igb: enable TSO support
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58 #include "igb_regs.h"
59
60 /*
61  * Default values for port configuration
62  */
63 #define IGB_DEFAULT_RX_FREE_THRESH  32
64 #define IGB_DEFAULT_RX_PTHRESH      8
65 #define IGB_DEFAULT_RX_HTHRESH      8
66 #define IGB_DEFAULT_RX_WTHRESH      0
67
68 #define IGB_DEFAULT_TX_PTHRESH      32
69 #define IGB_DEFAULT_TX_HTHRESH      0
70 #define IGB_DEFAULT_TX_WTHRESH      0
71
72 #define IGB_HKEY_MAX_INDEX 10
73
74 /* Bit shift and mask */
75 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
76 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
77 #define IGB_8_BIT_WIDTH  CHAR_BIT
78 #define IGB_8_BIT_MASK   UINT8_MAX
79
80 /* Additional timesync values. */
81 #define E1000_ETQF_FILTER_1588 3
82 #define E1000_TIMINCA_INCVALUE 16000000
83 #define E1000_TIMINCA_INIT     ((0x02 << E1000_TIMINCA_16NS_SHIFT) \
84                                 | E1000_TIMINCA_INCVALUE)
85 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
86
87 static int  eth_igb_configure(struct rte_eth_dev *dev);
88 static int  eth_igb_start(struct rte_eth_dev *dev);
89 static void eth_igb_stop(struct rte_eth_dev *dev);
90 static void eth_igb_close(struct rte_eth_dev *dev);
91 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
92 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
93 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
94 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
95 static int  eth_igb_link_update(struct rte_eth_dev *dev,
96                                 int wait_to_complete);
97 static void eth_igb_stats_get(struct rte_eth_dev *dev,
98                                 struct rte_eth_stats *rte_stats);
99 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
100 static void eth_igb_infos_get(struct rte_eth_dev *dev,
101                               struct rte_eth_dev_info *dev_info);
102 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
103                                 struct rte_eth_dev_info *dev_info);
104 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
105                                 struct rte_eth_fc_conf *fc_conf);
106 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
107                                 struct rte_eth_fc_conf *fc_conf);
108 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
109 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
110 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
111 static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
112 static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
113                                                         void *param);
114 static int  igb_hardware_init(struct e1000_hw *hw);
115 static void igb_hw_control_acquire(struct e1000_hw *hw);
116 static void igb_hw_control_release(struct e1000_hw *hw);
117 static void igb_init_manageability(struct e1000_hw *hw);
118 static void igb_release_manageability(struct e1000_hw *hw);
119
120 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
121
122 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
123                 uint16_t vlan_id, int on);
124 static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
125 static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
126
127 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
128 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
129 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
130 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
131 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
132 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
133
134 static int eth_igb_led_on(struct rte_eth_dev *dev);
135 static int eth_igb_led_off(struct rte_eth_dev *dev);
136
137 static void igb_intr_disable(struct e1000_hw *hw);
138 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
139 static void eth_igb_rar_set(struct rte_eth_dev *dev,
140                 struct ether_addr *mac_addr,
141                 uint32_t index, uint32_t pool);
142 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
143 static void eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
144                 struct ether_addr *addr);
145
146 static void igbvf_intr_disable(struct e1000_hw *hw);
147 static int igbvf_dev_configure(struct rte_eth_dev *dev);
148 static int igbvf_dev_start(struct rte_eth_dev *dev);
149 static void igbvf_dev_stop(struct rte_eth_dev *dev);
150 static void igbvf_dev_close(struct rte_eth_dev *dev);
151 static int eth_igbvf_link_update(struct e1000_hw *hw);
152 static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
153 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
154 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
155                 uint16_t vlan_id, int on);
156 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
157 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
158 static void igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
159                 struct ether_addr *addr);
160 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
161 static int igbvf_get_regs(struct rte_eth_dev *dev,
162                 struct rte_dev_reg_info *regs);
163
164 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
165                                    struct rte_eth_rss_reta_entry64 *reta_conf,
166                                    uint16_t reta_size);
167 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
168                                   struct rte_eth_rss_reta_entry64 *reta_conf,
169                                   uint16_t reta_size);
170
171 static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
172                         struct rte_eth_syn_filter *filter,
173                         bool add);
174 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
175                         struct rte_eth_syn_filter *filter);
176 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
177                         enum rte_filter_op filter_op,
178                         void *arg);
179 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
180                         struct rte_eth_ntuple_filter *ntuple_filter);
181 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
182                         struct rte_eth_ntuple_filter *ntuple_filter);
183 static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
184                         struct rte_eth_flex_filter *filter,
185                         bool add);
186 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
187                         struct rte_eth_flex_filter *filter);
188 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
189                         enum rte_filter_op filter_op,
190                         void *arg);
191 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *filter,
197                         bool add);
198 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
199                         struct rte_eth_ntuple_filter *filter);
200 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
201                                 enum rte_filter_op filter_op,
202                                 void *arg);
203 static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
204                         struct rte_eth_ethertype_filter *filter,
205                         bool add);
206 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
207                                 enum rte_filter_op filter_op,
208                                 void *arg);
209 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
210                         struct rte_eth_ethertype_filter *filter);
211 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
212                      enum rte_filter_type filter_type,
213                      enum rte_filter_op filter_op,
214                      void *arg);
215 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
216 static int eth_igb_get_regs(struct rte_eth_dev *dev,
217                 struct rte_dev_reg_info *regs);
218 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
219 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
220                 struct rte_dev_eeprom_info *eeprom);
221 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
222                 struct rte_dev_eeprom_info *eeprom);
223 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
224                                     struct ether_addr *mc_addr_set,
225                                     uint32_t nb_mc_addr);
226 static int igb_timesync_enable(struct rte_eth_dev *dev);
227 static int igb_timesync_disable(struct rte_eth_dev *dev);
228 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
229                                           struct timespec *timestamp,
230                                           uint32_t flags);
231 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
232                                           struct timespec *timestamp);
233 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
234                                         uint16_t queue_id);
235 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
236                                          uint16_t queue_id);
237 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
238                                        uint8_t queue, uint8_t msix_vector);
239 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
240                                uint8_t index, uint8_t offset);
241 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
242
243 /*
244  * Define VF Stats MACRO for Non "cleared on read" register
245  */
246 #define UPDATE_VF_STAT(reg, last, cur)            \
247 {                                                 \
248         u32 latest = E1000_READ_REG(hw, reg);     \
249         cur += latest - last;                     \
250         last = latest;                            \
251 }
252
253
254 #define IGB_FC_PAUSE_TIME 0x0680
255 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
256 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
257
258 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
259
260 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
261
262 /*
263  * The set of PCI devices this driver supports
264  */
265 static const struct rte_pci_id pci_id_igb_map[] = {
266
267 #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
268 #include "rte_pci_dev_ids.h"
269
270 {0},
271 };
272
273 /*
274  * The set of PCI devices this driver supports (for 82576&I350 VF)
275  */
276 static const struct rte_pci_id pci_id_igbvf_map[] = {
277
278 #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
279 #include "rte_pci_dev_ids.h"
280
281 {0},
282 };
283
284 static const struct eth_dev_ops eth_igb_ops = {
285         .dev_configure        = eth_igb_configure,
286         .dev_start            = eth_igb_start,
287         .dev_stop             = eth_igb_stop,
288         .dev_close            = eth_igb_close,
289         .promiscuous_enable   = eth_igb_promiscuous_enable,
290         .promiscuous_disable  = eth_igb_promiscuous_disable,
291         .allmulticast_enable  = eth_igb_allmulticast_enable,
292         .allmulticast_disable = eth_igb_allmulticast_disable,
293         .link_update          = eth_igb_link_update,
294         .stats_get            = eth_igb_stats_get,
295         .stats_reset          = eth_igb_stats_reset,
296         .dev_infos_get        = eth_igb_infos_get,
297         .mtu_set              = eth_igb_mtu_set,
298         .vlan_filter_set      = eth_igb_vlan_filter_set,
299         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
300         .vlan_offload_set     = eth_igb_vlan_offload_set,
301         .rx_queue_setup       = eth_igb_rx_queue_setup,
302         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
303         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
304         .rx_queue_release     = eth_igb_rx_queue_release,
305         .rx_queue_count       = eth_igb_rx_queue_count,
306         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
307         .tx_queue_setup       = eth_igb_tx_queue_setup,
308         .tx_queue_release     = eth_igb_tx_queue_release,
309         .dev_led_on           = eth_igb_led_on,
310         .dev_led_off          = eth_igb_led_off,
311         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
312         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
313         .mac_addr_add         = eth_igb_rar_set,
314         .mac_addr_remove      = eth_igb_rar_clear,
315         .mac_addr_set         = eth_igb_default_mac_addr_set,
316         .reta_update          = eth_igb_rss_reta_update,
317         .reta_query           = eth_igb_rss_reta_query,
318         .rss_hash_update      = eth_igb_rss_hash_update,
319         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
320         .filter_ctrl          = eth_igb_filter_ctrl,
321         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
322         .timesync_enable      = igb_timesync_enable,
323         .timesync_disable     = igb_timesync_disable,
324         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
325         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
326         .get_reg_length       = eth_igb_get_reg_length,
327         .get_reg              = eth_igb_get_regs,
328         .get_eeprom_length    = eth_igb_get_eeprom_length,
329         .get_eeprom           = eth_igb_get_eeprom,
330         .set_eeprom           = eth_igb_set_eeprom,
331 };
332
333 /*
334  * dev_ops for virtual function, bare necessities for basic vf
335  * operation have been implemented
336  */
337 static const struct eth_dev_ops igbvf_eth_dev_ops = {
338         .dev_configure        = igbvf_dev_configure,
339         .dev_start            = igbvf_dev_start,
340         .dev_stop             = igbvf_dev_stop,
341         .dev_close            = igbvf_dev_close,
342         .link_update          = eth_igb_link_update,
343         .stats_get            = eth_igbvf_stats_get,
344         .stats_reset          = eth_igbvf_stats_reset,
345         .vlan_filter_set      = igbvf_vlan_filter_set,
346         .dev_infos_get        = eth_igbvf_infos_get,
347         .rx_queue_setup       = eth_igb_rx_queue_setup,
348         .rx_queue_release     = eth_igb_rx_queue_release,
349         .tx_queue_setup       = eth_igb_tx_queue_setup,
350         .tx_queue_release     = eth_igb_tx_queue_release,
351         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
352         .mac_addr_set         = igbvf_default_mac_addr_set,
353         .get_reg_length       = igbvf_get_reg_length,
354         .get_reg              = igbvf_get_regs,
355 };
356
357 /**
358  * Atomically reads the link status information from global
359  * structure rte_eth_dev.
360  *
361  * @param dev
362  *   - Pointer to the structure rte_eth_dev to read from.
363  *   - Pointer to the buffer to be saved with the link status.
364  *
365  * @return
366  *   - On success, zero.
367  *   - On failure, negative value.
368  */
369 static inline int
370 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
371                                 struct rte_eth_link *link)
372 {
373         struct rte_eth_link *dst = link;
374         struct rte_eth_link *src = &(dev->data->dev_link);
375
376         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
377                                         *(uint64_t *)src) == 0)
378                 return -1;
379
380         return 0;
381 }
382
383 /**
384  * Atomically writes the link status information into global
385  * structure rte_eth_dev.
386  *
387  * @param dev
388  *   - Pointer to the structure rte_eth_dev to read from.
389  *   - Pointer to the buffer to be saved with the link status.
390  *
391  * @return
392  *   - On success, zero.
393  *   - On failure, negative value.
394  */
395 static inline int
396 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
397                                 struct rte_eth_link *link)
398 {
399         struct rte_eth_link *dst = &(dev->data->dev_link);
400         struct rte_eth_link *src = link;
401
402         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
403                                         *(uint64_t *)src) == 0)
404                 return -1;
405
406         return 0;
407 }
408
409 static inline void
410 igb_intr_enable(struct rte_eth_dev *dev)
411 {
412         struct e1000_interrupt *intr =
413                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
414         struct e1000_hw *hw =
415                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
416
417         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
418         E1000_WRITE_FLUSH(hw);
419 }
420
421 static void
422 igb_intr_disable(struct e1000_hw *hw)
423 {
424         E1000_WRITE_REG(hw, E1000_IMC, ~0);
425         E1000_WRITE_FLUSH(hw);
426 }
427
428 static inline int32_t
429 igb_pf_reset_hw(struct e1000_hw *hw)
430 {
431         uint32_t ctrl_ext;
432         int32_t status;
433
434         status = e1000_reset_hw(hw);
435
436         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
437         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
438         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
439         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
440         E1000_WRITE_FLUSH(hw);
441
442         return status;
443 }
444
445 static void
446 igb_identify_hardware(struct rte_eth_dev *dev)
447 {
448         struct e1000_hw *hw =
449                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
450
451         hw->vendor_id = dev->pci_dev->id.vendor_id;
452         hw->device_id = dev->pci_dev->id.device_id;
453         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
454         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
455
456         e1000_set_mac_type(hw);
457
458         /* need to check if it is a vf device below */
459 }
460
461 static int
462 igb_reset_swfw_lock(struct e1000_hw *hw)
463 {
464         int ret_val;
465
466         /*
467          * Do mac ops initialization manually here, since we will need
468          * some function pointers set by this call.
469          */
470         ret_val = e1000_init_mac_params(hw);
471         if (ret_val)
472                 return ret_val;
473
474         /*
475          * SMBI lock should not fail in this early stage. If this is the case,
476          * it is due to an improper exit of the application.
477          * So force the release of the faulty lock.
478          */
479         if (e1000_get_hw_semaphore_generic(hw) < 0) {
480                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
481         }
482         e1000_put_hw_semaphore_generic(hw);
483
484         if (hw->mac.ops.acquire_swfw_sync != NULL) {
485                 uint16_t mask;
486
487                 /*
488                  * Phy lock should not fail in this early stage. If this is the case,
489                  * it is due to an improper exit of the application.
490                  * So force the release of the faulty lock.
491                  */
492                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
493                 if (hw->bus.func > E1000_FUNC_1)
494                         mask <<= 2;
495                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
496                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
497                                     hw->bus.func);
498                 }
499                 hw->mac.ops.release_swfw_sync(hw, mask);
500
501                 /*
502                  * This one is more tricky since it is common to all ports; but
503                  * swfw_sync retries last long enough (1s) to be almost sure that if
504                  * lock can not be taken it is due to an improper lock of the
505                  * semaphore.
506                  */
507                 mask = E1000_SWFW_EEP_SM;
508                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
509                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
510                 }
511                 hw->mac.ops.release_swfw_sync(hw, mask);
512         }
513
514         return E1000_SUCCESS;
515 }
516
517 static int
518 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
519 {
520         int error = 0;
521         struct rte_pci_device *pci_dev;
522         struct e1000_hw *hw =
523                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
524         struct e1000_vfta * shadow_vfta =
525                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
526         struct e1000_filter_info *filter_info =
527                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
528         struct e1000_adapter *adapter =
529                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
530
531         uint32_t ctrl_ext;
532
533         pci_dev = eth_dev->pci_dev;
534         eth_dev->dev_ops = &eth_igb_ops;
535         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
536         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
537
538         /* for secondary processes, we don't initialise any further as primary
539          * has already done this work. Only check we don't need a different
540          * RX function */
541         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
542                 if (eth_dev->data->scattered_rx)
543                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
544                 return 0;
545         }
546
547         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
548
549         igb_identify_hardware(eth_dev);
550         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
551                 error = -EIO;
552                 goto err_late;
553         }
554
555         e1000_get_bus_info(hw);
556
557         /* Reset any pending lock */
558         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
559                 error = -EIO;
560                 goto err_late;
561         }
562
563         /* Finish initialization */
564         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
565                 error = -EIO;
566                 goto err_late;
567         }
568
569         hw->mac.autoneg = 1;
570         hw->phy.autoneg_wait_to_complete = 0;
571         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
572
573         /* Copper options */
574         if (hw->phy.media_type == e1000_media_type_copper) {
575                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
576                 hw->phy.disable_polarity_correction = 0;
577                 hw->phy.ms_type = e1000_ms_hw_default;
578         }
579
580         /*
581          * Start from a known state, this is important in reading the nvm
582          * and mac from that.
583          */
584         igb_pf_reset_hw(hw);
585
586         /* Make sure we have a good EEPROM before we read from it */
587         if (e1000_validate_nvm_checksum(hw) < 0) {
588                 /*
589                  * Some PCI-E parts fail the first check due to
590                  * the link being in sleep state, call it again,
591                  * if it fails a second time its a real issue.
592                  */
593                 if (e1000_validate_nvm_checksum(hw) < 0) {
594                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
595                         error = -EIO;
596                         goto err_late;
597                 }
598         }
599
600         /* Read the permanent MAC address out of the EEPROM */
601         if (e1000_read_mac_addr(hw) != 0) {
602                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
603                 error = -EIO;
604                 goto err_late;
605         }
606
607         /* Allocate memory for storing MAC addresses */
608         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
609                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
610         if (eth_dev->data->mac_addrs == NULL) {
611                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
612                                                 "store MAC addresses",
613                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
614                 error = -ENOMEM;
615                 goto err_late;
616         }
617
618         /* Copy the permanent MAC address */
619         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
620
621         /* initialize the vfta */
622         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
623
624         /* Now initialize the hardware */
625         if (igb_hardware_init(hw) != 0) {
626                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
627                 rte_free(eth_dev->data->mac_addrs);
628                 eth_dev->data->mac_addrs = NULL;
629                 error = -ENODEV;
630                 goto err_late;
631         }
632         hw->mac.get_link_status = 1;
633         adapter->stopped = 0;
634
635         /* Indicate SOL/IDER usage */
636         if (e1000_check_reset_block(hw) < 0) {
637                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
638                                         "SOL/IDER session");
639         }
640
641         /* initialize PF if max_vfs not zero */
642         igb_pf_host_init(eth_dev);
643
644         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
645         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
646         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
647         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
648         E1000_WRITE_FLUSH(hw);
649
650         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
651                      eth_dev->data->port_id, pci_dev->id.vendor_id,
652                      pci_dev->id.device_id);
653
654         /* enable support intr */
655         igb_intr_enable(eth_dev);
656
657         TAILQ_INIT(&filter_info->flex_list);
658         filter_info->flex_mask = 0;
659         TAILQ_INIT(&filter_info->twotuple_list);
660         filter_info->twotuple_mask = 0;
661         TAILQ_INIT(&filter_info->fivetuple_list);
662         filter_info->fivetuple_mask = 0;
663
664         return 0;
665
666 err_late:
667         igb_hw_control_release(hw);
668
669         return (error);
670 }
671
672 static int
673 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
674 {
675         struct rte_pci_device *pci_dev;
676         struct e1000_hw *hw;
677         struct e1000_adapter *adapter =
678                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
679
680         PMD_INIT_FUNC_TRACE();
681
682         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
683                 return -EPERM;
684
685         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
686         pci_dev = eth_dev->pci_dev;
687
688         if (adapter->stopped == 0)
689                 eth_igb_close(eth_dev);
690
691         eth_dev->dev_ops = NULL;
692         eth_dev->rx_pkt_burst = NULL;
693         eth_dev->tx_pkt_burst = NULL;
694
695         /* Reset any pending lock */
696         igb_reset_swfw_lock(hw);
697
698         rte_free(eth_dev->data->mac_addrs);
699         eth_dev->data->mac_addrs = NULL;
700
701         /* uninitialize PF if max_vfs not zero */
702         igb_pf_host_uninit(eth_dev);
703
704         /* disable uio intr before callback unregister */
705         rte_intr_disable(&(pci_dev->intr_handle));
706         rte_intr_callback_unregister(&(pci_dev->intr_handle),
707                 eth_igb_interrupt_handler, (void *)eth_dev);
708
709         return 0;
710 }
711
712 /*
713  * Virtual Function device init
714  */
715 static int
716 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
717 {
718         struct rte_pci_device *pci_dev;
719         struct e1000_adapter *adapter =
720                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
721         struct e1000_hw *hw =
722                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
723         int diag;
724
725         PMD_INIT_FUNC_TRACE();
726
727         eth_dev->dev_ops = &igbvf_eth_dev_ops;
728         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
729         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
730
731         /* for secondary processes, we don't initialise any further as primary
732          * has already done this work. Only check we don't need a different
733          * RX function */
734         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
735                 if (eth_dev->data->scattered_rx)
736                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
737                 return 0;
738         }
739
740         pci_dev = eth_dev->pci_dev;
741
742         hw->device_id = pci_dev->id.device_id;
743         hw->vendor_id = pci_dev->id.vendor_id;
744         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
745         adapter->stopped = 0;
746
747         /* Initialize the shared code (base driver) */
748         diag = e1000_setup_init_funcs(hw, TRUE);
749         if (diag != 0) {
750                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
751                         diag);
752                 return -EIO;
753         }
754
755         /* init_mailbox_params */
756         hw->mbx.ops.init_params(hw);
757
758         /* Disable the interrupts for VF */
759         igbvf_intr_disable(hw);
760
761         diag = hw->mac.ops.reset_hw(hw);
762
763         /* Allocate memory for storing MAC addresses */
764         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
765                 hw->mac.rar_entry_count, 0);
766         if (eth_dev->data->mac_addrs == NULL) {
767                 PMD_INIT_LOG(ERR,
768                         "Failed to allocate %d bytes needed to store MAC "
769                         "addresses",
770                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
771                 return -ENOMEM;
772         }
773
774         /* Copy the permanent MAC address */
775         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
776                         &eth_dev->data->mac_addrs[0]);
777
778         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
779                      "mac.type=%s",
780                      eth_dev->data->port_id, pci_dev->id.vendor_id,
781                      pci_dev->id.device_id, "igb_mac_82576_vf");
782
783         return 0;
784 }
785
786 static int
787 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
788 {
789         struct e1000_adapter *adapter =
790                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
791
792         PMD_INIT_FUNC_TRACE();
793
794         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
795                 return -EPERM;
796
797         if (adapter->stopped == 0)
798                 igbvf_dev_close(eth_dev);
799
800         eth_dev->dev_ops = NULL;
801         eth_dev->rx_pkt_burst = NULL;
802         eth_dev->tx_pkt_burst = NULL;
803
804         rte_free(eth_dev->data->mac_addrs);
805         eth_dev->data->mac_addrs = NULL;
806
807         return 0;
808 }
809
810 static struct eth_driver rte_igb_pmd = {
811         .pci_drv = {
812                 .name = "rte_igb_pmd",
813                 .id_table = pci_id_igb_map,
814                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
815                         RTE_PCI_DRV_DETACHABLE,
816         },
817         .eth_dev_init = eth_igb_dev_init,
818         .eth_dev_uninit = eth_igb_dev_uninit,
819         .dev_private_size = sizeof(struct e1000_adapter),
820 };
821
822 /*
823  * virtual function driver struct
824  */
825 static struct eth_driver rte_igbvf_pmd = {
826         .pci_drv = {
827                 .name = "rte_igbvf_pmd",
828                 .id_table = pci_id_igbvf_map,
829                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_DETACHABLE,
830         },
831         .eth_dev_init = eth_igbvf_dev_init,
832         .eth_dev_uninit = eth_igbvf_dev_uninit,
833         .dev_private_size = sizeof(struct e1000_adapter),
834 };
835
836 static int
837 rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
838 {
839         rte_eth_driver_register(&rte_igb_pmd);
840         return 0;
841 }
842
843 static void
844 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
845 {
846         struct e1000_hw *hw =
847                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
848         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
849         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
850         rctl |= E1000_RCTL_VFE;
851         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
852 }
853
854 /*
855  * VF Driver initialization routine.
856  * Invoked one at EAL init time.
857  * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
858  */
859 static int
860 rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
861 {
862         PMD_INIT_FUNC_TRACE();
863
864         rte_eth_driver_register(&rte_igbvf_pmd);
865         return (0);
866 }
867
868 static int
869 eth_igb_configure(struct rte_eth_dev *dev)
870 {
871         struct e1000_interrupt *intr =
872                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
873
874         PMD_INIT_FUNC_TRACE();
875         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
876         PMD_INIT_FUNC_TRACE();
877
878         return (0);
879 }
880
881 static int
882 eth_igb_start(struct rte_eth_dev *dev)
883 {
884         struct e1000_hw *hw =
885                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
886         struct e1000_adapter *adapter =
887                 E1000_DEV_PRIVATE(dev->data->dev_private);
888         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
889         int ret, mask;
890         uint32_t intr_vector = 0;
891         uint32_t ctrl_ext;
892
893         PMD_INIT_FUNC_TRACE();
894
895         /* Power up the phy. Needed to make the link go Up */
896         e1000_power_up_phy(hw);
897
898         /*
899          * Packet Buffer Allocation (PBA)
900          * Writing PBA sets the receive portion of the buffer
901          * the remainder is used for the transmit buffer.
902          */
903         if (hw->mac.type == e1000_82575) {
904                 uint32_t pba;
905
906                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
907                 E1000_WRITE_REG(hw, E1000_PBA, pba);
908         }
909
910         /* Put the address into the Receive Address Array */
911         e1000_rar_set(hw, hw->mac.addr, 0);
912
913         /* Initialize the hardware */
914         if (igb_hardware_init(hw)) {
915                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
916                 return (-EIO);
917         }
918         adapter->stopped = 0;
919
920         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
921
922         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
923         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
924         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
925         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
926         E1000_WRITE_FLUSH(hw);
927
928         /* configure PF module if SRIOV enabled */
929         igb_pf_host_configure(dev);
930
931         /* check and configure queue intr-vector mapping */
932         if (dev->data->dev_conf.intr_conf.rxq != 0)
933                 intr_vector = dev->data->nb_rx_queues;
934
935         if (rte_intr_efd_enable(intr_handle, intr_vector))
936                 return -1;
937
938         if (rte_intr_dp_is_en(intr_handle)) {
939                 intr_handle->intr_vec =
940                         rte_zmalloc("intr_vec",
941                                     dev->data->nb_rx_queues * sizeof(int), 0);
942                 if (intr_handle->intr_vec == NULL) {
943                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
944                                      " intr_vec\n", dev->data->nb_rx_queues);
945                         return -ENOMEM;
946                 }
947         }
948
949         /* confiugre msix for rx interrupt */
950         eth_igb_configure_msix_intr(dev);
951
952         /* Configure for OS presence */
953         igb_init_manageability(hw);
954
955         eth_igb_tx_init(dev);
956
957         /* This can fail when allocating mbufs for descriptor rings */
958         ret = eth_igb_rx_init(dev);
959         if (ret) {
960                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
961                 igb_dev_clear_queues(dev);
962                 return ret;
963         }
964
965         e1000_clear_hw_cntrs_base_generic(hw);
966
967         /*
968          * VLAN Offload Settings
969          */
970         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
971                         ETH_VLAN_EXTEND_MASK;
972         eth_igb_vlan_offload_set(dev, mask);
973
974         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
975                 /* Enable VLAN filter since VMDq always use VLAN filter */
976                 igb_vmdq_vlan_hw_filter_enable(dev);
977         }
978
979         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
980                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
981                 (hw->mac.type == e1000_i211)) {
982                 /* Configure EITR with the maximum possible value (0xFFFF) */
983                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
984         }
985
986         /* Setup link speed and duplex */
987         switch (dev->data->dev_conf.link_speed) {
988         case ETH_LINK_SPEED_AUTONEG:
989                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
990                         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
991                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
992                         hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
993                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
994                         hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
995                 else
996                         goto error_invalid_config;
997                 break;
998         case ETH_LINK_SPEED_10:
999                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
1000                         hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
1001                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
1002                         hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
1003                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
1004                         hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
1005                 else
1006                         goto error_invalid_config;
1007                 break;
1008         case ETH_LINK_SPEED_100:
1009                 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
1010                         hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
1011                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
1012                         hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
1013                 else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
1014                         hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
1015                 else
1016                         goto error_invalid_config;
1017                 break;
1018         case ETH_LINK_SPEED_1000:
1019                 if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
1020                                 (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
1021                         hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
1022                 else
1023                         goto error_invalid_config;
1024                 break;
1025         case ETH_LINK_SPEED_10000:
1026         default:
1027                 goto error_invalid_config;
1028         }
1029         e1000_setup_link(hw);
1030
1031         /* check if lsc interrupt feature is enabled */
1032         if (dev->data->dev_conf.intr_conf.lsc != 0) {
1033                 if (rte_intr_allow_others(intr_handle)) {
1034                         rte_intr_callback_register(intr_handle,
1035                                                    eth_igb_interrupt_handler,
1036                                                    (void *)dev);
1037                         eth_igb_lsc_interrupt_setup(dev);
1038                 } else
1039                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1040                                      " no intr multiplex\n");
1041         }
1042
1043         /* check if rxq interrupt is enabled */
1044         if (dev->data->dev_conf.intr_conf.rxq != 0)
1045                 eth_igb_rxq_interrupt_setup(dev);
1046
1047         /* enable uio/vfio intr/eventfd mapping */
1048         rte_intr_enable(intr_handle);
1049
1050         /* resume enabled intr since hw reset */
1051         igb_intr_enable(dev);
1052
1053         PMD_INIT_LOG(DEBUG, "<<");
1054
1055         return (0);
1056
1057 error_invalid_config:
1058         PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
1059                      dev->data->dev_conf.link_speed,
1060                      dev->data->dev_conf.link_duplex, dev->data->port_id);
1061         igb_dev_clear_queues(dev);
1062         return (-EINVAL);
1063 }
1064
1065 /*********************************************************************
1066  *
1067  *  This routine disables all traffic on the adapter by issuing a
1068  *  global reset on the MAC.
1069  *
1070  **********************************************************************/
1071 static void
1072 eth_igb_stop(struct rte_eth_dev *dev)
1073 {
1074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1075         struct e1000_filter_info *filter_info =
1076                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1077         struct rte_eth_link link;
1078         struct e1000_flex_filter *p_flex;
1079         struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
1080         struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
1081         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
1082
1083         igb_intr_disable(hw);
1084
1085         /* disable intr eventfd mapping */
1086         rte_intr_disable(intr_handle);
1087
1088         igb_pf_reset_hw(hw);
1089         E1000_WRITE_REG(hw, E1000_WUC, 0);
1090
1091         /* Set bit for Go Link disconnect */
1092         if (hw->mac.type >= e1000_82580) {
1093                 uint32_t phpm_reg;
1094
1095                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1096                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1097                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1098         }
1099
1100         /* Power down the phy. Needed to make the link go Down */
1101         if (hw->phy.media_type == e1000_media_type_copper)
1102                 e1000_power_down_phy(hw);
1103         else
1104                 e1000_shutdown_fiber_serdes_link(hw);
1105
1106         igb_dev_clear_queues(dev);
1107
1108         /* clear the recorded link status */
1109         memset(&link, 0, sizeof(link));
1110         rte_igb_dev_atomic_write_link_status(dev, &link);
1111
1112         /* Remove all flex filters of the device */
1113         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
1114                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
1115                 rte_free(p_flex);
1116         }
1117         filter_info->flex_mask = 0;
1118
1119         /* Remove all ntuple filters of the device */
1120         for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
1121              p_5tuple != NULL; p_5tuple = p_5tuple_next) {
1122                 p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
1123                 TAILQ_REMOVE(&filter_info->fivetuple_list,
1124                              p_5tuple, entries);
1125                 rte_free(p_5tuple);
1126         }
1127         filter_info->fivetuple_mask = 0;
1128         for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
1129              p_2tuple != NULL; p_2tuple = p_2tuple_next) {
1130                 p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
1131                 TAILQ_REMOVE(&filter_info->twotuple_list,
1132                              p_2tuple, entries);
1133                 rte_free(p_2tuple);
1134         }
1135         filter_info->twotuple_mask = 0;
1136
1137         /* Clean datapath event and queue/vec mapping */
1138         rte_intr_efd_disable(intr_handle);
1139         if (intr_handle->intr_vec != NULL) {
1140                 rte_free(intr_handle->intr_vec);
1141                 intr_handle->intr_vec = NULL;
1142         }
1143 }
1144
1145 static void
1146 eth_igb_close(struct rte_eth_dev *dev)
1147 {
1148         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1149         struct e1000_adapter *adapter =
1150                 E1000_DEV_PRIVATE(dev->data->dev_private);
1151         struct rte_eth_link link;
1152         struct rte_pci_device *pci_dev;
1153
1154         eth_igb_stop(dev);
1155         adapter->stopped = 1;
1156
1157         e1000_phy_hw_reset(hw);
1158         igb_release_manageability(hw);
1159         igb_hw_control_release(hw);
1160
1161         /* Clear bit for Go Link disconnect */
1162         if (hw->mac.type >= e1000_82580) {
1163                 uint32_t phpm_reg;
1164
1165                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1166                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1167                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1168         }
1169
1170         igb_dev_free_queues(dev);
1171
1172         pci_dev = dev->pci_dev;
1173         if (pci_dev->intr_handle.intr_vec) {
1174                 rte_free(pci_dev->intr_handle.intr_vec);
1175                 pci_dev->intr_handle.intr_vec = NULL;
1176         }
1177
1178         memset(&link, 0, sizeof(link));
1179         rte_igb_dev_atomic_write_link_status(dev, &link);
1180 }
1181
1182 static int
1183 igb_get_rx_buffer_size(struct e1000_hw *hw)
1184 {
1185         uint32_t rx_buf_size;
1186         if (hw->mac.type == e1000_82576) {
1187                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1188         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1189                 /* PBS needs to be translated according to a lookup table */
1190                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1191                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1192                 rx_buf_size = (rx_buf_size << 10);
1193         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1194                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1195         } else {
1196                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1197         }
1198
1199         return rx_buf_size;
1200 }
1201
1202 /*********************************************************************
1203  *
1204  *  Initialize the hardware
1205  *
1206  **********************************************************************/
1207 static int
1208 igb_hardware_init(struct e1000_hw *hw)
1209 {
1210         uint32_t rx_buf_size;
1211         int diag;
1212
1213         /* Let the firmware know the OS is in control */
1214         igb_hw_control_acquire(hw);
1215
1216         /*
1217          * These parameters control the automatic generation (Tx) and
1218          * response (Rx) to Ethernet PAUSE frames.
1219          * - High water mark should allow for at least two standard size (1518)
1220          *   frames to be received after sending an XOFF.
1221          * - Low water mark works best when it is very near the high water mark.
1222          *   This allows the receiver to restart by sending XON when it has
1223          *   drained a bit. Here we use an arbitrary value of 1500 which will
1224          *   restart after one full frame is pulled from the buffer. There
1225          *   could be several smaller frames in the buffer and if so they will
1226          *   not trigger the XON until their total number reduces the buffer
1227          *   by 1500.
1228          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1229          */
1230         rx_buf_size = igb_get_rx_buffer_size(hw);
1231
1232         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1233         hw->fc.low_water = hw->fc.high_water - 1500;
1234         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1235         hw->fc.send_xon = 1;
1236
1237         /* Set Flow control, use the tunable location if sane */
1238         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1239                 hw->fc.requested_mode = igb_fc_setting;
1240         else
1241                 hw->fc.requested_mode = e1000_fc_none;
1242
1243         /* Issue a global reset */
1244         igb_pf_reset_hw(hw);
1245         E1000_WRITE_REG(hw, E1000_WUC, 0);
1246
1247         diag = e1000_init_hw(hw);
1248         if (diag < 0)
1249                 return (diag);
1250
1251         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1252         e1000_get_phy_info(hw);
1253         e1000_check_for_link(hw);
1254
1255         return (0);
1256 }
1257
1258 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1259 static void
1260 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1261 {
1262         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1263         struct e1000_hw_stats *stats =
1264                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1265         int pause_frames;
1266
1267         if(hw->phy.media_type == e1000_media_type_copper ||
1268             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1269                 stats->symerrs +=
1270                     E1000_READ_REG(hw,E1000_SYMERRS);
1271                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1272         }
1273
1274         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1275         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1276         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1277         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1278
1279         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1280         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1281         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1282         stats->dc += E1000_READ_REG(hw, E1000_DC);
1283         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1284         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1285         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1286         /*
1287         ** For watchdog management we need to know if we have been
1288         ** paused during the last interval, so capture that here.
1289         */
1290         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1291         stats->xoffrxc += pause_frames;
1292         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1293         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1294         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1295         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1296         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1297         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1298         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1299         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1300         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1301         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1302         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1303         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1304
1305         /* For the 64-bit byte counters the low dword must be read first. */
1306         /* Both registers clear on the read of the high dword */
1307
1308         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1309         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1310         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1311         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1312
1313         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1314         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1315         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1316         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1317         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1318
1319         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1320         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1321         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1322         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1323
1324         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1325         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1326         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1327         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1328         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1329         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1330         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1331         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1332         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1333         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1334
1335         /* Interrupt Counts */
1336
1337         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1338         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1339         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1340         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1341         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1342         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1343         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1344         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1345         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1346
1347         /* Host to Card Statistics */
1348
1349         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1350         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1351         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1352         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1353         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1354         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1355         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1356         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1357         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1358         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1359         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1360         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1361         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1362         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1363
1364         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1365         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1366         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1367         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1368         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1369         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1370
1371         if (rte_stats == NULL)
1372                 return;
1373
1374         /* Rx Errors */
1375         rte_stats->ibadcrc = stats->crcerrs;
1376         rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
1377         rte_stats->imissed = stats->mpc;
1378         rte_stats->ierrors = rte_stats->ibadcrc +
1379                              rte_stats->ibadlen +
1380                              rte_stats->imissed +
1381                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1382
1383         /* Tx Errors */
1384         rte_stats->oerrors = stats->ecol + stats->latecol;
1385
1386         /* XON/XOFF pause frames */
1387         rte_stats->tx_pause_xon  = stats->xontxc;
1388         rte_stats->rx_pause_xon  = stats->xonrxc;
1389         rte_stats->tx_pause_xoff = stats->xofftxc;
1390         rte_stats->rx_pause_xoff = stats->xoffrxc;
1391
1392         rte_stats->ipackets = stats->gprc;
1393         rte_stats->opackets = stats->gptc;
1394         rte_stats->ibytes   = stats->gorc;
1395         rte_stats->obytes   = stats->gotc;
1396 }
1397
1398 static void
1399 eth_igb_stats_reset(struct rte_eth_dev *dev)
1400 {
1401         struct e1000_hw_stats *hw_stats =
1402                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1403
1404         /* HW registers are cleared on read */
1405         eth_igb_stats_get(dev, NULL);
1406
1407         /* Reset software totals */
1408         memset(hw_stats, 0, sizeof(*hw_stats));
1409 }
1410
1411 static void
1412 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1413 {
1414         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1415         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1416                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1417
1418         /* Good Rx packets, include VF loopback */
1419         UPDATE_VF_STAT(E1000_VFGPRC,
1420             hw_stats->last_gprc, hw_stats->gprc);
1421
1422         /* Good Rx octets, include VF loopback */
1423         UPDATE_VF_STAT(E1000_VFGORC,
1424             hw_stats->last_gorc, hw_stats->gorc);
1425
1426         /* Good Tx packets, include VF loopback */
1427         UPDATE_VF_STAT(E1000_VFGPTC,
1428             hw_stats->last_gptc, hw_stats->gptc);
1429
1430         /* Good Tx octets, include VF loopback */
1431         UPDATE_VF_STAT(E1000_VFGOTC,
1432             hw_stats->last_gotc, hw_stats->gotc);
1433
1434         /* Rx Multicst packets */
1435         UPDATE_VF_STAT(E1000_VFMPRC,
1436             hw_stats->last_mprc, hw_stats->mprc);
1437
1438         /* Good Rx loopback packets */
1439         UPDATE_VF_STAT(E1000_VFGPRLBC,
1440             hw_stats->last_gprlbc, hw_stats->gprlbc);
1441
1442         /* Good Rx loopback octets */
1443         UPDATE_VF_STAT(E1000_VFGORLBC,
1444             hw_stats->last_gorlbc, hw_stats->gorlbc);
1445
1446         /* Good Tx loopback packets */
1447         UPDATE_VF_STAT(E1000_VFGPTLBC,
1448             hw_stats->last_gptlbc, hw_stats->gptlbc);
1449
1450         /* Good Tx loopback octets */
1451         UPDATE_VF_STAT(E1000_VFGOTLBC,
1452             hw_stats->last_gotlbc, hw_stats->gotlbc);
1453
1454         if (rte_stats == NULL)
1455                 return;
1456
1457         rte_stats->ipackets = hw_stats->gprc;
1458         rte_stats->ibytes = hw_stats->gorc;
1459         rte_stats->opackets = hw_stats->gptc;
1460         rte_stats->obytes = hw_stats->gotc;
1461         rte_stats->imcasts = hw_stats->mprc;
1462         rte_stats->ilbpackets = hw_stats->gprlbc;
1463         rte_stats->ilbbytes = hw_stats->gorlbc;
1464         rte_stats->olbpackets = hw_stats->gptlbc;
1465         rte_stats->olbbytes = hw_stats->gotlbc;
1466
1467 }
1468
1469 static void
1470 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
1471 {
1472         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1473                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1474
1475         /* Sync HW register to the last stats */
1476         eth_igbvf_stats_get(dev, NULL);
1477
1478         /* reset HW current stats*/
1479         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
1480                offsetof(struct e1000_vf_stats, gprc));
1481
1482 }
1483
1484 static void
1485 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1486 {
1487         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1488
1489         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1490         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1491         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1492         dev_info->rx_offload_capa =
1493                 DEV_RX_OFFLOAD_VLAN_STRIP |
1494                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1495                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1496                 DEV_RX_OFFLOAD_TCP_CKSUM;
1497         dev_info->tx_offload_capa =
1498                 DEV_TX_OFFLOAD_VLAN_INSERT |
1499                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1500                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1501                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1502                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
1503                 DEV_TX_OFFLOAD_TCP_TSO;
1504
1505         switch (hw->mac.type) {
1506         case e1000_82575:
1507                 dev_info->max_rx_queues = 4;
1508                 dev_info->max_tx_queues = 4;
1509                 dev_info->max_vmdq_pools = 0;
1510                 break;
1511
1512         case e1000_82576:
1513                 dev_info->max_rx_queues = 16;
1514                 dev_info->max_tx_queues = 16;
1515                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1516                 dev_info->vmdq_queue_num = 16;
1517                 break;
1518
1519         case e1000_82580:
1520                 dev_info->max_rx_queues = 8;
1521                 dev_info->max_tx_queues = 8;
1522                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1523                 dev_info->vmdq_queue_num = 8;
1524                 break;
1525
1526         case e1000_i350:
1527                 dev_info->max_rx_queues = 8;
1528                 dev_info->max_tx_queues = 8;
1529                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1530                 dev_info->vmdq_queue_num = 8;
1531                 break;
1532
1533         case e1000_i354:
1534                 dev_info->max_rx_queues = 8;
1535                 dev_info->max_tx_queues = 8;
1536                 break;
1537
1538         case e1000_i210:
1539                 dev_info->max_rx_queues = 4;
1540                 dev_info->max_tx_queues = 4;
1541                 dev_info->max_vmdq_pools = 0;
1542                 break;
1543
1544         case e1000_i211:
1545                 dev_info->max_rx_queues = 2;
1546                 dev_info->max_tx_queues = 2;
1547                 dev_info->max_vmdq_pools = 0;
1548                 break;
1549
1550         default:
1551                 /* Should not happen */
1552                 break;
1553         }
1554         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
1555         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
1556         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
1557
1558         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1559                 .rx_thresh = {
1560                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
1561                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
1562                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
1563                 },
1564                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
1565                 .rx_drop_en = 0,
1566         };
1567
1568         dev_info->default_txconf = (struct rte_eth_txconf) {
1569                 .tx_thresh = {
1570                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
1571                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
1572                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
1573                 },
1574                 .txq_flags = 0,
1575         };
1576 }
1577
1578 static void
1579 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1580 {
1581         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1582
1583         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1584         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1585         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1586         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
1587                                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1588                                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1589                                 DEV_RX_OFFLOAD_TCP_CKSUM;
1590         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1591                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1592                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1593                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1594                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
1595                                 DEV_TX_OFFLOAD_TCP_TSO;
1596         switch (hw->mac.type) {
1597         case e1000_vfadapt:
1598                 dev_info->max_rx_queues = 2;
1599                 dev_info->max_tx_queues = 2;
1600                 break;
1601         case e1000_vfadapt_i350:
1602                 dev_info->max_rx_queues = 1;
1603                 dev_info->max_tx_queues = 1;
1604                 break;
1605         default:
1606                 /* Should not happen */
1607                 break;
1608         }
1609
1610         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1611                 .rx_thresh = {
1612                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
1613                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
1614                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
1615                 },
1616                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
1617                 .rx_drop_en = 0,
1618         };
1619
1620         dev_info->default_txconf = (struct rte_eth_txconf) {
1621                 .tx_thresh = {
1622                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
1623                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
1624                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
1625                 },
1626                 .txq_flags = 0,
1627         };
1628 }
1629
1630 /* return 0 means link status changed, -1 means not changed */
1631 static int
1632 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1633 {
1634         struct e1000_hw *hw =
1635                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1636         struct rte_eth_link link, old;
1637         int link_check, count;
1638
1639         link_check = 0;
1640         hw->mac.get_link_status = 1;
1641
1642         /* possible wait-to-complete in up to 9 seconds */
1643         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1644                 /* Read the real link status */
1645                 switch (hw->phy.media_type) {
1646                 case e1000_media_type_copper:
1647                         /* Do the work to read phy */
1648                         e1000_check_for_link(hw);
1649                         link_check = !hw->mac.get_link_status;
1650                         break;
1651
1652                 case e1000_media_type_fiber:
1653                         e1000_check_for_link(hw);
1654                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1655                                       E1000_STATUS_LU);
1656                         break;
1657
1658                 case e1000_media_type_internal_serdes:
1659                         e1000_check_for_link(hw);
1660                         link_check = hw->mac.serdes_has_link;
1661                         break;
1662
1663                 /* VF device is type_unknown */
1664                 case e1000_media_type_unknown:
1665                         eth_igbvf_link_update(hw);
1666                         link_check = !hw->mac.get_link_status;
1667                         break;
1668
1669                 default:
1670                         break;
1671                 }
1672                 if (link_check || wait_to_complete == 0)
1673                         break;
1674                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
1675         }
1676         memset(&link, 0, sizeof(link));
1677         rte_igb_dev_atomic_read_link_status(dev, &link);
1678         old = link;
1679
1680         /* Now we check if a transition has happened */
1681         if (link_check) {
1682                 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1683                                           &link.link_duplex);
1684                 link.link_status = 1;
1685         } else if (!link_check) {
1686                 link.link_speed = 0;
1687                 link.link_duplex = 0;
1688                 link.link_status = 0;
1689         }
1690         rte_igb_dev_atomic_write_link_status(dev, &link);
1691
1692         /* not changed */
1693         if (old.link_status == link.link_status)
1694                 return -1;
1695
1696         /* changed */
1697         return 0;
1698 }
1699
1700 /*
1701  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
1702  * For ASF and Pass Through versions of f/w this means
1703  * that the driver is loaded.
1704  */
1705 static void
1706 igb_hw_control_acquire(struct e1000_hw *hw)
1707 {
1708         uint32_t ctrl_ext;
1709
1710         /* Let firmware know the driver has taken over */
1711         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1712         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1713 }
1714
1715 /*
1716  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
1717  * For ASF and Pass Through versions of f/w this means that the
1718  * driver is no longer loaded.
1719  */
1720 static void
1721 igb_hw_control_release(struct e1000_hw *hw)
1722 {
1723         uint32_t ctrl_ext;
1724
1725         /* Let firmware taken over control of h/w */
1726         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1727         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1728                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1729 }
1730
1731 /*
1732  * Bit of a misnomer, what this really means is
1733  * to enable OS management of the system... aka
1734  * to disable special hardware management features.
1735  */
1736 static void
1737 igb_init_manageability(struct e1000_hw *hw)
1738 {
1739         if (e1000_enable_mng_pass_thru(hw)) {
1740                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1741                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1742
1743                 /* disable hardware interception of ARP */
1744                 manc &= ~(E1000_MANC_ARP_EN);
1745
1746                 /* enable receiving management packets to the host */
1747                 manc |= E1000_MANC_EN_MNG2HOST;
1748                 manc2h |= 1 << 5;  /* Mng Port 623 */
1749                 manc2h |= 1 << 6;  /* Mng Port 664 */
1750                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1751                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1752         }
1753 }
1754
1755 static void
1756 igb_release_manageability(struct e1000_hw *hw)
1757 {
1758         if (e1000_enable_mng_pass_thru(hw)) {
1759                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1760
1761                 manc |= E1000_MANC_ARP_EN;
1762                 manc &= ~E1000_MANC_EN_MNG2HOST;
1763
1764                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1765         }
1766 }
1767
1768 static void
1769 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
1770 {
1771         struct e1000_hw *hw =
1772                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1773         uint32_t rctl;
1774
1775         rctl = E1000_READ_REG(hw, E1000_RCTL);
1776         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1777         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1778 }
1779
1780 static void
1781 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
1782 {
1783         struct e1000_hw *hw =
1784                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1785         uint32_t rctl;
1786
1787         rctl = E1000_READ_REG(hw, E1000_RCTL);
1788         rctl &= (~E1000_RCTL_UPE);
1789         if (dev->data->all_multicast == 1)
1790                 rctl |= E1000_RCTL_MPE;
1791         else
1792                 rctl &= (~E1000_RCTL_MPE);
1793         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1794 }
1795
1796 static void
1797 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
1798 {
1799         struct e1000_hw *hw =
1800                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1801         uint32_t rctl;
1802
1803         rctl = E1000_READ_REG(hw, E1000_RCTL);
1804         rctl |= E1000_RCTL_MPE;
1805         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1806 }
1807
1808 static void
1809 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
1810 {
1811         struct e1000_hw *hw =
1812                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1813         uint32_t rctl;
1814
1815         if (dev->data->promiscuous == 1)
1816                 return; /* must remain in all_multicast mode */
1817         rctl = E1000_READ_REG(hw, E1000_RCTL);
1818         rctl &= (~E1000_RCTL_MPE);
1819         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1820 }
1821
1822 static int
1823 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1824 {
1825         struct e1000_hw *hw =
1826                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1827         struct e1000_vfta * shadow_vfta =
1828                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1829         uint32_t vfta;
1830         uint32_t vid_idx;
1831         uint32_t vid_bit;
1832
1833         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1834                               E1000_VFTA_ENTRY_MASK);
1835         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1836         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1837         if (on)
1838                 vfta |= vid_bit;
1839         else
1840                 vfta &= ~vid_bit;
1841         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1842
1843         /* update local VFTA copy */
1844         shadow_vfta->vfta[vid_idx] = vfta;
1845
1846         return 0;
1847 }
1848
1849 static void
1850 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
1851 {
1852         struct e1000_hw *hw =
1853                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1854         uint32_t reg = ETHER_TYPE_VLAN ;
1855
1856         reg |= (tpid << 16);
1857         E1000_WRITE_REG(hw, E1000_VET, reg);
1858 }
1859
1860 static void
1861 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1862 {
1863         struct e1000_hw *hw =
1864                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1865         uint32_t reg;
1866
1867         /* Filter Table Disable */
1868         reg = E1000_READ_REG(hw, E1000_RCTL);
1869         reg &= ~E1000_RCTL_CFIEN;
1870         reg &= ~E1000_RCTL_VFE;
1871         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1872 }
1873
1874 static void
1875 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1876 {
1877         struct e1000_hw *hw =
1878                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1879         struct e1000_vfta * shadow_vfta =
1880                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1881         uint32_t reg;
1882         int i;
1883
1884         /* Filter Table Enable, CFI not used for packet acceptance */
1885         reg = E1000_READ_REG(hw, E1000_RCTL);
1886         reg &= ~E1000_RCTL_CFIEN;
1887         reg |= E1000_RCTL_VFE;
1888         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1889
1890         /* restore VFTA table */
1891         for (i = 0; i < IGB_VFTA_SIZE; i++)
1892                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1893 }
1894
1895 static void
1896 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1897 {
1898         struct e1000_hw *hw =
1899                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1900         uint32_t reg;
1901
1902         /* VLAN Mode Disable */
1903         reg = E1000_READ_REG(hw, E1000_CTRL);
1904         reg &= ~E1000_CTRL_VME;
1905         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1906 }
1907
1908 static void
1909 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1910 {
1911         struct e1000_hw *hw =
1912                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1913         uint32_t reg;
1914
1915         /* VLAN Mode Enable */
1916         reg = E1000_READ_REG(hw, E1000_CTRL);
1917         reg |= E1000_CTRL_VME;
1918         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1919 }
1920
1921 static void
1922 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
1923 {
1924         struct e1000_hw *hw =
1925                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1926         uint32_t reg;
1927
1928         /* CTRL_EXT: Extended VLAN */
1929         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1930         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
1931         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1932
1933         /* Update maximum packet length */
1934         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1935                 E1000_WRITE_REG(hw, E1000_RLPML,
1936                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1937                                                 VLAN_TAG_SIZE);
1938 }
1939
1940 static void
1941 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
1942 {
1943         struct e1000_hw *hw =
1944                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1945         uint32_t reg;
1946
1947         /* CTRL_EXT: Extended VLAN */
1948         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1949         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
1950         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
1951
1952         /* Update maximum packet length */
1953         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
1954                 E1000_WRITE_REG(hw, E1000_RLPML,
1955                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
1956                                                 2 * VLAN_TAG_SIZE);
1957 }
1958
1959 static void
1960 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1961 {
1962         if(mask & ETH_VLAN_STRIP_MASK){
1963                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1964                         igb_vlan_hw_strip_enable(dev);
1965                 else
1966                         igb_vlan_hw_strip_disable(dev);
1967         }
1968
1969         if(mask & ETH_VLAN_FILTER_MASK){
1970                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1971                         igb_vlan_hw_filter_enable(dev);
1972                 else
1973                         igb_vlan_hw_filter_disable(dev);
1974         }
1975
1976         if(mask & ETH_VLAN_EXTEND_MASK){
1977                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1978                         igb_vlan_hw_extend_enable(dev);
1979                 else
1980                         igb_vlan_hw_extend_disable(dev);
1981         }
1982 }
1983
1984
1985 /**
1986  * It enables the interrupt mask and then enable the interrupt.
1987  *
1988  * @param dev
1989  *  Pointer to struct rte_eth_dev.
1990  *
1991  * @return
1992  *  - On success, zero.
1993  *  - On failure, a negative value.
1994  */
1995 static int
1996 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
1997 {
1998         struct e1000_interrupt *intr =
1999                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2000
2001         intr->mask |= E1000_ICR_LSC;
2002
2003         return 0;
2004 }
2005
2006 /* It clears the interrupt causes and enables the interrupt.
2007  * It will be called once only during nic initialized.
2008  *
2009  * @param dev
2010  *  Pointer to struct rte_eth_dev.
2011  *
2012  * @return
2013  *  - On success, zero.
2014  *  - On failure, a negative value.
2015  */
2016 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2017 {
2018         uint32_t mask, regval;
2019         struct e1000_hw *hw =
2020                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2021         struct rte_eth_dev_info dev_info;
2022
2023         memset(&dev_info, 0, sizeof(dev_info));
2024         eth_igb_infos_get(dev, &dev_info);
2025
2026         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2027         regval = E1000_READ_REG(hw, E1000_EIMS);
2028         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2029
2030         return 0;
2031 }
2032
2033 /*
2034  * It reads ICR and gets interrupt causes, check it and set a bit flag
2035  * to update link status.
2036  *
2037  * @param dev
2038  *  Pointer to struct rte_eth_dev.
2039  *
2040  * @return
2041  *  - On success, zero.
2042  *  - On failure, a negative value.
2043  */
2044 static int
2045 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2046 {
2047         uint32_t icr;
2048         struct e1000_hw *hw =
2049                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2050         struct e1000_interrupt *intr =
2051                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2052
2053         igb_intr_disable(hw);
2054
2055         /* read-on-clear nic registers here */
2056         icr = E1000_READ_REG(hw, E1000_ICR);
2057
2058         intr->flags = 0;
2059         if (icr & E1000_ICR_LSC) {
2060                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2061         }
2062
2063         if (icr & E1000_ICR_VMMB)
2064                 intr->flags |= E1000_FLAG_MAILBOX;
2065
2066         return 0;
2067 }
2068
2069 /*
2070  * It executes link_update after knowing an interrupt is prsent.
2071  *
2072  * @param dev
2073  *  Pointer to struct rte_eth_dev.
2074  *
2075  * @return
2076  *  - On success, zero.
2077  *  - On failure, a negative value.
2078  */
2079 static int
2080 eth_igb_interrupt_action(struct rte_eth_dev *dev)
2081 {
2082         struct e1000_hw *hw =
2083                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2084         struct e1000_interrupt *intr =
2085                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2086         uint32_t tctl, rctl;
2087         struct rte_eth_link link;
2088         int ret;
2089
2090         if (intr->flags & E1000_FLAG_MAILBOX) {
2091                 igb_pf_mbx_process(dev);
2092                 intr->flags &= ~E1000_FLAG_MAILBOX;
2093         }
2094
2095         igb_intr_enable(dev);
2096         rte_intr_enable(&(dev->pci_dev->intr_handle));
2097
2098         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2099                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2100
2101                 /* set get_link_status to check register later */
2102                 hw->mac.get_link_status = 1;
2103                 ret = eth_igb_link_update(dev, 0);
2104
2105                 /* check if link has changed */
2106                 if (ret < 0)
2107                         return 0;
2108
2109                 memset(&link, 0, sizeof(link));
2110                 rte_igb_dev_atomic_read_link_status(dev, &link);
2111                 if (link.link_status) {
2112                         PMD_INIT_LOG(INFO,
2113                                      " Port %d: Link Up - speed %u Mbps - %s",
2114                                      dev->data->port_id,
2115                                      (unsigned)link.link_speed,
2116                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2117                                      "full-duplex" : "half-duplex");
2118                 } else {
2119                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2120                                      dev->data->port_id);
2121                 }
2122
2123                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2124                              dev->pci_dev->addr.domain,
2125                              dev->pci_dev->addr.bus,
2126                              dev->pci_dev->addr.devid,
2127                              dev->pci_dev->addr.function);
2128                 tctl = E1000_READ_REG(hw, E1000_TCTL);
2129                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2130                 if (link.link_status) {
2131                         /* enable Tx/Rx */
2132                         tctl |= E1000_TCTL_EN;
2133                         rctl |= E1000_RCTL_EN;
2134                 } else {
2135                         /* disable Tx/Rx */
2136                         tctl &= ~E1000_TCTL_EN;
2137                         rctl &= ~E1000_RCTL_EN;
2138                 }
2139                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2140                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2141                 E1000_WRITE_FLUSH(hw);
2142                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
2143         }
2144
2145         return 0;
2146 }
2147
2148 /**
2149  * Interrupt handler which shall be registered at first.
2150  *
2151  * @param handle
2152  *  Pointer to interrupt handle.
2153  * @param param
2154  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2155  *
2156  * @return
2157  *  void
2158  */
2159 static void
2160 eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
2161                                                         void *param)
2162 {
2163         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2164
2165         eth_igb_interrupt_get_status(dev);
2166         eth_igb_interrupt_action(dev);
2167 }
2168
2169 static int
2170 eth_igb_led_on(struct rte_eth_dev *dev)
2171 {
2172         struct e1000_hw *hw;
2173
2174         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2175         return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
2176 }
2177
2178 static int
2179 eth_igb_led_off(struct rte_eth_dev *dev)
2180 {
2181         struct e1000_hw *hw;
2182
2183         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2184         return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
2185 }
2186
2187 static int
2188 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2189 {
2190         struct e1000_hw *hw;
2191         uint32_t ctrl;
2192         int tx_pause;
2193         int rx_pause;
2194
2195         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2196         fc_conf->pause_time = hw->fc.pause_time;
2197         fc_conf->high_water = hw->fc.high_water;
2198         fc_conf->low_water = hw->fc.low_water;
2199         fc_conf->send_xon = hw->fc.send_xon;
2200         fc_conf->autoneg = hw->mac.autoneg;
2201
2202         /*
2203          * Return rx_pause and tx_pause status according to actual setting of
2204          * the TFCE and RFCE bits in the CTRL register.
2205          */
2206         ctrl = E1000_READ_REG(hw, E1000_CTRL);
2207         if (ctrl & E1000_CTRL_TFCE)
2208                 tx_pause = 1;
2209         else
2210                 tx_pause = 0;
2211
2212         if (ctrl & E1000_CTRL_RFCE)
2213                 rx_pause = 1;
2214         else
2215                 rx_pause = 0;
2216
2217         if (rx_pause && tx_pause)
2218                 fc_conf->mode = RTE_FC_FULL;
2219         else if (rx_pause)
2220                 fc_conf->mode = RTE_FC_RX_PAUSE;
2221         else if (tx_pause)
2222                 fc_conf->mode = RTE_FC_TX_PAUSE;
2223         else
2224                 fc_conf->mode = RTE_FC_NONE;
2225
2226         return 0;
2227 }
2228
2229 static int
2230 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2231 {
2232         struct e1000_hw *hw;
2233         int err;
2234         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
2235                 e1000_fc_none,
2236                 e1000_fc_rx_pause,
2237                 e1000_fc_tx_pause,
2238                 e1000_fc_full
2239         };
2240         uint32_t rx_buf_size;
2241         uint32_t max_high_water;
2242         uint32_t rctl;
2243
2244         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2245         if (fc_conf->autoneg != hw->mac.autoneg)
2246                 return -ENOTSUP;
2247         rx_buf_size = igb_get_rx_buffer_size(hw);
2248         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
2249
2250         /* At least reserve one Ethernet frame for watermark */
2251         max_high_water = rx_buf_size - ETHER_MAX_LEN;
2252         if ((fc_conf->high_water > max_high_water) ||
2253             (fc_conf->high_water < fc_conf->low_water)) {
2254                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
2255                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
2256                 return (-EINVAL);
2257         }
2258
2259         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
2260         hw->fc.pause_time     = fc_conf->pause_time;
2261         hw->fc.high_water     = fc_conf->high_water;
2262         hw->fc.low_water      = fc_conf->low_water;
2263         hw->fc.send_xon       = fc_conf->send_xon;
2264
2265         err = e1000_setup_link_generic(hw);
2266         if (err == E1000_SUCCESS) {
2267
2268                 /* check if we want to forward MAC frames - driver doesn't have native
2269                  * capability to do that, so we'll write the registers ourselves */
2270
2271                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2272
2273                 /* set or clear MFLCN.PMCF bit depending on configuration */
2274                 if (fc_conf->mac_ctrl_frame_fwd != 0)
2275                         rctl |= E1000_RCTL_PMCF;
2276                 else
2277                         rctl &= ~E1000_RCTL_PMCF;
2278
2279                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2280                 E1000_WRITE_FLUSH(hw);
2281
2282                 return 0;
2283         }
2284
2285         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
2286         return (-EIO);
2287 }
2288
2289 #define E1000_RAH_POOLSEL_SHIFT      (18)
2290 static void
2291 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
2292                 uint32_t index, __rte_unused uint32_t pool)
2293 {
2294         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2295         uint32_t rah;
2296
2297         e1000_rar_set(hw, mac_addr->addr_bytes, index);
2298         rah = E1000_READ_REG(hw, E1000_RAH(index));
2299         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
2300         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
2301 }
2302
2303 static void
2304 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
2305 {
2306         uint8_t addr[ETHER_ADDR_LEN];
2307         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2308
2309         memset(addr, 0, sizeof(addr));
2310
2311         e1000_rar_set(hw, addr, index);
2312 }
2313
2314 static void
2315 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
2316                                 struct ether_addr *addr)
2317 {
2318         eth_igb_rar_clear(dev, 0);
2319
2320         eth_igb_rar_set(dev, (void *)addr, 0, 0);
2321 }
2322 /*
2323  * Virtual Function operations
2324  */
2325 static void
2326 igbvf_intr_disable(struct e1000_hw *hw)
2327 {
2328         PMD_INIT_FUNC_TRACE();
2329
2330         /* Clear interrupt mask to stop from interrupts being generated */
2331         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
2332
2333         E1000_WRITE_FLUSH(hw);
2334 }
2335
2336 static void
2337 igbvf_stop_adapter(struct rte_eth_dev *dev)
2338 {
2339         u32 reg_val;
2340         u16 i;
2341         struct rte_eth_dev_info dev_info;
2342         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2343
2344         memset(&dev_info, 0, sizeof(dev_info));
2345         eth_igbvf_infos_get(dev, &dev_info);
2346
2347         /* Clear interrupt mask to stop from interrupts being generated */
2348         igbvf_intr_disable(hw);
2349
2350         /* Clear any pending interrupts, flush previous writes */
2351         E1000_READ_REG(hw, E1000_EICR);
2352
2353         /* Disable the transmit unit.  Each queue must be disabled. */
2354         for (i = 0; i < dev_info.max_tx_queues; i++)
2355                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
2356
2357         /* Disable the receive unit by stopping each queue */
2358         for (i = 0; i < dev_info.max_rx_queues; i++) {
2359                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
2360                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
2361                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
2362                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
2363                         ;
2364         }
2365
2366         /* flush all queues disables */
2367         E1000_WRITE_FLUSH(hw);
2368         msec_delay(2);
2369 }
2370
2371 static int eth_igbvf_link_update(struct e1000_hw *hw)
2372 {
2373         struct e1000_mbx_info *mbx = &hw->mbx;
2374         struct e1000_mac_info *mac = &hw->mac;
2375         int ret_val = E1000_SUCCESS;
2376
2377         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
2378
2379         /*
2380          * We only want to run this if there has been a rst asserted.
2381          * in this case that could mean a link change, device reset,
2382          * or a virtual function reset
2383          */
2384
2385         /* If we were hit with a reset or timeout drop the link */
2386         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
2387                 mac->get_link_status = TRUE;
2388
2389         if (!mac->get_link_status)
2390                 goto out;
2391
2392         /* if link status is down no point in checking to see if pf is up */
2393         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
2394                 goto out;
2395
2396         /* if we passed all the tests above then the link is up and we no
2397          * longer need to check for link */
2398         mac->get_link_status = FALSE;
2399
2400 out:
2401         return ret_val;
2402 }
2403
2404
2405 static int
2406 igbvf_dev_configure(struct rte_eth_dev *dev)
2407 {
2408         struct rte_eth_conf* conf = &dev->data->dev_conf;
2409
2410         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
2411                      dev->data->port_id);
2412
2413         /*
2414          * VF has no ability to enable/disable HW CRC
2415          * Keep the persistent behavior the same as Host PF
2416          */
2417 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
2418         if (!conf->rxmode.hw_strip_crc) {
2419                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
2420                 conf->rxmode.hw_strip_crc = 1;
2421         }
2422 #else
2423         if (conf->rxmode.hw_strip_crc) {
2424                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
2425                 conf->rxmode.hw_strip_crc = 0;
2426         }
2427 #endif
2428
2429         return 0;
2430 }
2431
2432 static int
2433 igbvf_dev_start(struct rte_eth_dev *dev)
2434 {
2435         struct e1000_hw *hw =
2436                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2437         struct e1000_adapter *adapter =
2438                 E1000_DEV_PRIVATE(dev->data->dev_private);
2439         int ret;
2440
2441         PMD_INIT_FUNC_TRACE();
2442
2443         hw->mac.ops.reset_hw(hw);
2444         adapter->stopped = 0;
2445
2446         /* Set all vfta */
2447         igbvf_set_vfta_all(dev,1);
2448
2449         eth_igbvf_tx_init(dev);
2450
2451         /* This can fail when allocating mbufs for descriptor rings */
2452         ret = eth_igbvf_rx_init(dev);
2453         if (ret) {
2454                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
2455                 igb_dev_clear_queues(dev);
2456                 return ret;
2457         }
2458
2459         return 0;
2460 }
2461
2462 static void
2463 igbvf_dev_stop(struct rte_eth_dev *dev)
2464 {
2465         PMD_INIT_FUNC_TRACE();
2466
2467         igbvf_stop_adapter(dev);
2468
2469         /*
2470           * Clear what we set, but we still keep shadow_vfta to
2471           * restore after device starts
2472           */
2473         igbvf_set_vfta_all(dev,0);
2474
2475         igb_dev_clear_queues(dev);
2476 }
2477
2478 static void
2479 igbvf_dev_close(struct rte_eth_dev *dev)
2480 {
2481         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2482         struct e1000_adapter *adapter =
2483                 E1000_DEV_PRIVATE(dev->data->dev_private);
2484
2485         PMD_INIT_FUNC_TRACE();
2486
2487         e1000_reset_hw(hw);
2488
2489         igbvf_dev_stop(dev);
2490         adapter->stopped = 1;
2491         igb_dev_free_queues(dev);
2492 }
2493
2494 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
2495 {
2496         struct e1000_mbx_info *mbx = &hw->mbx;
2497         uint32_t msgbuf[2];
2498
2499         /* After set vlan, vlan strip will also be enabled in igb driver*/
2500         msgbuf[0] = E1000_VF_SET_VLAN;
2501         msgbuf[1] = vid;
2502         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
2503         if (on)
2504                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
2505
2506         return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
2507 }
2508
2509 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
2510 {
2511         struct e1000_hw *hw =
2512                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2513         struct e1000_vfta * shadow_vfta =
2514                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2515         int i = 0, j = 0, vfta = 0, mask = 1;
2516
2517         for (i = 0; i < IGB_VFTA_SIZE; i++){
2518                 vfta = shadow_vfta->vfta[i];
2519                 if(vfta){
2520                         mask = 1;
2521                         for (j = 0; j < 32; j++){
2522                                 if(vfta & mask)
2523                                         igbvf_set_vfta(hw,
2524                                                 (uint16_t)((i<<5)+j), on);
2525                                 mask<<=1;
2526                         }
2527                 }
2528         }
2529
2530 }
2531
2532 static int
2533 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2534 {
2535         struct e1000_hw *hw =
2536                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2537         struct e1000_vfta * shadow_vfta =
2538                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2539         uint32_t vid_idx = 0;
2540         uint32_t vid_bit = 0;
2541         int ret = 0;
2542
2543         PMD_INIT_FUNC_TRACE();
2544
2545         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
2546         ret = igbvf_set_vfta(hw, vlan_id, !!on);
2547         if(ret){
2548                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
2549                 return ret;
2550         }
2551         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
2552         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
2553
2554         /*Save what we set and retore it after device reset*/
2555         if (on)
2556                 shadow_vfta->vfta[vid_idx] |= vid_bit;
2557         else
2558                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
2559
2560         return 0;
2561 }
2562
2563 static void
2564 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
2565 {
2566         struct e1000_hw *hw =
2567                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2568
2569         /* index is not used by rar_set() */
2570         hw->mac.ops.rar_set(hw, (void *)addr, 0);
2571 }
2572
2573
2574 static int
2575 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
2576                         struct rte_eth_rss_reta_entry64 *reta_conf,
2577                         uint16_t reta_size)
2578 {
2579         uint8_t i, j, mask;
2580         uint32_t reta, r;
2581         uint16_t idx, shift;
2582         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2583
2584         if (reta_size != ETH_RSS_RETA_SIZE_128) {
2585                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
2586                         "(%d) doesn't match the number hardware can supported "
2587                         "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
2588                 return -EINVAL;
2589         }
2590
2591         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
2592                 idx = i / RTE_RETA_GROUP_SIZE;
2593                 shift = i % RTE_RETA_GROUP_SIZE;
2594                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
2595                                                 IGB_4_BIT_MASK);
2596                 if (!mask)
2597                         continue;
2598                 if (mask == IGB_4_BIT_MASK)
2599                         r = 0;
2600                 else
2601                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
2602                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
2603                         if (mask & (0x1 << j))
2604                                 reta |= reta_conf[idx].reta[shift + j] <<
2605                                                         (CHAR_BIT * j);
2606                         else
2607                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
2608                 }
2609                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2610         }
2611
2612         return 0;
2613 }
2614
2615 static int
2616 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
2617                        struct rte_eth_rss_reta_entry64 *reta_conf,
2618                        uint16_t reta_size)
2619 {
2620         uint8_t i, j, mask;
2621         uint32_t reta;
2622         uint16_t idx, shift;
2623         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2624
2625         if (reta_size != ETH_RSS_RETA_SIZE_128) {
2626                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
2627                         "(%d) doesn't match the number hardware can supported "
2628                         "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
2629                 return -EINVAL;
2630         }
2631
2632         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
2633                 idx = i / RTE_RETA_GROUP_SIZE;
2634                 shift = i % RTE_RETA_GROUP_SIZE;
2635                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
2636                                                 IGB_4_BIT_MASK);
2637                 if (!mask)
2638                         continue;
2639                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
2640                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
2641                         if (mask & (0x1 << j))
2642                                 reta_conf[idx].reta[shift + j] =
2643                                         ((reta >> (CHAR_BIT * j)) &
2644                                                 IGB_8_BIT_MASK);
2645                 }
2646         }
2647
2648         return 0;
2649 }
2650
2651 #define MAC_TYPE_FILTER_SUP(type)    do {\
2652         if ((type) != e1000_82580 && (type) != e1000_i350 &&\
2653                 (type) != e1000_82576)\
2654                 return -ENOTSUP;\
2655 } while (0)
2656
2657 static int
2658 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
2659                         struct rte_eth_syn_filter *filter,
2660                         bool add)
2661 {
2662         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2663         uint32_t synqf, rfctl;
2664
2665         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
2666                 return -EINVAL;
2667
2668         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
2669
2670         if (add) {
2671                 if (synqf & E1000_SYN_FILTER_ENABLE)
2672                         return -EINVAL;
2673
2674                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
2675                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
2676
2677                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2678                 if (filter->hig_pri)
2679                         rfctl |= E1000_RFCTL_SYNQFP;
2680                 else
2681                         rfctl &= ~E1000_RFCTL_SYNQFP;
2682
2683                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2684         } else {
2685                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
2686                         return -ENOENT;
2687                 synqf = 0;
2688         }
2689
2690         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
2691         E1000_WRITE_FLUSH(hw);
2692         return 0;
2693 }
2694
2695 static int
2696 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
2697                         struct rte_eth_syn_filter *filter)
2698 {
2699         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2700         uint32_t synqf, rfctl;
2701
2702         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
2703         if (synqf & E1000_SYN_FILTER_ENABLE) {
2704                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2705                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
2706                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
2707                                 E1000_SYN_FILTER_QUEUE_SHIFT);
2708                 return 0;
2709         }
2710
2711         return -ENOENT;
2712 }
2713
2714 static int
2715 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
2716                         enum rte_filter_op filter_op,
2717                         void *arg)
2718 {
2719         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2720         int ret;
2721
2722         MAC_TYPE_FILTER_SUP(hw->mac.type);
2723
2724         if (filter_op == RTE_ETH_FILTER_NOP)
2725                 return 0;
2726
2727         if (arg == NULL) {
2728                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
2729                             filter_op);
2730                 return -EINVAL;
2731         }
2732
2733         switch (filter_op) {
2734         case RTE_ETH_FILTER_ADD:
2735                 ret = eth_igb_syn_filter_set(dev,
2736                                 (struct rte_eth_syn_filter *)arg,
2737                                 TRUE);
2738                 break;
2739         case RTE_ETH_FILTER_DELETE:
2740                 ret = eth_igb_syn_filter_set(dev,
2741                                 (struct rte_eth_syn_filter *)arg,
2742                                 FALSE);
2743                 break;
2744         case RTE_ETH_FILTER_GET:
2745                 ret = eth_igb_syn_filter_get(dev,
2746                                 (struct rte_eth_syn_filter *)arg);
2747                 break;
2748         default:
2749                 PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
2750                 ret = -EINVAL;
2751                 break;
2752         }
2753
2754         return ret;
2755 }
2756
2757 #define MAC_TYPE_FILTER_SUP_EXT(type)    do {\
2758         if ((type) != e1000_82580 && (type) != e1000_i350)\
2759                 return -ENOSYS; \
2760 } while (0)
2761
2762 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
2763 static inline int
2764 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
2765                         struct e1000_2tuple_filter_info *filter_info)
2766 {
2767         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
2768                 return -EINVAL;
2769         if (filter->priority > E1000_2TUPLE_MAX_PRI)
2770                 return -EINVAL;  /* filter index is out of range. */
2771         if (filter->tcp_flags > TCP_FLAG_ALL)
2772                 return -EINVAL;  /* flags is invalid. */
2773
2774         switch (filter->dst_port_mask) {
2775         case UINT16_MAX:
2776                 filter_info->dst_port_mask = 0;
2777                 filter_info->dst_port = filter->dst_port;
2778                 break;
2779         case 0:
2780                 filter_info->dst_port_mask = 1;
2781                 break;
2782         default:
2783                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
2784                 return -EINVAL;
2785         }
2786
2787         switch (filter->proto_mask) {
2788         case UINT8_MAX:
2789                 filter_info->proto_mask = 0;
2790                 filter_info->proto = filter->proto;
2791                 break;
2792         case 0:
2793                 filter_info->proto_mask = 1;
2794                 break;
2795         default:
2796                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
2797                 return -EINVAL;
2798         }
2799
2800         filter_info->priority = (uint8_t)filter->priority;
2801         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
2802                 filter_info->tcp_flags = filter->tcp_flags;
2803         else
2804                 filter_info->tcp_flags = 0;
2805
2806         return 0;
2807 }
2808
2809 static inline struct e1000_2tuple_filter *
2810 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
2811                         struct e1000_2tuple_filter_info *key)
2812 {
2813         struct e1000_2tuple_filter *it;
2814
2815         TAILQ_FOREACH(it, filter_list, entries) {
2816                 if (memcmp(key, &it->filter_info,
2817                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
2818                         return it;
2819                 }
2820         }
2821         return NULL;
2822 }
2823
2824 /*
2825  * igb_add_2tuple_filter - add a 2tuple filter
2826  *
2827  * @param
2828  * dev: Pointer to struct rte_eth_dev.
2829  * ntuple_filter: ponter to the filter that will be added.
2830  *
2831  * @return
2832  *    - On success, zero.
2833  *    - On failure, a negative value.
2834  */
2835 static int
2836 igb_add_2tuple_filter(struct rte_eth_dev *dev,
2837                         struct rte_eth_ntuple_filter *ntuple_filter)
2838 {
2839         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2840         struct e1000_filter_info *filter_info =
2841                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2842         struct e1000_2tuple_filter *filter;
2843         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
2844         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
2845         int i, ret;
2846
2847         filter = rte_zmalloc("e1000_2tuple_filter",
2848                         sizeof(struct e1000_2tuple_filter), 0);
2849         if (filter == NULL)
2850                 return -ENOMEM;
2851
2852         ret = ntuple_filter_to_2tuple(ntuple_filter,
2853                                       &filter->filter_info);
2854         if (ret < 0) {
2855                 rte_free(filter);
2856                 return ret;
2857         }
2858         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
2859                                          &filter->filter_info) != NULL) {
2860                 PMD_DRV_LOG(ERR, "filter exists.");
2861                 rte_free(filter);
2862                 return -EEXIST;
2863         }
2864         filter->queue = ntuple_filter->queue;
2865
2866         /*
2867          * look for an unused 2tuple filter index,
2868          * and insert the filter to list.
2869          */
2870         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
2871                 if (!(filter_info->twotuple_mask & (1 << i))) {
2872                         filter_info->twotuple_mask |= 1 << i;
2873                         filter->index = i;
2874                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
2875                                           filter,
2876                                           entries);
2877                         break;
2878                 }
2879         }
2880         if (i >= E1000_MAX_TTQF_FILTERS) {
2881                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
2882                 rte_free(filter);
2883                 return -ENOSYS;
2884         }
2885
2886         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
2887         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
2888                 imir |= E1000_IMIR_PORT_BP;
2889         else
2890                 imir &= ~E1000_IMIR_PORT_BP;
2891
2892         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
2893
2894         ttqf |= E1000_TTQF_QUEUE_ENABLE;
2895         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
2896         ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
2897         if (filter->filter_info.proto_mask == 0)
2898                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
2899
2900         /* tcp flags bits setting. */
2901         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
2902                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
2903                         imir_ext |= E1000_IMIREXT_CTRL_URG;
2904                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
2905                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
2906                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
2907                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
2908                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
2909                         imir_ext |= E1000_IMIREXT_CTRL_RST;
2910                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
2911                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
2912                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
2913                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
2914         } else
2915                 imir_ext |= E1000_IMIREXT_CTRL_BP;
2916         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
2917         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
2918         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
2919         return 0;
2920 }
2921
2922 /*
2923  * igb_remove_2tuple_filter - remove a 2tuple filter
2924  *
2925  * @param
2926  * dev: Pointer to struct rte_eth_dev.
2927  * ntuple_filter: ponter to the filter that will be removed.
2928  *
2929  * @return
2930  *    - On success, zero.
2931  *    - On failure, a negative value.
2932  */
2933 static int
2934 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
2935                         struct rte_eth_ntuple_filter *ntuple_filter)
2936 {
2937         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2938         struct e1000_filter_info *filter_info =
2939                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2940         struct e1000_2tuple_filter_info filter_2tuple;
2941         struct e1000_2tuple_filter *filter;
2942         int ret;
2943
2944         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
2945         ret = ntuple_filter_to_2tuple(ntuple_filter,
2946                                       &filter_2tuple);
2947         if (ret < 0)
2948                 return ret;
2949
2950         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
2951                                          &filter_2tuple);
2952         if (filter == NULL) {
2953                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
2954                 return -ENOENT;
2955         }
2956
2957         filter_info->twotuple_mask &= ~(1 << filter->index);
2958         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
2959         rte_free(filter);
2960
2961         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
2962         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
2963         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
2964         return 0;
2965 }
2966
2967 static inline struct e1000_flex_filter *
2968 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
2969                         struct e1000_flex_filter_info *key)
2970 {
2971         struct e1000_flex_filter *it;
2972
2973         TAILQ_FOREACH(it, filter_list, entries) {
2974                 if (memcmp(key, &it->filter_info,
2975                         sizeof(struct e1000_flex_filter_info)) == 0)
2976                         return it;
2977         }
2978
2979         return NULL;
2980 }
2981
2982 static int
2983 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
2984                         struct rte_eth_flex_filter *filter,
2985                         bool add)
2986 {
2987         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2988         struct e1000_filter_info *filter_info =
2989                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2990         struct e1000_flex_filter *flex_filter, *it;
2991         uint32_t wufc, queueing, mask;
2992         uint32_t reg_off;
2993         uint8_t shift, i, j = 0;
2994
2995         flex_filter = rte_zmalloc("e1000_flex_filter",
2996                         sizeof(struct e1000_flex_filter), 0);
2997         if (flex_filter == NULL)
2998                 return -ENOMEM;
2999
3000         flex_filter->filter_info.len = filter->len;
3001         flex_filter->filter_info.priority = filter->priority;
3002         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
3003         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
3004                 mask = 0;
3005                 /* reverse bits in flex filter's mask*/
3006                 for (shift = 0; shift < CHAR_BIT; shift++) {
3007                         if (filter->mask[i] & (0x01 << shift))
3008                                 mask |= (0x80 >> shift);
3009                 }
3010                 flex_filter->filter_info.mask[i] = mask;
3011         }
3012
3013         wufc = E1000_READ_REG(hw, E1000_WUFC);
3014         if (flex_filter->index < E1000_MAX_FHFT)
3015                 reg_off = E1000_FHFT(flex_filter->index);
3016         else
3017                 reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
3018
3019         if (add) {
3020                 if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
3021                                 &flex_filter->filter_info) != NULL) {
3022                         PMD_DRV_LOG(ERR, "filter exists.");
3023                         rte_free(flex_filter);
3024                         return -EEXIST;
3025                 }
3026                 flex_filter->queue = filter->queue;
3027                 /*
3028                  * look for an unused flex filter index
3029                  * and insert the filter into the list.
3030                  */
3031                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
3032                         if (!(filter_info->flex_mask & (1 << i))) {
3033                                 filter_info->flex_mask |= 1 << i;
3034                                 flex_filter->index = i;
3035                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
3036                                         flex_filter,
3037                                         entries);
3038                                 break;
3039                         }
3040                 }
3041                 if (i >= E1000_MAX_FLEX_FILTERS) {
3042                         PMD_DRV_LOG(ERR, "flex filters are full.");
3043                         rte_free(flex_filter);
3044                         return -ENOSYS;
3045                 }
3046
3047                 E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3048                                 (E1000_WUFC_FLX0 << flex_filter->index));
3049                 queueing = filter->len |
3050                         (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3051                         (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
3052                 E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3053                                 queueing);
3054                 for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3055                         E1000_WRITE_REG(hw, reg_off,
3056                                         flex_filter->filter_info.dwords[j]);
3057                         reg_off += sizeof(uint32_t);
3058                         E1000_WRITE_REG(hw, reg_off,
3059                                         flex_filter->filter_info.dwords[++j]);
3060                         reg_off += sizeof(uint32_t);
3061                         E1000_WRITE_REG(hw, reg_off,
3062                                 (uint32_t)flex_filter->filter_info.mask[i]);
3063                         reg_off += sizeof(uint32_t) * 2;
3064                         ++j;
3065                 }
3066         } else {
3067                 it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3068                                 &flex_filter->filter_info);
3069                 if (it == NULL) {
3070                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3071                         rte_free(flex_filter);
3072                         return -ENOENT;
3073                 }
3074
3075                 for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3076                         E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3077                 E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3078                         (~(E1000_WUFC_FLX0 << it->index)));
3079
3080                 filter_info->flex_mask &= ~(1 << it->index);
3081                 TAILQ_REMOVE(&filter_info->flex_list, it, entries);
3082                 rte_free(it);
3083                 rte_free(flex_filter);
3084         }
3085
3086         return 0;
3087 }
3088
3089 static int
3090 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
3091                         struct rte_eth_flex_filter *filter)
3092 {
3093         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3094         struct e1000_filter_info *filter_info =
3095                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3096         struct e1000_flex_filter flex_filter, *it;
3097         uint32_t wufc, queueing, wufc_en = 0;
3098
3099         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
3100         flex_filter.filter_info.len = filter->len;
3101         flex_filter.filter_info.priority = filter->priority;
3102         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
3103         memcpy(flex_filter.filter_info.mask, filter->mask,
3104                         RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
3105
3106         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3107                                 &flex_filter.filter_info);
3108         if (it == NULL) {
3109                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3110                 return -ENOENT;
3111         }
3112
3113         wufc = E1000_READ_REG(hw, E1000_WUFC);
3114         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
3115
3116         if ((wufc & wufc_en) == wufc_en) {
3117                 uint32_t reg_off = 0;
3118                 if (it->index < E1000_MAX_FHFT)
3119                         reg_off = E1000_FHFT(it->index);
3120                 else
3121                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
3122
3123                 queueing = E1000_READ_REG(hw,
3124                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
3125                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
3126                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
3127                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
3128                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
3129                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
3130                 return 0;
3131         }
3132         return -ENOENT;
3133 }
3134
3135 static int
3136 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
3137                         enum rte_filter_op filter_op,
3138                         void *arg)
3139 {
3140         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3141         struct rte_eth_flex_filter *filter;
3142         int ret = 0;
3143
3144         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
3145
3146         if (filter_op == RTE_ETH_FILTER_NOP)
3147                 return ret;
3148
3149         if (arg == NULL) {
3150                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3151                             filter_op);
3152                 return -EINVAL;
3153         }
3154
3155         filter = (struct rte_eth_flex_filter *)arg;
3156         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
3157             || filter->len % sizeof(uint64_t) != 0) {
3158                 PMD_DRV_LOG(ERR, "filter's length is out of range");
3159                 return -EINVAL;
3160         }
3161         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
3162                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
3163                 return -EINVAL;
3164         }
3165
3166         switch (filter_op) {
3167         case RTE_ETH_FILTER_ADD:
3168                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
3169                 break;
3170         case RTE_ETH_FILTER_DELETE:
3171                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
3172                 break;
3173         case RTE_ETH_FILTER_GET:
3174                 ret = eth_igb_get_flex_filter(dev, filter);
3175                 break;
3176         default:
3177                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3178                 ret = -EINVAL;
3179                 break;
3180         }
3181
3182         return ret;
3183 }
3184
3185 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
3186 static inline int
3187 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
3188                         struct e1000_5tuple_filter_info *filter_info)
3189 {
3190         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
3191                 return -EINVAL;
3192         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3193                 return -EINVAL;  /* filter index is out of range. */
3194         if (filter->tcp_flags > TCP_FLAG_ALL)
3195                 return -EINVAL;  /* flags is invalid. */
3196
3197         switch (filter->dst_ip_mask) {
3198         case UINT32_MAX:
3199                 filter_info->dst_ip_mask = 0;
3200                 filter_info->dst_ip = filter->dst_ip;
3201                 break;
3202         case 0:
3203                 filter_info->dst_ip_mask = 1;
3204                 break;
3205         default:
3206                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
3207                 return -EINVAL;
3208         }
3209
3210         switch (filter->src_ip_mask) {
3211         case UINT32_MAX:
3212                 filter_info->src_ip_mask = 0;
3213                 filter_info->src_ip = filter->src_ip;
3214                 break;
3215         case 0:
3216                 filter_info->src_ip_mask = 1;
3217                 break;
3218         default:
3219                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
3220                 return -EINVAL;
3221         }
3222
3223         switch (filter->dst_port_mask) {
3224         case UINT16_MAX:
3225                 filter_info->dst_port_mask = 0;
3226                 filter_info->dst_port = filter->dst_port;
3227                 break;
3228         case 0:
3229                 filter_info->dst_port_mask = 1;
3230                 break;
3231         default:
3232                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3233                 return -EINVAL;
3234         }
3235
3236         switch (filter->src_port_mask) {
3237         case UINT16_MAX:
3238                 filter_info->src_port_mask = 0;
3239                 filter_info->src_port = filter->src_port;
3240                 break;
3241         case 0:
3242                 filter_info->src_port_mask = 1;
3243                 break;
3244         default:
3245                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
3246                 return -EINVAL;
3247         }
3248
3249         switch (filter->proto_mask) {
3250         case UINT8_MAX:
3251                 filter_info->proto_mask = 0;
3252                 filter_info->proto = filter->proto;
3253                 break;
3254         case 0:
3255                 filter_info->proto_mask = 1;
3256                 break;
3257         default:
3258                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3259                 return -EINVAL;
3260         }
3261
3262         filter_info->priority = (uint8_t)filter->priority;
3263         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3264                 filter_info->tcp_flags = filter->tcp_flags;
3265         else
3266                 filter_info->tcp_flags = 0;
3267
3268         return 0;
3269 }
3270
3271 static inline struct e1000_5tuple_filter *
3272 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
3273                         struct e1000_5tuple_filter_info *key)
3274 {
3275         struct e1000_5tuple_filter *it;
3276
3277         TAILQ_FOREACH(it, filter_list, entries) {
3278                 if (memcmp(key, &it->filter_info,
3279                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
3280                         return it;
3281                 }
3282         }
3283         return NULL;
3284 }
3285
3286 /*
3287  * igb_add_5tuple_filter_82576 - add a 5tuple filter
3288  *
3289  * @param
3290  * dev: Pointer to struct rte_eth_dev.
3291  * ntuple_filter: ponter to the filter that will be added.
3292  *
3293  * @return
3294  *    - On success, zero.
3295  *    - On failure, a negative value.
3296  */
3297 static int
3298 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
3299                         struct rte_eth_ntuple_filter *ntuple_filter)
3300 {
3301         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3302         struct e1000_filter_info *filter_info =
3303                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3304         struct e1000_5tuple_filter *filter;
3305         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
3306         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3307         uint8_t i;
3308         int ret;
3309
3310         filter = rte_zmalloc("e1000_5tuple_filter",
3311                         sizeof(struct e1000_5tuple_filter), 0);
3312         if (filter == NULL)
3313                 return -ENOMEM;
3314
3315         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3316                                             &filter->filter_info);
3317         if (ret < 0) {
3318                 rte_free(filter);
3319                 return ret;
3320         }
3321
3322         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
3323                                          &filter->filter_info) != NULL) {
3324                 PMD_DRV_LOG(ERR, "filter exists.");
3325                 rte_free(filter);
3326                 return -EEXIST;
3327         }
3328         filter->queue = ntuple_filter->queue;
3329
3330         /*
3331          * look for an unused 5tuple filter index,
3332          * and insert the filter to list.
3333          */
3334         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
3335                 if (!(filter_info->fivetuple_mask & (1 << i))) {
3336                         filter_info->fivetuple_mask |= 1 << i;
3337                         filter->index = i;
3338                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
3339                                           filter,
3340                                           entries);
3341                         break;
3342                 }
3343         }
3344         if (i >= E1000_MAX_FTQF_FILTERS) {
3345                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
3346                 rte_free(filter);
3347                 return -ENOSYS;
3348         }
3349
3350         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
3351         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
3352                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
3353         if (filter->filter_info.dst_ip_mask == 0)
3354                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
3355         if (filter->filter_info.src_port_mask == 0)
3356                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
3357         if (filter->filter_info.proto_mask == 0)
3358                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
3359         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
3360                 E1000_FTQF_QUEUE_MASK;
3361         ftqf |= E1000_FTQF_QUEUE_ENABLE;
3362         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
3363         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
3364         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
3365
3366         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
3367         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
3368
3369         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3370         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3371                 imir |= E1000_IMIR_PORT_BP;
3372         else
3373                 imir &= ~E1000_IMIR_PORT_BP;
3374         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3375
3376         /* tcp flags bits setting. */
3377         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3378                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3379                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3380                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3381                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3382                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3383                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3384                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3385                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3386                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3387                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3388                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3389                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3390         } else
3391                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3392         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3393         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3394         return 0;
3395 }
3396
3397 /*
3398  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
3399  *
3400  * @param
3401  * dev: Pointer to struct rte_eth_dev.
3402  * ntuple_filter: ponter to the filter that will be removed.
3403  *
3404  * @return
3405  *    - On success, zero.
3406  *    - On failure, a negative value.
3407  */
3408 static int
3409 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
3410                                 struct rte_eth_ntuple_filter *ntuple_filter)
3411 {
3412         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3413         struct e1000_filter_info *filter_info =
3414                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3415         struct e1000_5tuple_filter_info filter_5tuple;
3416         struct e1000_5tuple_filter *filter;
3417         int ret;
3418
3419         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
3420         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3421                                             &filter_5tuple);
3422         if (ret < 0)
3423                 return ret;
3424
3425         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
3426                                          &filter_5tuple);
3427         if (filter == NULL) {
3428                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3429                 return -ENOENT;
3430         }
3431
3432         filter_info->fivetuple_mask &= ~(1 << filter->index);
3433         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
3434         rte_free(filter);
3435
3436         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
3437                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
3438         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
3439         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
3440         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
3441         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3442         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3443         return 0;
3444 }
3445
3446 static int
3447 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
3448 {
3449         uint32_t rctl;
3450         struct e1000_hw *hw;
3451         struct rte_eth_dev_info dev_info;
3452         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
3453                                      VLAN_TAG_SIZE);
3454
3455         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3456
3457 #ifdef RTE_LIBRTE_82571_SUPPORT
3458         /* XXX: not bigger than max_rx_pktlen */
3459         if (hw->mac.type == e1000_82571)
3460                 return -ENOTSUP;
3461 #endif
3462         eth_igb_infos_get(dev, &dev_info);
3463
3464         /* check that mtu is within the allowed range */
3465         if ((mtu < ETHER_MIN_MTU) ||
3466             (frame_size > dev_info.max_rx_pktlen))
3467                 return -EINVAL;
3468
3469         /* refuse mtu that requires the support of scattered packets when this
3470          * feature has not been enabled before. */
3471         if (!dev->data->scattered_rx &&
3472             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
3473                 return -EINVAL;
3474
3475         rctl = E1000_READ_REG(hw, E1000_RCTL);
3476
3477         /* switch to jumbo mode if needed */
3478         if (frame_size > ETHER_MAX_LEN) {
3479                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
3480                 rctl |= E1000_RCTL_LPE;
3481         } else {
3482                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
3483                 rctl &= ~E1000_RCTL_LPE;
3484         }
3485         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3486
3487         /* update max frame size */
3488         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
3489
3490         E1000_WRITE_REG(hw, E1000_RLPML,
3491                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
3492
3493         return 0;
3494 }
3495
3496 /*
3497  * igb_add_del_ntuple_filter - add or delete a ntuple filter
3498  *
3499  * @param
3500  * dev: Pointer to struct rte_eth_dev.
3501  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
3502  * add: if true, add filter, if false, remove filter
3503  *
3504  * @return
3505  *    - On success, zero.
3506  *    - On failure, a negative value.
3507  */
3508 static int
3509 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
3510                         struct rte_eth_ntuple_filter *ntuple_filter,
3511                         bool add)
3512 {
3513         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3514         int ret;
3515
3516         switch (ntuple_filter->flags) {
3517         case RTE_5TUPLE_FLAGS:
3518         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3519                 if (hw->mac.type != e1000_82576)
3520                         return -ENOTSUP;
3521                 if (add)
3522                         ret = igb_add_5tuple_filter_82576(dev,
3523                                                           ntuple_filter);
3524                 else
3525                         ret = igb_remove_5tuple_filter_82576(dev,
3526                                                              ntuple_filter);
3527                 break;
3528         case RTE_2TUPLE_FLAGS:
3529         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3530                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
3531                         return -ENOTSUP;
3532                 if (add)
3533                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
3534                 else
3535                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
3536                 break;
3537         default:
3538                 ret = -EINVAL;
3539                 break;
3540         }
3541
3542         return ret;
3543 }
3544
3545 /*
3546  * igb_get_ntuple_filter - get a ntuple filter
3547  *
3548  * @param
3549  * dev: Pointer to struct rte_eth_dev.
3550  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
3551  *
3552  * @return
3553  *    - On success, zero.
3554  *    - On failure, a negative value.
3555  */
3556 static int
3557 igb_get_ntuple_filter(struct rte_eth_dev *dev,
3558                         struct rte_eth_ntuple_filter *ntuple_filter)
3559 {
3560         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3561         struct e1000_filter_info *filter_info =
3562                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3563         struct e1000_5tuple_filter_info filter_5tuple;
3564         struct e1000_2tuple_filter_info filter_2tuple;
3565         struct e1000_5tuple_filter *p_5tuple_filter;
3566         struct e1000_2tuple_filter *p_2tuple_filter;
3567         int ret;
3568
3569         switch (ntuple_filter->flags) {
3570         case RTE_5TUPLE_FLAGS:
3571         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3572                 if (hw->mac.type != e1000_82576)
3573                         return -ENOTSUP;
3574                 memset(&filter_5tuple,
3575                         0,
3576                         sizeof(struct e1000_5tuple_filter_info));
3577                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3578                                                     &filter_5tuple);
3579                 if (ret < 0)
3580                         return ret;
3581                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
3582                                         &filter_info->fivetuple_list,
3583                                         &filter_5tuple);
3584                 if (p_5tuple_filter == NULL) {
3585                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3586                         return -ENOENT;
3587                 }
3588                 ntuple_filter->queue = p_5tuple_filter->queue;
3589                 break;
3590         case RTE_2TUPLE_FLAGS:
3591         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3592                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
3593                         return -ENOTSUP;
3594                 memset(&filter_2tuple,
3595                         0,
3596                         sizeof(struct e1000_2tuple_filter_info));
3597                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
3598                 if (ret < 0)
3599                         return ret;
3600                 p_2tuple_filter = igb_2tuple_filter_lookup(
3601                                         &filter_info->twotuple_list,
3602                                         &filter_2tuple);
3603                 if (p_2tuple_filter == NULL) {
3604                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3605                         return -ENOENT;
3606                 }
3607                 ntuple_filter->queue = p_2tuple_filter->queue;
3608                 break;
3609         default:
3610                 ret = -EINVAL;
3611                 break;
3612         }
3613
3614         return 0;
3615 }
3616
3617 /*
3618  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
3619  * @dev: pointer to rte_eth_dev structure
3620  * @filter_op:operation will be taken.
3621  * @arg: a pointer to specific structure corresponding to the filter_op
3622  */
3623 static int
3624 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
3625                                 enum rte_filter_op filter_op,
3626                                 void *arg)
3627 {
3628         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3629         int ret;
3630
3631         MAC_TYPE_FILTER_SUP(hw->mac.type);
3632
3633         if (filter_op == RTE_ETH_FILTER_NOP)
3634                 return 0;
3635
3636         if (arg == NULL) {
3637                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3638                             filter_op);
3639                 return -EINVAL;
3640         }
3641
3642         switch (filter_op) {
3643         case RTE_ETH_FILTER_ADD:
3644                 ret = igb_add_del_ntuple_filter(dev,
3645                         (struct rte_eth_ntuple_filter *)arg,
3646                         TRUE);
3647                 break;
3648         case RTE_ETH_FILTER_DELETE:
3649                 ret = igb_add_del_ntuple_filter(dev,
3650                         (struct rte_eth_ntuple_filter *)arg,
3651                         FALSE);
3652                 break;
3653         case RTE_ETH_FILTER_GET:
3654                 ret = igb_get_ntuple_filter(dev,
3655                         (struct rte_eth_ntuple_filter *)arg);
3656                 break;
3657         default:
3658                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3659                 ret = -EINVAL;
3660                 break;
3661         }
3662         return ret;
3663 }
3664
3665 static inline int
3666 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
3667                         uint16_t ethertype)
3668 {
3669         int i;
3670
3671         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
3672                 if (filter_info->ethertype_filters[i] == ethertype &&
3673                     (filter_info->ethertype_mask & (1 << i)))
3674                         return i;
3675         }
3676         return -1;
3677 }
3678
3679 static inline int
3680 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
3681                         uint16_t ethertype)
3682 {
3683         int i;
3684
3685         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
3686                 if (!(filter_info->ethertype_mask & (1 << i))) {
3687                         filter_info->ethertype_mask |= 1 << i;
3688                         filter_info->ethertype_filters[i] = ethertype;
3689                         return i;
3690                 }
3691         }
3692         return -1;
3693 }
3694
3695 static inline int
3696 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
3697                         uint8_t idx)
3698 {
3699         if (idx >= E1000_MAX_ETQF_FILTERS)
3700                 return -1;
3701         filter_info->ethertype_mask &= ~(1 << idx);
3702         filter_info->ethertype_filters[idx] = 0;
3703         return idx;
3704 }
3705
3706
3707 static int
3708 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
3709                         struct rte_eth_ethertype_filter *filter,
3710                         bool add)
3711 {
3712         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3713         struct e1000_filter_info *filter_info =
3714                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3715         uint32_t etqf = 0;
3716         int ret;
3717
3718         if (filter->ether_type == ETHER_TYPE_IPv4 ||
3719                 filter->ether_type == ETHER_TYPE_IPv6) {
3720                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
3721                         " ethertype filter.", filter->ether_type);
3722                 return -EINVAL;
3723         }
3724
3725         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
3726                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
3727                 return -EINVAL;
3728         }
3729         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
3730                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
3731                 return -EINVAL;
3732         }
3733
3734         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
3735         if (ret >= 0 && add) {
3736                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
3737                             filter->ether_type);
3738                 return -EEXIST;
3739         }
3740         if (ret < 0 && !add) {
3741                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
3742                             filter->ether_type);
3743                 return -ENOENT;
3744         }
3745
3746         if (add) {
3747                 ret = igb_ethertype_filter_insert(filter_info,
3748                         filter->ether_type);
3749                 if (ret < 0) {
3750                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
3751                         return -ENOSYS;
3752                 }
3753
3754                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
3755                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
3756                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
3757         } else {
3758                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
3759                 if (ret < 0)
3760                         return -ENOSYS;
3761         }
3762         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
3763         E1000_WRITE_FLUSH(hw);
3764
3765         return 0;
3766 }
3767
3768 static int
3769 igb_get_ethertype_filter(struct rte_eth_dev *dev,
3770                         struct rte_eth_ethertype_filter *filter)
3771 {
3772         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3773         struct e1000_filter_info *filter_info =
3774                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3775         uint32_t etqf;
3776         int ret;
3777
3778         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
3779         if (ret < 0) {
3780                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
3781                             filter->ether_type);
3782                 return -ENOENT;
3783         }
3784
3785         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
3786         if (etqf & E1000_ETQF_FILTER_ENABLE) {
3787                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
3788                 filter->flags = 0;
3789                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
3790                                 E1000_ETQF_QUEUE_SHIFT;
3791                 return 0;
3792         }
3793
3794         return -ENOENT;
3795 }
3796
3797 /*
3798  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
3799  * @dev: pointer to rte_eth_dev structure
3800  * @filter_op:operation will be taken.
3801  * @arg: a pointer to specific structure corresponding to the filter_op
3802  */
3803 static int
3804 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
3805                                 enum rte_filter_op filter_op,
3806                                 void *arg)
3807 {
3808         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3809         int ret;
3810
3811         MAC_TYPE_FILTER_SUP(hw->mac.type);
3812
3813         if (filter_op == RTE_ETH_FILTER_NOP)
3814                 return 0;
3815
3816         if (arg == NULL) {
3817                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
3818                             filter_op);
3819                 return -EINVAL;
3820         }
3821
3822         switch (filter_op) {
3823         case RTE_ETH_FILTER_ADD:
3824                 ret = igb_add_del_ethertype_filter(dev,
3825                         (struct rte_eth_ethertype_filter *)arg,
3826                         TRUE);
3827                 break;
3828         case RTE_ETH_FILTER_DELETE:
3829                 ret = igb_add_del_ethertype_filter(dev,
3830                         (struct rte_eth_ethertype_filter *)arg,
3831                         FALSE);
3832                 break;
3833         case RTE_ETH_FILTER_GET:
3834                 ret = igb_get_ethertype_filter(dev,
3835                         (struct rte_eth_ethertype_filter *)arg);
3836                 break;
3837         default:
3838                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
3839                 ret = -EINVAL;
3840                 break;
3841         }
3842         return ret;
3843 }
3844
3845 static int
3846 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
3847                      enum rte_filter_type filter_type,
3848                      enum rte_filter_op filter_op,
3849                      void *arg)
3850 {
3851         int ret = -EINVAL;
3852
3853         switch (filter_type) {
3854         case RTE_ETH_FILTER_NTUPLE:
3855                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
3856                 break;
3857         case RTE_ETH_FILTER_ETHERTYPE:
3858                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
3859                 break;
3860         case RTE_ETH_FILTER_SYN:
3861                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
3862                 break;
3863         case RTE_ETH_FILTER_FLEXIBLE:
3864                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
3865                 break;
3866         default:
3867                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
3868                                                         filter_type);
3869                 break;
3870         }
3871
3872         return ret;
3873 }
3874
3875 static int
3876 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
3877                          struct ether_addr *mc_addr_set,
3878                          uint32_t nb_mc_addr)
3879 {
3880         struct e1000_hw *hw;
3881
3882         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3883         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
3884         return 0;
3885 }
3886
3887 static int
3888 igb_timesync_enable(struct rte_eth_dev *dev)
3889 {
3890         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3891         uint32_t tsync_ctl;
3892         uint32_t tsauxc;
3893
3894         /* Enable system time for it isn't on by default. */
3895         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
3896         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
3897         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
3898
3899         /* Start incrementing the register used to timestamp PTP packets. */
3900         E1000_WRITE_REG(hw, E1000_TIMINCA, E1000_TIMINCA_INIT);
3901
3902         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
3903         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
3904                         (ETHER_TYPE_1588 |
3905                          E1000_ETQF_FILTER_ENABLE |
3906                          E1000_ETQF_1588));
3907
3908         /* Enable timestamping of received PTP packets. */
3909         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
3910         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
3911         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
3912
3913         /* Enable Timestamping of transmitted PTP packets. */
3914         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
3915         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
3916         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
3917
3918         return 0;
3919 }
3920
3921 static int
3922 igb_timesync_disable(struct rte_eth_dev *dev)
3923 {
3924         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3925         uint32_t tsync_ctl;
3926
3927         /* Disable timestamping of transmitted PTP packets. */
3928         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
3929         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
3930         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
3931
3932         /* Disable timestamping of received PTP packets. */
3933         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
3934         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
3935         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
3936
3937         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
3938         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
3939
3940         /* Stop incrementating the System Time registers. */
3941         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
3942
3943         return 0;
3944 }
3945
3946 static int
3947 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
3948                                struct timespec *timestamp,
3949                                uint32_t flags __rte_unused)
3950 {
3951         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3952         uint32_t tsync_rxctl;
3953         uint32_t rx_stmpl;
3954         uint32_t rx_stmph;
3955
3956         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
3957         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
3958                 return -EINVAL;
3959
3960         rx_stmpl = E1000_READ_REG(hw, E1000_RXSTMPL);
3961         rx_stmph = E1000_READ_REG(hw, E1000_RXSTMPH);
3962
3963         timestamp->tv_sec = (uint64_t)(((uint64_t)rx_stmph << 32) | rx_stmpl);
3964         timestamp->tv_nsec = 0;
3965
3966         return  0;
3967 }
3968
3969 static int
3970 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
3971                                struct timespec *timestamp)
3972 {
3973         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3974         uint32_t tsync_txctl;
3975         uint32_t tx_stmpl;
3976         uint32_t tx_stmph;
3977
3978         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
3979         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
3980                 return -EINVAL;
3981
3982         tx_stmpl = E1000_READ_REG(hw, E1000_TXSTMPL);
3983         tx_stmph = E1000_READ_REG(hw, E1000_TXSTMPH);
3984
3985         timestamp->tv_sec = (uint64_t)(((uint64_t)tx_stmph << 32) | tx_stmpl);
3986         timestamp->tv_nsec = 0;
3987
3988         return  0;
3989 }
3990
3991 static int
3992 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
3993 {
3994         int count = 0;
3995         int g_ind = 0;
3996         const struct reg_info *reg_group;
3997
3998         while ((reg_group = igb_regs[g_ind++]))
3999                 count += igb_reg_group_count(reg_group);
4000
4001         return count;
4002 }
4003
4004 static int
4005 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4006 {
4007         int count = 0;
4008         int g_ind = 0;
4009         const struct reg_info *reg_group;
4010
4011         while ((reg_group = igbvf_regs[g_ind++]))
4012                 count += igb_reg_group_count(reg_group);
4013
4014         return count;
4015 }
4016
4017 static int
4018 eth_igb_get_regs(struct rte_eth_dev *dev,
4019         struct rte_dev_reg_info *regs)
4020 {
4021         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4022         uint32_t *data = regs->data;
4023         int g_ind = 0;
4024         int count = 0;
4025         const struct reg_info *reg_group;
4026
4027         /* Support only full register dump */
4028         if ((regs->length == 0) ||
4029             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4030                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4031                         hw->device_id;
4032                 while ((reg_group = igb_regs[g_ind++]))
4033                         count += igb_read_regs_group(dev, &data[count],
4034                                                         reg_group);
4035                 return 0;
4036         }
4037
4038         return -ENOTSUP;
4039 }
4040
4041 static int
4042 igbvf_get_regs(struct rte_eth_dev *dev,
4043         struct rte_dev_reg_info *regs)
4044 {
4045         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4046         uint32_t *data = regs->data;
4047         int g_ind = 0;
4048         int count = 0;
4049         const struct reg_info *reg_group;
4050
4051         /* Support only full register dump */
4052         if ((regs->length == 0) ||
4053             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4054                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4055                         hw->device_id;
4056                 while ((reg_group = igbvf_regs[g_ind++]))
4057                         count += igb_read_regs_group(dev, &data[count],
4058                                                         reg_group);
4059                 return 0;
4060         }
4061
4062         return -ENOTSUP;
4063 }
4064
4065 static int
4066 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
4067 {
4068         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4069
4070         /* Return unit is byte count */
4071         return hw->nvm.word_size * 2;
4072 }
4073
4074 static int
4075 eth_igb_get_eeprom(struct rte_eth_dev *dev,
4076         struct rte_dev_eeprom_info *in_eeprom)
4077 {
4078         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4079         struct e1000_nvm_info *nvm = &hw->nvm;
4080         uint16_t *data = in_eeprom->data;
4081         int first, length;
4082
4083         first = in_eeprom->offset >> 1;
4084         length = in_eeprom->length >> 1;
4085         if ((first >= hw->nvm.word_size) ||
4086             ((first + length) >= hw->nvm.word_size))
4087                 return -EINVAL;
4088
4089         in_eeprom->magic = hw->vendor_id |
4090                 ((uint32_t)hw->device_id << 16);
4091
4092         if ((nvm->ops.read) == NULL)
4093                 return -ENOTSUP;
4094
4095         return nvm->ops.read(hw, first, length, data);
4096 }
4097
4098 static int
4099 eth_igb_set_eeprom(struct rte_eth_dev *dev,
4100         struct rte_dev_eeprom_info *in_eeprom)
4101 {
4102         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4103         struct e1000_nvm_info *nvm = &hw->nvm;
4104         uint16_t *data = in_eeprom->data;
4105         int first, length;
4106
4107         first = in_eeprom->offset >> 1;
4108         length = in_eeprom->length >> 1;
4109         if ((first >= hw->nvm.word_size) ||
4110             ((first + length) >= hw->nvm.word_size))
4111                 return -EINVAL;
4112
4113         in_eeprom->magic = (uint32_t)hw->vendor_id |
4114                 ((uint32_t)hw->device_id << 16);
4115
4116         if ((nvm->ops.write) == NULL)
4117                 return -ENOTSUP;
4118         return nvm->ops.write(hw,  first, length, data);
4119 }
4120
4121 static struct rte_driver pmd_igb_drv = {
4122         .type = PMD_PDEV,
4123         .init = rte_igb_pmd_init,
4124 };
4125
4126 static struct rte_driver pmd_igbvf_drv = {
4127         .type = PMD_PDEV,
4128         .init = rte_igbvf_pmd_init,
4129 };
4130
4131 static int
4132 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
4133 {
4134         struct e1000_hw *hw =
4135                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4136         uint32_t mask = 1 << queue_id;
4137
4138         E1000_WRITE_REG(hw, E1000_EIMC, mask);
4139         E1000_WRITE_FLUSH(hw);
4140
4141         return 0;
4142 }
4143
4144 static int
4145 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
4146 {
4147         struct e1000_hw *hw =
4148                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4149         uint32_t mask = 1 << queue_id;
4150         uint32_t regval;
4151
4152         regval = E1000_READ_REG(hw, E1000_EIMS);
4153         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
4154         E1000_WRITE_FLUSH(hw);
4155
4156         rte_intr_enable(&dev->pci_dev->intr_handle);
4157
4158         return 0;
4159 }
4160
4161 static void
4162 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
4163                    uint8_t index, uint8_t offset)
4164 {
4165         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4166
4167         /* clear bits */
4168         val &= ~((uint32_t)0xFF << offset);
4169
4170         /* write vector and valid bit */
4171         val |= (msix_vector | E1000_IVAR_VALID) << offset;
4172
4173         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
4174 }
4175
4176 static void
4177 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
4178                            uint8_t queue, uint8_t msix_vector)
4179 {
4180         uint32_t tmp = 0;
4181
4182         if (hw->mac.type == e1000_82575) {
4183                 if (direction == 0)
4184                         tmp = E1000_EICR_RX_QUEUE0 << queue;
4185                 else if (direction == 1)
4186                         tmp = E1000_EICR_TX_QUEUE0 << queue;
4187                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
4188         } else if (hw->mac.type == e1000_82576) {
4189                 if ((direction == 0) || (direction == 1))
4190                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
4191                                            ((queue & 0x8) << 1) +
4192                                            8 * direction);
4193         } else if ((hw->mac.type == e1000_82580) ||
4194                         (hw->mac.type == e1000_i350) ||
4195                         (hw->mac.type == e1000_i354) ||
4196                         (hw->mac.type == e1000_i210) ||
4197                         (hw->mac.type == e1000_i211)) {
4198                 if ((direction == 0) || (direction == 1))
4199                         eth_igb_write_ivar(hw, msix_vector,
4200                                            queue >> 1,
4201                                            ((queue & 0x1) << 4) +
4202                                            8 * direction);
4203         }
4204 }
4205
4206 /* Sets up the hardware to generate MSI-X interrupts properly
4207  * @hw
4208  *  board private structure
4209  */
4210 static void
4211 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
4212 {
4213         int queue_id;
4214         uint32_t tmpval, regval, intr_mask;
4215         struct e1000_hw *hw =
4216                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4217         uint32_t vec = 0;
4218         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
4219
4220         /* won't configure msix register if no mapping is done
4221          * between intr vector and event fd
4222          */
4223         if (!rte_intr_dp_is_en(intr_handle))
4224                 return;
4225
4226         /* set interrupt vector for other causes */
4227         if (hw->mac.type == e1000_82575) {
4228                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
4229                 /* enable MSI-X PBA support */
4230                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
4231
4232                 /* Auto-Mask interrupts upon ICR read */
4233                 tmpval |= E1000_CTRL_EXT_EIAME;
4234                 tmpval |= E1000_CTRL_EXT_IRCA;
4235
4236                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
4237
4238                 /* enable msix_other interrupt */
4239                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
4240                 regval = E1000_READ_REG(hw, E1000_EIAC);
4241                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
4242                 regval = E1000_READ_REG(hw, E1000_EIAM);
4243                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
4244         } else if ((hw->mac.type == e1000_82576) ||
4245                         (hw->mac.type == e1000_82580) ||
4246                         (hw->mac.type == e1000_i350) ||
4247                         (hw->mac.type == e1000_i354) ||
4248                         (hw->mac.type == e1000_i210) ||
4249                         (hw->mac.type == e1000_i211)) {
4250                 /* turn on MSI-X capability first */
4251                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
4252                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
4253                                         E1000_GPIE_NSICR);
4254
4255                 intr_mask = (1 << intr_handle->max_intr) - 1;
4256                 regval = E1000_READ_REG(hw, E1000_EIAC);
4257                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
4258
4259                 /* enable msix_other interrupt */
4260                 regval = E1000_READ_REG(hw, E1000_EIMS);
4261                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
4262                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
4263                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
4264         }
4265
4266         /* use EIAM to auto-mask when MSI-X interrupt
4267          * is asserted, this saves a register write for every interrupt
4268          */
4269         intr_mask = (1 << intr_handle->nb_efd) - 1;
4270         regval = E1000_READ_REG(hw, E1000_EIAM);
4271         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
4272
4273         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
4274                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
4275                 intr_handle->intr_vec[queue_id] = vec;
4276                 if (vec < intr_handle->nb_efd - 1)
4277                         vec++;
4278         }
4279
4280         E1000_WRITE_FLUSH(hw);
4281 }
4282
4283 PMD_REGISTER_DRIVER(pmd_igb_drv);
4284 PMD_REGISTER_DRIVER(pmd_igbvf_drv);