINVAL;
4636                 break;
4637         }
4638
4639         return 0;
4640 }
4641
4642 /*
4643  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4644  * @dev: pointer to rte_eth_dev structure
4645  * @filter_op:operation will be taken.
4646  * @arg: a pointer to specific structure corresponding to the filter_op
4647  */
4648 static int
4649 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4650                                 enum rte_filter_op filter_op,
4651                                 void *arg)
4652 {
4653         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4654         int ret;
4655
4656         MAC_TYPE_FILTER_SUP(hw->mac.type);
4657
4658         if (filter_op == RTE_ETH_FILTER_NOP)
4659                 return 0;
4660
4661         if (arg == NULL) {
4662                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4663                             filter_op);
4664                 return -EINVAL;
4665         }
4666
4667         switch (filter_op) {
4668         case RTE_ETH_FILTER_ADD:
4669                 ret = igb_add_del_ntuple_filter(dev,
4670                         (struct rte_eth_ntuple_filter *)arg,
4671                         TRUE);
4672                 break;
4673         case RTE_ETH_FILTER_DELETE:
4674                 ret = igb_add_del_ntuple_filter(dev,
4675                         (struct rte_eth_ntuple_filter *)arg,
4676                         FALSE);
4677                 break;
4678         case RTE_ETH_FILTER_GET:
4679                 ret = igb_get_ntuple_filter(dev,
4680                         (struct rte_eth_ntuple_filter *)arg);
4681                 break;
4682         default:
4683                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4684                 ret = -EINVAL;
4685                 break;
4686         }
4687         return ret;
4688 }
4689
4690 static inline int
4691 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4692                         uint16_t ethertype)
4693 {
4694         int i;
4695
4696         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4697                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4698                     (filter_info->ethertype_mask & (1 << i)))
4699                         return i;
4700         }
4701         return -1;
4702 }
4703
4704 static inline int
4705 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4706                         uint16_t ethertype, uint32_t etqf)
4707 {
4708         int i;
4709
4710         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4711                 if (!(filter_info->ethertype_mask & (1 << i))) {
4712                         filter_info->ethertype_mask |= 1 << i;
4713                         filter_info->ethertype_filters[i].ethertype = ethertype;
4714                         filter_info->ethertype_filters[i].etqf = etqf;
4715                         return i;
4716                 }
4717         }
4718         return -1;
4719 }
4720
4721 int
4722 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4723                         uint8_t idx)
4724 {
4725         if (idx >= E1000_MAX_ETQF_FILTERS)
4726                 return -1;
4727         filter_info->ethertype_mask &= ~(1 << idx);
4728         filter_info->ethertype_filters[idx].ethertype = 0;
4729         filter_info->ethertype_filters[idx].etqf = 0;
4730         return idx;
4731 }
4732
4733
4734 int
4735 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4736                         struct rte_eth_ethertype_filter *filter,
4737                         bool add)
4738 {
4739         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4740         struct e1000_filter_info *filter_info =
4741                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4742         uint32_t etqf = 0;
4743         int ret;
4744
4745         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4746                 filter->ether_type == ETHER_TYPE_IPv6) {
4747                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4748                         " ethertype filter.", filter->ether_type);
4749                 return -EINVAL;
4750         }
4751
4752         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4753                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4754                 return -EINVAL;
4755         }
4756         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4757                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4758                 return -EINVAL;
4759         }
4760
4761         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4762         if (ret >= 0 && add) {
4763                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4764                             filter->ether_type);
4765                 return -EEXIST;
4766         }
4767         if (ret < 0 && !add) {
4768                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4769                             filter->ether_type);
4770                 return -ENOENT;
4771         }
4772
4773         if (add) {
4774                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4775                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4776                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4777                 ret = igb_ethertype_filter_insert(filter_info,
4778                                 filter->ether_type, etqf);
4779                 if (ret < 0) {
4780                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4781                         return -ENOSYS;
4782                 }
4783         } else {
4784                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4785                 if (ret < 0)
4786                         return -ENOSYS;
4787         }
4788         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4789         E1000_WRITE_FLUSH(hw);
4790
4791         return 0;
4792 }
4793
4794 static int
4795 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4796                         struct rte_eth_ethertype_filter *filter)
4797 {
4798         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4799         struct e1000_filter_info *filter_info =
4800                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4801         uint32_t etqf;
4802         int ret;
4803
4804         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4805         if (ret < 0) {
4806                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4807                             filter->ether_type);
4808                 return -ENOENT;
4809         }
4810
4811         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4812         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4813                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4814                 filter->flags = 0;
4815                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4816                                 E1000_ETQF_QUEUE_SHIFT;
4817                 return 0;
4818         }
4819
4820         return -ENOENT;
4821 }
4822
4823 /*
4824  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4825  * @dev: pointer to rte_eth_dev structure
4826  * @filter_op:operation will be taken.
4827  * @arg: a pointer to specific structure corresponding to the filter_op
4828  */
4829 static int
4830 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4831                                 enum rte_filter_op filter_op,
4832                                 void *arg)
4833 {
4834         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4835         int ret;
4836
4837         MAC_TYPE_FILTER_SUP(hw->mac.type);
4838
4839         if (filter_op == RTE_ETH_FILTER_NOP)
4840                 return 0;
4841
4842         if (arg == NULL) {
4843                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4844                             filter_op);
4845                 return -EINVAL;
4846         }
4847
4848         switch (filter_op) {
4849         case RTE_ETH_FILTER_ADD:
4850                 ret = igb_add_del_ethertype_filter(dev,
4851                         (struct rte_eth_ethertype_filter *)arg,
4852                         TRUE);
4853                 break;
4854         case RTE_ETH_FILTER_DELETE:
4855                 ret = igb_add_del_ethertype_filter(dev,
4856                         (struct rte_eth_ethertype_filter *)arg,
4857                         FALSE);
4858                 break;
4859         case RTE_ETH_FILTER_GET:
4860                 ret = igb_get_ethertype_filter(dev,
4861                         (struct rte_eth_ethertype_filter *)arg);
4862                 break;
4863         default:
4864                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4865                 ret = -EINVAL;
4866                 break;
4867         }
4868         return ret;
4869 }
4870
4871 static int
4872 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4873                      enum rte_filter_type filter_type,
4874                      enum rte_filter_op filter_op,
4875                      void *arg)
4876 {
4877         int ret = 0;
4878
4879         switch (filter_type) {
4880         case RTE_ETH_FILTER_NTUPLE:
4881                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4882                 break;
4883         case RTE_ETH_FILTER_ETHERTYPE:
4884                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4885                 break;
4886         case RTE_ETH_FILTER_SYN:
4887                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4888                 break;
4889         case RTE_ETH_FILTER_FLEXIBLE:
4890                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4891                 break;
4892         case RTE_ETH_FILTER_GENERIC:
4893                 if (filter_op != RTE_ETH_FILTER_GET)
4894                         return -EINVAL;
4895                 *(const void **)arg = &igb_flow_ops;
4896                 break;
4897         default:
4898                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4899                                                         filter_type);
4900                 break;
4901         }
4902
4903         return ret;
4904 }
4905
4906 static int
4907 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4908                          struct ether_addr *mc_addr_set,
4909                          uint32_t nb_mc_addr)
4910 {
4911         struct e1000_hw *hw;
4912
4913         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4914         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4915         return 0;
4916 }
4917
4918 static uint64_t
4919 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4920 {
4921         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4922         uint64_t systime_cycles;
4923
4924         switch (hw->mac.type) {
4925         case e1000_i210:
4926         case e1000_i211:
4927                 /*
4928                  * Need to read System Time Residue Register to be able
4929                  * to read the other two registers.
4930                  */
4931                 E1000_READ_REG(hw, E1000_SYSTIMR);
4932                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4933                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4934                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4935                                 * NSEC_PER_SEC;
4936                 break;
4937         case e1000_82580:
4938         case e1000_i350:
4939         case e1000_i354:
4940                 /*
4941                  * Need to read System Time Residue Register to be able
4942                  * to read the other two registers.
4943                  */
4944                 E1000_READ_REG(hw, E1000_SYSTIMR);
4945                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4946                 /* Only the 8 LSB are valid. */
4947                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4948                                 & 0xff) << 32;
4949                 break;
4950         default:
4951                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4952                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4953                                 << 32;
4954                 break;
4955         }
4956
4957         return systime_cycles;
4958 }
4959
4960 static uint64_t
4961 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4962 {
4963         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4964         uint64_t rx_tstamp_cycles;
4965
4966         switch (hw->mac.type) {
4967         case e1000_i210:
4968         case e1000_i211:
4969                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4970                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4971                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4972                                 * NSEC_PER_SEC;
4973                 break;
4974         case e1000_82580:
4975         case e1000_i350:
4976         case e1000_i354:
4977                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4978                 /* Only the 8 LSB are valid. */
4979                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4980                                 & 0xff) << 32;
4981                 break;
4982         default:
4983                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4984                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4985                                 << 32;
4986                 break;
4987         }
4988
4989         return rx_tstamp_cycles;
4990 }
4991
4992 static uint64_t
4993 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4994 {
4995         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4996         uint64_t tx_tstamp_cycles;
4997
4998         switch (hw->mac.type) {
4999         case e1000_i210:
5000         case e1000_i211:
5001                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5002                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5003                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5004                                 * NSEC_PER_SEC;
5005                 break;
5006         case e1000_82580:
5007         case e1000_i350:
5008         case e1000_i354:
5009                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5010                 /* Only the 8 LSB are valid. */
5011                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5012                                 & 0xff) << 32;
5013                 break;
5014         default:
5015                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5016                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5017                                 << 32;
5018                 break;
5019         }
5020
5021         return tx_tstamp_cycles;
5022 }
5023
5024 static void
5025 igb_start_timecounters(struct rte_eth_dev *dev)
5026 {
5027         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5028         struct e1000_adapter *adapter =
5029                 (struct e1000_adapter *)dev->data->dev_private;
5030         uint32_t incval = 1;
5031         uint32_t shift = 0;
5032         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5033
5034         switch (hw->mac.type) {
5035         case e1000_82580:
5036         case e1000_i350:
5037         case e1000_i354:
5038                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5039                 mask = (1ULL << 40) - 1;
5040                 /* fall-through */
5041         case e1000_i210:
5042         case e1000_i211:
5043                 /*
5044                  * Start incrementing the register
5045                  * used to timestamp PTP packets.
5046                  */
5047                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5048                 break;
5049         case e1000_82576:
5050                 incval = E1000_INCVALUE_82576;
5051                 shift = IGB_82576_TSYNC_SHIFT;
5052                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5053                                 E1000_INCPERIOD_82576 | incval);
5054                 break;
5055         default:
5056                 /* Not supported */
5057                 return;
5058         }
5059
5060         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5061         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5062         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5063
5064         adapter->systime_tc.cc_mask = mask;
5065         adapter->systime_tc.cc_shift = shift;
5066         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5067
5068         adapter->rx_tstamp_tc.cc_mask = mask;
5069         adapter->rx_tstamp_tc.cc_shift = shift;
5070         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5071
5072         adapter->tx_tstamp_tc.cc_mask = mask;
5073         adapter->tx_tstamp_tc.cc_shift = shift;
5074         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5075 }
5076
5077 static int
5078 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5079 {
5080         struct e1000_adapter *adapter =
5081                         (struct e1000_adapter *)dev->data->dev_private;
5082
5083         adapter->systime_tc.nsec += delta;
5084         adapter->rx_tstamp_tc.nsec += delta;
5085         adapter->tx_tstamp_tc.nsec += delta;
5086
5087         return 0;
5088 }
5089
5090 static int
5091 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5092 {
5093         uint64_t ns;
5094         struct e1000_adapter *adapter =
5095                         (struct e1000_adapter *)dev->data->dev_private;
5096
5097         ns = rte_timespec_to_ns(ts);
5098
5099         /* Set the timecounters to a new value. */
5100         adapter->systime_tc.nsec = ns;
5101         adapter->rx_tstamp_tc.nsec = ns;
5102         adapter->tx_tstamp_tc.nsec = ns;
5103
5104         return 0;
5105 }
5106
5107 static int
5108 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5109 {
5110         uint64_t ns, systime_cycles;
5111         struct e1000_adapter *adapter =
5112                         (struct e1000_adapter *)dev->data->dev_private;
5113
5114         systime_cycles = igb_read_systime_cyclecounter(dev);
5115         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5116         *ts = rte_ns_to_timespec(ns);
5117
5118         return 0;
5119 }
5120
5121 static int
5122 igb_timesync_enable(struct rte_eth_dev *dev)
5123 {
5124         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5125         uint32_t tsync_ctl;
5126         uint32_t tsauxc;
5127
5128         /* Stop the timesync system time. */
5129         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5130         /* Reset the timesync system time value. */
5131         switch (hw->mac.type) {
5132         case e1000_82580:
5133         case e1000_i350:
5134         case e1000_i354:
5135         case e1000_i210:
5136         case e1000_i211:
5137                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5138                 /* fall-through */
5139         case e1000_82576:
5140                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5141                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5142                 break;
5143         default:
5144                 /* Not supported. */
5145                 return -ENOTSUP;
5146         }
5147
5148         /* Enable system time for it isn't on by default. */
5149         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5150         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5151         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5152
5153         igb_start_timecounters(dev);
5154
5155         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5156         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5157                         (ETHER_TYPE_1588 |
5158                          E1000_ETQF_FILTER_ENABLE |
5159                          E1000_ETQF_1588));
5160
5161         /* Enable timestamping of received PTP packets. */
5162         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5163         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5164         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5165
5166         /* Enable Timestamping of transmitted PTP packets. */
5167         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5168         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5169         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5170
5171         return 0;
5172 }
5173
5174 static int
5175 igb_timesync_disable(struct rte_eth_dev *dev)
5176 {
5177         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5178         uint32_t tsync_ctl;
5179
5180         /* Disable timestamping of transmitted PTP packets. */
5181         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5182         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5183         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5184
5185         /* Disable timestamping of received PTP packets. */
5186         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5187         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5188         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5189
5190         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5191         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5192
5193         /* Stop incrementating the System Time registers. */
5194         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5195
5196         return 0;
5197 }
5198
5199 static int
5200 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5201                                struct timespec *timestamp,
5202                                uint32_t flags __rte_unused)
5203 {
5204         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5205         struct e1000_adapter *adapter =
5206                         (struct e1000_adapter *)dev->data->dev_private;
5207         uint32_t tsync_rxctl;
5208         uint64_t rx_tstamp_cycles;
5209         uint64_t ns;
5210
5211         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5212         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5213                 return -EINVAL;
5214
5215         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5216         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5217         *timestamp = rte_ns_to_timespec(ns);
5218
5219         return  0;
5220 }
5221
5222 static int
5223 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5224                                struct timespec *timestamp)
5225 {
5226         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5227         struct e1000_adapter *adapter =
5228                         (struct e1000_adapter *)dev->data->dev_private;
5229         uint32_t tsync_txctl;
5230         uint64_t tx_tstamp_cycles;
5231         uint64_t ns;
5232
5233         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5234         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5235                 return -EINVAL;
5236
5237         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5238         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5239         *timestamp = rte_ns_to_timespec(ns);
5240
5241         return  0;
5242 }
5243
5244 static int
5245 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5246 {
5247         int count = 0;
5248         int g_ind = 0;
5249         const struct reg_info *reg_group;
5250
5251         while ((reg_group = igb_regs[g_ind++]))
5252                 count += igb_reg_group_count(reg_group);
5253
5254         return count;
5255 }
5256
5257 static int
5258 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5259 {
5260         int count = 0;
5261         int g_ind = 0;
5262         const struct reg_info *reg_group;
5263
5264         while ((reg_group = igbvf_regs[g_ind++]))
5265                 count += igb_reg_group_count(reg_group);
5266
5267         return count;
5268 }
5269
5270 static int
5271 eth_igb_get_regs(struct rte_eth_dev *dev,
5272         struct rte_dev_reg_info *regs)
5273 {
5274         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5275         uint32_t *data = regs->data;
5276         int g_ind = 0;
5277         int count = 0;
5278         const struct reg_info *reg_group;
5279
5280         if (data == NULL) {
5281                 regs->length = eth_igb_get_reg_length(dev);
5282                 regs->width = sizeof(uint32_t);
5283                 return 0;
5284         }
5285
5286         /* Support only full register dump */
5287         if ((regs->length == 0) ||
5288             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5289                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5290                         hw->device_id;
5291                 while ((reg_group = igb_regs[g_ind++]))
5292                         count += igb_read_regs_group(dev, &data[count],
5293                                                         reg_group);
5294                 return 0;
5295         }
5296
5297         return -ENOTSUP;
5298 }
5299
5300 static int
5301 igbvf_get_regs(struct rte_eth_dev *dev,
5302         struct rte_dev_reg_info *regs)
5303 {
5304         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5305         uint32_t *data = regs->data;
5306         int g_ind = 0;
5307         int count = 0;
5308         const struct reg_info *reg_group;
5309
5310         if (data == NULL) {
5311                 regs->length = igbvf_get_reg_length(dev);
5312                 regs->width = sizeof(uint32_t);
5313                 return 0;
5314         }
5315
5316         /* Support only full register dump */
5317         if ((regs->length == 0) ||
5318             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5319                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5320                         hw->device_id;
5321                 while ((reg_group = igbvf_regs[g_ind++]))
5322                         count += igb_read_regs_group(dev, &data[count],
5323                                                         reg_group);
5324                 return 0;
5325         }
5326
5327         return -ENOTSUP;
5328 }
5329
5330 static int
5331 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5332 {
5333         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5334
5335         /* Return unit is byte count */
5336         return hw->nvm.word_size * 2;
5337 }
5338
5339 static int
5340 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5341         struct rte_dev_eeprom_info *in_eeprom)
5342 {
5343         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5344         struct e1000_nvm_info *nvm = &hw->nvm;
5345         uint16_t *data = in_eeprom->data;
5346         int first, length;
5347
5348         first = in_eeprom->offset >> 1;
5349         length = in_eeprom->length >> 1;
5350         if ((first >= hw->nvm.word_size) ||
5351             ((first + length) >= hw->nvm.word_size))
5352                 return -EINVAL;
5353
5354         in_eeprom->magic = hw->vendor_id |
5355                 ((uint32_t)hw->device_id << 16);
5356
5357         if ((nvm->ops.read) == NULL)
5358                 return -ENOTSUP;
5359
5360         return nvm->ops.read(hw, first, length, data);
5361 }
5362
5363 static int
5364 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5365         struct rte_dev_eeprom_info *in_eeprom)
5366 {
5367         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5368         struct e1000_nvm_info *nvm = &hw->nvm;
5369         uint16_t *data = in_eeprom->data;
5370         int first, length;
5371
5372         first = in_eeprom->offset >> 1;
5373         length = in_eeprom->length >> 1;
5374         if ((first >= hw->nvm.word_size) ||
5375             ((first + length) >= hw->nvm.word_size))
5376                 return -EINVAL;
5377
5378         in_eeprom->magic = (uint32_t)hw->vendor_id |
5379                 ((uint32_t)hw->device_id << 16);
5380
5381         if ((nvm->ops.write) == NULL)
5382                 return -ENOTSUP;
5383         return nvm->ops.write(hw,  first, length, data);
5384 }
5385
5386 static int
5387 eth_igb_get_module_info(struct rte_eth_dev *dev,
5388                         struct rte_eth_dev_module_info *modinfo)
5389 {
5390         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5391
5392         uint32_t status = 0;
5393         uint16_t sff8472_rev, addr_mode;
5394         bool page_swap = false;
5395
5396         if (hw->phy.media_type == e1000_media_type_copper ||
5397             hw->phy.media_type == e1000_media_type_unknown)
5398                 return -EOPNOTSUPP;
5399
5400         /* Check whether we support SFF-8472 or not */
5401         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5402         if (status)
5403                 return -EIO;
5404
5405         /* addressing mode is not supported */
5406         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5407         if (status)
5408                 return -EIO;
5409
5410         /* addressing mode is not supported */
5411         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5412                 PMD_DRV_LOG(ERR,
5413                             "Address change required to access page 0xA2, "
5414                             "but not supported. Please report the module "
5415                             "type to the driver maintainers.\n");
5416                 page_swap = true;
5417         }
5418
5419         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5420                 /* We have an SFP, but it does not support SFF-8472 */
5421                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5422                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5423         } else {
5424                 /* We have an SFP which supports a revision of SFF-8472 */
5425                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5426                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5427         }
5428
5429         return 0;
5430 }
5431
5432 static int
5433 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5434                           struct rte_dev_eeprom_info *info)
5435 {
5436         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5437
5438         uint32_t status = 0;
5439         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5440         u16 first_word, last_word;
5441         int i = 0;
5442
5443         if (info->length == 0)
5444                 return -EINVAL;
5445
5446         first_word = info->offset >> 1;
5447         last_word = (info->offset + info->length - 1) >> 1;
5448
5449         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5450         for (i = 0; i < last_word - first_word + 1; i++) {
5451                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5452                                                 &dataword[i]);
5453                 if (status) {
5454                         /* Error occurred while reading module */
5455                         return -EIO;
5456                 }
5457
5458                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5459         }
5460
5461         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5462
5463         return 0;
5464 }
5465
5466 static int
5467 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5468 {
5469         struct e1000_hw *hw =
5470                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5471         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5472         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5473         uint32_t vec = E1000_MISC_VEC_ID;
5474
5475         if (rte_intr_allow_others(intr_handle))
5476                 vec = E1000_RX_VEC_START;
5477
5478         uint32_t mask = 1 << (queue_id + vec);
5479
5480         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5481         E1000_WRITE_FLUSH(hw);
5482
5483         return 0;
5484 }
5485
5486 static int
5487 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5488 {
5489         struct e1000_hw *hw =
5490                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5491         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5492         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5493         uint32_t vec = E1000_MISC_VEC_ID;
5494
5495         if (rte_intr_allow_others(intr_handle))
5496                 vec = E1000_RX_VEC_START;
5497
5498         uint32_t mask = 1 << (queue_id + vec);
5499         uint32_t regval;
5500
5501         regval = E1000_READ_REG(hw, E1000_EIMS);
5502         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5503         E1000_WRITE_FLUSH(hw);
5504
5505         rte_intr_enable(intr_handle);
5506
5507         return 0;
5508 }
5509
5510 static void
5511 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5512                    uint8_t index, uint8_t offset)
5513 {
5514         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5515
5516         /* clear bits */
5517         val &= ~((uint32_t)0xFF << offset);
5518
5519         /* write vector and valid bit */
5520         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5521
5522         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5523 }
5524
5525 static void
5526 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5527                            uint8_t queue, uint8_t msix_vector)
5528 {
5529         uint32_t tmp = 0;
5530
5531         if (hw->mac.type == e1000_82575) {
5532                 if (direction == 0)
5533                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5534                 else if (direction == 1)
5535                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5536                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5537         } else if (hw->mac.type == e1000_82576) {
5538                 if ((direction == 0) || (direction == 1))
5539                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5540                                            ((queue & 0x8) << 1) +
5541                                            8 * direction);
5542         } else if ((hw->mac.type == e1000_82580) ||
5543                         (hw->mac.type == e1000_i350) ||
5544                         (hw->mac.type == e1000_i354) ||
5545                         (hw->mac.type == e1000_i210) ||
5546                         (hw->mac.type == e1000_i211)) {
5547                 if ((direction == 0) || (direction == 1))
5548                         eth_igb_write_ivar(hw, msix_vector,
5549                                            queue >> 1,
5550                                            ((queue & 0x1) << 4) +
5551                                            8 * direction);
5552         }
5553 }
5554
5555 /* Sets up the hardware to generate MSI-X interrupts properly
5556  * @hw
5557  *  board private structure
5558  */
5559 static void
5560 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5561 {
5562         int queue_id;
5563         uint32_t tmpval, regval, intr_mask;
5564         struct e1000_hw *hw =
5565                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5566         uint32_t vec = E1000_MISC_VEC_ID;
5567         uint32_t base = E1000_MISC_VEC_ID;
5568         uint32_t misc_shift = 0;
5569         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5570         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5571
5572         /* won't configure msix register if no mapping is done
5573          * between intr vector and event fd
5574          */
5575         if (!rte_intr_dp_is_en(intr_handle))
5576                 return;
5577
5578         if (rte_intr_allow_others(intr_handle)) {
5579                 vec = base = E1000_RX_VEC_START;
5580                 misc_shift = 1;
5581         }
5582
5583         /* set interrupt vector for other causes */
5584         if (hw->mac.type == e1000_82575) {
5585                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5586                 /* enable MSI-X PBA support */
5587                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5588
5589                 /* Auto-Mask interrupts upon ICR read */
5590                 tmpval |= E1000_CTRL_EXT_EIAME;
5591                 tmpval |= E1000_CTRL_EXT_IRCA;
5592
5593                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5594
5595                 /* enable msix_other interrupt */
5596                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5597                 regval = E1000_READ_REG(hw, E1000_EIAC);
5598                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5599                 regval = E1000_READ_REG(hw, E1000_EIAM);
5600                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5601         } else if ((hw->mac.type == e1000_82576) ||
5602                         (hw->mac.type == e1000_82580) ||
5603                         (hw->mac.type == e1000_i350) ||
5604                         (hw->mac.type == e1000_i354) ||
5605                         (hw->mac.type == e1000_i210) ||
5606                         (hw->mac.type == e1000_i211)) {
5607                 /* turn on MSI-X capability first */
5608                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5609                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5610                                         E1000_GPIE_NSICR);
5611                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5612                         misc_shift;
5613
5614                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5615                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5616
5617                 regval = E1000_READ_REG(hw, E1000_EIAC);
5618                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5619
5620                 /* enable msix_other interrupt */
5621                 regval = E1000_READ_REG(hw, E1000_EIMS);
5622                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5623                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5624                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5625         }
5626
5627         /* use EIAM to auto-mask when MSI-X interrupt
5628          * is asserted, this saves a register write for every interrupt
5629          */
5630         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5631                 misc_shift;
5632
5633         if (dev->data->dev_conf.intr_conf.lsc != 0)
5634                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5635
5636         regval = E1000_READ_REG(hw, E1000_EIAM);
5637         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5638
5639         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5640                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5641                 intr_handle->intr_vec[queue_id] = vec;
5642                 if (vec < base + intr_handle->nb_efd - 1)
5643                         vec++;
5644         }
5645
5646         E1000_WRITE_FLUSH(hw);
5647 }
5648
5649 /* restore n-tuple filter */
5650 static inline void
5651 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5652 {
5653         struct e1000_filter_info *filter_info =
5654                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5655         struct e1000_5tuple_filter *p_5tuple;
5656         struct e1000_2tuple_filter *p_2tuple;
5657
5658         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5659                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5660         }
5661
5662         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5663                 igb_inject_2uple_filter(dev, p_2tuple);
5664         }
5665 }
5666
5667 /* restore SYN filter */
5668 static inline void
5669 igb_syn_filter_restore(struct rte_eth_dev *dev)
5670 {
5671         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5672         struct e1000_filter_info *filter_info =
5673                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5674         uint32_t synqf;
5675
5676         synqf = filter_info->syn_info;
5677
5678         if (synqf & E1000_SYN_FILTER_ENABLE) {
5679                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5680                 E1000_WRITE_FLUSH(hw);
5681         }
5682 }
5683
5684 /* restore ethernet type filter */
5685 static inline void
5686 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5687 {
5688         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5689         struct e1000_filter_info *filter_info =
5690                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5691         int i;
5692
5693         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5694                 if (filter_info->ethertype_mask & (1 << i)) {
5695                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5696                                 filter_info->ethertype_filters[i].etqf);
5697                         E1000_WRITE_FLUSH(hw);
5698                 }
5699         }
5700 }
5701
5702 /* restore flex byte filter */
5703 static inline void
5704 igb_flex_filter_restore(struct rte_eth_dev *dev)
5705 {
5706         struct e1000_filter_info *filter_info =
5707                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5708         struct e1000_flex_filter *flex_filter;
5709
5710         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5711                 igb_inject_flex_filter(dev, flex_filter);
5712         }
5713 }
5714
5715 /* restore rss filter */
5716 static inline void
5717 igb_rss_filter_restore(struct rte_eth_dev *dev)
5718 {
5719         struct e1000_filter_info *filter_info =
5720                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5721
5722         if (filter_info->rss_info.conf.queue_num)
5723                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5724 }
5725
5726 /* restore all types filter */
5727 static int
5728 igb_filter_restore(struct rte_eth_dev *dev)
5729 {
5730         igb_ntuple_filter_restore(dev);
5731         igb_ethertype_filter_restore(dev);
5732         igb_syn_filter_restore(dev);
5733         igb_flex_filter_restore(dev);
5734         igb_rss_filter_restore(dev);
5735
5736         return 0;
5737 }
5738
5739 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5740 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5741 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5742 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5743 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5744 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5745
5746 /* see e1000_logs.c */
5747 RTE_INIT(e1000_init_log)
5748 {
5749         e1000_igb_init_log();
5750 }