dbe811a1ad2f1113978724786ac63bae3a563257
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static int  eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static int eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int  eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int  eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int  eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 const uint64_t *ids, struct rte_eth_xstat_name *xstats_names,
100                 unsigned int limit);
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct rte_ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct rte_ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static int igbvf_dev_stop(struct rte_eth_dev *dev);
158 static int igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
190                         struct rte_eth_ntuple_filter *ntuple_filter);
191 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_flow_ops_get(struct rte_eth_dev *dev,
198                                 const struct rte_flow_ops **ops);
199 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
200 static int eth_igb_get_regs(struct rte_eth_dev *dev,
201                 struct rte_dev_reg_info *regs);
202 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
203 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
204                 struct rte_dev_eeprom_info *eeprom);
205 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
206                 struct rte_dev_eeprom_info *eeprom);
207 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
208                                    struct rte_eth_dev_module_info *modinfo);
209 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
210                                      struct rte_dev_eeprom_info *info);
211 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
212                                     struct rte_ether_addr *mc_addr_set,
213                                     uint32_t nb_mc_addr);
214 static int igb_timesync_enable(struct rte_eth_dev *dev);
215 static int igb_timesync_disable(struct rte_eth_dev *dev);
216 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
217                                           struct timespec *timestamp,
218                                           uint32_t flags);
219 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
220                                           struct timespec *timestamp);
221 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
222 static int igb_timesync_read_time(struct rte_eth_dev *dev,
223                                   struct timespec *timestamp);
224 static int igb_timesync_write_time(struct rte_eth_dev *dev,
225                                    const struct timespec *timestamp);
226 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
227                                         uint16_t queue_id);
228 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
229                                          uint16_t queue_id);
230 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
231                                        uint8_t queue, uint8_t msix_vector);
232 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
233                                uint8_t index, uint8_t offset);
234 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
235 static void eth_igbvf_interrupt_handler(void *param);
236 static void igbvf_mbx_process(struct rte_eth_dev *dev);
237 static int igb_filter_restore(struct rte_eth_dev *dev);
238
239 /*
240  * Define VF Stats MACRO for Non "cleared on read" register
241  */
242 #define UPDATE_VF_STAT(reg, last, cur)            \
243 {                                                 \
244         u32 latest = E1000_READ_REG(hw, reg);     \
245         cur += (latest - last) & UINT_MAX;        \
246         last = latest;                            \
247 }
248
249 #define IGB_FC_PAUSE_TIME 0x0680
250 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
251 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
252
253 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
254
255 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
256
257 /*
258  * The set of PCI devices this driver supports
259  */
260 static const struct rte_pci_id pci_id_igb_map[] = {
261         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
262         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
263         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
264         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
265         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
266         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
267         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
268         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
269
270         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
271         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
272         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
273
274         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
275         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
276         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
277         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
278         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
280
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
302         { .vendor_id = 0, /* sentinel */ },
303 };
304
305 /*
306  * The set of PCI devices this driver supports (for 82576&I350 VF)
307  */
308 static const struct rte_pci_id pci_id_igbvf_map[] = {
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
313         { .vendor_id = 0, /* sentinel */ },
314 };
315
316 static const struct rte_eth_desc_lim rx_desc_lim = {
317         .nb_max = E1000_MAX_RING_DESC,
318         .nb_min = E1000_MIN_RING_DESC,
319         .nb_align = IGB_RXD_ALIGN,
320 };
321
322 static const struct rte_eth_desc_lim tx_desc_lim = {
323         .nb_max = E1000_MAX_RING_DESC,
324         .nb_min = E1000_MIN_RING_DESC,
325         .nb_align = IGB_RXD_ALIGN,
326         .nb_seg_max = IGB_TX_MAX_SEG,
327         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
328 };
329
330 static const struct eth_dev_ops eth_igb_ops = {
331         .dev_configure        = eth_igb_configure,
332         .dev_start            = eth_igb_start,
333         .dev_stop             = eth_igb_stop,
334         .dev_set_link_up      = eth_igb_dev_set_link_up,
335         .dev_set_link_down    = eth_igb_dev_set_link_down,
336         .dev_close            = eth_igb_close,
337         .dev_reset            = eth_igb_reset,
338         .promiscuous_enable   = eth_igb_promiscuous_enable,
339         .promiscuous_disable  = eth_igb_promiscuous_disable,
340         .allmulticast_enable  = eth_igb_allmulticast_enable,
341         .allmulticast_disable = eth_igb_allmulticast_disable,
342         .link_update          = eth_igb_link_update,
343         .stats_get            = eth_igb_stats_get,
344         .xstats_get           = eth_igb_xstats_get,
345         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
346         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
347         .xstats_get_names     = eth_igb_xstats_get_names,
348         .stats_reset          = eth_igb_stats_reset,
349         .xstats_reset         = eth_igb_xstats_reset,
350         .fw_version_get       = eth_igb_fw_version_get,
351         .dev_infos_get        = eth_igb_infos_get,
352         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
353         .mtu_set              = eth_igb_mtu_set,
354         .vlan_filter_set      = eth_igb_vlan_filter_set,
355         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
356         .vlan_offload_set     = eth_igb_vlan_offload_set,
357         .rx_queue_setup       = eth_igb_rx_queue_setup,
358         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
359         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
360         .rx_queue_release     = eth_igb_rx_queue_release,
361         .tx_queue_setup       = eth_igb_tx_queue_setup,
362         .tx_queue_release     = eth_igb_tx_queue_release,
363         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
364         .dev_led_on           = eth_igb_led_on,
365         .dev_led_off          = eth_igb_led_off,
366         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
367         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
368         .mac_addr_add         = eth_igb_rar_set,
369         .mac_addr_remove      = eth_igb_rar_clear,
370         .mac_addr_set         = eth_igb_default_mac_addr_set,
371         .reta_update          = eth_igb_rss_reta_update,
372         .reta_query           = eth_igb_rss_reta_query,
373         .rss_hash_update      = eth_igb_rss_hash_update,
374         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
375         .flow_ops_get         = eth_igb_flow_ops_get,
376         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
377         .rxq_info_get         = igb_rxq_info_get,
378         .txq_info_get         = igb_txq_info_get,
379         .timesync_enable      = igb_timesync_enable,
380         .timesync_disable     = igb_timesync_disable,
381         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
382         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
383         .get_reg              = eth_igb_get_regs,
384         .get_eeprom_length    = eth_igb_get_eeprom_length,
385         .get_eeprom           = eth_igb_get_eeprom,
386         .set_eeprom           = eth_igb_set_eeprom,
387         .get_module_info      = eth_igb_get_module_info,
388         .get_module_eeprom    = eth_igb_get_module_eeprom,
389         .timesync_adjust_time = igb_timesync_adjust_time,
390         .timesync_read_time   = igb_timesync_read_time,
391         .timesync_write_time  = igb_timesync_write_time,
392 };
393
394 /*
395  * dev_ops for virtual function, bare necessities for basic vf
396  * operation have been implemented
397  */
398 static const struct eth_dev_ops igbvf_eth_dev_ops = {
399         .dev_configure        = igbvf_dev_configure,
400         .dev_start            = igbvf_dev_start,
401         .dev_stop             = igbvf_dev_stop,
402         .dev_close            = igbvf_dev_close,
403         .promiscuous_enable   = igbvf_promiscuous_enable,
404         .promiscuous_disable  = igbvf_promiscuous_disable,
405         .allmulticast_enable  = igbvf_allmulticast_enable,
406         .allmulticast_disable = igbvf_allmulticast_disable,
407         .link_update          = eth_igb_link_update,
408         .stats_get            = eth_igbvf_stats_get,
409         .xstats_get           = eth_igbvf_xstats_get,
410         .xstats_get_names     = eth_igbvf_xstats_get_names,
411         .stats_reset          = eth_igbvf_stats_reset,
412         .xstats_reset         = eth_igbvf_stats_reset,
413         .vlan_filter_set      = igbvf_vlan_filter_set,
414         .dev_infos_get        = eth_igbvf_infos_get,
415         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
416         .rx_queue_setup       = eth_igb_rx_queue_setup,
417         .rx_queue_release     = eth_igb_rx_queue_release,
418         .tx_queue_setup       = eth_igb_tx_queue_setup,
419         .tx_queue_release     = eth_igb_tx_queue_release,
420         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
421         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
422         .rxq_info_get         = igb_rxq_info_get,
423         .txq_info_get         = igb_txq_info_get,
424         .mac_addr_set         = igbvf_default_mac_addr_set,
425         .get_reg              = igbvf_get_regs,
426 };
427
428 /* store statistics names and its offset in stats structure */
429 struct rte_igb_xstats_name_off {
430         char name[RTE_ETH_XSTATS_NAME_SIZE];
431         unsigned offset;
432 };
433
434 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
435         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
436         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
437         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
438         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
439         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
440         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
441         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
442                 ecol)},
443         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
444         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
445         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
446         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
447         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
448         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
449         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
450         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
451         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
452         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
453         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
454                 fcruc)},
455         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
456         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
457         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
458         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
459         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
460                 prc1023)},
461         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
462                 prc1522)},
463         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
464         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
465         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
466         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
467         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
468         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
469         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
470         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
471         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
472         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
473         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
474         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
475         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
476         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
477         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
478         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
479         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
480         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
481                 ptc1023)},
482         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
483                 ptc1522)},
484         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
485         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
486         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
487         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
488         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
489         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
490         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
491
492         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
493 };
494
495 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
496                 sizeof(rte_igb_stats_strings[0]))
497
498 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
499         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
500         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
501         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
502         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
503         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
504 };
505
506 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
507                 sizeof(rte_igbvf_stats_strings[0]))
508
509
510 static inline void
511 igb_intr_enable(struct rte_eth_dev *dev)
512 {
513         struct e1000_interrupt *intr =
514                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
515         struct e1000_hw *hw =
516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
517         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
518         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
519
520         if (rte_intr_allow_others(intr_handle) &&
521                 dev->data->dev_conf.intr_conf.lsc != 0) {
522                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
523         }
524
525         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
526         E1000_WRITE_FLUSH(hw);
527 }
528
529 static void
530 igb_intr_disable(struct rte_eth_dev *dev)
531 {
532         struct e1000_hw *hw =
533                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
534         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
535         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
536
537         if (rte_intr_allow_others(intr_handle) &&
538                 dev->data->dev_conf.intr_conf.lsc != 0) {
539                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
540         }
541
542         E1000_WRITE_REG(hw, E1000_IMC, ~0);
543         E1000_WRITE_FLUSH(hw);
544 }
545
546 static inline void
547 igbvf_intr_enable(struct rte_eth_dev *dev)
548 {
549         struct e1000_hw *hw =
550                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
551
552         /* only for mailbox */
553         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
554         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
555         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
556         E1000_WRITE_FLUSH(hw);
557 }
558
559 /* only for mailbox now. If RX/TX needed, should extend this function.  */
560 static void
561 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
562 {
563         uint32_t tmp = 0;
564
565         /* mailbox */
566         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
567         tmp |= E1000_VTIVAR_VALID;
568         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
569 }
570
571 static void
572 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
573 {
574         struct e1000_hw *hw =
575                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576
577         /* Configure VF other cause ivar */
578         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
579 }
580
581 static inline int32_t
582 igb_pf_reset_hw(struct e1000_hw *hw)
583 {
584         uint32_t ctrl_ext;
585         int32_t status;
586
587         status = e1000_reset_hw(hw);
588
589         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
590         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
591         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
592         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
593         E1000_WRITE_FLUSH(hw);
594
595         return status;
596 }
597
598 static void
599 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
600 {
601         struct e1000_hw *hw =
602                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603
604
605         hw->vendor_id = pci_dev->id.vendor_id;
606         hw->device_id = pci_dev->id.device_id;
607         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
608         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
609
610         e1000_set_mac_type(hw);
611
612         /* need to check if it is a vf device below */
613 }
614
615 static int
616 igb_reset_swfw_lock(struct e1000_hw *hw)
617 {
618         int ret_val;
619
620         /*
621          * Do mac ops initialization manually here, since we will need
622          * some function pointers set by this call.
623          */
624         ret_val = e1000_init_mac_params(hw);
625         if (ret_val)
626                 return ret_val;
627
628         /*
629          * SMBI lock should not fail in this early stage. If this is the case,
630          * it is due to an improper exit of the application.
631          * So force the release of the faulty lock.
632          */
633         if (e1000_get_hw_semaphore_generic(hw) < 0) {
634                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
635         }
636         e1000_put_hw_semaphore_generic(hw);
637
638         if (hw->mac.ops.acquire_swfw_sync != NULL) {
639                 uint16_t mask;
640
641                 /*
642                  * Phy lock should not fail in this early stage. If this is the case,
643                  * it is due to an improper exit of the application.
644                  * So force the release of the faulty lock.
645                  */
646                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
647                 if (hw->bus.func > E1000_FUNC_1)
648                         mask <<= 2;
649                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
650                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
651                                     hw->bus.func);
652                 }
653                 hw->mac.ops.release_swfw_sync(hw, mask);
654
655                 /*
656                  * This one is more tricky since it is common to all ports; but
657                  * swfw_sync retries last long enough (1s) to be almost sure that if
658                  * lock can not be taken it is due to an improper lock of the
659                  * semaphore.
660                  */
661                 mask = E1000_SWFW_EEP_SM;
662                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
663                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
664                 }
665                 hw->mac.ops.release_swfw_sync(hw, mask);
666         }
667
668         return E1000_SUCCESS;
669 }
670
671 /* Remove all ntuple filters of the device */
672 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
673 {
674         struct e1000_filter_info *filter_info =
675                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
676         struct e1000_5tuple_filter *p_5tuple;
677         struct e1000_2tuple_filter *p_2tuple;
678
679         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
680                 TAILQ_REMOVE(&filter_info->fivetuple_list,
681                         p_5tuple, entries);
682                         rte_free(p_5tuple);
683         }
684         filter_info->fivetuple_mask = 0;
685         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
686                 TAILQ_REMOVE(&filter_info->twotuple_list,
687                         p_2tuple, entries);
688                         rte_free(p_2tuple);
689         }
690         filter_info->twotuple_mask = 0;
691
692         return 0;
693 }
694
695 /* Remove all flex filters of the device */
696 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
697 {
698         struct e1000_filter_info *filter_info =
699                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
700         struct e1000_flex_filter *p_flex;
701
702         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
703                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
704                 rte_free(p_flex);
705         }
706         filter_info->flex_mask = 0;
707
708         return 0;
709 }
710
711 static int
712 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
713 {
714         int error = 0;
715         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
716         struct e1000_hw *hw =
717                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
718         struct e1000_vfta * shadow_vfta =
719                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
720         struct e1000_filter_info *filter_info =
721                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
722         struct e1000_adapter *adapter =
723                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
724
725         uint32_t ctrl_ext;
726
727         eth_dev->dev_ops = &eth_igb_ops;
728         eth_dev->rx_queue_count = eth_igb_rx_queue_count;
729         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
730         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
731         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
732         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
733         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
734
735         /* for secondary processes, we don't initialise any further as primary
736          * has already done this work. Only check we don't need a different
737          * RX function */
738         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
739                 if (eth_dev->data->scattered_rx)
740                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
741                 return 0;
742         }
743
744         rte_eth_copy_pci_info(eth_dev, pci_dev);
745
746         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
747
748         igb_identify_hardware(eth_dev, pci_dev);
749         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
750                 error = -EIO;
751                 goto err_late;
752         }
753
754         e1000_get_bus_info(hw);
755
756         /* Reset any pending lock */
757         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
758                 error = -EIO;
759                 goto err_late;
760         }
761
762         /* Finish initialization */
763         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
764                 error = -EIO;
765                 goto err_late;
766         }
767
768         hw->mac.autoneg = 1;
769         hw->phy.autoneg_wait_to_complete = 0;
770         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
771
772         /* Copper options */
773         if (hw->phy.media_type == e1000_media_type_copper) {
774                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
775                 hw->phy.disable_polarity_correction = 0;
776                 hw->phy.ms_type = e1000_ms_hw_default;
777         }
778
779         /*
780          * Start from a known state, this is important in reading the nvm
781          * and mac from that.
782          */
783         igb_pf_reset_hw(hw);
784
785         /* Make sure we have a good EEPROM before we read from it */
786         if (e1000_validate_nvm_checksum(hw) < 0) {
787                 /*
788                  * Some PCI-E parts fail the first check due to
789                  * the link being in sleep state, call it again,
790                  * if it fails a second time its a real issue.
791                  */
792                 if (e1000_validate_nvm_checksum(hw) < 0) {
793                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
794                         error = -EIO;
795                         goto err_late;
796                 }
797         }
798
799         /* Read the permanent MAC address out of the EEPROM */
800         if (e1000_read_mac_addr(hw) != 0) {
801                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
802                 error = -EIO;
803                 goto err_late;
804         }
805
806         /* Allocate memory for storing MAC addresses */
807         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
808                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
809         if (eth_dev->data->mac_addrs == NULL) {
810                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
811                                                 "store MAC addresses",
812                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
813                 error = -ENOMEM;
814                 goto err_late;
815         }
816
817         /* Copy the permanent MAC address */
818         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
819                         &eth_dev->data->mac_addrs[0]);
820
821         /* initialize the vfta */
822         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
823
824         /* Now initialize the hardware */
825         if (igb_hardware_init(hw) != 0) {
826                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
827                 rte_free(eth_dev->data->mac_addrs);
828                 eth_dev->data->mac_addrs = NULL;
829                 error = -ENODEV;
830                 goto err_late;
831         }
832         hw->mac.get_link_status = 1;
833         adapter->stopped = 0;
834
835         /* Indicate SOL/IDER usage */
836         if (e1000_check_reset_block(hw) < 0) {
837                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
838                                         "SOL/IDER session");
839         }
840
841         /* initialize PF if max_vfs not zero */
842         igb_pf_host_init(eth_dev);
843
844         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
845         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
846         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
847         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
848         E1000_WRITE_FLUSH(hw);
849
850         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
851                      eth_dev->data->port_id, pci_dev->id.vendor_id,
852                      pci_dev->id.device_id);
853
854         rte_intr_callback_register(&pci_dev->intr_handle,
855                                    eth_igb_interrupt_handler,
856                                    (void *)eth_dev);
857
858         /* enable uio/vfio intr/eventfd mapping */
859         rte_intr_enable(&pci_dev->intr_handle);
860
861         /* enable support intr */
862         igb_intr_enable(eth_dev);
863
864         eth_igb_dev_set_link_down(eth_dev);
865
866         /* initialize filter info */
867         memset(filter_info, 0,
868                sizeof(struct e1000_filter_info));
869
870         TAILQ_INIT(&filter_info->flex_list);
871         TAILQ_INIT(&filter_info->twotuple_list);
872         TAILQ_INIT(&filter_info->fivetuple_list);
873
874         TAILQ_INIT(&igb_filter_ntuple_list);
875         TAILQ_INIT(&igb_filter_ethertype_list);
876         TAILQ_INIT(&igb_filter_syn_list);
877         TAILQ_INIT(&igb_filter_flex_list);
878         TAILQ_INIT(&igb_filter_rss_list);
879         TAILQ_INIT(&igb_flow_list);
880
881         return 0;
882
883 err_late:
884         igb_hw_control_release(hw);
885
886         return error;
887 }
888
889 static int
890 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
891 {
892         PMD_INIT_FUNC_TRACE();
893
894         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
895                 return 0;
896
897         eth_igb_close(eth_dev);
898
899         return 0;
900 }
901
902 /*
903  * Virtual Function device init
904  */
905 static int
906 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
907 {
908         struct rte_pci_device *pci_dev;
909         struct rte_intr_handle *intr_handle;
910         struct e1000_adapter *adapter =
911                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
912         struct e1000_hw *hw =
913                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
914         int diag;
915         struct rte_ether_addr *perm_addr =
916                 (struct rte_ether_addr *)hw->mac.perm_addr;
917
918         PMD_INIT_FUNC_TRACE();
919
920         eth_dev->dev_ops = &igbvf_eth_dev_ops;
921         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
922         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
923         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
924         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
925         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
926
927         /* for secondary processes, we don't initialise any further as primary
928          * has already done this work. Only check we don't need a different
929          * RX function */
930         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
931                 if (eth_dev->data->scattered_rx)
932                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
933                 return 0;
934         }
935
936         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
937         rte_eth_copy_pci_info(eth_dev, pci_dev);
938
939         hw->device_id = pci_dev->id.device_id;
940         hw->vendor_id = pci_dev->id.vendor_id;
941         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
942         adapter->stopped = 0;
943
944         /* Initialize the shared code (base driver) */
945         diag = e1000_setup_init_funcs(hw, TRUE);
946         if (diag != 0) {
947                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
948                         diag);
949                 return -EIO;
950         }
951
952         /* init_mailbox_params */
953         hw->mbx.ops.init_params(hw);
954
955         /* Disable the interrupts for VF */
956         igbvf_intr_disable(hw);
957
958         diag = hw->mac.ops.reset_hw(hw);
959
960         /* Allocate memory for storing MAC addresses */
961         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
962                 hw->mac.rar_entry_count, 0);
963         if (eth_dev->data->mac_addrs == NULL) {
964                 PMD_INIT_LOG(ERR,
965                         "Failed to allocate %d bytes needed to store MAC "
966                         "addresses",
967                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
968                 return -ENOMEM;
969         }
970
971         /* Generate a random MAC address, if none was assigned by PF. */
972         if (rte_is_zero_ether_addr(perm_addr)) {
973                 rte_eth_random_addr(perm_addr->addr_bytes);
974                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
975                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
976                              RTE_ETHER_ADDR_PRT_FMT,
977                              RTE_ETHER_ADDR_BYTES(perm_addr));
978         }
979
980         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
981         if (diag) {
982                 rte_free(eth_dev->data->mac_addrs);
983                 eth_dev->data->mac_addrs = NULL;
984                 return diag;
985         }
986         /* Copy the permanent MAC address */
987         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
988                         &eth_dev->data->mac_addrs[0]);
989
990         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
991                      "mac.type=%s",
992                      eth_dev->data->port_id, pci_dev->id.vendor_id,
993                      pci_dev->id.device_id, "igb_mac_82576_vf");
994
995         intr_handle = &pci_dev->intr_handle;
996         rte_intr_callback_register(intr_handle,
997                                    eth_igbvf_interrupt_handler, eth_dev);
998
999         return 0;
1000 }
1001
1002 static int
1003 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1004 {
1005         PMD_INIT_FUNC_TRACE();
1006
1007         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1008                 return 0;
1009
1010         igbvf_dev_close(eth_dev);
1011
1012         return 0;
1013 }
1014
1015 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1016         struct rte_pci_device *pci_dev)
1017 {
1018         return rte_eth_dev_pci_generic_probe(pci_dev,
1019                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1020 }
1021
1022 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1023 {
1024         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1025 }
1026
1027 static struct rte_pci_driver rte_igb_pmd = {
1028         .id_table = pci_id_igb_map,
1029         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1030         .probe = eth_igb_pci_probe,
1031         .remove = eth_igb_pci_remove,
1032 };
1033
1034
1035 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1036         struct rte_pci_device *pci_dev)
1037 {
1038         return rte_eth_dev_pci_generic_probe(pci_dev,
1039                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1040 }
1041
1042 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1043 {
1044         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1045 }
1046
1047 /*
1048  * virtual function driver struct
1049  */
1050 static struct rte_pci_driver rte_igbvf_pmd = {
1051         .id_table = pci_id_igbvf_map,
1052         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1053         .probe = eth_igbvf_pci_probe,
1054         .remove = eth_igbvf_pci_remove,
1055 };
1056
1057 static void
1058 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1059 {
1060         struct e1000_hw *hw =
1061                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1062         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1063         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1064         rctl |= E1000_RCTL_VFE;
1065         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1066 }
1067
1068 static int
1069 igb_check_mq_mode(struct rte_eth_dev *dev)
1070 {
1071         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1072         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1073         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1074         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1075
1076         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1077             tx_mq_mode == ETH_MQ_TX_DCB ||
1078             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1079                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1080                 return -EINVAL;
1081         }
1082         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1083                 /* Check multi-queue mode.
1084                  * To no break software we accept ETH_MQ_RX_NONE as this might
1085                  * be used to turn off VLAN filter.
1086                  */
1087
1088                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1089                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1090                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1091                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1092                 } else {
1093                         /* Only support one queue on VFs.
1094                          * RSS together with SRIOV is not supported.
1095                          */
1096                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1097                                         " wrong mq_mode rx %d.",
1098                                         rx_mq_mode);
1099                         return -EINVAL;
1100                 }
1101                 /* TX mode is not used here, so mode might be ignored.*/
1102                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1103                         /* SRIOV only works in VMDq enable mode */
1104                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1105                                         " TX mode %d is not supported. "
1106                                         " Driver will behave as %d mode.",
1107                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1108                 }
1109
1110                 /* check valid queue number */
1111                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1112                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1113                                         " only support one queue on VFs.");
1114                         return -EINVAL;
1115                 }
1116         } else {
1117                 /* To no break software that set invalid mode, only display
1118                  * warning if invalid mode is used.
1119                  */
1120                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1121                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1122                     rx_mq_mode != ETH_MQ_RX_RSS) {
1123                         /* RSS together with VMDq not supported*/
1124                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1125                                      rx_mq_mode);
1126                         return -EINVAL;
1127                 }
1128
1129                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1130                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1131                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1132                                         " Due to txmode is meaningless in this"
1133                                         " driver, just ignore.",
1134                                         tx_mq_mode);
1135                 }
1136         }
1137         return 0;
1138 }
1139
1140 static int
1141 eth_igb_configure(struct rte_eth_dev *dev)
1142 {
1143         struct e1000_interrupt *intr =
1144                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1145         int ret;
1146
1147         PMD_INIT_FUNC_TRACE();
1148
1149         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1150                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1151
1152         /* multipe queue mode checking */
1153         ret  = igb_check_mq_mode(dev);
1154         if (ret != 0) {
1155                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1156                             ret);
1157                 return ret;
1158         }
1159
1160         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1161         PMD_INIT_FUNC_TRACE();
1162
1163         return 0;
1164 }
1165
1166 static void
1167 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1168                      bool enable)
1169 {
1170         struct e1000_hw *hw =
1171                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1172         uint32_t tctl, rctl;
1173
1174         tctl = E1000_READ_REG(hw, E1000_TCTL);
1175         rctl = E1000_READ_REG(hw, E1000_RCTL);
1176
1177         if (enable) {
1178                 /* enable Tx/Rx */
1179                 tctl |= E1000_TCTL_EN;
1180                 rctl |= E1000_RCTL_EN;
1181         } else {
1182                 /* disable Tx/Rx */
1183                 tctl &= ~E1000_TCTL_EN;
1184                 rctl &= ~E1000_RCTL_EN;
1185         }
1186         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1187         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1188         E1000_WRITE_FLUSH(hw);
1189 }
1190
1191 static int
1192 eth_igb_start(struct rte_eth_dev *dev)
1193 {
1194         struct e1000_hw *hw =
1195                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1196         struct e1000_adapter *adapter =
1197                 E1000_DEV_PRIVATE(dev->data->dev_private);
1198         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1199         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1200         int ret, mask;
1201         uint32_t intr_vector = 0;
1202         uint32_t ctrl_ext;
1203         uint32_t *speeds;
1204         int num_speeds;
1205         bool autoneg;
1206
1207         PMD_INIT_FUNC_TRACE();
1208
1209         /* disable uio/vfio intr/eventfd mapping */
1210         rte_intr_disable(intr_handle);
1211
1212         /* Power up the phy. Needed to make the link go Up */
1213         eth_igb_dev_set_link_up(dev);
1214
1215         /*
1216          * Packet Buffer Allocation (PBA)
1217          * Writing PBA sets the receive portion of the buffer
1218          * the remainder is used for the transmit buffer.
1219          */
1220         if (hw->mac.type == e1000_82575) {
1221                 uint32_t pba;
1222
1223                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1224                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1225         }
1226
1227         /* Put the address into the Receive Address Array */
1228         e1000_rar_set(hw, hw->mac.addr, 0);
1229
1230         /* Initialize the hardware */
1231         if (igb_hardware_init(hw)) {
1232                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1233                 return -EIO;
1234         }
1235         adapter->stopped = 0;
1236
1237         E1000_WRITE_REG(hw, E1000_VET,
1238                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1239
1240         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1241         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1242         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1243         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1244         E1000_WRITE_FLUSH(hw);
1245
1246         /* configure PF module if SRIOV enabled */
1247         igb_pf_host_configure(dev);
1248
1249         /* check and configure queue intr-vector mapping */
1250         if ((rte_intr_cap_multiple(intr_handle) ||
1251              !RTE_ETH_DEV_SRIOV(dev).active) &&
1252             dev->data->dev_conf.intr_conf.rxq != 0) {
1253                 intr_vector = dev->data->nb_rx_queues;
1254                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1255                         return -1;
1256         }
1257
1258         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1259                 intr_handle->intr_vec =
1260                         rte_zmalloc("intr_vec",
1261                                     dev->data->nb_rx_queues * sizeof(int), 0);
1262                 if (intr_handle->intr_vec == NULL) {
1263                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1264                                      " intr_vec", dev->data->nb_rx_queues);
1265                         return -ENOMEM;
1266                 }
1267         }
1268
1269         /* confiugre msix for rx interrupt */
1270         eth_igb_configure_msix_intr(dev);
1271
1272         /* Configure for OS presence */
1273         igb_init_manageability(hw);
1274
1275         eth_igb_tx_init(dev);
1276
1277         /* This can fail when allocating mbufs for descriptor rings */
1278         ret = eth_igb_rx_init(dev);
1279         if (ret) {
1280                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1281                 igb_dev_clear_queues(dev);
1282                 return ret;
1283         }
1284
1285         e1000_clear_hw_cntrs_base_generic(hw);
1286
1287         /*
1288          * VLAN Offload Settings
1289          */
1290         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1291                         ETH_VLAN_EXTEND_MASK;
1292         ret = eth_igb_vlan_offload_set(dev, mask);
1293         if (ret) {
1294                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1295                 igb_dev_clear_queues(dev);
1296                 return ret;
1297         }
1298
1299         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1300                 /* Enable VLAN filter since VMDq always use VLAN filter */
1301                 igb_vmdq_vlan_hw_filter_enable(dev);
1302         }
1303
1304         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1305                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1306                 (hw->mac.type == e1000_i211)) {
1307                 /* Configure EITR with the maximum possible value (0xFFFF) */
1308                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1309         }
1310
1311         /* Setup link speed and duplex */
1312         speeds = &dev->data->dev_conf.link_speeds;
1313         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1314                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1315                 hw->mac.autoneg = 1;
1316         } else {
1317                 num_speeds = 0;
1318                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1319
1320                 /* Reset */
1321                 hw->phy.autoneg_advertised = 0;
1322
1323                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1324                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1325                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1326                         num_speeds = -1;
1327                         goto error_invalid_config;
1328                 }
1329                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1330                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1331                         num_speeds++;
1332                 }
1333                 if (*speeds & ETH_LINK_SPEED_10M) {
1334                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1335                         num_speeds++;
1336                 }
1337                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1338                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1339                         num_speeds++;
1340                 }
1341                 if (*speeds & ETH_LINK_SPEED_100M) {
1342                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1343                         num_speeds++;
1344                 }
1345                 if (*speeds & ETH_LINK_SPEED_1G) {
1346                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1347                         num_speeds++;
1348                 }
1349                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1350                         goto error_invalid_config;
1351
1352                 /* Set/reset the mac.autoneg based on the link speed,
1353                  * fixed or not
1354                  */
1355                 if (!autoneg) {
1356                         hw->mac.autoneg = 0;
1357                         hw->mac.forced_speed_duplex =
1358                                         hw->phy.autoneg_advertised;
1359                 } else {
1360                         hw->mac.autoneg = 1;
1361                 }
1362         }
1363
1364         e1000_setup_link(hw);
1365
1366         if (rte_intr_allow_others(intr_handle)) {
1367                 /* check if lsc interrupt is enabled */
1368                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1369                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1370                 else
1371                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1372         } else {
1373                 rte_intr_callback_unregister(intr_handle,
1374                                              eth_igb_interrupt_handler,
1375                                              (void *)dev);
1376                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1377                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1378                                      " no intr multiplex");
1379         }
1380
1381         /* check if rxq interrupt is enabled */
1382         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1383             rte_intr_dp_is_en(intr_handle))
1384                 eth_igb_rxq_interrupt_setup(dev);
1385
1386         /* enable uio/vfio intr/eventfd mapping */
1387         rte_intr_enable(intr_handle);
1388
1389         /* resume enabled intr since hw reset */
1390         igb_intr_enable(dev);
1391
1392         /* restore all types filter */
1393         igb_filter_restore(dev);
1394
1395         eth_igb_rxtx_control(dev, true);
1396         eth_igb_link_update(dev, 0);
1397
1398         PMD_INIT_LOG(DEBUG, "<<");
1399
1400         return 0;
1401
1402 error_invalid_config:
1403         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1404                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1405         igb_dev_clear_queues(dev);
1406         return -EINVAL;
1407 }
1408
1409 /*********************************************************************
1410  *
1411  *  This routine disables all traffic on the adapter by issuing a
1412  *  global reset on the MAC.
1413  *
1414  **********************************************************************/
1415 static int
1416 eth_igb_stop(struct rte_eth_dev *dev)
1417 {
1418         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1419         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1420         struct rte_eth_link link;
1421         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1422         struct e1000_adapter *adapter =
1423                 E1000_DEV_PRIVATE(dev->data->dev_private);
1424
1425         if (adapter->stopped)
1426                 return 0;
1427
1428         eth_igb_rxtx_control(dev, false);
1429
1430         igb_intr_disable(dev);
1431
1432         /* disable intr eventfd mapping */
1433         rte_intr_disable(intr_handle);
1434
1435         igb_pf_reset_hw(hw);
1436         E1000_WRITE_REG(hw, E1000_WUC, 0);
1437
1438         /* Set bit for Go Link disconnect if PHY reset is not blocked */
1439         if (hw->mac.type >= e1000_82580 &&
1440             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1441                 uint32_t phpm_reg;
1442
1443                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1444                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1445                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1446         }
1447
1448         /* Power down the phy. Needed to make the link go Down */
1449         eth_igb_dev_set_link_down(dev);
1450
1451         igb_dev_clear_queues(dev);
1452
1453         /* clear the recorded link status */
1454         memset(&link, 0, sizeof(link));
1455         rte_eth_linkstatus_set(dev, &link);
1456
1457         if (!rte_intr_allow_others(intr_handle))
1458                 /* resume to the default handler */
1459                 rte_intr_callback_register(intr_handle,
1460                                            eth_igb_interrupt_handler,
1461                                            (void *)dev);
1462
1463         /* Clean datapath event and queue/vec mapping */
1464         rte_intr_efd_disable(intr_handle);
1465         if (intr_handle->intr_vec != NULL) {
1466                 rte_free(intr_handle->intr_vec);
1467                 intr_handle->intr_vec = NULL;
1468         }
1469
1470         adapter->stopped = true;
1471         dev->data->dev_started = 0;
1472
1473         return 0;
1474 }
1475
1476 static int
1477 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1478 {
1479         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1480
1481         if (hw->phy.media_type == e1000_media_type_copper)
1482                 e1000_power_up_phy(hw);
1483         else
1484                 e1000_power_up_fiber_serdes_link(hw);
1485
1486         return 0;
1487 }
1488
1489 static int
1490 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1491 {
1492         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1493
1494         if (hw->phy.media_type == e1000_media_type_copper)
1495                 e1000_power_down_phy(hw);
1496         else
1497                 e1000_shutdown_fiber_serdes_link(hw);
1498
1499         return 0;
1500 }
1501
1502 static int
1503 eth_igb_close(struct rte_eth_dev *dev)
1504 {
1505         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1506         struct rte_eth_link link;
1507         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1508         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1509         struct e1000_filter_info *filter_info =
1510                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1511         int ret;
1512
1513         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1514                 return 0;
1515
1516         ret = eth_igb_stop(dev);
1517
1518         e1000_phy_hw_reset(hw);
1519         igb_release_manageability(hw);
1520         igb_hw_control_release(hw);
1521
1522         /* Clear bit for Go Link disconnect if PHY reset is not blocked */
1523         if (hw->mac.type >= e1000_82580 &&
1524             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1525                 uint32_t phpm_reg;
1526
1527                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1528                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1529                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1530         }
1531
1532         igb_dev_free_queues(dev);
1533
1534         if (intr_handle->intr_vec) {
1535                 rte_free(intr_handle->intr_vec);
1536                 intr_handle->intr_vec = NULL;
1537         }
1538
1539         memset(&link, 0, sizeof(link));
1540         rte_eth_linkstatus_set(dev, &link);
1541
1542         /* Reset any pending lock */
1543         igb_reset_swfw_lock(hw);
1544
1545         /* uninitialize PF if max_vfs not zero */
1546         igb_pf_host_uninit(dev);
1547
1548         rte_intr_callback_unregister(intr_handle,
1549                                      eth_igb_interrupt_handler, dev);
1550
1551         /* clear the SYN filter info */
1552         filter_info->syn_info = 0;
1553
1554         /* clear the ethertype filters info */
1555         filter_info->ethertype_mask = 0;
1556         memset(filter_info->ethertype_filters, 0,
1557                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1558
1559         /* clear the rss filter info */
1560         memset(&filter_info->rss_info, 0,
1561                 sizeof(struct igb_rte_flow_rss_conf));
1562
1563         /* remove all ntuple filters of the device */
1564         igb_ntuple_filter_uninit(dev);
1565
1566         /* remove all flex filters of the device */
1567         igb_flex_filter_uninit(dev);
1568
1569         /* clear all the filters list */
1570         igb_filterlist_flush(dev);
1571
1572         return ret;
1573 }
1574
1575 /*
1576  * Reset PF device.
1577  */
1578 static int
1579 eth_igb_reset(struct rte_eth_dev *dev)
1580 {
1581         int ret;
1582
1583         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1584          * its VF to make them align with it. The detailed notification
1585          * mechanism is PMD specific and is currently not implemented.
1586          * To avoid unexpected behavior in VF, currently reset of PF with
1587          * SR-IOV activation is not supported. It might be supported later.
1588          */
1589         if (dev->data->sriov.active)
1590                 return -ENOTSUP;
1591
1592         ret = eth_igb_dev_uninit(dev);
1593         if (ret)
1594                 return ret;
1595
1596         ret = eth_igb_dev_init(dev);
1597
1598         return ret;
1599 }
1600
1601
1602 static int
1603 igb_get_rx_buffer_size(struct e1000_hw *hw)
1604 {
1605         uint32_t rx_buf_size;
1606         if (hw->mac.type == e1000_82576) {
1607                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1608         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1609                 /* PBS needs to be translated according to a lookup table */
1610                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1611                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1612                 rx_buf_size = (rx_buf_size << 10);
1613         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1614                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1615         } else {
1616                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1617         }
1618
1619         return rx_buf_size;
1620 }
1621
1622 /*********************************************************************
1623  *
1624  *  Initialize the hardware
1625  *
1626  **********************************************************************/
1627 static int
1628 igb_hardware_init(struct e1000_hw *hw)
1629 {
1630         uint32_t rx_buf_size;
1631         int diag;
1632
1633         /* Let the firmware know the OS is in control */
1634         igb_hw_control_acquire(hw);
1635
1636         /*
1637          * These parameters control the automatic generation (Tx) and
1638          * response (Rx) to Ethernet PAUSE frames.
1639          * - High water mark should allow for at least two standard size (1518)
1640          *   frames to be received after sending an XOFF.
1641          * - Low water mark works best when it is very near the high water mark.
1642          *   This allows the receiver to restart by sending XON when it has
1643          *   drained a bit. Here we use an arbitrary value of 1500 which will
1644          *   restart after one full frame is pulled from the buffer. There
1645          *   could be several smaller frames in the buffer and if so they will
1646          *   not trigger the XON until their total number reduces the buffer
1647          *   by 1500.
1648          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1649          */
1650         rx_buf_size = igb_get_rx_buffer_size(hw);
1651
1652         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1653         hw->fc.low_water = hw->fc.high_water - 1500;
1654         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1655         hw->fc.send_xon = 1;
1656
1657         /* Set Flow control, use the tunable location if sane */
1658         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1659                 hw->fc.requested_mode = igb_fc_setting;
1660         else
1661                 hw->fc.requested_mode = e1000_fc_none;
1662
1663         /* Issue a global reset */
1664         igb_pf_reset_hw(hw);
1665         E1000_WRITE_REG(hw, E1000_WUC, 0);
1666
1667         diag = e1000_init_hw(hw);
1668         if (diag < 0)
1669                 return diag;
1670
1671         E1000_WRITE_REG(hw, E1000_VET,
1672                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1673         e1000_get_phy_info(hw);
1674         e1000_check_for_link(hw);
1675
1676         return 0;
1677 }
1678
1679 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1680 static void
1681 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1682 {
1683         int pause_frames;
1684
1685         uint64_t old_gprc  = stats->gprc;
1686         uint64_t old_gptc  = stats->gptc;
1687         uint64_t old_tpr   = stats->tpr;
1688         uint64_t old_tpt   = stats->tpt;
1689         uint64_t old_rpthc = stats->rpthc;
1690         uint64_t old_hgptc = stats->hgptc;
1691
1692         if(hw->phy.media_type == e1000_media_type_copper ||
1693             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1694                 stats->symerrs +=
1695                     E1000_READ_REG(hw,E1000_SYMERRS);
1696                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1697         }
1698
1699         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1700         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1701         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1702         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1703
1704         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1705         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1706         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1707         stats->dc += E1000_READ_REG(hw, E1000_DC);
1708         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1709         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1710         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1711         /*
1712         ** For watchdog management we need to know if we have been
1713         ** paused during the last interval, so capture that here.
1714         */
1715         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1716         stats->xoffrxc += pause_frames;
1717         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1718         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1719         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1720         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1721         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1722         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1723         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1724         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1725         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1726         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1727         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1728         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1729
1730         /* For the 64-bit byte counters the low dword must be read first. */
1731         /* Both registers clear on the read of the high dword */
1732
1733         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1734         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1735         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1736         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1737         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1738         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1739         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1740
1741         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1742         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1743         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1744         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1745         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1746
1747         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1748         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1749
1750         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1751         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1752         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1753         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1754         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1755         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1756
1757         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1758         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1759         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1760         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1761         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1762         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1763         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1764         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1765
1766         /* Interrupt Counts */
1767
1768         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1769         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1770         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1771         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1772         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1773         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1774         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1775         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1776         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1777
1778         /* Host to Card Statistics */
1779
1780         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1781         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1782         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1783         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1784         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1785         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1786         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1787         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1788         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1789         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1790         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1791         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1792         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1793         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1794         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1795         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1796
1797         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1798         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1799         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1800         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1801         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1802         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1803 }
1804
1805 static int
1806 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1807 {
1808         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1809         struct e1000_hw_stats *stats =
1810                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1811
1812         igb_read_stats_registers(hw, stats);
1813
1814         if (rte_stats == NULL)
1815                 return -EINVAL;
1816
1817         /* Rx Errors */
1818         rte_stats->imissed = stats->mpc;
1819         rte_stats->ierrors = stats->crcerrs + stats->rlec +
1820                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1821
1822         /* Tx Errors */
1823         rte_stats->oerrors = stats->ecol + stats->latecol;
1824
1825         rte_stats->ipackets = stats->gprc;
1826         rte_stats->opackets = stats->gptc;
1827         rte_stats->ibytes   = stats->gorc;
1828         rte_stats->obytes   = stats->gotc;
1829         return 0;
1830 }
1831
1832 static int
1833 eth_igb_stats_reset(struct rte_eth_dev *dev)
1834 {
1835         struct e1000_hw_stats *hw_stats =
1836                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1837
1838         /* HW registers are cleared on read */
1839         eth_igb_stats_get(dev, NULL);
1840
1841         /* Reset software totals */
1842         memset(hw_stats, 0, sizeof(*hw_stats));
1843
1844         return 0;
1845 }
1846
1847 static int
1848 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1849 {
1850         struct e1000_hw_stats *stats =
1851                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1852
1853         /* HW registers are cleared on read */
1854         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1855
1856         /* Reset software totals */
1857         memset(stats, 0, sizeof(*stats));
1858
1859         return 0;
1860 }
1861
1862 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1863         struct rte_eth_xstat_name *xstats_names,
1864         __rte_unused unsigned int size)
1865 {
1866         unsigned i;
1867
1868         if (xstats_names == NULL)
1869                 return IGB_NB_XSTATS;
1870
1871         /* Note: limit checked in rte_eth_xstats_names() */
1872
1873         for (i = 0; i < IGB_NB_XSTATS; i++) {
1874                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1875                         sizeof(xstats_names[i].name));
1876         }
1877
1878         return IGB_NB_XSTATS;
1879 }
1880
1881 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1882                 const uint64_t *ids, struct rte_eth_xstat_name *xstats_names,
1883                 unsigned int limit)
1884 {
1885         unsigned int i;
1886
1887         if (!ids) {
1888                 if (xstats_names == NULL)
1889                         return IGB_NB_XSTATS;
1890
1891                 for (i = 0; i < IGB_NB_XSTATS; i++)
1892                         strlcpy(xstats_names[i].name,
1893                                 rte_igb_stats_strings[i].name,
1894                                 sizeof(xstats_names[i].name));
1895
1896                 return IGB_NB_XSTATS;
1897
1898         } else {
1899                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1900
1901                 eth_igb_xstats_get_names_by_id(dev, NULL, xstats_names_copy,
1902                                 IGB_NB_XSTATS);
1903
1904                 for (i = 0; i < limit; i++) {
1905                         if (ids[i] >= IGB_NB_XSTATS) {
1906                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1907                                 return -1;
1908                         }
1909                         strcpy(xstats_names[i].name,
1910                                         xstats_names_copy[ids[i]].name);
1911                 }
1912                 return limit;
1913         }
1914 }
1915
1916 static int
1917 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1918                    unsigned n)
1919 {
1920         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1921         struct e1000_hw_stats *hw_stats =
1922                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1923         unsigned i;
1924
1925         if (n < IGB_NB_XSTATS)
1926                 return IGB_NB_XSTATS;
1927
1928         igb_read_stats_registers(hw, hw_stats);
1929
1930         /* If this is a reset xstats is NULL, and we have cleared the
1931          * registers by reading them.
1932          */
1933         if (!xstats)
1934                 return 0;
1935
1936         /* Extended stats */
1937         for (i = 0; i < IGB_NB_XSTATS; i++) {
1938                 xstats[i].id = i;
1939                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1940                         rte_igb_stats_strings[i].offset);
1941         }
1942
1943         return IGB_NB_XSTATS;
1944 }
1945
1946 static int
1947 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1948                 uint64_t *values, unsigned int n)
1949 {
1950         unsigned int i;
1951
1952         if (!ids) {
1953                 struct e1000_hw *hw =
1954                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1955                 struct e1000_hw_stats *hw_stats =
1956                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1957
1958                 if (n < IGB_NB_XSTATS)
1959                         return IGB_NB_XSTATS;
1960
1961                 igb_read_stats_registers(hw, hw_stats);
1962
1963                 /* If this is a reset xstats is NULL, and we have cleared the
1964                  * registers by reading them.
1965                  */
1966                 if (!values)
1967                         return 0;
1968
1969                 /* Extended stats */
1970                 for (i = 0; i < IGB_NB_XSTATS; i++)
1971                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1972                                         rte_igb_stats_strings[i].offset);
1973
1974                 return IGB_NB_XSTATS;
1975
1976         } else {
1977                 uint64_t values_copy[IGB_NB_XSTATS];
1978
1979                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1980                                 IGB_NB_XSTATS);
1981
1982                 for (i = 0; i < n; i++) {
1983                         if (ids[i] >= IGB_NB_XSTATS) {
1984                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1985                                 return -1;
1986                         }
1987                         values[i] = values_copy[ids[i]];
1988                 }
1989                 return n;
1990         }
1991 }
1992
1993 static void
1994 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
1995 {
1996         /* Good Rx packets, include VF loopback */
1997         UPDATE_VF_STAT(E1000_VFGPRC,
1998             hw_stats->last_gprc, hw_stats->gprc);
1999
2000         /* Good Rx octets, include VF loopback */
2001         UPDATE_VF_STAT(E1000_VFGORC,
2002             hw_stats->last_gorc, hw_stats->gorc);
2003
2004         /* Good Tx packets, include VF loopback */
2005         UPDATE_VF_STAT(E1000_VFGPTC,
2006             hw_stats->last_gptc, hw_stats->gptc);
2007
2008         /* Good Tx octets, include VF loopback */
2009         UPDATE_VF_STAT(E1000_VFGOTC,
2010             hw_stats->last_gotc, hw_stats->gotc);
2011
2012         /* Rx Multicst packets */
2013         UPDATE_VF_STAT(E1000_VFMPRC,
2014             hw_stats->last_mprc, hw_stats->mprc);
2015
2016         /* Good Rx loopback packets */
2017         UPDATE_VF_STAT(E1000_VFGPRLBC,
2018             hw_stats->last_gprlbc, hw_stats->gprlbc);
2019
2020         /* Good Rx loopback octets */
2021         UPDATE_VF_STAT(E1000_VFGORLBC,
2022             hw_stats->last_gorlbc, hw_stats->gorlbc);
2023
2024         /* Good Tx loopback packets */
2025         UPDATE_VF_STAT(E1000_VFGPTLBC,
2026             hw_stats->last_gptlbc, hw_stats->gptlbc);
2027
2028         /* Good Tx loopback octets */
2029         UPDATE_VF_STAT(E1000_VFGOTLBC,
2030             hw_stats->last_gotlbc, hw_stats->gotlbc);
2031 }
2032
2033 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2034                                      struct rte_eth_xstat_name *xstats_names,
2035                                      __rte_unused unsigned limit)
2036 {
2037         unsigned i;
2038
2039         if (xstats_names != NULL)
2040                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2041                         strlcpy(xstats_names[i].name,
2042                                 rte_igbvf_stats_strings[i].name,
2043                                 sizeof(xstats_names[i].name));
2044                 }
2045         return IGBVF_NB_XSTATS;
2046 }
2047
2048 static int
2049 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2050                      unsigned n)
2051 {
2052         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2053         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2054                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2055         unsigned i;
2056
2057         if (n < IGBVF_NB_XSTATS)
2058                 return IGBVF_NB_XSTATS;
2059
2060         igbvf_read_stats_registers(hw, hw_stats);
2061
2062         if (!xstats)
2063                 return 0;
2064
2065         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2066                 xstats[i].id = i;
2067                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2068                         rte_igbvf_stats_strings[i].offset);
2069         }
2070
2071         return IGBVF_NB_XSTATS;
2072 }
2073
2074 static int
2075 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2076 {
2077         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2078         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2079                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2080
2081         igbvf_read_stats_registers(hw, hw_stats);
2082
2083         if (rte_stats == NULL)
2084                 return -EINVAL;
2085
2086         rte_stats->ipackets = hw_stats->gprc;
2087         rte_stats->ibytes = hw_stats->gorc;
2088         rte_stats->opackets = hw_stats->gptc;
2089         rte_stats->obytes = hw_stats->gotc;
2090         return 0;
2091 }
2092
2093 static int
2094 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2095 {
2096         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2097                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2098
2099         /* Sync HW register to the last stats */
2100         eth_igbvf_stats_get(dev, NULL);
2101
2102         /* reset HW current stats*/
2103         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2104                offsetof(struct e1000_vf_stats, gprc));
2105
2106         return 0;
2107 }
2108
2109 static int
2110 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2111                        size_t fw_size)
2112 {
2113         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2114         struct e1000_fw_version fw;
2115         int ret;
2116
2117         e1000_get_fw_version(hw, &fw);
2118
2119         switch (hw->mac.type) {
2120         case e1000_i210:
2121         case e1000_i211:
2122                 if (!(e1000_get_flash_presence_i210(hw))) {
2123                         ret = snprintf(fw_version, fw_size,
2124                                  "%2d.%2d-%d",
2125                                  fw.invm_major, fw.invm_minor,
2126                                  fw.invm_img_type);
2127                         break;
2128                 }
2129                 /* fall through */
2130         default:
2131                 /* if option rom is valid, display its version too */
2132                 if (fw.or_valid) {
2133                         ret = snprintf(fw_version, fw_size,
2134                                  "%d.%d, 0x%08x, %d.%d.%d",
2135                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2136                                  fw.or_major, fw.or_build, fw.or_patch);
2137                 /* no option rom */
2138                 } else {
2139                         if (fw.etrack_id != 0X0000) {
2140                                 ret = snprintf(fw_version, fw_size,
2141                                          "%d.%d, 0x%08x",
2142                                          fw.eep_major, fw.eep_minor,
2143                                          fw.etrack_id);
2144                         } else {
2145                                 ret = snprintf(fw_version, fw_size,
2146                                          "%d.%d.%d",
2147                                          fw.eep_major, fw.eep_minor,
2148                                          fw.eep_build);
2149                         }
2150                 }
2151                 break;
2152         }
2153         if (ret < 0)
2154                 return -EINVAL;
2155
2156         ret += 1; /* add the size of '\0' */
2157         if (fw_size < (size_t)ret)
2158                 return ret;
2159         else
2160                 return 0;
2161 }
2162
2163 static int
2164 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2165 {
2166         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2167
2168         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2169         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2170         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2171         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2172         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2173                                     dev_info->rx_queue_offload_capa;
2174         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2175         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2176                                     dev_info->tx_queue_offload_capa;
2177
2178         switch (hw->mac.type) {
2179         case e1000_82575:
2180                 dev_info->max_rx_queues = 4;
2181                 dev_info->max_tx_queues = 4;
2182                 dev_info->max_vmdq_pools = 0;
2183                 break;
2184
2185         case e1000_82576:
2186                 dev_info->max_rx_queues = 16;
2187                 dev_info->max_tx_queues = 16;
2188                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2189                 dev_info->vmdq_queue_num = 16;
2190                 break;
2191
2192         case e1000_82580:
2193                 dev_info->max_rx_queues = 8;
2194                 dev_info->max_tx_queues = 8;
2195                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2196                 dev_info->vmdq_queue_num = 8;
2197                 break;
2198
2199         case e1000_i350:
2200                 dev_info->max_rx_queues = 8;
2201                 dev_info->max_tx_queues = 8;
2202                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2203                 dev_info->vmdq_queue_num = 8;
2204                 break;
2205
2206         case e1000_i354:
2207                 dev_info->max_rx_queues = 8;
2208                 dev_info->max_tx_queues = 8;
2209                 break;
2210
2211         case e1000_i210:
2212                 dev_info->max_rx_queues = 4;
2213                 dev_info->max_tx_queues = 4;
2214                 dev_info->max_vmdq_pools = 0;
2215                 break;
2216
2217         case e1000_i211:
2218                 dev_info->max_rx_queues = 2;
2219                 dev_info->max_tx_queues = 2;
2220                 dev_info->max_vmdq_pools = 0;
2221                 break;
2222
2223         default:
2224                 /* Should not happen */
2225                 return -EINVAL;
2226         }
2227         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2228         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2229         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2230
2231         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2232                 .rx_thresh = {
2233                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2234                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2235                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2236                 },
2237                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2238                 .rx_drop_en = 0,
2239                 .offloads = 0,
2240         };
2241
2242         dev_info->default_txconf = (struct rte_eth_txconf) {
2243                 .tx_thresh = {
2244                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2245                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2246                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2247                 },
2248                 .offloads = 0,
2249         };
2250
2251         dev_info->rx_desc_lim = rx_desc_lim;
2252         dev_info->tx_desc_lim = tx_desc_lim;
2253
2254         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2255                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2256                         ETH_LINK_SPEED_1G;
2257
2258         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2259         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2260
2261         return 0;
2262 }
2263
2264 static const uint32_t *
2265 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2266 {
2267         static const uint32_t ptypes[] = {
2268                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2269                 RTE_PTYPE_L2_ETHER,
2270                 RTE_PTYPE_L3_IPV4,
2271                 RTE_PTYPE_L3_IPV4_EXT,
2272                 RTE_PTYPE_L3_IPV6,
2273                 RTE_PTYPE_L3_IPV6_EXT,
2274                 RTE_PTYPE_L4_TCP,
2275                 RTE_PTYPE_L4_UDP,
2276                 RTE_PTYPE_L4_SCTP,
2277                 RTE_PTYPE_TUNNEL_IP,
2278                 RTE_PTYPE_INNER_L3_IPV6,
2279                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2280                 RTE_PTYPE_INNER_L4_TCP,
2281                 RTE_PTYPE_INNER_L4_UDP,
2282                 RTE_PTYPE_UNKNOWN
2283         };
2284
2285         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2286             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2287                 return ptypes;
2288         return NULL;
2289 }
2290
2291 static int
2292 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2293 {
2294         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2295
2296         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2297         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2298         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2299         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2300                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2301                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2302                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2303                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2304                                 DEV_TX_OFFLOAD_TCP_TSO;
2305         switch (hw->mac.type) {
2306         case e1000_vfadapt:
2307                 dev_info->max_rx_queues = 2;
2308                 dev_info->max_tx_queues = 2;
2309                 break;
2310         case e1000_vfadapt_i350:
2311                 dev_info->max_rx_queues = 1;
2312                 dev_info->max_tx_queues = 1;
2313                 break;
2314         default:
2315                 /* Should not happen */
2316                 return -EINVAL;
2317         }
2318
2319         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2320         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2321                                     dev_info->rx_queue_offload_capa;
2322         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2323         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2324                                     dev_info->tx_queue_offload_capa;
2325
2326         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2327                 .rx_thresh = {
2328                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2329                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2330                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2331                 },
2332                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2333                 .rx_drop_en = 0,
2334                 .offloads = 0,
2335         };
2336
2337         dev_info->default_txconf = (struct rte_eth_txconf) {
2338                 .tx_thresh = {
2339                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2340                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2341                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2342                 },
2343                 .offloads = 0,
2344         };
2345
2346         dev_info->rx_desc_lim = rx_desc_lim;
2347         dev_info->tx_desc_lim = tx_desc_lim;
2348
2349         return 0;
2350 }
2351
2352 /* return 0 means link status changed, -1 means not changed */
2353 static int
2354 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2355 {
2356         struct e1000_hw *hw =
2357                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2358         struct rte_eth_link link;
2359         int link_check, count;
2360
2361         link_check = 0;
2362         hw->mac.get_link_status = 1;
2363
2364         /* possible wait-to-complete in up to 9 seconds */
2365         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2366                 /* Read the real link status */
2367                 switch (hw->phy.media_type) {
2368                 case e1000_media_type_copper:
2369                         /* Do the work to read phy */
2370                         e1000_check_for_link(hw);
2371                         link_check = !hw->mac.get_link_status;
2372                         break;
2373
2374                 case e1000_media_type_fiber:
2375                         e1000_check_for_link(hw);
2376                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2377                                       E1000_STATUS_LU);
2378                         break;
2379
2380                 case e1000_media_type_internal_serdes:
2381                         e1000_check_for_link(hw);
2382                         link_check = hw->mac.serdes_has_link;
2383                         break;
2384
2385                 /* VF device is type_unknown */
2386                 case e1000_media_type_unknown:
2387                         eth_igbvf_link_update(hw);
2388                         link_check = !hw->mac.get_link_status;
2389                         break;
2390
2391                 default:
2392                         break;
2393                 }
2394                 if (link_check || wait_to_complete == 0)
2395                         break;
2396                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2397         }
2398         memset(&link, 0, sizeof(link));
2399
2400         /* Now we check if a transition has happened */
2401         if (link_check) {
2402                 uint16_t duplex, speed;
2403                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2404                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2405                                 ETH_LINK_FULL_DUPLEX :
2406                                 ETH_LINK_HALF_DUPLEX;
2407                 link.link_speed = speed;
2408                 link.link_status = ETH_LINK_UP;
2409                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2410                                 ETH_LINK_SPEED_FIXED);
2411         } else if (!link_check) {
2412                 link.link_speed = 0;
2413                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2414                 link.link_status = ETH_LINK_DOWN;
2415                 link.link_autoneg = ETH_LINK_FIXED;
2416         }
2417
2418         return rte_eth_linkstatus_set(dev, &link);
2419 }
2420
2421 /*
2422  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2423  * For ASF and Pass Through versions of f/w this means
2424  * that the driver is loaded.
2425  */
2426 static void
2427 igb_hw_control_acquire(struct e1000_hw *hw)
2428 {
2429         uint32_t ctrl_ext;
2430
2431         /* Let firmware know the driver has taken over */
2432         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2433         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2434 }
2435
2436 /*
2437  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2438  * For ASF and Pass Through versions of f/w this means that the
2439  * driver is no longer loaded.
2440  */
2441 static void
2442 igb_hw_control_release(struct e1000_hw *hw)
2443 {
2444         uint32_t ctrl_ext;
2445
2446         /* Let firmware taken over control of h/w */
2447         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2448         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2449                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2450 }
2451
2452 /*
2453  * Bit of a misnomer, what this really means is
2454  * to enable OS management of the system... aka
2455  * to disable special hardware management features.
2456  */
2457 static void
2458 igb_init_manageability(struct e1000_hw *hw)
2459 {
2460         if (e1000_enable_mng_pass_thru(hw)) {
2461                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2462                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2463
2464                 /* disable hardware interception of ARP */
2465                 manc &= ~(E1000_MANC_ARP_EN);
2466
2467                 /* enable receiving management packets to the host */
2468                 manc |= E1000_MANC_EN_MNG2HOST;
2469                 manc2h |= 1 << 5;  /* Mng Port 623 */
2470                 manc2h |= 1 << 6;  /* Mng Port 664 */
2471                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2472                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2473         }
2474 }
2475
2476 static void
2477 igb_release_manageability(struct e1000_hw *hw)
2478 {
2479         if (e1000_enable_mng_pass_thru(hw)) {
2480                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2481
2482                 manc |= E1000_MANC_ARP_EN;
2483                 manc &= ~E1000_MANC_EN_MNG2HOST;
2484
2485                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2486         }
2487 }
2488
2489 static int
2490 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2491 {
2492         struct e1000_hw *hw =
2493                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2494         uint32_t rctl;
2495
2496         rctl = E1000_READ_REG(hw, E1000_RCTL);
2497         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2498         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2499
2500         return 0;
2501 }
2502
2503 static int
2504 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2505 {
2506         struct e1000_hw *hw =
2507                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2508         uint32_t rctl;
2509
2510         rctl = E1000_READ_REG(hw, E1000_RCTL);
2511         rctl &= (~E1000_RCTL_UPE);
2512         if (dev->data->all_multicast == 1)
2513                 rctl |= E1000_RCTL_MPE;
2514         else
2515                 rctl &= (~E1000_RCTL_MPE);
2516         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2517
2518         return 0;
2519 }
2520
2521 static int
2522 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2523 {
2524         struct e1000_hw *hw =
2525                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2526         uint32_t rctl;
2527
2528         rctl = E1000_READ_REG(hw, E1000_RCTL);
2529         rctl |= E1000_RCTL_MPE;
2530         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2531
2532         return 0;
2533 }
2534
2535 static int
2536 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2537 {
2538         struct e1000_hw *hw =
2539                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2540         uint32_t rctl;
2541
2542         if (dev->data->promiscuous == 1)
2543                 return 0; /* must remain in all_multicast mode */
2544         rctl = E1000_READ_REG(hw, E1000_RCTL);
2545         rctl &= (~E1000_RCTL_MPE);
2546         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2547
2548         return 0;
2549 }
2550
2551 static int
2552 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2553 {
2554         struct e1000_hw *hw =
2555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2556         struct e1000_vfta * shadow_vfta =
2557                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2558         uint32_t vfta;
2559         uint32_t vid_idx;
2560         uint32_t vid_bit;
2561
2562         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2563                               E1000_VFTA_ENTRY_MASK);
2564         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2565         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2566         if (on)
2567                 vfta |= vid_bit;
2568         else
2569                 vfta &= ~vid_bit;
2570         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2571
2572         /* update local VFTA copy */
2573         shadow_vfta->vfta[vid_idx] = vfta;
2574
2575         return 0;
2576 }
2577
2578 static int
2579 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2580                       enum rte_vlan_type vlan_type,
2581                       uint16_t tpid)
2582 {
2583         struct e1000_hw *hw =
2584                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2585         uint32_t reg, qinq;
2586
2587         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2588         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2589
2590         /* only outer TPID of double VLAN can be configured*/
2591         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2592                 reg = E1000_READ_REG(hw, E1000_VET);
2593                 reg = (reg & (~E1000_VET_VET_EXT)) |
2594                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2595                 E1000_WRITE_REG(hw, E1000_VET, reg);
2596
2597                 return 0;
2598         }
2599
2600         /* all other TPID values are read-only*/
2601         PMD_DRV_LOG(ERR, "Not supported");
2602
2603         return -ENOTSUP;
2604 }
2605
2606 static void
2607 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2608 {
2609         struct e1000_hw *hw =
2610                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2611         uint32_t reg;
2612
2613         /* Filter Table Disable */
2614         reg = E1000_READ_REG(hw, E1000_RCTL);
2615         reg &= ~E1000_RCTL_CFIEN;
2616         reg &= ~E1000_RCTL_VFE;
2617         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2618 }
2619
2620 static void
2621 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2622 {
2623         struct e1000_hw *hw =
2624                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2625         struct e1000_vfta * shadow_vfta =
2626                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2627         uint32_t reg;
2628         int i;
2629
2630         /* Filter Table Enable, CFI not used for packet acceptance */
2631         reg = E1000_READ_REG(hw, E1000_RCTL);
2632         reg &= ~E1000_RCTL_CFIEN;
2633         reg |= E1000_RCTL_VFE;
2634         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2635
2636         /* restore VFTA table */
2637         for (i = 0; i < IGB_VFTA_SIZE; i++)
2638                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2639 }
2640
2641 static void
2642 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2643 {
2644         struct e1000_hw *hw =
2645                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2646         uint32_t reg;
2647
2648         /* VLAN Mode Disable */
2649         reg = E1000_READ_REG(hw, E1000_CTRL);
2650         reg &= ~E1000_CTRL_VME;
2651         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2652 }
2653
2654 static void
2655 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2656 {
2657         struct e1000_hw *hw =
2658                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2659         uint32_t reg;
2660
2661         /* VLAN Mode Enable */
2662         reg = E1000_READ_REG(hw, E1000_CTRL);
2663         reg |= E1000_CTRL_VME;
2664         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2665 }
2666
2667 static void
2668 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2669 {
2670         struct e1000_hw *hw =
2671                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2672         uint32_t reg;
2673
2674         /* CTRL_EXT: Extended VLAN */
2675         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2676         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2677         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2678
2679         /* Update maximum packet length */
2680         E1000_WRITE_REG(hw, E1000_RLPML, dev->data->mtu + E1000_ETH_OVERHEAD);
2681 }
2682
2683 static void
2684 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2685 {
2686         struct e1000_hw *hw =
2687                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2688         uint32_t reg;
2689
2690         /* CTRL_EXT: Extended VLAN */
2691         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2692         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2693         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2694
2695         /* Update maximum packet length */
2696         E1000_WRITE_REG(hw, E1000_RLPML,
2697                 dev->data->mtu + E1000_ETH_OVERHEAD + VLAN_TAG_SIZE);
2698 }
2699
2700 static int
2701 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2702 {
2703         struct rte_eth_rxmode *rxmode;
2704
2705         rxmode = &dev->data->dev_conf.rxmode;
2706         if(mask & ETH_VLAN_STRIP_MASK){
2707                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2708                         igb_vlan_hw_strip_enable(dev);
2709                 else
2710                         igb_vlan_hw_strip_disable(dev);
2711         }
2712
2713         if(mask & ETH_VLAN_FILTER_MASK){
2714                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2715                         igb_vlan_hw_filter_enable(dev);
2716                 else
2717                         igb_vlan_hw_filter_disable(dev);
2718         }
2719
2720         if(mask & ETH_VLAN_EXTEND_MASK){
2721                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2722                         igb_vlan_hw_extend_enable(dev);
2723                 else
2724                         igb_vlan_hw_extend_disable(dev);
2725         }
2726
2727         return 0;
2728 }
2729
2730
2731 /**
2732  * It enables the interrupt mask and then enable the interrupt.
2733  *
2734  * @param dev
2735  *  Pointer to struct rte_eth_dev.
2736  * @param on
2737  *  Enable or Disable
2738  *
2739  * @return
2740  *  - On success, zero.
2741  *  - On failure, a negative value.
2742  */
2743 static int
2744 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2745 {
2746         struct e1000_interrupt *intr =
2747                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2748
2749         if (on)
2750                 intr->mask |= E1000_ICR_LSC;
2751         else
2752                 intr->mask &= ~E1000_ICR_LSC;
2753
2754         return 0;
2755 }
2756
2757 /* It clears the interrupt causes and enables the interrupt.
2758  * It will be called once only during nic initialized.
2759  *
2760  * @param dev
2761  *  Pointer to struct rte_eth_dev.
2762  *
2763  * @return
2764  *  - On success, zero.
2765  *  - On failure, a negative value.
2766  */
2767 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2768 {
2769         uint32_t mask, regval;
2770         int ret;
2771         struct e1000_hw *hw =
2772                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2773         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2774         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2775         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2776         struct rte_eth_dev_info dev_info;
2777
2778         memset(&dev_info, 0, sizeof(dev_info));
2779         ret = eth_igb_infos_get(dev, &dev_info);
2780         if (ret != 0)
2781                 return ret;
2782
2783         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2784         regval = E1000_READ_REG(hw, E1000_EIMS);
2785         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2786
2787         return 0;
2788 }
2789
2790 /*
2791  * It reads ICR and gets interrupt causes, check it and set a bit flag
2792  * to update link status.
2793  *
2794  * @param dev
2795  *  Pointer to struct rte_eth_dev.
2796  *
2797  * @return
2798  *  - On success, zero.
2799  *  - On failure, a negative value.
2800  */
2801 static int
2802 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2803 {
2804         uint32_t icr;
2805         struct e1000_hw *hw =
2806                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2807         struct e1000_interrupt *intr =
2808                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2809
2810         igb_intr_disable(dev);
2811
2812         /* read-on-clear nic registers here */
2813         icr = E1000_READ_REG(hw, E1000_ICR);
2814
2815         intr->flags = 0;
2816         if (icr & E1000_ICR_LSC) {
2817                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2818         }
2819
2820         if (icr & E1000_ICR_VMMB)
2821                 intr->flags |= E1000_FLAG_MAILBOX;
2822
2823         return 0;
2824 }
2825
2826 /*
2827  * It executes link_update after knowing an interrupt is prsent.
2828  *
2829  * @param dev
2830  *  Pointer to struct rte_eth_dev.
2831  *
2832  * @return
2833  *  - On success, zero.
2834  *  - On failure, a negative value.
2835  */
2836 static int
2837 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2838                          struct rte_intr_handle *intr_handle)
2839 {
2840         struct e1000_hw *hw =
2841                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2842         struct e1000_interrupt *intr =
2843                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2844         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2845         struct rte_eth_link link;
2846         int ret;
2847
2848         if (intr->flags & E1000_FLAG_MAILBOX) {
2849                 igb_pf_mbx_process(dev);
2850                 intr->flags &= ~E1000_FLAG_MAILBOX;
2851         }
2852
2853         igb_intr_enable(dev);
2854         rte_intr_ack(intr_handle);
2855
2856         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2857                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2858
2859                 /* set get_link_status to check register later */
2860                 hw->mac.get_link_status = 1;
2861                 ret = eth_igb_link_update(dev, 0);
2862
2863                 /* check if link has changed */
2864                 if (ret < 0)
2865                         return 0;
2866
2867                 rte_eth_linkstatus_get(dev, &link);
2868                 if (link.link_status) {
2869                         PMD_INIT_LOG(INFO,
2870                                      " Port %d: Link Up - speed %u Mbps - %s",
2871                                      dev->data->port_id,
2872                                      (unsigned)link.link_speed,
2873                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2874                                      "full-duplex" : "half-duplex");
2875                 } else {
2876                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2877                                      dev->data->port_id);
2878                 }
2879
2880                 PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2881                              pci_dev->addr.domain,
2882                              pci_dev->addr.bus,
2883                              pci_dev->addr.devid,
2884                              pci_dev->addr.function);
2885                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2886         }
2887
2888         return 0;
2889 }
2890
2891 /**
2892  * Interrupt handler which shall be registered at first.
2893  *
2894  * @param handle
2895  *  Pointer to interrupt handle.
2896  * @param param
2897  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2898  *
2899  * @return
2900  *  void
2901  */
2902 static void
2903 eth_igb_interrupt_handler(void *param)
2904 {
2905         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2906
2907         eth_igb_interrupt_get_status(dev);
2908         eth_igb_interrupt_action(dev, dev->intr_handle);
2909 }
2910
2911 static int
2912 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2913 {
2914         uint32_t eicr;
2915         struct e1000_hw *hw =
2916                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2917         struct e1000_interrupt *intr =
2918                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2919
2920         igbvf_intr_disable(hw);
2921
2922         /* read-on-clear nic registers here */
2923         eicr = E1000_READ_REG(hw, E1000_EICR);
2924         intr->flags = 0;
2925
2926         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2927                 intr->flags |= E1000_FLAG_MAILBOX;
2928
2929         return 0;
2930 }
2931
2932 void igbvf_mbx_process(struct rte_eth_dev *dev)
2933 {
2934         struct e1000_hw *hw =
2935                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2936         struct e1000_mbx_info *mbx = &hw->mbx;
2937         u32 in_msg = 0;
2938
2939         /* peek the message first */
2940         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2941
2942         /* PF reset VF event */
2943         if (in_msg == E1000_PF_CONTROL_MSG) {
2944                 /* dummy mbx read to ack pf */
2945                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2946                         return;
2947                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2948                                              NULL);
2949         }
2950 }
2951
2952 static int
2953 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2954 {
2955         struct e1000_interrupt *intr =
2956                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2957
2958         if (intr->flags & E1000_FLAG_MAILBOX) {
2959                 igbvf_mbx_process(dev);
2960                 intr->flags &= ~E1000_FLAG_MAILBOX;
2961         }
2962
2963         igbvf_intr_enable(dev);
2964         rte_intr_ack(intr_handle);
2965
2966         return 0;
2967 }
2968
2969 static void
2970 eth_igbvf_interrupt_handler(void *param)
2971 {
2972         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2973
2974         eth_igbvf_interrupt_get_status(dev);
2975         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2976 }
2977
2978 static int
2979 eth_igb_led_on(struct rte_eth_dev *dev)
2980 {
2981         struct e1000_hw *hw;
2982
2983         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2984         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2985 }
2986
2987 static int
2988 eth_igb_led_off(struct rte_eth_dev *dev)
2989 {
2990         struct e1000_hw *hw;
2991
2992         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2993         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2994 }
2995
2996 static int
2997 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2998 {
2999         struct e1000_hw *hw;
3000         uint32_t ctrl;
3001         int tx_pause;
3002         int rx_pause;
3003
3004         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3005         fc_conf->pause_time = hw->fc.pause_time;
3006         fc_conf->high_water = hw->fc.high_water;
3007         fc_conf->low_water = hw->fc.low_water;
3008         fc_conf->send_xon = hw->fc.send_xon;
3009         fc_conf->autoneg = hw->mac.autoneg;
3010
3011         /*
3012          * Return rx_pause and tx_pause status according to actual setting of
3013          * the TFCE and RFCE bits in the CTRL register.
3014          */
3015         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3016         if (ctrl & E1000_CTRL_TFCE)
3017                 tx_pause = 1;
3018         else
3019                 tx_pause = 0;
3020
3021         if (ctrl & E1000_CTRL_RFCE)
3022                 rx_pause = 1;
3023         else
3024                 rx_pause = 0;
3025
3026         if (rx_pause && tx_pause)
3027                 fc_conf->mode = RTE_FC_FULL;
3028         else if (rx_pause)
3029                 fc_conf->mode = RTE_FC_RX_PAUSE;
3030         else if (tx_pause)
3031                 fc_conf->mode = RTE_FC_TX_PAUSE;
3032         else
3033                 fc_conf->mode = RTE_FC_NONE;
3034
3035         return 0;
3036 }
3037
3038 static int
3039 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3040 {
3041         struct e1000_hw *hw;
3042         int err;
3043         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3044                 e1000_fc_none,
3045                 e1000_fc_rx_pause,
3046                 e1000_fc_tx_pause,
3047                 e1000_fc_full
3048         };
3049         uint32_t rx_buf_size;
3050         uint32_t max_high_water;
3051         uint32_t rctl;
3052         uint32_t ctrl;
3053
3054         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3055         if (fc_conf->autoneg != hw->mac.autoneg)
3056                 return -ENOTSUP;
3057         rx_buf_size = igb_get_rx_buffer_size(hw);
3058         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3059
3060         /* At least reserve one Ethernet frame for watermark */
3061         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3062         if ((fc_conf->high_water > max_high_water) ||
3063             (fc_conf->high_water < fc_conf->low_water)) {
3064                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3065                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3066                 return -EINVAL;
3067         }
3068
3069         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3070         hw->fc.pause_time     = fc_conf->pause_time;
3071         hw->fc.high_water     = fc_conf->high_water;
3072         hw->fc.low_water      = fc_conf->low_water;
3073         hw->fc.send_xon       = fc_conf->send_xon;
3074
3075         err = e1000_setup_link_generic(hw);
3076         if (err == E1000_SUCCESS) {
3077
3078                 /* check if we want to forward MAC frames - driver doesn't have native
3079                  * capability to do that, so we'll write the registers ourselves */
3080
3081                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3082
3083                 /* set or clear MFLCN.PMCF bit depending on configuration */
3084                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3085                         rctl |= E1000_RCTL_PMCF;
3086                 else
3087                         rctl &= ~E1000_RCTL_PMCF;
3088
3089                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3090
3091                 /*
3092                  * check if we want to change flow control mode - driver doesn't have native
3093                  * capability to do that, so we'll write the registers ourselves
3094                  */
3095                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
3096
3097                 /*
3098                  * set or clear E1000_CTRL_RFCE and E1000_CTRL_TFCE bits depending
3099                  * on configuration
3100                  */
3101                 switch (fc_conf->mode) {
3102                 case RTE_FC_NONE:
3103                         ctrl &= ~E1000_CTRL_RFCE & ~E1000_CTRL_TFCE;
3104                         break;
3105                 case RTE_FC_RX_PAUSE:
3106                         ctrl |= E1000_CTRL_RFCE;
3107                         ctrl &= ~E1000_CTRL_TFCE;
3108                         break;
3109                 case RTE_FC_TX_PAUSE:
3110                         ctrl |= E1000_CTRL_TFCE;
3111                         ctrl &= ~E1000_CTRL_RFCE;
3112                         break;
3113                 case RTE_FC_FULL:
3114                         ctrl |= E1000_CTRL_RFCE | E1000_CTRL_TFCE;
3115                         break;
3116                 default:
3117                         PMD_INIT_LOG(ERR, "invalid flow control mode");
3118                         return -EINVAL;
3119                 }
3120
3121                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3122
3123                 E1000_WRITE_FLUSH(hw);
3124
3125                 return 0;
3126         }
3127
3128         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3129         return -EIO;
3130 }
3131
3132 #define E1000_RAH_POOLSEL_SHIFT      (18)
3133 static int
3134 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3135                 uint32_t index, uint32_t pool)
3136 {
3137         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3138         uint32_t rah;
3139
3140         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3141         rah = E1000_READ_REG(hw, E1000_RAH(index));
3142         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3143         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3144         return 0;
3145 }
3146
3147 static void
3148 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3149 {
3150         uint8_t addr[RTE_ETHER_ADDR_LEN];
3151         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3152
3153         memset(addr, 0, sizeof(addr));
3154
3155         e1000_rar_set(hw, addr, index);
3156 }
3157
3158 static int
3159 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3160                                 struct rte_ether_addr *addr)
3161 {
3162         eth_igb_rar_clear(dev, 0);
3163         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3164
3165         return 0;
3166 }
3167 /*
3168  * Virtual Function operations
3169  */
3170 static void
3171 igbvf_intr_disable(struct e1000_hw *hw)
3172 {
3173         PMD_INIT_FUNC_TRACE();
3174
3175         /* Clear interrupt mask to stop from interrupts being generated */
3176         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3177
3178         E1000_WRITE_FLUSH(hw);
3179 }
3180
3181 static void
3182 igbvf_stop_adapter(struct rte_eth_dev *dev)
3183 {
3184         u32 reg_val;
3185         u16 i;
3186         struct rte_eth_dev_info dev_info;
3187         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3188         int ret;
3189
3190         memset(&dev_info, 0, sizeof(dev_info));
3191         ret = eth_igbvf_infos_get(dev, &dev_info);
3192         if (ret != 0)
3193                 return;
3194
3195         /* Clear interrupt mask to stop from interrupts being generated */
3196         igbvf_intr_disable(hw);
3197
3198         /* Clear any pending interrupts, flush previous writes */
3199         E1000_READ_REG(hw, E1000_EICR);
3200
3201         /* Disable the transmit unit.  Each queue must be disabled. */
3202         for (i = 0; i < dev_info.max_tx_queues; i++)
3203                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3204
3205         /* Disable the receive unit by stopping each queue */
3206         for (i = 0; i < dev_info.max_rx_queues; i++) {
3207                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3208                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3209                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3210                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3211                         ;
3212         }
3213
3214         /* flush all queues disables */
3215         E1000_WRITE_FLUSH(hw);
3216         msec_delay(2);
3217 }
3218
3219 static int eth_igbvf_link_update(struct e1000_hw *hw)
3220 {
3221         struct e1000_mbx_info *mbx = &hw->mbx;
3222         struct e1000_mac_info *mac = &hw->mac;
3223         int ret_val = E1000_SUCCESS;
3224
3225         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3226
3227         /*
3228          * We only want to run this if there has been a rst asserted.
3229          * in this case that could mean a link change, device reset,
3230          * or a virtual function reset
3231          */
3232
3233         /* If we were hit with a reset or timeout drop the link */
3234         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3235                 mac->get_link_status = TRUE;
3236
3237         if (!mac->get_link_status)
3238                 goto out;
3239
3240         /* if link status is down no point in checking to see if pf is up */
3241         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3242                 goto out;
3243
3244         /* if we passed all the tests above then the link is up and we no
3245          * longer need to check for link */
3246         mac->get_link_status = FALSE;
3247
3248 out:
3249         return ret_val;
3250 }
3251
3252
3253 static int
3254 igbvf_dev_configure(struct rte_eth_dev *dev)
3255 {
3256         struct rte_eth_conf* conf = &dev->data->dev_conf;
3257
3258         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3259                      dev->data->port_id);
3260
3261         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3262                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3263
3264         /*
3265          * VF has no ability to enable/disable HW CRC
3266          * Keep the persistent behavior the same as Host PF
3267          */
3268 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3269         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3270                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3271                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3272         }
3273 #else
3274         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3275                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3276                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3277         }
3278 #endif
3279
3280         return 0;
3281 }
3282
3283 static int
3284 igbvf_dev_start(struct rte_eth_dev *dev)
3285 {
3286         struct e1000_hw *hw =
3287                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3288         struct e1000_adapter *adapter =
3289                 E1000_DEV_PRIVATE(dev->data->dev_private);
3290         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3291         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3292         int ret;
3293         uint32_t intr_vector = 0;
3294
3295         PMD_INIT_FUNC_TRACE();
3296
3297         hw->mac.ops.reset_hw(hw);
3298         adapter->stopped = 0;
3299
3300         /* Set all vfta */
3301         igbvf_set_vfta_all(dev,1);
3302
3303         eth_igbvf_tx_init(dev);
3304
3305         /* This can fail when allocating mbufs for descriptor rings */
3306         ret = eth_igbvf_rx_init(dev);
3307         if (ret) {
3308                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3309                 igb_dev_clear_queues(dev);
3310                 return ret;
3311         }
3312
3313         /* check and configure queue intr-vector mapping */
3314         if (rte_intr_cap_multiple(intr_handle) &&
3315             dev->data->dev_conf.intr_conf.rxq) {
3316                 intr_vector = dev->data->nb_rx_queues;
3317                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3318                 if (ret)
3319                         return ret;
3320         }
3321
3322         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3323                 intr_handle->intr_vec =
3324                         rte_zmalloc("intr_vec",
3325                                     dev->data->nb_rx_queues * sizeof(int), 0);
3326                 if (!intr_handle->intr_vec) {
3327                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3328                                      " intr_vec", dev->data->nb_rx_queues);
3329                         return -ENOMEM;
3330                 }
3331         }
3332
3333         eth_igbvf_configure_msix_intr(dev);
3334
3335         /* enable uio/vfio intr/eventfd mapping */
3336         rte_intr_enable(intr_handle);
3337
3338         /* resume enabled intr since hw reset */
3339         igbvf_intr_enable(dev);
3340
3341         return 0;
3342 }
3343
3344 static int
3345 igbvf_dev_stop(struct rte_eth_dev *dev)
3346 {
3347         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3348         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3349         struct e1000_adapter *adapter =
3350                 E1000_DEV_PRIVATE(dev->data->dev_private);
3351
3352         if (adapter->stopped)
3353                 return 0;
3354
3355         PMD_INIT_FUNC_TRACE();
3356
3357         igbvf_stop_adapter(dev);
3358
3359         /*
3360           * Clear what we set, but we still keep shadow_vfta to
3361           * restore after device starts
3362           */
3363         igbvf_set_vfta_all(dev,0);
3364
3365         igb_dev_clear_queues(dev);
3366
3367         /* disable intr eventfd mapping */
3368         rte_intr_disable(intr_handle);
3369
3370         /* Clean datapath event and queue/vec mapping */
3371         rte_intr_efd_disable(intr_handle);
3372         if (intr_handle->intr_vec) {
3373                 rte_free(intr_handle->intr_vec);
3374                 intr_handle->intr_vec = NULL;
3375         }
3376
3377         adapter->stopped = true;
3378         dev->data->dev_started = 0;
3379
3380         return 0;
3381 }
3382
3383 static int
3384 igbvf_dev_close(struct rte_eth_dev *dev)
3385 {
3386         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3387         struct rte_ether_addr addr;
3388         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3389         int ret;
3390
3391         PMD_INIT_FUNC_TRACE();
3392
3393         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3394                 return 0;
3395
3396         e1000_reset_hw(hw);
3397
3398         ret = igbvf_dev_stop(dev);
3399         if (ret != 0)
3400                 return ret;
3401
3402         igb_dev_free_queues(dev);
3403
3404         /**
3405          * reprogram the RAR with a zero mac address,
3406          * to ensure that the VF traffic goes to the PF
3407          * after stop, close and detach of the VF.
3408          **/
3409
3410         memset(&addr, 0, sizeof(addr));
3411         igbvf_default_mac_addr_set(dev, &addr);
3412
3413         rte_intr_callback_unregister(&pci_dev->intr_handle,
3414                                      eth_igbvf_interrupt_handler,
3415                                      (void *)dev);
3416
3417         return 0;
3418 }
3419
3420 static int
3421 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3422 {
3423         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3424
3425         /* Set both unicast and multicast promisc */
3426         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3427
3428         return 0;
3429 }
3430
3431 static int
3432 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3433 {
3434         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3435
3436         /* If in allmulticast mode leave multicast promisc */
3437         if (dev->data->all_multicast == 1)
3438                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3439         else
3440                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3441
3442         return 0;
3443 }
3444
3445 static int
3446 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3447 {
3448         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3449
3450         /* In promiscuous mode multicast promisc already set */
3451         if (dev->data->promiscuous == 0)
3452                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3453
3454         return 0;
3455 }
3456
3457 static int
3458 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3459 {
3460         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3461
3462         /* In promiscuous mode leave multicast promisc enabled */
3463         if (dev->data->promiscuous == 0)
3464                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3465
3466         return 0;
3467 }
3468
3469 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3470 {
3471         struct e1000_mbx_info *mbx = &hw->mbx;
3472         uint32_t msgbuf[2];
3473         s32 err;
3474
3475         /* After set vlan, vlan strip will also be enabled in igb driver*/
3476         msgbuf[0] = E1000_VF_SET_VLAN;
3477         msgbuf[1] = vid;
3478         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3479         if (on)
3480                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3481
3482         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3483         if (err)
3484                 goto mbx_err;
3485
3486         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3487         if (err)
3488                 goto mbx_err;
3489
3490         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3491         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3492                 err = -EINVAL;
3493
3494 mbx_err:
3495         return err;
3496 }
3497
3498 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3499 {
3500         struct e1000_hw *hw =
3501                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3502         struct e1000_vfta * shadow_vfta =
3503                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3504         int i = 0, j = 0, vfta = 0, mask = 1;
3505
3506         for (i = 0; i < IGB_VFTA_SIZE; i++){
3507                 vfta = shadow_vfta->vfta[i];
3508                 if(vfta){
3509                         mask = 1;
3510                         for (j = 0; j < 32; j++){
3511                                 if(vfta & mask)
3512                                         igbvf_set_vfta(hw,
3513                                                 (uint16_t)((i<<5)+j), on);
3514                                 mask<<=1;
3515                         }
3516                 }
3517         }
3518
3519 }
3520
3521 static int
3522 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3523 {
3524         struct e1000_hw *hw =
3525                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3526         struct e1000_vfta * shadow_vfta =
3527                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3528         uint32_t vid_idx = 0;
3529         uint32_t vid_bit = 0;
3530         int ret = 0;
3531
3532         PMD_INIT_FUNC_TRACE();
3533
3534         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3535         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3536         if(ret){
3537                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3538                 return ret;
3539         }
3540         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3541         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3542
3543         /*Save what we set and retore it after device reset*/
3544         if (on)
3545                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3546         else
3547                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3548
3549         return 0;
3550 }
3551
3552 static int
3553 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3554 {
3555         struct e1000_hw *hw =
3556                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3557
3558         /* index is not used by rar_set() */
3559         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3560         return 0;
3561 }
3562
3563
3564 static int
3565 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3566                         struct rte_eth_rss_reta_entry64 *reta_conf,
3567                         uint16_t reta_size)
3568 {
3569         uint8_t i, j, mask;
3570         uint32_t reta, r;
3571         uint16_t idx, shift;
3572         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3573
3574         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3575                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3576                         "(%d) doesn't match the number hardware can supported "
3577                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3578                 return -EINVAL;
3579         }
3580
3581         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3582                 idx = i / RTE_RETA_GROUP_SIZE;
3583                 shift = i % RTE_RETA_GROUP_SIZE;
3584                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3585                                                 IGB_4_BIT_MASK);
3586                 if (!mask)
3587                         continue;
3588                 if (mask == IGB_4_BIT_MASK)
3589                         r = 0;
3590                 else
3591                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3592                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3593                         if (mask & (0x1 << j))
3594                                 reta |= reta_conf[idx].reta[shift + j] <<
3595                                                         (CHAR_BIT * j);
3596                         else
3597                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3598                 }
3599                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3600         }
3601
3602         return 0;
3603 }
3604
3605 static int
3606 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3607                        struct rte_eth_rss_reta_entry64 *reta_conf,
3608                        uint16_t reta_size)
3609 {
3610         uint8_t i, j, mask;
3611         uint32_t reta;
3612         uint16_t idx, shift;
3613         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3614
3615         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3616                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3617                         "(%d) doesn't match the number hardware can supported "
3618                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3619                 return -EINVAL;
3620         }
3621
3622         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3623                 idx = i / RTE_RETA_GROUP_SIZE;
3624                 shift = i % RTE_RETA_GROUP_SIZE;
3625                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3626                                                 IGB_4_BIT_MASK);
3627                 if (!mask)
3628                         continue;
3629                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3630                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3631                         if (mask & (0x1 << j))
3632                                 reta_conf[idx].reta[shift + j] =
3633                                         ((reta >> (CHAR_BIT * j)) &
3634                                                 IGB_8_BIT_MASK);
3635                 }
3636         }
3637
3638         return 0;
3639 }
3640
3641 int
3642 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3643                         struct rte_eth_syn_filter *filter,
3644                         bool add)
3645 {
3646         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3647         struct e1000_filter_info *filter_info =
3648                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3649         uint32_t synqf, rfctl;
3650
3651         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3652                 return -EINVAL;
3653
3654         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3655
3656         if (add) {
3657                 if (synqf & E1000_SYN_FILTER_ENABLE)
3658                         return -EINVAL;
3659
3660                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3661                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3662
3663                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3664                 if (filter->hig_pri)
3665                         rfctl |= E1000_RFCTL_SYNQFP;
3666                 else
3667                         rfctl &= ~E1000_RFCTL_SYNQFP;
3668
3669                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3670         } else {
3671                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3672                         return -ENOENT;
3673                 synqf = 0;
3674         }
3675
3676         filter_info->syn_info = synqf;
3677         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3678         E1000_WRITE_FLUSH(hw);
3679         return 0;
3680 }
3681
3682 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3683 static inline int
3684 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3685                         struct e1000_2tuple_filter_info *filter_info)
3686 {
3687         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3688                 return -EINVAL;
3689         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3690                 return -EINVAL;  /* filter index is out of range. */
3691         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3692                 return -EINVAL;  /* flags is invalid. */
3693
3694         switch (filter->dst_port_mask) {
3695         case UINT16_MAX:
3696                 filter_info->dst_port_mask = 0;
3697                 filter_info->dst_port = filter->dst_port;
3698                 break;
3699         case 0:
3700                 filter_info->dst_port_mask = 1;
3701                 break;
3702         default:
3703                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3704                 return -EINVAL;
3705         }
3706
3707         switch (filter->proto_mask) {
3708         case UINT8_MAX:
3709                 filter_info->proto_mask = 0;
3710                 filter_info->proto = filter->proto;
3711                 break;
3712         case 0:
3713                 filter_info->proto_mask = 1;
3714                 break;
3715         default:
3716                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3717                 return -EINVAL;
3718         }
3719
3720         filter_info->priority = (uint8_t)filter->priority;
3721         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3722                 filter_info->tcp_flags = filter->tcp_flags;
3723         else
3724                 filter_info->tcp_flags = 0;
3725
3726         return 0;
3727 }
3728
3729 static inline struct e1000_2tuple_filter *
3730 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3731                         struct e1000_2tuple_filter_info *key)
3732 {
3733         struct e1000_2tuple_filter *it;
3734
3735         TAILQ_FOREACH(it, filter_list, entries) {
3736                 if (memcmp(key, &it->filter_info,
3737                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3738                         return it;
3739                 }
3740         }
3741         return NULL;
3742 }
3743
3744 /* inject a igb 2tuple filter to HW */
3745 static inline void
3746 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3747                            struct e1000_2tuple_filter *filter)
3748 {
3749         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3750         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3751         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3752         int i;
3753
3754         i = filter->index;
3755         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3756         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3757                 imir |= E1000_IMIR_PORT_BP;
3758         else
3759                 imir &= ~E1000_IMIR_PORT_BP;
3760
3761         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3762
3763         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3764         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3765         ttqf |= (uint32_t)(filter->filter_info.proto &
3766                                                 E1000_TTQF_PROTOCOL_MASK);
3767         if (filter->filter_info.proto_mask == 0)
3768                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3769
3770         /* tcp flags bits setting. */
3771         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3772                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3773                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3774                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3775                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3776                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3777                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3778                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3779                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3780                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3781                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3782                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3783                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3784         } else {
3785                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3786         }
3787         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3788         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3789         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3790 }
3791
3792 /*
3793  * igb_add_2tuple_filter - add a 2tuple filter
3794  *
3795  * @param
3796  * dev: Pointer to struct rte_eth_dev.
3797  * ntuple_filter: ponter to the filter that will be added.
3798  *
3799  * @return
3800  *    - On success, zero.
3801  *    - On failure, a negative value.
3802  */
3803 static int
3804 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3805                         struct rte_eth_ntuple_filter *ntuple_filter)
3806 {
3807         struct e1000_filter_info *filter_info =
3808                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3809         struct e1000_2tuple_filter *filter;
3810         int i, ret;
3811
3812         filter = rte_zmalloc("e1000_2tuple_filter",
3813                         sizeof(struct e1000_2tuple_filter), 0);
3814         if (filter == NULL)
3815                 return -ENOMEM;
3816
3817         ret = ntuple_filter_to_2tuple(ntuple_filter,
3818                                       &filter->filter_info);
3819         if (ret < 0) {
3820                 rte_free(filter);
3821                 return ret;
3822         }
3823         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3824                                          &filter->filter_info) != NULL) {
3825                 PMD_DRV_LOG(ERR, "filter exists.");
3826                 rte_free(filter);
3827                 return -EEXIST;
3828         }
3829         filter->queue = ntuple_filter->queue;
3830
3831         /*
3832          * look for an unused 2tuple filter index,
3833          * and insert the filter to list.
3834          */
3835         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3836                 if (!(filter_info->twotuple_mask & (1 << i))) {
3837                         filter_info->twotuple_mask |= 1 << i;
3838                         filter->index = i;
3839                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3840                                           filter,
3841                                           entries);
3842                         break;
3843                 }
3844         }
3845         if (i >= E1000_MAX_TTQF_FILTERS) {
3846                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3847                 rte_free(filter);
3848                 return -ENOSYS;
3849         }
3850
3851         igb_inject_2uple_filter(dev, filter);
3852         return 0;
3853 }
3854
3855 int
3856 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3857                         struct e1000_2tuple_filter *filter)
3858 {
3859         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3860         struct e1000_filter_info *filter_info =
3861                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3862
3863         filter_info->twotuple_mask &= ~(1 << filter->index);
3864         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3865         rte_free(filter);
3866
3867         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3868         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3869         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3870         return 0;
3871 }
3872
3873 /*
3874  * igb_remove_2tuple_filter - remove a 2tuple filter
3875  *
3876  * @param
3877  * dev: Pointer to struct rte_eth_dev.
3878  * ntuple_filter: ponter to the filter that will be removed.
3879  *
3880  * @return
3881  *    - On success, zero.
3882  *    - On failure, a negative value.
3883  */
3884 static int
3885 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3886                         struct rte_eth_ntuple_filter *ntuple_filter)
3887 {
3888         struct e1000_filter_info *filter_info =
3889                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3890         struct e1000_2tuple_filter_info filter_2tuple;
3891         struct e1000_2tuple_filter *filter;
3892         int ret;
3893
3894         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3895         ret = ntuple_filter_to_2tuple(ntuple_filter,
3896                                       &filter_2tuple);
3897         if (ret < 0)
3898                 return ret;
3899
3900         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3901                                          &filter_2tuple);
3902         if (filter == NULL) {
3903                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3904                 return -ENOENT;
3905         }
3906
3907         igb_delete_2tuple_filter(dev, filter);
3908
3909         return 0;
3910 }
3911
3912 /* inject a igb flex filter to HW */
3913 static inline void
3914 igb_inject_flex_filter(struct rte_eth_dev *dev,
3915                            struct e1000_flex_filter *filter)
3916 {
3917         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3918         uint32_t wufc, queueing;
3919         uint32_t reg_off;
3920         uint8_t i, j = 0;
3921
3922         wufc = E1000_READ_REG(hw, E1000_WUFC);
3923         if (filter->index < E1000_MAX_FHFT)
3924                 reg_off = E1000_FHFT(filter->index);
3925         else
3926                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3927
3928         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3929                         (E1000_WUFC_FLX0 << filter->index));
3930         queueing = filter->filter_info.len |
3931                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3932                 (filter->filter_info.priority <<
3933                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3934         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3935                         queueing);
3936
3937         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3938                 E1000_WRITE_REG(hw, reg_off,
3939                                 filter->filter_info.dwords[j]);
3940                 reg_off += sizeof(uint32_t);
3941                 E1000_WRITE_REG(hw, reg_off,
3942                                 filter->filter_info.dwords[++j]);
3943                 reg_off += sizeof(uint32_t);
3944                 E1000_WRITE_REG(hw, reg_off,
3945                         (uint32_t)filter->filter_info.mask[i]);
3946                 reg_off += sizeof(uint32_t) * 2;
3947                 ++j;
3948         }
3949 }
3950
3951 static inline struct e1000_flex_filter *
3952 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3953                         struct e1000_flex_filter_info *key)
3954 {
3955         struct e1000_flex_filter *it;
3956
3957         TAILQ_FOREACH(it, filter_list, entries) {
3958                 if (memcmp(key, &it->filter_info,
3959                         sizeof(struct e1000_flex_filter_info)) == 0)
3960                         return it;
3961         }
3962
3963         return NULL;
3964 }
3965
3966 /* remove a flex byte filter
3967  * @param
3968  * dev: Pointer to struct rte_eth_dev.
3969  * filter: the pointer of the filter will be removed.
3970  */
3971 void
3972 igb_remove_flex_filter(struct rte_eth_dev *dev,
3973                         struct e1000_flex_filter *filter)
3974 {
3975         struct e1000_filter_info *filter_info =
3976                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3977         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3978         uint32_t wufc, i;
3979         uint32_t reg_off;
3980
3981         wufc = E1000_READ_REG(hw, E1000_WUFC);
3982         if (filter->index < E1000_MAX_FHFT)
3983                 reg_off = E1000_FHFT(filter->index);
3984         else
3985                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3986
3987         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3988                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3989
3990         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3991                 (~(E1000_WUFC_FLX0 << filter->index)));
3992
3993         filter_info->flex_mask &= ~(1 << filter->index);
3994         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
3995         rte_free(filter);
3996 }
3997
3998 int
3999 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4000                         struct igb_flex_filter *filter,
4001                         bool add)
4002 {
4003         struct e1000_filter_info *filter_info =
4004                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4005         struct e1000_flex_filter *flex_filter, *it;
4006         uint32_t mask;
4007         uint8_t shift, i;
4008
4009         flex_filter = rte_zmalloc("e1000_flex_filter",
4010                         sizeof(struct e1000_flex_filter), 0);
4011         if (flex_filter == NULL)
4012                 return -ENOMEM;
4013
4014         flex_filter->filter_info.len = filter->len;
4015         flex_filter->filter_info.priority = filter->priority;
4016         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4017         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4018                 mask = 0;
4019                 /* reverse bits in flex filter's mask*/
4020                 for (shift = 0; shift < CHAR_BIT; shift++) {
4021                         if (filter->mask[i] & (0x01 << shift))
4022                                 mask |= (0x80 >> shift);
4023                 }
4024                 flex_filter->filter_info.mask[i] = mask;
4025         }
4026
4027         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4028                                 &flex_filter->filter_info);
4029         if (it == NULL && !add) {
4030                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4031                 rte_free(flex_filter);
4032                 return -ENOENT;
4033         }
4034         if (it != NULL && add) {
4035                 PMD_DRV_LOG(ERR, "filter exists.");
4036                 rte_free(flex_filter);
4037                 return -EEXIST;
4038         }
4039
4040         if (add) {
4041                 flex_filter->queue = filter->queue;
4042                 /*
4043                  * look for an unused flex filter index
4044                  * and insert the filter into the list.
4045                  */
4046                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4047                         if (!(filter_info->flex_mask & (1 << i))) {
4048                                 filter_info->flex_mask |= 1 << i;
4049                                 flex_filter->index = i;
4050                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4051                                         flex_filter,
4052                                         entries);
4053                                 break;
4054                         }
4055                 }
4056                 if (i >= E1000_MAX_FLEX_FILTERS) {
4057                         PMD_DRV_LOG(ERR, "flex filters are full.");
4058                         rte_free(flex_filter);
4059                         return -ENOSYS;
4060                 }
4061
4062                 igb_inject_flex_filter(dev, flex_filter);
4063
4064         } else {
4065                 igb_remove_flex_filter(dev, it);
4066                 rte_free(flex_filter);
4067         }
4068
4069         return 0;
4070 }
4071
4072 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4073 static inline int
4074 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4075                         struct e1000_5tuple_filter_info *filter_info)
4076 {
4077         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4078                 return -EINVAL;
4079         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4080                 return -EINVAL;  /* filter index is out of range. */
4081         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4082                 return -EINVAL;  /* flags is invalid. */
4083
4084         switch (filter->dst_ip_mask) {
4085         case UINT32_MAX:
4086                 filter_info->dst_ip_mask = 0;
4087                 filter_info->dst_ip = filter->dst_ip;
4088                 break;
4089         case 0:
4090                 filter_info->dst_ip_mask = 1;
4091                 break;
4092         default:
4093                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4094                 return -EINVAL;
4095         }
4096
4097         switch (filter->src_ip_mask) {
4098         case UINT32_MAX:
4099                 filter_info->src_ip_mask = 0;
4100                 filter_info->src_ip = filter->src_ip;
4101                 break;
4102         case 0:
4103                 filter_info->src_ip_mask = 1;
4104                 break;
4105         default:
4106                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4107                 return -EINVAL;
4108         }
4109
4110         switch (filter->dst_port_mask) {
4111         case UINT16_MAX:
4112                 filter_info->dst_port_mask = 0;
4113                 filter_info->dst_port = filter->dst_port;
4114                 break;
4115         case 0:
4116                 filter_info->dst_port_mask = 1;
4117                 break;
4118         default:
4119                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4120                 return -EINVAL;
4121         }
4122
4123         switch (filter->src_port_mask) {
4124         case UINT16_MAX:
4125                 filter_info->src_port_mask = 0;
4126                 filter_info->src_port = filter->src_port;
4127                 break;
4128         case 0:
4129                 filter_info->src_port_mask = 1;
4130                 break;
4131         default:
4132                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4133                 return -EINVAL;
4134         }
4135
4136         switch (filter->proto_mask) {
4137         case UINT8_MAX:
4138                 filter_info->proto_mask = 0;
4139                 filter_info->proto = filter->proto;
4140                 break;
4141         case 0:
4142                 filter_info->proto_mask = 1;
4143                 break;
4144         default:
4145                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4146                 return -EINVAL;
4147         }
4148
4149         filter_info->priority = (uint8_t)filter->priority;
4150         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4151                 filter_info->tcp_flags = filter->tcp_flags;
4152         else
4153                 filter_info->tcp_flags = 0;
4154
4155         return 0;
4156 }
4157
4158 static inline struct e1000_5tuple_filter *
4159 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4160                         struct e1000_5tuple_filter_info *key)
4161 {
4162         struct e1000_5tuple_filter *it;
4163
4164         TAILQ_FOREACH(it, filter_list, entries) {
4165                 if (memcmp(key, &it->filter_info,
4166                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4167                         return it;
4168                 }
4169         }
4170         return NULL;
4171 }
4172
4173 /* inject a igb 5-tuple filter to HW */
4174 static inline void
4175 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4176                            struct e1000_5tuple_filter *filter)
4177 {
4178         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4179         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4180         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4181         uint8_t i;
4182
4183         i = filter->index;
4184         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4185         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4186                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4187         if (filter->filter_info.dst_ip_mask == 0)
4188                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4189         if (filter->filter_info.src_port_mask == 0)
4190                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4191         if (filter->filter_info.proto_mask == 0)
4192                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4193         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4194                 E1000_FTQF_QUEUE_MASK;
4195         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4196         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4197         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4198         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4199
4200         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4201         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4202
4203         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4204         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4205                 imir |= E1000_IMIR_PORT_BP;
4206         else
4207                 imir &= ~E1000_IMIR_PORT_BP;
4208         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4209
4210         /* tcp flags bits setting. */
4211         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4212                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4213                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4214                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4215                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4216                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4217                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4218                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4219                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4220                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4221                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4222                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4223                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4224         } else {
4225                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4226         }
4227         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4228         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4229 }
4230
4231 /*
4232  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4233  *
4234  * @param
4235  * dev: Pointer to struct rte_eth_dev.
4236  * ntuple_filter: ponter to the filter that will be added.
4237  *
4238  * @return
4239  *    - On success, zero.
4240  *    - On failure, a negative value.
4241  */
4242 static int
4243 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4244                         struct rte_eth_ntuple_filter *ntuple_filter)
4245 {
4246         struct e1000_filter_info *filter_info =
4247                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4248         struct e1000_5tuple_filter *filter;
4249         uint8_t i;
4250         int ret;
4251
4252         filter = rte_zmalloc("e1000_5tuple_filter",
4253                         sizeof(struct e1000_5tuple_filter), 0);
4254         if (filter == NULL)
4255                 return -ENOMEM;
4256
4257         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4258                                             &filter->filter_info);
4259         if (ret < 0) {
4260                 rte_free(filter);
4261                 return ret;
4262         }
4263
4264         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4265                                          &filter->filter_info) != NULL) {
4266                 PMD_DRV_LOG(ERR, "filter exists.");
4267                 rte_free(filter);
4268                 return -EEXIST;
4269         }
4270         filter->queue = ntuple_filter->queue;
4271
4272         /*
4273          * look for an unused 5tuple filter index,
4274          * and insert the filter to list.
4275          */
4276         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4277                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4278                         filter_info->fivetuple_mask |= 1 << i;
4279                         filter->index = i;
4280                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4281                                           filter,
4282                                           entries);
4283                         break;
4284                 }
4285         }
4286         if (i >= E1000_MAX_FTQF_FILTERS) {
4287                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4288                 rte_free(filter);
4289                 return -ENOSYS;
4290         }
4291
4292         igb_inject_5tuple_filter_82576(dev, filter);
4293         return 0;
4294 }
4295
4296 int
4297 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4298                                 struct e1000_5tuple_filter *filter)
4299 {
4300         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4301         struct e1000_filter_info *filter_info =
4302                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4303
4304         filter_info->fivetuple_mask &= ~(1 << filter->index);
4305         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4306         rte_free(filter);
4307
4308         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4309                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4310         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4311         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4312         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4313         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4314         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4315         return 0;
4316 }
4317
4318 /*
4319  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4320  *
4321  * @param
4322  * dev: Pointer to struct rte_eth_dev.
4323  * ntuple_filter: ponter to the filter that will be removed.
4324  *
4325  * @return
4326  *    - On success, zero.
4327  *    - On failure, a negative value.
4328  */
4329 static int
4330 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4331                                 struct rte_eth_ntuple_filter *ntuple_filter)
4332 {
4333         struct e1000_filter_info *filter_info =
4334                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4335         struct e1000_5tuple_filter_info filter_5tuple;
4336         struct e1000_5tuple_filter *filter;
4337         int ret;
4338
4339         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4340         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4341                                             &filter_5tuple);
4342         if (ret < 0)
4343                 return ret;
4344
4345         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4346                                          &filter_5tuple);
4347         if (filter == NULL) {
4348                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4349                 return -ENOENT;
4350         }
4351
4352         igb_delete_5tuple_filter_82576(dev, filter);
4353
4354         return 0;
4355 }
4356
4357 static int
4358 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4359 {
4360         uint32_t rctl;
4361         struct e1000_hw *hw;
4362         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4363
4364         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4365
4366 #ifdef RTE_LIBRTE_82571_SUPPORT
4367         /* XXX: not bigger than max_rx_pktlen */
4368         if (hw->mac.type == e1000_82571)
4369                 return -ENOTSUP;
4370 #endif
4371         /*
4372          * If device is started, refuse mtu that requires the support of
4373          * scattered packets when this feature has not been enabled before.
4374          */
4375         if (dev->data->dev_started && !dev->data->scattered_rx &&
4376             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
4377                 PMD_INIT_LOG(ERR, "Stop port first.");
4378                 return -EINVAL;
4379         }
4380
4381         rctl = E1000_READ_REG(hw, E1000_RCTL);
4382
4383         /* switch to jumbo mode if needed */
4384         if (mtu > RTE_ETHER_MTU)
4385                 rctl |= E1000_RCTL_LPE;
4386         else
4387                 rctl &= ~E1000_RCTL_LPE;
4388         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4389
4390         E1000_WRITE_REG(hw, E1000_RLPML, frame_size);
4391
4392         return 0;
4393 }
4394
4395 /*
4396  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4397  *
4398  * @param
4399  * dev: Pointer to struct rte_eth_dev.
4400  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4401  * add: if true, add filter, if false, remove filter
4402  *
4403  * @return
4404  *    - On success, zero.
4405  *    - On failure, a negative value.
4406  */
4407 int
4408 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4409                         struct rte_eth_ntuple_filter *ntuple_filter,
4410                         bool add)
4411 {
4412         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4413         int ret;
4414
4415         switch (ntuple_filter->flags) {
4416         case RTE_5TUPLE_FLAGS:
4417         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4418                 if (hw->mac.type != e1000_82576)
4419                         return -ENOTSUP;
4420                 if (add)
4421                         ret = igb_add_5tuple_filter_82576(dev,
4422                                                           ntuple_filter);
4423                 else
4424                         ret = igb_remove_5tuple_filter_82576(dev,
4425                                                              ntuple_filter);
4426                 break;
4427         case RTE_2TUPLE_FLAGS:
4428         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4429                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4430                         hw->mac.type != e1000_i210 &&
4431                         hw->mac.type != e1000_i211)
4432                         return -ENOTSUP;
4433                 if (add)
4434                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4435                 else
4436                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4437                 break;
4438         default:
4439                 ret = -EINVAL;
4440                 break;
4441         }
4442
4443         return ret;
4444 }
4445
4446 static inline int
4447 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4448                         uint16_t ethertype)
4449 {
4450         int i;
4451
4452         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4453                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4454                     (filter_info->ethertype_mask & (1 << i)))
4455                         return i;
4456         }
4457         return -1;
4458 }
4459
4460 static inline int
4461 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4462                         uint16_t ethertype, uint32_t etqf)
4463 {
4464         int i;
4465
4466         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4467                 if (!(filter_info->ethertype_mask & (1 << i))) {
4468                         filter_info->ethertype_mask |= 1 << i;
4469                         filter_info->ethertype_filters[i].ethertype = ethertype;
4470                         filter_info->ethertype_filters[i].etqf = etqf;
4471                         return i;
4472                 }
4473         }
4474         return -1;
4475 }
4476
4477 int
4478 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4479                         uint8_t idx)
4480 {
4481         if (idx >= E1000_MAX_ETQF_FILTERS)
4482                 return -1;
4483         filter_info->ethertype_mask &= ~(1 << idx);
4484         filter_info->ethertype_filters[idx].ethertype = 0;
4485         filter_info->ethertype_filters[idx].etqf = 0;
4486         return idx;
4487 }
4488
4489
4490 int
4491 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4492                         struct rte_eth_ethertype_filter *filter,
4493                         bool add)
4494 {
4495         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4496         struct e1000_filter_info *filter_info =
4497                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4498         uint32_t etqf = 0;
4499         int ret;
4500
4501         if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4502                 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4503                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4504                         " ethertype filter.", filter->ether_type);
4505                 return -EINVAL;
4506         }
4507
4508         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4509                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4510                 return -EINVAL;
4511         }
4512         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4513                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4514                 return -EINVAL;
4515         }
4516
4517         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4518         if (ret >= 0 && add) {
4519                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4520                             filter->ether_type);
4521                 return -EEXIST;
4522         }
4523         if (ret < 0 && !add) {
4524                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4525                             filter->ether_type);
4526                 return -ENOENT;
4527         }
4528
4529         if (add) {
4530                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4531                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4532                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4533                 ret = igb_ethertype_filter_insert(filter_info,
4534                                 filter->ether_type, etqf);
4535                 if (ret < 0) {
4536                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4537                         return -ENOSYS;
4538                 }
4539         } else {
4540                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4541                 if (ret < 0)
4542                         return -ENOSYS;
4543         }
4544         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4545         E1000_WRITE_FLUSH(hw);
4546
4547         return 0;
4548 }
4549
4550 static int
4551 eth_igb_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
4552                      const struct rte_flow_ops **ops)
4553 {
4554         *ops = &igb_flow_ops;
4555         return 0;
4556 }
4557
4558 static int
4559 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4560                          struct rte_ether_addr *mc_addr_set,
4561                          uint32_t nb_mc_addr)
4562 {
4563         struct e1000_hw *hw;
4564
4565         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4566         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4567         return 0;
4568 }
4569
4570 static uint64_t
4571 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4572 {
4573         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4574         uint64_t systime_cycles;
4575
4576         switch (hw->mac.type) {
4577         case e1000_i210:
4578         case e1000_i211:
4579                 /*
4580                  * Need to read System Time Residue Register to be able
4581                  * to read the other two registers.
4582                  */
4583                 E1000_READ_REG(hw, E1000_SYSTIMR);
4584                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4585                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4586                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4587                                 * NSEC_PER_SEC;
4588                 break;
4589         case e1000_82580:
4590         case e1000_i350:
4591         case e1000_i354:
4592                 /*
4593                  * Need to read System Time Residue Register to be able
4594                  * to read the other two registers.
4595                  */
4596                 E1000_READ_REG(hw, E1000_SYSTIMR);
4597                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4598                 /* Only the 8 LSB are valid. */
4599                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4600                                 & 0xff) << 32;
4601                 break;
4602         default:
4603                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4604                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4605                                 << 32;
4606                 break;
4607         }
4608
4609         return systime_cycles;
4610 }
4611
4612 static uint64_t
4613 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4614 {
4615         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4616         uint64_t rx_tstamp_cycles;
4617
4618         switch (hw->mac.type) {
4619         case e1000_i210:
4620         case e1000_i211:
4621                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4622                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4623                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4624                                 * NSEC_PER_SEC;
4625                 break;
4626         case e1000_82580:
4627         case e1000_i350:
4628         case e1000_i354:
4629                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4630                 /* Only the 8 LSB are valid. */
4631                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4632                                 & 0xff) << 32;
4633                 break;
4634         default:
4635                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4636                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4637                                 << 32;
4638                 break;
4639         }
4640
4641         return rx_tstamp_cycles;
4642 }
4643
4644 static uint64_t
4645 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4646 {
4647         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4648         uint64_t tx_tstamp_cycles;
4649
4650         switch (hw->mac.type) {
4651         case e1000_i210:
4652         case e1000_i211:
4653                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4654                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4655                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4656                                 * NSEC_PER_SEC;
4657                 break;
4658         case e1000_82580:
4659         case e1000_i350:
4660         case e1000_i354:
4661                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4662                 /* Only the 8 LSB are valid. */
4663                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4664                                 & 0xff) << 32;
4665                 break;
4666         default:
4667                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4668                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4669                                 << 32;
4670                 break;
4671         }
4672
4673         return tx_tstamp_cycles;
4674 }
4675
4676 static void
4677 igb_start_timecounters(struct rte_eth_dev *dev)
4678 {
4679         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4680         struct e1000_adapter *adapter = dev->data->dev_private;
4681         uint32_t incval = 1;
4682         uint32_t shift = 0;
4683         uint64_t mask = E1000_CYCLECOUNTER_MASK;
4684
4685         switch (hw->mac.type) {
4686         case e1000_82580:
4687         case e1000_i350:
4688         case e1000_i354:
4689                 /* 32 LSB bits + 8 MSB bits = 40 bits */
4690                 mask = (1ULL << 40) - 1;
4691                 /* fall-through */
4692         case e1000_i210:
4693         case e1000_i211:
4694                 /*
4695                  * Start incrementing the register
4696                  * used to timestamp PTP packets.
4697                  */
4698                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4699                 break;
4700         case e1000_82576:
4701                 incval = E1000_INCVALUE_82576;
4702                 shift = IGB_82576_TSYNC_SHIFT;
4703                 E1000_WRITE_REG(hw, E1000_TIMINCA,
4704                                 E1000_INCPERIOD_82576 | incval);
4705                 break;
4706         default:
4707                 /* Not supported */
4708                 return;
4709         }
4710
4711         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
4712         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4713         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4714
4715         adapter->systime_tc.cc_mask = mask;
4716         adapter->systime_tc.cc_shift = shift;
4717         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
4718
4719         adapter->rx_tstamp_tc.cc_mask = mask;
4720         adapter->rx_tstamp_tc.cc_shift = shift;
4721         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4722
4723         adapter->tx_tstamp_tc.cc_mask = mask;
4724         adapter->tx_tstamp_tc.cc_shift = shift;
4725         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4726 }
4727
4728 static int
4729 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4730 {
4731         struct e1000_adapter *adapter = dev->data->dev_private;
4732
4733         adapter->systime_tc.nsec += delta;
4734         adapter->rx_tstamp_tc.nsec += delta;
4735         adapter->tx_tstamp_tc.nsec += delta;
4736
4737         return 0;
4738 }
4739
4740 static int
4741 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
4742 {
4743         uint64_t ns;
4744         struct e1000_adapter *adapter = dev->data->dev_private;
4745
4746         ns = rte_timespec_to_ns(ts);
4747
4748         /* Set the timecounters to a new value. */
4749         adapter->systime_tc.nsec = ns;
4750         adapter->rx_tstamp_tc.nsec = ns;
4751         adapter->tx_tstamp_tc.nsec = ns;
4752
4753         return 0;
4754 }
4755
4756 static int
4757 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
4758 {
4759         uint64_t ns, systime_cycles;
4760         struct e1000_adapter *adapter = dev->data->dev_private;
4761
4762         systime_cycles = igb_read_systime_cyclecounter(dev);
4763         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
4764         *ts = rte_ns_to_timespec(ns);
4765
4766         return 0;
4767 }
4768
4769 static int
4770 igb_timesync_enable(struct rte_eth_dev *dev)
4771 {
4772         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4773         uint32_t tsync_ctl;
4774         uint32_t tsauxc;
4775
4776         /* Stop the timesync system time. */
4777         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
4778         /* Reset the timesync system time value. */
4779         switch (hw->mac.type) {
4780         case e1000_82580:
4781         case e1000_i350:
4782         case e1000_i354:
4783         case e1000_i210:
4784         case e1000_i211:
4785                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
4786                 /* fall-through */
4787         case e1000_82576:
4788                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
4789                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
4790                 break;
4791         default:
4792                 /* Not supported. */
4793                 return -ENOTSUP;
4794         }
4795
4796         /* Enable system time for it isn't on by default. */
4797         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
4798         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
4799         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
4800
4801         igb_start_timecounters(dev);
4802
4803         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4804         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
4805                         (RTE_ETHER_TYPE_1588 |
4806                          E1000_ETQF_FILTER_ENABLE |
4807                          E1000_ETQF_1588));
4808
4809         /* Enable timestamping of received PTP packets. */
4810         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4811         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
4812         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4813
4814         /* Enable Timestamping of transmitted PTP packets. */
4815         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4816         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
4817         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4818
4819         return 0;
4820 }
4821
4822 static int
4823 igb_timesync_disable(struct rte_eth_dev *dev)
4824 {
4825         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4826         uint32_t tsync_ctl;
4827
4828         /* Disable timestamping of transmitted PTP packets. */
4829         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4830         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
4831         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4832
4833         /* Disable timestamping of received PTP packets. */
4834         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4835         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
4836         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4837
4838         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4839         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
4840
4841         /* Stop incrementating the System Time registers. */
4842         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
4843
4844         return 0;
4845 }
4846
4847 static int
4848 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4849                                struct timespec *timestamp,
4850                                uint32_t flags __rte_unused)
4851 {
4852         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4853         struct e1000_adapter *adapter = dev->data->dev_private;
4854         uint32_t tsync_rxctl;
4855         uint64_t rx_tstamp_cycles;
4856         uint64_t ns;
4857
4858         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4859         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
4860                 return -EINVAL;
4861
4862         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
4863         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
4864         *timestamp = rte_ns_to_timespec(ns);
4865
4866         return  0;
4867 }
4868
4869 static int
4870 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4871                                struct timespec *timestamp)
4872 {
4873         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4874         struct e1000_adapter *adapter = dev->data->dev_private;
4875         uint32_t tsync_txctl;
4876         uint64_t tx_tstamp_cycles;
4877         uint64_t ns;
4878
4879         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4880         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
4881                 return -EINVAL;
4882
4883         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
4884         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
4885         *timestamp = rte_ns_to_timespec(ns);
4886
4887         return  0;
4888 }
4889
4890 static int
4891 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4892 {
4893         int count = 0;
4894         int g_ind = 0;
4895         const struct reg_info *reg_group;
4896
4897         while ((reg_group = igb_regs[g_ind++]))
4898                 count += igb_reg_group_count(reg_group);
4899
4900         return count;
4901 }
4902
4903 static int
4904 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4905 {
4906         int count = 0;
4907         int g_ind = 0;
4908         const struct reg_info *reg_group;
4909
4910         while ((reg_group = igbvf_regs[g_ind++]))
4911                 count += igb_reg_group_count(reg_group);
4912
4913         return count;
4914 }
4915
4916 static int
4917 eth_igb_get_regs(struct rte_eth_dev *dev,
4918         struct rte_dev_reg_info *regs)
4919 {
4920         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4921         uint32_t *data = regs->data;
4922         int g_ind = 0;
4923         int count = 0;
4924         const struct reg_info *reg_group;
4925
4926         if (data == NULL) {
4927                 regs->length = eth_igb_get_reg_length(dev);
4928                 regs->width = sizeof(uint32_t);
4929                 return 0;
4930         }
4931
4932         /* Support only full register dump */
4933         if ((regs->length == 0) ||
4934             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4935                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4936                         hw->device_id;
4937                 while ((reg_group = igb_regs[g_ind++]))
4938                         count += igb_read_regs_group(dev, &data[count],
4939                                                         reg_group);
4940                 return 0;
4941         }
4942
4943         return -ENOTSUP;
4944 }
4945
4946 static int
4947 igbvf_get_regs(struct rte_eth_dev *dev,
4948         struct rte_dev_reg_info *regs)
4949 {
4950         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4951         uint32_t *data = regs->data;
4952         int g_ind = 0;
4953         int count = 0;
4954         const struct reg_info *reg_group;
4955
4956         if (data == NULL) {
4957                 regs->length = igbvf_get_reg_length(dev);
4958                 regs->width = sizeof(uint32_t);
4959                 return 0;
4960         }
4961
4962         /* Support only full register dump */
4963         if ((regs->length == 0) ||
4964             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4965                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4966                         hw->device_id;
4967                 while ((reg_group = igbvf_regs[g_ind++]))
4968                         count += igb_read_regs_group(dev, &data[count],
4969                                                         reg_group);
4970                 return 0;
4971         }
4972
4973         return -ENOTSUP;
4974 }
4975
4976 static int
4977 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
4978 {
4979         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4980
4981         /* Return unit is byte count */
4982         return hw->nvm.word_size * 2;
4983 }
4984
4985 static int
4986 eth_igb_get_eeprom(struct rte_eth_dev *dev,
4987         struct rte_dev_eeprom_info *in_eeprom)
4988 {
4989         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4990         struct e1000_nvm_info *nvm = &hw->nvm;
4991         uint16_t *data = in_eeprom->data;
4992         int first, length;
4993
4994         first = in_eeprom->offset >> 1;
4995         length = in_eeprom->length >> 1;
4996         if ((first >= hw->nvm.word_size) ||
4997             ((first + length) >= hw->nvm.word_size))
4998                 return -EINVAL;
4999
5000         in_eeprom->magic = hw->vendor_id |
5001                 ((uint32_t)hw->device_id << 16);
5002
5003         if ((nvm->ops.read) == NULL)
5004                 return -ENOTSUP;
5005
5006         return nvm->ops.read(hw, first, length, data);
5007 }
5008
5009 static int
5010 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5011         struct rte_dev_eeprom_info *in_eeprom)
5012 {
5013         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5014         struct e1000_nvm_info *nvm = &hw->nvm;
5015         uint16_t *data = in_eeprom->data;
5016         int first, length;
5017
5018         first = in_eeprom->offset >> 1;
5019         length = in_eeprom->length >> 1;
5020         if ((first >= hw->nvm.word_size) ||
5021             ((first + length) >= hw->nvm.word_size))
5022                 return -EINVAL;
5023
5024         in_eeprom->magic = (uint32_t)hw->vendor_id |
5025                 ((uint32_t)hw->device_id << 16);
5026
5027         if ((nvm->ops.write) == NULL)
5028                 return -ENOTSUP;
5029         return nvm->ops.write(hw,  first, length, data);
5030 }
5031
5032 static int
5033 eth_igb_get_module_info(struct rte_eth_dev *dev,
5034                         struct rte_eth_dev_module_info *modinfo)
5035 {
5036         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5037
5038         uint32_t status = 0;
5039         uint16_t sff8472_rev, addr_mode;
5040         bool page_swap = false;
5041
5042         if (hw->phy.media_type == e1000_media_type_copper ||
5043             hw->phy.media_type == e1000_media_type_unknown)
5044                 return -EOPNOTSUPP;
5045
5046         /* Check whether we support SFF-8472 or not */
5047         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5048         if (status)
5049                 return -EIO;
5050
5051         /* addressing mode is not supported */
5052         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5053         if (status)
5054                 return -EIO;
5055
5056         /* addressing mode is not supported */
5057         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5058                 PMD_DRV_LOG(ERR,
5059                             "Address change required to access page 0xA2, "
5060                             "but not supported. Please report the module "
5061                             "type to the driver maintainers.\n");
5062                 page_swap = true;
5063         }
5064
5065         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5066                 /* We have an SFP, but it does not support SFF-8472 */
5067                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5068                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5069         } else {
5070                 /* We have an SFP which supports a revision of SFF-8472 */
5071                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5072                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5073         }
5074
5075         return 0;
5076 }
5077
5078 static int
5079 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5080                           struct rte_dev_eeprom_info *info)
5081 {
5082         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5083
5084         uint32_t status = 0;
5085         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5086         u16 first_word, last_word;
5087         int i = 0;
5088
5089         first_word = info->offset >> 1;
5090         last_word = (info->offset + info->length - 1) >> 1;
5091
5092         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5093         for (i = 0; i < last_word - first_word + 1; i++) {
5094                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5095                                                 &dataword[i]);
5096                 if (status) {
5097                         /* Error occurred while reading module */
5098                         return -EIO;
5099                 }
5100
5101                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5102         }
5103
5104         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5105
5106         return 0;
5107 }
5108
5109 static int
5110 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5111 {
5112         struct e1000_hw *hw =
5113                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5114         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5115         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5116         uint32_t vec = E1000_MISC_VEC_ID;
5117
5118         if (rte_intr_allow_others(intr_handle))
5119                 vec = E1000_RX_VEC_START;
5120
5121         uint32_t mask = 1 << (queue_id + vec);
5122
5123         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5124         E1000_WRITE_FLUSH(hw);
5125
5126         return 0;
5127 }
5128
5129 static int
5130 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5131 {
5132         struct e1000_hw *hw =
5133                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5134         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5135         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5136         uint32_t vec = E1000_MISC_VEC_ID;
5137
5138         if (rte_intr_allow_others(intr_handle))
5139                 vec = E1000_RX_VEC_START;
5140
5141         uint32_t mask = 1 << (queue_id + vec);
5142         uint32_t regval;
5143
5144         regval = E1000_READ_REG(hw, E1000_EIMS);
5145         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5146         E1000_WRITE_FLUSH(hw);
5147
5148         rte_intr_ack(intr_handle);
5149
5150         return 0;
5151 }
5152
5153 static void
5154 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5155                    uint8_t index, uint8_t offset)
5156 {
5157         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5158
5159         /* clear bits */
5160         val &= ~((uint32_t)0xFF << offset);
5161
5162         /* write vector and valid bit */
5163         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5164
5165         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5166 }
5167
5168 static void
5169 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5170                            uint8_t queue, uint8_t msix_vector)
5171 {
5172         uint32_t tmp = 0;
5173
5174         if (hw->mac.type == e1000_82575) {
5175                 if (direction == 0)
5176                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5177                 else if (direction == 1)
5178                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5179                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5180         } else if (hw->mac.type == e1000_82576) {
5181                 if ((direction == 0) || (direction == 1))
5182                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5183                                            ((queue & 0x8) << 1) +
5184                                            8 * direction);
5185         } else if ((hw->mac.type == e1000_82580) ||
5186                         (hw->mac.type == e1000_i350) ||
5187                         (hw->mac.type == e1000_i354) ||
5188                         (hw->mac.type == e1000_i210) ||
5189                         (hw->mac.type == e1000_i211)) {
5190                 if ((direction == 0) || (direction == 1))
5191                         eth_igb_write_ivar(hw, msix_vector,
5192                                            queue >> 1,
5193                                            ((queue & 0x1) << 4) +
5194                                            8 * direction);
5195         }
5196 }
5197
5198 /* Sets up the hardware to generate MSI-X interrupts properly
5199  * @hw
5200  *  board private structure
5201  */
5202 static void
5203 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5204 {
5205         int queue_id;
5206         uint32_t tmpval, regval, intr_mask;
5207         struct e1000_hw *hw =
5208                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5209         uint32_t vec = E1000_MISC_VEC_ID;
5210         uint32_t base = E1000_MISC_VEC_ID;
5211         uint32_t misc_shift = 0;
5212         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5213         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5214
5215         /* won't configure msix register if no mapping is done
5216          * between intr vector and event fd
5217          */
5218         if (!rte_intr_dp_is_en(intr_handle))
5219                 return;
5220
5221         if (rte_intr_allow_others(intr_handle)) {
5222                 vec = base = E1000_RX_VEC_START;
5223                 misc_shift = 1;
5224         }
5225
5226         /* set interrupt vector for other causes */
5227         if (hw->mac.type == e1000_82575) {
5228                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5229                 /* enable MSI-X PBA support */
5230                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5231
5232                 /* Auto-Mask interrupts upon ICR read */
5233                 tmpval |= E1000_CTRL_EXT_EIAME;
5234                 tmpval |= E1000_CTRL_EXT_IRCA;
5235
5236                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5237
5238                 /* enable msix_other interrupt */
5239                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5240                 regval = E1000_READ_REG(hw, E1000_EIAC);
5241                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5242                 regval = E1000_READ_REG(hw, E1000_EIAM);
5243                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5244         } else if ((hw->mac.type == e1000_82576) ||
5245                         (hw->mac.type == e1000_82580) ||
5246                         (hw->mac.type == e1000_i350) ||
5247                         (hw->mac.type == e1000_i354) ||
5248                         (hw->mac.type == e1000_i210) ||
5249                         (hw->mac.type == e1000_i211)) {
5250                 /* turn on MSI-X capability first */
5251                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5252                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5253                                         E1000_GPIE_NSICR);
5254                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5255                         misc_shift;
5256
5257                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5258                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5259
5260                 regval = E1000_READ_REG(hw, E1000_EIAC);
5261                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5262
5263                 /* enable msix_other interrupt */
5264                 regval = E1000_READ_REG(hw, E1000_EIMS);
5265                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5266                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5267                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5268         }
5269
5270         /* use EIAM to auto-mask when MSI-X interrupt
5271          * is asserted, this saves a register write for every interrupt
5272          */
5273         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5274                 misc_shift;
5275
5276         if (dev->data->dev_conf.intr_conf.lsc != 0)
5277                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5278
5279         regval = E1000_READ_REG(hw, E1000_EIAM);
5280         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5281
5282         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5283                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5284                 intr_handle->intr_vec[queue_id] = vec;
5285                 if (vec < base + intr_handle->nb_efd - 1)
5286                         vec++;
5287         }
5288
5289         E1000_WRITE_FLUSH(hw);
5290 }
5291
5292 /* restore n-tuple filter */
5293 static inline void
5294 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5295 {
5296         struct e1000_filter_info *filter_info =
5297                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5298         struct e1000_5tuple_filter *p_5tuple;
5299         struct e1000_2tuple_filter *p_2tuple;
5300
5301         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5302                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5303         }
5304
5305         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5306                 igb_inject_2uple_filter(dev, p_2tuple);
5307         }
5308 }
5309
5310 /* restore SYN filter */
5311 static inline void
5312 igb_syn_filter_restore(struct rte_eth_dev *dev)
5313 {
5314         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5315         struct e1000_filter_info *filter_info =
5316                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5317         uint32_t synqf;
5318
5319         synqf = filter_info->syn_info;
5320
5321         if (synqf & E1000_SYN_FILTER_ENABLE) {
5322                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5323                 E1000_WRITE_FLUSH(hw);
5324         }
5325 }
5326
5327 /* restore ethernet type filter */
5328 static inline void
5329 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5330 {
5331         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5332         struct e1000_filter_info *filter_info =
5333                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5334         int i;
5335
5336         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5337                 if (filter_info->ethertype_mask & (1 << i)) {
5338                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5339                                 filter_info->ethertype_filters[i].etqf);
5340                         E1000_WRITE_FLUSH(hw);
5341                 }
5342         }
5343 }
5344
5345 /* restore flex byte filter */
5346 static inline void
5347 igb_flex_filter_restore(struct rte_eth_dev *dev)
5348 {
5349         struct e1000_filter_info *filter_info =
5350                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5351         struct e1000_flex_filter *flex_filter;
5352
5353         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5354                 igb_inject_flex_filter(dev, flex_filter);
5355         }
5356 }
5357
5358 /* restore rss filter */
5359 static inline void
5360 igb_rss_filter_restore(struct rte_eth_dev *dev)
5361 {
5362         struct e1000_filter_info *filter_info =
5363                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5364
5365         if (filter_info->rss_info.conf.queue_num)
5366                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5367 }
5368
5369 /* restore all types filter */
5370 static int
5371 igb_filter_restore(struct rte_eth_dev *dev)
5372 {
5373         igb_ntuple_filter_restore(dev);
5374         igb_ethertype_filter_restore(dev);
5375         igb_syn_filter_restore(dev);
5376         igb_flex_filter_restore(dev);
5377         igb_rss_filter_restore(dev);
5378
5379         return 0;
5380 }
5381
5382 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5383 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5384 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5385 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5386 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5387 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");