net/e1000: set min and max MTU
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29 #include "igb_regs.h"
30
31 /*
32  * Default values for port configuration
33  */
34 #define IGB_DEFAULT_RX_FREE_THRESH  32
35
36 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
37 #define IGB_DEFAULT_RX_HTHRESH      8
38 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
39
40 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
41 #define IGB_DEFAULT_TX_HTHRESH      1
42 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
43
44 /* Bit shift and mask */
45 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
46 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
47 #define IGB_8_BIT_WIDTH  CHAR_BIT
48 #define IGB_8_BIT_MASK   UINT8_MAX
49
50 /* Additional timesync values. */
51 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
52 #define E1000_ETQF_FILTER_1588       3
53 #define IGB_82576_TSYNC_SHIFT        16
54 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
55 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
56 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
57
58 #define E1000_VTIVAR_MISC                0x01740
59 #define E1000_VTIVAR_MISC_MASK           0xFF
60 #define E1000_VTIVAR_VALID               0x80
61 #define E1000_VTIVAR_MISC_MAILBOX        0
62 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
63
64 /* External VLAN Enable bit mask */
65 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
66
67 /* External VLAN Ether Type bit mask and shift */
68 #define E1000_VET_VET_EXT            0xFFFF0000
69 #define E1000_VET_VET_EXT_SHIFT      16
70
71 /* MSI-X other interrupt vector */
72 #define IGB_MSIX_OTHER_INTR_VEC      0
73
74 static int  eth_igb_configure(struct rte_eth_dev *dev);
75 static int  eth_igb_start(struct rte_eth_dev *dev);
76 static void eth_igb_stop(struct rte_eth_dev *dev);
77 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
79 static void eth_igb_close(struct rte_eth_dev *dev);
80 static int eth_igb_reset(struct rte_eth_dev *dev);
81 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
82 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
83 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
84 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
85 static int  eth_igb_link_update(struct rte_eth_dev *dev,
86                                 int wait_to_complete);
87 static int eth_igb_stats_get(struct rte_eth_dev *dev,
88                                 struct rte_eth_stats *rte_stats);
89 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
90                               struct rte_eth_xstat *xstats, unsigned n);
91 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
92                 const uint64_t *ids,
93                 uint64_t *values, unsigned int n);
94 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
95                                     struct rte_eth_xstat_name *xstats_names,
96                                     unsigned int size);
97 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
98                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
99                 unsigned int limit);
100 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
101 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
103                                    char *fw_version, size_t fw_size);
104 static void eth_igb_infos_get(struct rte_eth_dev *dev,
105                               struct rte_eth_dev_info *dev_info);
106 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
107 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
108                                 struct rte_eth_dev_info *dev_info);
109 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
110                                 struct rte_eth_fc_conf *fc_conf);
111 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
112                                 struct rte_eth_fc_conf *fc_conf);
113 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
114 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
115 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
117                                     struct rte_intr_handle *handle);
118 static void eth_igb_interrupt_handler(void *param);
119 static int  igb_hardware_init(struct e1000_hw *hw);
120 static void igb_hw_control_acquire(struct e1000_hw *hw);
121 static void igb_hw_control_release(struct e1000_hw *hw);
122 static void igb_init_manageability(struct e1000_hw *hw);
123 static void igb_release_manageability(struct e1000_hw *hw);
124
125 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
126
127 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
128                 uint16_t vlan_id, int on);
129 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
130                                  enum rte_vlan_type vlan_type,
131                                  uint16_t tpid_id);
132 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
133
134 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
135 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
140
141 static int eth_igb_led_on(struct rte_eth_dev *dev);
142 static int eth_igb_led_off(struct rte_eth_dev *dev);
143
144 static void igb_intr_disable(struct rte_eth_dev *dev);
145 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
146 static int eth_igb_rar_set(struct rte_eth_dev *dev,
147                            struct ether_addr *mac_addr,
148                            uint32_t index, uint32_t pool);
149 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
150 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
151                 struct ether_addr *addr);
152
153 static void igbvf_intr_disable(struct e1000_hw *hw);
154 static int igbvf_dev_configure(struct rte_eth_dev *dev);
155 static int igbvf_dev_start(struct rte_eth_dev *dev);
156 static void igbvf_dev_stop(struct rte_eth_dev *dev);
157 static void igbvf_dev_close(struct rte_eth_dev *dev);
158 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
159 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
160 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
161 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
162 static int eth_igbvf_link_update(struct e1000_hw *hw);
163 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
164                                 struct rte_eth_stats *rte_stats);
165 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
166                                 struct rte_eth_xstat *xstats, unsigned n);
167 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
168                                       struct rte_eth_xstat_name *xstats_names,
169                                       unsigned limit);
170 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
171 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
172                 uint16_t vlan_id, int on);
173 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
174 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
175 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
176                 struct ether_addr *addr);
177 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
178 static int igbvf_get_regs(struct rte_eth_dev *dev,
179                 struct rte_dev_reg_info *regs);
180
181 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
182                                    struct rte_eth_rss_reta_entry64 *reta_conf,
183                                    uint16_t reta_size);
184 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
185                                   struct rte_eth_rss_reta_entry64 *reta_conf,
186                                   uint16_t reta_size);
187
188 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
189                         struct rte_eth_syn_filter *filter);
190 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
191                         enum rte_filter_op filter_op,
192                         void *arg);
193 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
198                         struct rte_eth_flex_filter *filter);
199 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
200                         enum rte_filter_op filter_op,
201                         void *arg);
202 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
203                         struct rte_eth_ntuple_filter *ntuple_filter);
204 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
205                         struct rte_eth_ntuple_filter *ntuple_filter);
206 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
207                         struct rte_eth_ntuple_filter *filter);
208 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
209                                 enum rte_filter_op filter_op,
210                                 void *arg);
211 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
212                                 enum rte_filter_op filter_op,
213                                 void *arg);
214 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
215                         struct rte_eth_ethertype_filter *filter);
216 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
217                      enum rte_filter_type filter_type,
218                      enum rte_filter_op filter_op,
219                      void *arg);
220 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
221 static int eth_igb_get_regs(struct rte_eth_dev *dev,
222                 struct rte_dev_reg_info *regs);
223 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
224 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
225                 struct rte_dev_eeprom_info *eeprom);
226 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
227                 struct rte_dev_eeprom_info *eeprom);
228 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
229                                    struct rte_eth_dev_module_info *modinfo);
230 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
231                                      struct rte_dev_eeprom_info *info);
232 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
233                                     struct ether_addr *mc_addr_set,
234                                     uint32_t nb_mc_addr);
235 static int igb_timesync_enable(struct rte_eth_dev *dev);
236 static int igb_timesync_disable(struct rte_eth_dev *dev);
237 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
238                                           struct timespec *timestamp,
239                                           uint32_t flags);
240 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
241                                           struct timespec *timestamp);
242 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
243 static int igb_timesync_read_time(struct rte_eth_dev *dev,
244                                   struct timespec *timestamp);
245 static int igb_timesync_write_time(struct rte_eth_dev *dev,
246                                    const struct timespec *timestamp);
247 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
248                                         uint16_t queue_id);
249 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
250                                          uint16_t queue_id);
251 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
252                                        uint8_t queue, uint8_t msix_vector);
253 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
254                                uint8_t index, uint8_t offset);
255 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
256 static void eth_igbvf_interrupt_handler(void *param);
257 static void igbvf_mbx_process(struct rte_eth_dev *dev);
258 static int igb_filter_restore(struct rte_eth_dev *dev);
259
260 /*
261  * Define VF Stats MACRO for Non "cleared on read" register
262  */
263 #define UPDATE_VF_STAT(reg, last, cur)            \
264 {                                                 \
265         u32 latest = E1000_READ_REG(hw, reg);     \
266         cur += (latest - last) & UINT_MAX;        \
267         last = latest;                            \
268 }
269
270 #define IGB_FC_PAUSE_TIME 0x0680
271 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
272 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
273
274 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
275
276 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
277
278 /*
279  * The set of PCI devices this driver supports
280  */
281 static const struct rte_pci_id pci_id_igb_map[] = {
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
290
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
294
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
301
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
320         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
321         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
322         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
323         { .vendor_id = 0, /* sentinel */ },
324 };
325
326 /*
327  * The set of PCI devices this driver supports (for 82576&I350 VF)
328  */
329 static const struct rte_pci_id pci_id_igbvf_map[] = {
330         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
331         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
332         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
333         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
334         { .vendor_id = 0, /* sentinel */ },
335 };
336
337 static const struct rte_eth_desc_lim rx_desc_lim = {
338         .nb_max = E1000_MAX_RING_DESC,
339         .nb_min = E1000_MIN_RING_DESC,
340         .nb_align = IGB_RXD_ALIGN,
341 };
342
343 static const struct rte_eth_desc_lim tx_desc_lim = {
344         .nb_max = E1000_MAX_RING_DESC,
345         .nb_min = E1000_MIN_RING_DESC,
346         .nb_align = IGB_RXD_ALIGN,
347         .nb_seg_max = IGB_TX_MAX_SEG,
348         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
349 };
350
351 static const struct eth_dev_ops eth_igb_ops = {
352         .dev_configure        = eth_igb_configure,
353         .dev_start            = eth_igb_start,
354         .dev_stop             = eth_igb_stop,
355         .dev_set_link_up      = eth_igb_dev_set_link_up,
356         .dev_set_link_down    = eth_igb_dev_set_link_down,
357         .dev_close            = eth_igb_close,
358         .dev_reset            = eth_igb_reset,
359         .promiscuous_enable   = eth_igb_promiscuous_enable,
360         .promiscuous_disable  = eth_igb_promiscuous_disable,
361         .allmulticast_enable  = eth_igb_allmulticast_enable,
362         .allmulticast_disable = eth_igb_allmulticast_disable,
363         .link_update          = eth_igb_link_update,
364         .stats_get            = eth_igb_stats_get,
365         .xstats_get           = eth_igb_xstats_get,
366         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
367         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
368         .xstats_get_names     = eth_igb_xstats_get_names,
369         .stats_reset          = eth_igb_stats_reset,
370         .xstats_reset         = eth_igb_xstats_reset,
371         .fw_version_get       = eth_igb_fw_version_get,
372         .dev_infos_get        = eth_igb_infos_get,
373         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
374         .mtu_set              = eth_igb_mtu_set,
375         .vlan_filter_set      = eth_igb_vlan_filter_set,
376         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
377         .vlan_offload_set     = eth_igb_vlan_offload_set,
378         .rx_queue_setup       = eth_igb_rx_queue_setup,
379         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
380         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
381         .rx_queue_release     = eth_igb_rx_queue_release,
382         .rx_queue_count       = eth_igb_rx_queue_count,
383         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
384         .rx_descriptor_status = eth_igb_rx_descriptor_status,
385         .tx_descriptor_status = eth_igb_tx_descriptor_status,
386         .tx_queue_setup       = eth_igb_tx_queue_setup,
387         .tx_queue_release     = eth_igb_tx_queue_release,
388         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
389         .dev_led_on           = eth_igb_led_on,
390         .dev_led_off          = eth_igb_led_off,
391         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
392         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
393         .mac_addr_add         = eth_igb_rar_set,
394         .mac_addr_remove      = eth_igb_rar_clear,
395         .mac_addr_set         = eth_igb_default_mac_addr_set,
396         .reta_update          = eth_igb_rss_reta_update,
397         .reta_query           = eth_igb_rss_reta_query,
398         .rss_hash_update      = eth_igb_rss_hash_update,
399         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
400         .filter_ctrl          = eth_igb_filter_ctrl,
401         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
402         .rxq_info_get         = igb_rxq_info_get,
403         .txq_info_get         = igb_txq_info_get,
404         .timesync_enable      = igb_timesync_enable,
405         .timesync_disable     = igb_timesync_disable,
406         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
407         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
408         .get_reg              = eth_igb_get_regs,
409         .get_eeprom_length    = eth_igb_get_eeprom_length,
410         .get_eeprom           = eth_igb_get_eeprom,
411         .set_eeprom           = eth_igb_set_eeprom,
412         .get_module_info      = eth_igb_get_module_info,
413         .get_module_eeprom    = eth_igb_get_module_eeprom,
414         .timesync_adjust_time = igb_timesync_adjust_time,
415         .timesync_read_time   = igb_timesync_read_time,
416         .timesync_write_time  = igb_timesync_write_time,
417 };
418
419 /*
420  * dev_ops for virtual function, bare necessities for basic vf
421  * operation have been implemented
422  */
423 static const struct eth_dev_ops igbvf_eth_dev_ops = {
424         .dev_configure        = igbvf_dev_configure,
425         .dev_start            = igbvf_dev_start,
426         .dev_stop             = igbvf_dev_stop,
427         .dev_close            = igbvf_dev_close,
428         .promiscuous_enable   = igbvf_promiscuous_enable,
429         .promiscuous_disable  = igbvf_promiscuous_disable,
430         .allmulticast_enable  = igbvf_allmulticast_enable,
431         .allmulticast_disable = igbvf_allmulticast_disable,
432         .link_update          = eth_igb_link_update,
433         .stats_get            = eth_igbvf_stats_get,
434         .xstats_get           = eth_igbvf_xstats_get,
435         .xstats_get_names     = eth_igbvf_xstats_get_names,
436         .stats_reset          = eth_igbvf_stats_reset,
437         .xstats_reset         = eth_igbvf_stats_reset,
438         .vlan_filter_set      = igbvf_vlan_filter_set,
439         .dev_infos_get        = eth_igbvf_infos_get,
440         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
441         .rx_queue_setup       = eth_igb_rx_queue_setup,
442         .rx_queue_release     = eth_igb_rx_queue_release,
443         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
444         .rx_descriptor_status = eth_igb_rx_descriptor_status,
445         .tx_descriptor_status = eth_igb_tx_descriptor_status,
446         .tx_queue_setup       = eth_igb_tx_queue_setup,
447         .tx_queue_release     = eth_igb_tx_queue_release,
448         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
449         .rxq_info_get         = igb_rxq_info_get,
450         .txq_info_get         = igb_txq_info_get,
451         .mac_addr_set         = igbvf_default_mac_addr_set,
452         .get_reg              = igbvf_get_regs,
453 };
454
455 /* store statistics names and its offset in stats structure */
456 struct rte_igb_xstats_name_off {
457         char name[RTE_ETH_XSTATS_NAME_SIZE];
458         unsigned offset;
459 };
460
461 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
462         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
463         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
464         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
465         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
466         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
467         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
468         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
469                 ecol)},
470         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
471         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
472         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
473         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
474         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
475         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
476         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
477         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
478         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
479         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
480         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
481                 fcruc)},
482         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
483         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
484         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
485         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
486         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
487                 prc1023)},
488         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
489                 prc1522)},
490         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
491         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
492         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
493         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
494         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
495         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
496         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
497         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
498         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
499         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
500         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
501         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
502         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
503         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
504         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
505         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
506         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
507         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
508                 ptc1023)},
509         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
510                 ptc1522)},
511         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
512         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
513         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
514         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
515         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
516         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
517         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
518
519         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
520 };
521
522 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
523                 sizeof(rte_igb_stats_strings[0]))
524
525 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
526         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
527         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
528         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
529         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
530         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
531 };
532
533 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
534                 sizeof(rte_igbvf_stats_strings[0]))
535
536
537 static inline void
538 igb_intr_enable(struct rte_eth_dev *dev)
539 {
540         struct e1000_interrupt *intr =
541                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
542         struct e1000_hw *hw =
543                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
544         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
545         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
546
547         if (rte_intr_allow_others(intr_handle) &&
548                 dev->data->dev_conf.intr_conf.lsc != 0) {
549                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
550         }
551
552         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
553         E1000_WRITE_FLUSH(hw);
554 }
555
556 static void
557 igb_intr_disable(struct rte_eth_dev *dev)
558 {
559         struct e1000_hw *hw =
560                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
561         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
562         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
563
564         if (rte_intr_allow_others(intr_handle) &&
565                 dev->data->dev_conf.intr_conf.lsc != 0) {
566                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
567         }
568
569         E1000_WRITE_REG(hw, E1000_IMC, ~0);
570         E1000_WRITE_FLUSH(hw);
571 }
572
573 static inline void
574 igbvf_intr_enable(struct rte_eth_dev *dev)
575 {
576         struct e1000_hw *hw =
577                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
578
579         /* only for mailbox */
580         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
581         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
582         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
583         E1000_WRITE_FLUSH(hw);
584 }
585
586 /* only for mailbox now. If RX/TX needed, should extend this function.  */
587 static void
588 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
589 {
590         uint32_t tmp = 0;
591
592         /* mailbox */
593         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
594         tmp |= E1000_VTIVAR_VALID;
595         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
596 }
597
598 static void
599 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
600 {
601         struct e1000_hw *hw =
602                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603
604         /* Configure VF other cause ivar */
605         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
606 }
607
608 static inline int32_t
609 igb_pf_reset_hw(struct e1000_hw *hw)
610 {
611         uint32_t ctrl_ext;
612         int32_t status;
613
614         status = e1000_reset_hw(hw);
615
616         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
617         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
618         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
619         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
620         E1000_WRITE_FLUSH(hw);
621
622         return status;
623 }
624
625 static void
626 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
627 {
628         struct e1000_hw *hw =
629                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
630
631
632         hw->vendor_id = pci_dev->id.vendor_id;
633         hw->device_id = pci_dev->id.device_id;
634         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
635         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
636
637         e1000_set_mac_type(hw);
638
639         /* need to check if it is a vf device below */
640 }
641
642 static int
643 igb_reset_swfw_lock(struct e1000_hw *hw)
644 {
645         int ret_val;
646
647         /*
648          * Do mac ops initialization manually here, since we will need
649          * some function pointers set by this call.
650          */
651         ret_val = e1000_init_mac_params(hw);
652         if (ret_val)
653                 return ret_val;
654
655         /*
656          * SMBI lock should not fail in this early stage. If this is the case,
657          * it is due to an improper exit of the application.
658          * So force the release of the faulty lock.
659          */
660         if (e1000_get_hw_semaphore_generic(hw) < 0) {
661                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
662         }
663         e1000_put_hw_semaphore_generic(hw);
664
665         if (hw->mac.ops.acquire_swfw_sync != NULL) {
666                 uint16_t mask;
667
668                 /*
669                  * Phy lock should not fail in this early stage. If this is the case,
670                  * it is due to an improper exit of the application.
671                  * So force the release of the faulty lock.
672                  */
673                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
674                 if (hw->bus.func > E1000_FUNC_1)
675                         mask <<= 2;
676                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
677                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
678                                     hw->bus.func);
679                 }
680                 hw->mac.ops.release_swfw_sync(hw, mask);
681
682                 /*
683                  * This one is more tricky since it is common to all ports; but
684                  * swfw_sync retries last long enough (1s) to be almost sure that if
685                  * lock can not be taken it is due to an improper lock of the
686                  * semaphore.
687                  */
688                 mask = E1000_SWFW_EEP_SM;
689                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
690                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
691                 }
692                 hw->mac.ops.release_swfw_sync(hw, mask);
693         }
694
695         return E1000_SUCCESS;
696 }
697
698 /* Remove all ntuple filters of the device */
699 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
700 {
701         struct e1000_filter_info *filter_info =
702                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
703         struct e1000_5tuple_filter *p_5tuple;
704         struct e1000_2tuple_filter *p_2tuple;
705
706         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
707                 TAILQ_REMOVE(&filter_info->fivetuple_list,
708                         p_5tuple, entries);
709                         rte_free(p_5tuple);
710         }
711         filter_info->fivetuple_mask = 0;
712         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
713                 TAILQ_REMOVE(&filter_info->twotuple_list,
714                         p_2tuple, entries);
715                         rte_free(p_2tuple);
716         }
717         filter_info->twotuple_mask = 0;
718
719         return 0;
720 }
721
722 /* Remove all flex filters of the device */
723 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
724 {
725         struct e1000_filter_info *filter_info =
726                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
727         struct e1000_flex_filter *p_flex;
728
729         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
730                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
731                 rte_free(p_flex);
732         }
733         filter_info->flex_mask = 0;
734
735         return 0;
736 }
737
738 static int
739 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
740 {
741         int error = 0;
742         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
743         struct e1000_hw *hw =
744                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
745         struct e1000_vfta * shadow_vfta =
746                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
747         struct e1000_filter_info *filter_info =
748                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
749         struct e1000_adapter *adapter =
750                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
751
752         uint32_t ctrl_ext;
753
754         eth_dev->dev_ops = &eth_igb_ops;
755         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
756         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
757         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
758
759         /* for secondary processes, we don't initialise any further as primary
760          * has already done this work. Only check we don't need a different
761          * RX function */
762         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
763                 if (eth_dev->data->scattered_rx)
764                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
765                 return 0;
766         }
767
768         rte_eth_copy_pci_info(eth_dev, pci_dev);
769
770         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
771
772         igb_identify_hardware(eth_dev, pci_dev);
773         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
774                 error = -EIO;
775                 goto err_late;
776         }
777
778         e1000_get_bus_info(hw);
779
780         /* Reset any pending lock */
781         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
782                 error = -EIO;
783                 goto err_late;
784         }
785
786         /* Finish initialization */
787         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
788                 error = -EIO;
789                 goto err_late;
790         }
791
792         hw->mac.autoneg = 1;
793         hw->phy.autoneg_wait_to_complete = 0;
794         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
795
796         /* Copper options */
797         if (hw->phy.media_type == e1000_media_type_copper) {
798                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
799                 hw->phy.disable_polarity_correction = 0;
800                 hw->phy.ms_type = e1000_ms_hw_default;
801         }
802
803         /*
804          * Start from a known state, this is important in reading the nvm
805          * and mac from that.
806          */
807         igb_pf_reset_hw(hw);
808
809         /* Make sure we have a good EEPROM before we read from it */
810         if (e1000_validate_nvm_checksum(hw) < 0) {
811                 /*
812                  * Some PCI-E parts fail the first check due to
813                  * the link being in sleep state, call it again,
814                  * if it fails a second time its a real issue.
815                  */
816                 if (e1000_validate_nvm_checksum(hw) < 0) {
817                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
818                         error = -EIO;
819                         goto err_late;
820                 }
821         }
822
823         /* Read the permanent MAC address out of the EEPROM */
824         if (e1000_read_mac_addr(hw) != 0) {
825                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
826                 error = -EIO;
827                 goto err_late;
828         }
829
830         /* Allocate memory for storing MAC addresses */
831         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
832                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
833         if (eth_dev->data->mac_addrs == NULL) {
834                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
835                                                 "store MAC addresses",
836                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
837                 error = -ENOMEM;
838                 goto err_late;
839         }
840
841         /* Copy the permanent MAC address */
842         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
843
844         /* initialize the vfta */
845         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
846
847         /* Now initialize the hardware */
848         if (igb_hardware_init(hw) != 0) {
849                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
850                 rte_free(eth_dev->data->mac_addrs);
851                 eth_dev->data->mac_addrs = NULL;
852                 error = -ENODEV;
853                 goto err_late;
854         }
855         hw->mac.get_link_status = 1;
856         adapter->stopped = 0;
857
858         /* Indicate SOL/IDER usage */
859         if (e1000_check_reset_block(hw) < 0) {
860                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
861                                         "SOL/IDER session");
862         }
863
864         /* initialize PF if max_vfs not zero */
865         igb_pf_host_init(eth_dev);
866
867         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
868         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
869         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
870         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
871         E1000_WRITE_FLUSH(hw);
872
873         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
874                      eth_dev->data->port_id, pci_dev->id.vendor_id,
875                      pci_dev->id.device_id);
876
877         rte_intr_callback_register(&pci_dev->intr_handle,
878                                    eth_igb_interrupt_handler,
879                                    (void *)eth_dev);
880
881         /* enable uio/vfio intr/eventfd mapping */
882         rte_intr_enable(&pci_dev->intr_handle);
883
884         /* enable support intr */
885         igb_intr_enable(eth_dev);
886
887         /* initialize filter info */
888         memset(filter_info, 0,
889                sizeof(struct e1000_filter_info));
890
891         TAILQ_INIT(&filter_info->flex_list);
892         TAILQ_INIT(&filter_info->twotuple_list);
893         TAILQ_INIT(&filter_info->fivetuple_list);
894
895         TAILQ_INIT(&igb_filter_ntuple_list);
896         TAILQ_INIT(&igb_filter_ethertype_list);
897         TAILQ_INIT(&igb_filter_syn_list);
898         TAILQ_INIT(&igb_filter_flex_list);
899         TAILQ_INIT(&igb_filter_rss_list);
900         TAILQ_INIT(&igb_flow_list);
901
902         return 0;
903
904 err_late:
905         igb_hw_control_release(hw);
906
907         return error;
908 }
909
910 static int
911 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
912 {
913         struct rte_pci_device *pci_dev;
914         struct rte_intr_handle *intr_handle;
915         struct e1000_hw *hw;
916         struct e1000_adapter *adapter =
917                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
918         struct e1000_filter_info *filter_info =
919                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
920
921         PMD_INIT_FUNC_TRACE();
922
923         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
924                 return -EPERM;
925
926         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
927         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
928         intr_handle = &pci_dev->intr_handle;
929
930         if (adapter->stopped == 0)
931                 eth_igb_close(eth_dev);
932
933         eth_dev->dev_ops = NULL;
934         eth_dev->rx_pkt_burst = NULL;
935         eth_dev->tx_pkt_burst = NULL;
936
937         /* Reset any pending lock */
938         igb_reset_swfw_lock(hw);
939
940         /* uninitialize PF if max_vfs not zero */
941         igb_pf_host_uninit(eth_dev);
942
943         /* disable uio intr before callback unregister */
944         rte_intr_disable(intr_handle);
945         rte_intr_callback_unregister(intr_handle,
946                                      eth_igb_interrupt_handler, eth_dev);
947
948         /* clear the SYN filter info */
949         filter_info->syn_info = 0;
950
951         /* clear the ethertype filters info */
952         filter_info->ethertype_mask = 0;
953         memset(filter_info->ethertype_filters, 0,
954                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
955
956         /* clear the rss filter info */
957         memset(&filter_info->rss_info, 0,
958                 sizeof(struct igb_rte_flow_rss_conf));
959
960         /* remove all ntuple filters of the device */
961         igb_ntuple_filter_uninit(eth_dev);
962
963         /* remove all flex filters of the device */
964         igb_flex_filter_uninit(eth_dev);
965
966         /* clear all the filters list */
967         igb_filterlist_flush(eth_dev);
968
969         return 0;
970 }
971
972 /*
973  * Virtual Function device init
974  */
975 static int
976 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
977 {
978         struct rte_pci_device *pci_dev;
979         struct rte_intr_handle *intr_handle;
980         struct e1000_adapter *adapter =
981                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
982         struct e1000_hw *hw =
983                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
984         int diag;
985         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
986
987         PMD_INIT_FUNC_TRACE();
988
989         eth_dev->dev_ops = &igbvf_eth_dev_ops;
990         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
991         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
992         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
993
994         /* for secondary processes, we don't initialise any further as primary
995          * has already done this work. Only check we don't need a different
996          * RX function */
997         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
998                 if (eth_dev->data->scattered_rx)
999                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
1000                 return 0;
1001         }
1002
1003         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1004         rte_eth_copy_pci_info(eth_dev, pci_dev);
1005
1006         hw->device_id = pci_dev->id.device_id;
1007         hw->vendor_id = pci_dev->id.vendor_id;
1008         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1009         adapter->stopped = 0;
1010
1011         /* Initialize the shared code (base driver) */
1012         diag = e1000_setup_init_funcs(hw, TRUE);
1013         if (diag != 0) {
1014                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
1015                         diag);
1016                 return -EIO;
1017         }
1018
1019         /* init_mailbox_params */
1020         hw->mbx.ops.init_params(hw);
1021
1022         /* Disable the interrupts for VF */
1023         igbvf_intr_disable(hw);
1024
1025         diag = hw->mac.ops.reset_hw(hw);
1026
1027         /* Allocate memory for storing MAC addresses */
1028         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1029                 hw->mac.rar_entry_count, 0);
1030         if (eth_dev->data->mac_addrs == NULL) {
1031                 PMD_INIT_LOG(ERR,
1032                         "Failed to allocate %d bytes needed to store MAC "
1033                         "addresses",
1034                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1035                 return -ENOMEM;
1036         }
1037
1038         /* Generate a random MAC address, if none was assigned by PF. */
1039         if (is_zero_ether_addr(perm_addr)) {
1040                 eth_random_addr(perm_addr->addr_bytes);
1041                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1042                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1043                              "%02x:%02x:%02x:%02x:%02x:%02x",
1044                              perm_addr->addr_bytes[0],
1045                              perm_addr->addr_bytes[1],
1046                              perm_addr->addr_bytes[2],
1047                              perm_addr->addr_bytes[3],
1048                              perm_addr->addr_bytes[4],
1049                              perm_addr->addr_bytes[5]);
1050         }
1051
1052         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1053         if (diag) {
1054                 rte_free(eth_dev->data->mac_addrs);
1055                 eth_dev->data->mac_addrs = NULL;
1056                 return diag;
1057         }
1058         /* Copy the permanent MAC address */
1059         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1060                         &eth_dev->data->mac_addrs[0]);
1061
1062         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1063                      "mac.type=%s",
1064                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1065                      pci_dev->id.device_id, "igb_mac_82576_vf");
1066
1067         intr_handle = &pci_dev->intr_handle;
1068         rte_intr_callback_register(intr_handle,
1069                                    eth_igbvf_interrupt_handler, eth_dev);
1070
1071         return 0;
1072 }
1073
1074 static int
1075 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1076 {
1077         struct e1000_adapter *adapter =
1078                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1079         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1080
1081         PMD_INIT_FUNC_TRACE();
1082
1083         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1084                 return -EPERM;
1085
1086         if (adapter->stopped == 0)
1087                 igbvf_dev_close(eth_dev);
1088
1089         eth_dev->dev_ops = NULL;
1090         eth_dev->rx_pkt_burst = NULL;
1091         eth_dev->tx_pkt_burst = NULL;
1092
1093         /* disable uio intr before callback unregister */
1094         rte_intr_disable(&pci_dev->intr_handle);
1095         rte_intr_callback_unregister(&pci_dev->intr_handle,
1096                                      eth_igbvf_interrupt_handler,
1097                                      (void *)eth_dev);
1098
1099         return 0;
1100 }
1101
1102 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1103         struct rte_pci_device *pci_dev)
1104 {
1105         return rte_eth_dev_pci_generic_probe(pci_dev,
1106                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1107 }
1108
1109 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1110 {
1111         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1112 }
1113
1114 static struct rte_pci_driver rte_igb_pmd = {
1115         .id_table = pci_id_igb_map,
1116         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1117                      RTE_PCI_DRV_IOVA_AS_VA,
1118         .probe = eth_igb_pci_probe,
1119         .remove = eth_igb_pci_remove,
1120 };
1121
1122
1123 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1124         struct rte_pci_device *pci_dev)
1125 {
1126         return rte_eth_dev_pci_generic_probe(pci_dev,
1127                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1128 }
1129
1130 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1131 {
1132         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1133 }
1134
1135 /*
1136  * virtual function driver struct
1137  */
1138 static struct rte_pci_driver rte_igbvf_pmd = {
1139         .id_table = pci_id_igbvf_map,
1140         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1141         .probe = eth_igbvf_pci_probe,
1142         .remove = eth_igbvf_pci_remove,
1143 };
1144
1145 static void
1146 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1147 {
1148         struct e1000_hw *hw =
1149                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1150         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1151         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1152         rctl |= E1000_RCTL_VFE;
1153         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1154 }
1155
1156 static int
1157 igb_check_mq_mode(struct rte_eth_dev *dev)
1158 {
1159         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1160         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1161         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1162         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1163
1164         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1165             tx_mq_mode == ETH_MQ_TX_DCB ||
1166             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1167                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1168                 return -EINVAL;
1169         }
1170         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1171                 /* Check multi-queue mode.
1172                  * To no break software we accept ETH_MQ_RX_NONE as this might
1173                  * be used to turn off VLAN filter.
1174                  */
1175
1176                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1177                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1178                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1179                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1180                 } else {
1181                         /* Only support one queue on VFs.
1182                          * RSS together with SRIOV is not supported.
1183                          */
1184                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1185                                         " wrong mq_mode rx %d.",
1186                                         rx_mq_mode);
1187                         return -EINVAL;
1188                 }
1189                 /* TX mode is not used here, so mode might be ignored.*/
1190                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1191                         /* SRIOV only works in VMDq enable mode */
1192                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1193                                         " TX mode %d is not supported. "
1194                                         " Driver will behave as %d mode.",
1195                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1196                 }
1197
1198                 /* check valid queue number */
1199                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1200                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1201                                         " only support one queue on VFs.");
1202                         return -EINVAL;
1203                 }
1204         } else {
1205                 /* To no break software that set invalid mode, only display
1206                  * warning if invalid mode is used.
1207                  */
1208                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1209                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1210                     rx_mq_mode != ETH_MQ_RX_RSS) {
1211                         /* RSS together with VMDq not supported*/
1212                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1213                                      rx_mq_mode);
1214                         return -EINVAL;
1215                 }
1216
1217                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1218                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1219                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1220                                         " Due to txmode is meaningless in this"
1221                                         " driver, just ignore.",
1222                                         tx_mq_mode);
1223                 }
1224         }
1225         return 0;
1226 }
1227
1228 static int
1229 eth_igb_configure(struct rte_eth_dev *dev)
1230 {
1231         struct e1000_interrupt *intr =
1232                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1233         int ret;
1234
1235         PMD_INIT_FUNC_TRACE();
1236
1237         /* multipe queue mode checking */
1238         ret  = igb_check_mq_mode(dev);
1239         if (ret != 0) {
1240                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1241                             ret);
1242                 return ret;
1243         }
1244
1245         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1246         PMD_INIT_FUNC_TRACE();
1247
1248         return 0;
1249 }
1250
1251 static void
1252 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1253                      bool enable)
1254 {
1255         struct e1000_hw *hw =
1256                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1257         uint32_t tctl, rctl;
1258
1259         tctl = E1000_READ_REG(hw, E1000_TCTL);
1260         rctl = E1000_READ_REG(hw, E1000_RCTL);
1261
1262         if (enable) {
1263                 /* enable Tx/Rx */
1264                 tctl |= E1000_TCTL_EN;
1265                 rctl |= E1000_RCTL_EN;
1266         } else {
1267                 /* disable Tx/Rx */
1268                 tctl &= ~E1000_TCTL_EN;
1269                 rctl &= ~E1000_RCTL_EN;
1270         }
1271         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1272         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1273         E1000_WRITE_FLUSH(hw);
1274 }
1275
1276 static int
1277 eth_igb_start(struct rte_eth_dev *dev)
1278 {
1279         struct e1000_hw *hw =
1280                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1281         struct e1000_adapter *adapter =
1282                 E1000_DEV_PRIVATE(dev->data->dev_private);
1283         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1284         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1285         int ret, mask;
1286         uint32_t intr_vector = 0;
1287         uint32_t ctrl_ext;
1288         uint32_t *speeds;
1289         int num_speeds;
1290         bool autoneg;
1291
1292         PMD_INIT_FUNC_TRACE();
1293
1294         /* disable uio/vfio intr/eventfd mapping */
1295         rte_intr_disable(intr_handle);
1296
1297         /* Power up the phy. Needed to make the link go Up */
1298         eth_igb_dev_set_link_up(dev);
1299
1300         /*
1301          * Packet Buffer Allocation (PBA)
1302          * Writing PBA sets the receive portion of the buffer
1303          * the remainder is used for the transmit buffer.
1304          */
1305         if (hw->mac.type == e1000_82575) {
1306                 uint32_t pba;
1307
1308                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1309                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1310         }
1311
1312         /* Put the address into the Receive Address Array */
1313         e1000_rar_set(hw, hw->mac.addr, 0);
1314
1315         /* Initialize the hardware */
1316         if (igb_hardware_init(hw)) {
1317                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1318                 return -EIO;
1319         }
1320         adapter->stopped = 0;
1321
1322         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1323
1324         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1325         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1326         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1327         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1328         E1000_WRITE_FLUSH(hw);
1329
1330         /* configure PF module if SRIOV enabled */
1331         igb_pf_host_configure(dev);
1332
1333         /* check and configure queue intr-vector mapping */
1334         if ((rte_intr_cap_multiple(intr_handle) ||
1335              !RTE_ETH_DEV_SRIOV(dev).active) &&
1336             dev->data->dev_conf.intr_conf.rxq != 0) {
1337                 intr_vector = dev->data->nb_rx_queues;
1338                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1339                         return -1;
1340         }
1341
1342         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1343                 intr_handle->intr_vec =
1344                         rte_zmalloc("intr_vec",
1345                                     dev->data->nb_rx_queues * sizeof(int), 0);
1346                 if (intr_handle->intr_vec == NULL) {
1347                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1348                                      " intr_vec", dev->data->nb_rx_queues);
1349                         return -ENOMEM;
1350                 }
1351         }
1352
1353         /* confiugre msix for rx interrupt */
1354         eth_igb_configure_msix_intr(dev);
1355
1356         /* Configure for OS presence */
1357         igb_init_manageability(hw);
1358
1359         eth_igb_tx_init(dev);
1360
1361         /* This can fail when allocating mbufs for descriptor rings */
1362         ret = eth_igb_rx_init(dev);
1363         if (ret) {
1364                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1365                 igb_dev_clear_queues(dev);
1366                 return ret;
1367         }
1368
1369         e1000_clear_hw_cntrs_base_generic(hw);
1370
1371         /*
1372          * VLAN Offload Settings
1373          */
1374         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1375                         ETH_VLAN_EXTEND_MASK;
1376         ret = eth_igb_vlan_offload_set(dev, mask);
1377         if (ret) {
1378                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1379                 igb_dev_clear_queues(dev);
1380                 return ret;
1381         }
1382
1383         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1384                 /* Enable VLAN filter since VMDq always use VLAN filter */
1385                 igb_vmdq_vlan_hw_filter_enable(dev);
1386         }
1387
1388         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1389                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1390                 (hw->mac.type == e1000_i211)) {
1391                 /* Configure EITR with the maximum possible value (0xFFFF) */
1392                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1393         }
1394
1395         /* Setup link speed and duplex */
1396         speeds = &dev->data->dev_conf.link_speeds;
1397         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1398                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1399                 hw->mac.autoneg = 1;
1400         } else {
1401                 num_speeds = 0;
1402                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1403
1404                 /* Reset */
1405                 hw->phy.autoneg_advertised = 0;
1406
1407                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1408                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1409                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1410                         num_speeds = -1;
1411                         goto error_invalid_config;
1412                 }
1413                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1414                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1415                         num_speeds++;
1416                 }
1417                 if (*speeds & ETH_LINK_SPEED_10M) {
1418                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1419                         num_speeds++;
1420                 }
1421                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1422                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1423                         num_speeds++;
1424                 }
1425                 if (*speeds & ETH_LINK_SPEED_100M) {
1426                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1427                         num_speeds++;
1428                 }
1429                 if (*speeds & ETH_LINK_SPEED_1G) {
1430                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1431                         num_speeds++;
1432                 }
1433                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1434                         goto error_invalid_config;
1435
1436                 /* Set/reset the mac.autoneg based on the link speed,
1437                  * fixed or not
1438                  */
1439                 if (!autoneg) {
1440                         hw->mac.autoneg = 0;
1441                         hw->mac.forced_speed_duplex =
1442                                         hw->phy.autoneg_advertised;
1443                 } else {
1444                         hw->mac.autoneg = 1;
1445                 }
1446         }
1447
1448         e1000_setup_link(hw);
1449
1450         if (rte_intr_allow_others(intr_handle)) {
1451                 /* check if lsc interrupt is enabled */
1452                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1453                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1454                 else
1455                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1456         } else {
1457                 rte_intr_callback_unregister(intr_handle,
1458                                              eth_igb_interrupt_handler,
1459                                              (void *)dev);
1460                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1461                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1462                                      " no intr multiplex");
1463         }
1464
1465         /* check if rxq interrupt is enabled */
1466         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1467             rte_intr_dp_is_en(intr_handle))
1468                 eth_igb_rxq_interrupt_setup(dev);
1469
1470         /* enable uio/vfio intr/eventfd mapping */
1471         rte_intr_enable(intr_handle);
1472
1473         /* resume enabled intr since hw reset */
1474         igb_intr_enable(dev);
1475
1476         /* restore all types filter */
1477         igb_filter_restore(dev);
1478
1479         eth_igb_rxtx_control(dev, true);
1480         eth_igb_link_update(dev, 0);
1481
1482         PMD_INIT_LOG(DEBUG, "<<");
1483
1484         return 0;
1485
1486 error_invalid_config:
1487         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1488                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1489         igb_dev_clear_queues(dev);
1490         return -EINVAL;
1491 }
1492
1493 /*********************************************************************
1494  *
1495  *  This routine disables all traffic on the adapter by issuing a
1496  *  global reset on the MAC.
1497  *
1498  **********************************************************************/
1499 static void
1500 eth_igb_stop(struct rte_eth_dev *dev)
1501 {
1502         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1503         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1504         struct rte_eth_link link;
1505         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1506
1507         eth_igb_rxtx_control(dev, false);
1508
1509         igb_intr_disable(dev);
1510
1511         /* disable intr eventfd mapping */
1512         rte_intr_disable(intr_handle);
1513
1514         igb_pf_reset_hw(hw);
1515         E1000_WRITE_REG(hw, E1000_WUC, 0);
1516
1517         /* Set bit for Go Link disconnect */
1518         if (hw->mac.type >= e1000_82580) {
1519                 uint32_t phpm_reg;
1520
1521                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1522                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1523                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1524         }
1525
1526         /* Power down the phy. Needed to make the link go Down */
1527         eth_igb_dev_set_link_down(dev);
1528
1529         igb_dev_clear_queues(dev);
1530
1531         /* clear the recorded link status */
1532         memset(&link, 0, sizeof(link));
1533         rte_eth_linkstatus_set(dev, &link);
1534
1535         if (!rte_intr_allow_others(intr_handle))
1536                 /* resume to the default handler */
1537                 rte_intr_callback_register(intr_handle,
1538                                            eth_igb_interrupt_handler,
1539                                            (void *)dev);
1540
1541         /* Clean datapath event and queue/vec mapping */
1542         rte_intr_efd_disable(intr_handle);
1543         if (intr_handle->intr_vec != NULL) {
1544                 rte_free(intr_handle->intr_vec);
1545                 intr_handle->intr_vec = NULL;
1546         }
1547 }
1548
1549 static int
1550 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1551 {
1552         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1553
1554         if (hw->phy.media_type == e1000_media_type_copper)
1555                 e1000_power_up_phy(hw);
1556         else
1557                 e1000_power_up_fiber_serdes_link(hw);
1558
1559         return 0;
1560 }
1561
1562 static int
1563 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1564 {
1565         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1566
1567         if (hw->phy.media_type == e1000_media_type_copper)
1568                 e1000_power_down_phy(hw);
1569         else
1570                 e1000_shutdown_fiber_serdes_link(hw);
1571
1572         return 0;
1573 }
1574
1575 static void
1576 eth_igb_close(struct rte_eth_dev *dev)
1577 {
1578         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1579         struct e1000_adapter *adapter =
1580                 E1000_DEV_PRIVATE(dev->data->dev_private);
1581         struct rte_eth_link link;
1582         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1583         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1584
1585         eth_igb_stop(dev);
1586         adapter->stopped = 1;
1587
1588         e1000_phy_hw_reset(hw);
1589         igb_release_manageability(hw);
1590         igb_hw_control_release(hw);
1591
1592         /* Clear bit for Go Link disconnect */
1593         if (hw->mac.type >= e1000_82580) {
1594                 uint32_t phpm_reg;
1595
1596                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1597                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1598                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1599         }
1600
1601         igb_dev_free_queues(dev);
1602
1603         if (intr_handle->intr_vec) {
1604                 rte_free(intr_handle->intr_vec);
1605                 intr_handle->intr_vec = NULL;
1606         }
1607
1608         memset(&link, 0, sizeof(link));
1609         rte_eth_linkstatus_set(dev, &link);
1610 }
1611
1612 /*
1613  * Reset PF device.
1614  */
1615 static int
1616 eth_igb_reset(struct rte_eth_dev *dev)
1617 {
1618         int ret;
1619
1620         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1621          * its VF to make them align with it. The detailed notification
1622          * mechanism is PMD specific and is currently not implemented.
1623          * To avoid unexpected behavior in VF, currently reset of PF with
1624          * SR-IOV activation is not supported. It might be supported later.
1625          */
1626         if (dev->data->sriov.active)
1627                 return -ENOTSUP;
1628
1629         ret = eth_igb_dev_uninit(dev);
1630         if (ret)
1631                 return ret;
1632
1633         ret = eth_igb_dev_init(dev);
1634
1635         return ret;
1636 }
1637
1638
1639 static int
1640 igb_get_rx_buffer_size(struct e1000_hw *hw)
1641 {
1642         uint32_t rx_buf_size;
1643         if (hw->mac.type == e1000_82576) {
1644                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1645         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1646                 /* PBS needs to be translated according to a lookup table */
1647                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1648                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1649                 rx_buf_size = (rx_buf_size << 10);
1650         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1651                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1652         } else {
1653                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1654         }
1655
1656         return rx_buf_size;
1657 }
1658
1659 /*********************************************************************
1660  *
1661  *  Initialize the hardware
1662  *
1663  **********************************************************************/
1664 static int
1665 igb_hardware_init(struct e1000_hw *hw)
1666 {
1667         uint32_t rx_buf_size;
1668         int diag;
1669
1670         /* Let the firmware know the OS is in control */
1671         igb_hw_control_acquire(hw);
1672
1673         /*
1674          * These parameters control the automatic generation (Tx) and
1675          * response (Rx) to Ethernet PAUSE frames.
1676          * - High water mark should allow for at least two standard size (1518)
1677          *   frames to be received after sending an XOFF.
1678          * - Low water mark works best when it is very near the high water mark.
1679          *   This allows the receiver to restart by sending XON when it has
1680          *   drained a bit. Here we use an arbitrary value of 1500 which will
1681          *   restart after one full frame is pulled from the buffer. There
1682          *   could be several smaller frames in the buffer and if so they will
1683          *   not trigger the XON until their total number reduces the buffer
1684          *   by 1500.
1685          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1686          */
1687         rx_buf_size = igb_get_rx_buffer_size(hw);
1688
1689         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1690         hw->fc.low_water = hw->fc.high_water - 1500;
1691         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1692         hw->fc.send_xon = 1;
1693
1694         /* Set Flow control, use the tunable location if sane */
1695         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1696                 hw->fc.requested_mode = igb_fc_setting;
1697         else
1698                 hw->fc.requested_mode = e1000_fc_none;
1699
1700         /* Issue a global reset */
1701         igb_pf_reset_hw(hw);
1702         E1000_WRITE_REG(hw, E1000_WUC, 0);
1703
1704         diag = e1000_init_hw(hw);
1705         if (diag < 0)
1706                 return diag;
1707
1708         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1709         e1000_get_phy_info(hw);
1710         e1000_check_for_link(hw);
1711
1712         return 0;
1713 }
1714
1715 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1716 static void
1717 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1718 {
1719         int pause_frames;
1720
1721         uint64_t old_gprc  = stats->gprc;
1722         uint64_t old_gptc  = stats->gptc;
1723         uint64_t old_tpr   = stats->tpr;
1724         uint64_t old_tpt   = stats->tpt;
1725         uint64_t old_rpthc = stats->rpthc;
1726         uint64_t old_hgptc = stats->hgptc;
1727
1728         if(hw->phy.media_type == e1000_media_type_copper ||
1729             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1730                 stats->symerrs +=
1731                     E1000_READ_REG(hw,E1000_SYMERRS);
1732                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1733         }
1734
1735         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1736         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1737         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1738         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1739
1740         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1741         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1742         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1743         stats->dc += E1000_READ_REG(hw, E1000_DC);
1744         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1745         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1746         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1747         /*
1748         ** For watchdog management we need to know if we have been
1749         ** paused during the last interval, so capture that here.
1750         */
1751         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1752         stats->xoffrxc += pause_frames;
1753         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1754         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1755         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1756         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1757         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1758         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1759         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1760         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1761         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1762         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1763         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1764         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1765
1766         /* For the 64-bit byte counters the low dword must be read first. */
1767         /* Both registers clear on the read of the high dword */
1768
1769         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1770         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1771         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1772         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1773         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1774         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1775         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1776
1777         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1778         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1779         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1780         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1781         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1782
1783         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1784         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1785
1786         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1787         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1788         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1789         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1790         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1791         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1792
1793         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1794         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1795         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1796         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1797         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1798         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1799         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1800         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1801
1802         /* Interrupt Counts */
1803
1804         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1805         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1806         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1807         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1808         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1809         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1810         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1811         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1812         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1813
1814         /* Host to Card Statistics */
1815
1816         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1817         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1818         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1819         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1820         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1821         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1822         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1823         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1824         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1825         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1826         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1827         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1828         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1829         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1830         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1831         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1832
1833         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1834         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1835         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1836         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1837         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1838         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1839 }
1840
1841 static int
1842 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1843 {
1844         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1845         struct e1000_hw_stats *stats =
1846                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1847
1848         igb_read_stats_registers(hw, stats);
1849
1850         if (rte_stats == NULL)
1851                 return -EINVAL;
1852
1853         /* Rx Errors */
1854         rte_stats->imissed = stats->mpc;
1855         rte_stats->ierrors = stats->crcerrs +
1856                              stats->rlec + stats->ruc + stats->roc +
1857                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1858
1859         /* Tx Errors */
1860         rte_stats->oerrors = stats->ecol + stats->latecol;
1861
1862         rte_stats->ipackets = stats->gprc;
1863         rte_stats->opackets = stats->gptc;
1864         rte_stats->ibytes   = stats->gorc;
1865         rte_stats->obytes   = stats->gotc;
1866         return 0;
1867 }
1868
1869 static void
1870 eth_igb_stats_reset(struct rte_eth_dev *dev)
1871 {
1872         struct e1000_hw_stats *hw_stats =
1873                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1874
1875         /* HW registers are cleared on read */
1876         eth_igb_stats_get(dev, NULL);
1877
1878         /* Reset software totals */
1879         memset(hw_stats, 0, sizeof(*hw_stats));
1880 }
1881
1882 static void
1883 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1884 {
1885         struct e1000_hw_stats *stats =
1886                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1887
1888         /* HW registers are cleared on read */
1889         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1890
1891         /* Reset software totals */
1892         memset(stats, 0, sizeof(*stats));
1893 }
1894
1895 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1896         struct rte_eth_xstat_name *xstats_names,
1897         __rte_unused unsigned int size)
1898 {
1899         unsigned i;
1900
1901         if (xstats_names == NULL)
1902                 return IGB_NB_XSTATS;
1903
1904         /* Note: limit checked in rte_eth_xstats_names() */
1905
1906         for (i = 0; i < IGB_NB_XSTATS; i++) {
1907                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1908                          "%s", rte_igb_stats_strings[i].name);
1909         }
1910
1911         return IGB_NB_XSTATS;
1912 }
1913
1914 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1915                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1916                 unsigned int limit)
1917 {
1918         unsigned int i;
1919
1920         if (!ids) {
1921                 if (xstats_names == NULL)
1922                         return IGB_NB_XSTATS;
1923
1924                 for (i = 0; i < IGB_NB_XSTATS; i++)
1925                         snprintf(xstats_names[i].name,
1926                                         sizeof(xstats_names[i].name),
1927                                         "%s", rte_igb_stats_strings[i].name);
1928
1929                 return IGB_NB_XSTATS;
1930
1931         } else {
1932                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1933
1934                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1935                                 IGB_NB_XSTATS);
1936
1937                 for (i = 0; i < limit; i++) {
1938                         if (ids[i] >= IGB_NB_XSTATS) {
1939                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1940                                 return -1;
1941                         }
1942                         strcpy(xstats_names[i].name,
1943                                         xstats_names_copy[ids[i]].name);
1944                 }
1945                 return limit;
1946         }
1947 }
1948
1949 static int
1950 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1951                    unsigned n)
1952 {
1953         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1954         struct e1000_hw_stats *hw_stats =
1955                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1956         unsigned i;
1957
1958         if (n < IGB_NB_XSTATS)
1959                 return IGB_NB_XSTATS;
1960
1961         igb_read_stats_registers(hw, hw_stats);
1962
1963         /* If this is a reset xstats is NULL, and we have cleared the
1964          * registers by reading them.
1965          */
1966         if (!xstats)
1967                 return 0;
1968
1969         /* Extended stats */
1970         for (i = 0; i < IGB_NB_XSTATS; i++) {
1971                 xstats[i].id = i;
1972                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1973                         rte_igb_stats_strings[i].offset);
1974         }
1975
1976         return IGB_NB_XSTATS;
1977 }
1978
1979 static int
1980 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1981                 uint64_t *values, unsigned int n)
1982 {
1983         unsigned int i;
1984
1985         if (!ids) {
1986                 struct e1000_hw *hw =
1987                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1988                 struct e1000_hw_stats *hw_stats =
1989                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1990
1991                 if (n < IGB_NB_XSTATS)
1992                         return IGB_NB_XSTATS;
1993
1994                 igb_read_stats_registers(hw, hw_stats);
1995
1996                 /* If this is a reset xstats is NULL, and we have cleared the
1997                  * registers by reading them.
1998                  */
1999                 if (!values)
2000                         return 0;
2001
2002                 /* Extended stats */
2003                 for (i = 0; i < IGB_NB_XSTATS; i++)
2004                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2005                                         rte_igb_stats_strings[i].offset);
2006
2007                 return IGB_NB_XSTATS;
2008
2009         } else {
2010                 uint64_t values_copy[IGB_NB_XSTATS];
2011
2012                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2013                                 IGB_NB_XSTATS);
2014
2015                 for (i = 0; i < n; i++) {
2016                         if (ids[i] >= IGB_NB_XSTATS) {
2017                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2018                                 return -1;
2019                         }
2020                         values[i] = values_copy[ids[i]];
2021                 }
2022                 return n;
2023         }
2024 }
2025
2026 static void
2027 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2028 {
2029         /* Good Rx packets, include VF loopback */
2030         UPDATE_VF_STAT(E1000_VFGPRC,
2031             hw_stats->last_gprc, hw_stats->gprc);
2032
2033         /* Good Rx octets, include VF loopback */
2034         UPDATE_VF_STAT(E1000_VFGORC,
2035             hw_stats->last_gorc, hw_stats->gorc);
2036
2037         /* Good Tx packets, include VF loopback */
2038         UPDATE_VF_STAT(E1000_VFGPTC,
2039             hw_stats->last_gptc, hw_stats->gptc);
2040
2041         /* Good Tx octets, include VF loopback */
2042         UPDATE_VF_STAT(E1000_VFGOTC,
2043             hw_stats->last_gotc, hw_stats->gotc);
2044
2045         /* Rx Multicst packets */
2046         UPDATE_VF_STAT(E1000_VFMPRC,
2047             hw_stats->last_mprc, hw_stats->mprc);
2048
2049         /* Good Rx loopback packets */
2050         UPDATE_VF_STAT(E1000_VFGPRLBC,
2051             hw_stats->last_gprlbc, hw_stats->gprlbc);
2052
2053         /* Good Rx loopback octets */
2054         UPDATE_VF_STAT(E1000_VFGORLBC,
2055             hw_stats->last_gorlbc, hw_stats->gorlbc);
2056
2057         /* Good Tx loopback packets */
2058         UPDATE_VF_STAT(E1000_VFGPTLBC,
2059             hw_stats->last_gptlbc, hw_stats->gptlbc);
2060
2061         /* Good Tx loopback octets */
2062         UPDATE_VF_STAT(E1000_VFGOTLBC,
2063             hw_stats->last_gotlbc, hw_stats->gotlbc);
2064 }
2065
2066 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2067                                      struct rte_eth_xstat_name *xstats_names,
2068                                      __rte_unused unsigned limit)
2069 {
2070         unsigned i;
2071
2072         if (xstats_names != NULL)
2073                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2074                         snprintf(xstats_names[i].name,
2075                                 sizeof(xstats_names[i].name), "%s",
2076                                 rte_igbvf_stats_strings[i].name);
2077                 }
2078         return IGBVF_NB_XSTATS;
2079 }
2080
2081 static int
2082 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2083                      unsigned n)
2084 {
2085         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2086         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2087                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2088         unsigned i;
2089
2090         if (n < IGBVF_NB_XSTATS)
2091                 return IGBVF_NB_XSTATS;
2092
2093         igbvf_read_stats_registers(hw, hw_stats);
2094
2095         if (!xstats)
2096                 return 0;
2097
2098         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2099                 xstats[i].id = i;
2100                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2101                         rte_igbvf_stats_strings[i].offset);
2102         }
2103
2104         return IGBVF_NB_XSTATS;
2105 }
2106
2107 static int
2108 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2109 {
2110         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2111         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2112                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2113
2114         igbvf_read_stats_registers(hw, hw_stats);
2115
2116         if (rte_stats == NULL)
2117                 return -EINVAL;
2118
2119         rte_stats->ipackets = hw_stats->gprc;
2120         rte_stats->ibytes = hw_stats->gorc;
2121         rte_stats->opackets = hw_stats->gptc;
2122         rte_stats->obytes = hw_stats->gotc;
2123         return 0;
2124 }
2125
2126 static void
2127 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2128 {
2129         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2130                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2131
2132         /* Sync HW register to the last stats */
2133         eth_igbvf_stats_get(dev, NULL);
2134
2135         /* reset HW current stats*/
2136         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2137                offsetof(struct e1000_vf_stats, gprc));
2138 }
2139
2140 static int
2141 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2142                        size_t fw_size)
2143 {
2144         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2145         struct e1000_fw_version fw;
2146         int ret;
2147
2148         e1000_get_fw_version(hw, &fw);
2149
2150         switch (hw->mac.type) {
2151         case e1000_i210:
2152         case e1000_i211:
2153                 if (!(e1000_get_flash_presence_i210(hw))) {
2154                         ret = snprintf(fw_version, fw_size,
2155                                  "%2d.%2d-%d",
2156                                  fw.invm_major, fw.invm_minor,
2157                                  fw.invm_img_type);
2158                         break;
2159                 }
2160                 /* fall through */
2161         default:
2162                 /* if option rom is valid, display its version too */
2163                 if (fw.or_valid) {
2164                         ret = snprintf(fw_version, fw_size,
2165                                  "%d.%d, 0x%08x, %d.%d.%d",
2166                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2167                                  fw.or_major, fw.or_build, fw.or_patch);
2168                 /* no option rom */
2169                 } else {
2170                         if (fw.etrack_id != 0X0000) {
2171                                 ret = snprintf(fw_version, fw_size,
2172                                          "%d.%d, 0x%08x",
2173                                          fw.eep_major, fw.eep_minor,
2174                                          fw.etrack_id);
2175                         } else {
2176                                 ret = snprintf(fw_version, fw_size,
2177                                          "%d.%d.%d",
2178                                          fw.eep_major, fw.eep_minor,
2179                                          fw.eep_build);
2180                         }
2181                 }
2182                 break;
2183         }
2184
2185         ret += 1; /* add the size of '\0' */
2186         if (fw_size < (u32)ret)
2187                 return ret;
2188         else
2189                 return 0;
2190 }
2191
2192 static void
2193 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2194 {
2195         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2196
2197         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2198         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2199         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2200         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2201         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2202                                     dev_info->rx_queue_offload_capa;
2203         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2204         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2205                                     dev_info->tx_queue_offload_capa;
2206
2207         switch (hw->mac.type) {
2208         case e1000_82575:
2209                 dev_info->max_rx_queues = 4;
2210                 dev_info->max_tx_queues = 4;
2211                 dev_info->max_vmdq_pools = 0;
2212                 break;
2213
2214         case e1000_82576:
2215                 dev_info->max_rx_queues = 16;
2216                 dev_info->max_tx_queues = 16;
2217                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2218                 dev_info->vmdq_queue_num = 16;
2219                 break;
2220
2221         case e1000_82580:
2222                 dev_info->max_rx_queues = 8;
2223                 dev_info->max_tx_queues = 8;
2224                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2225                 dev_info->vmdq_queue_num = 8;
2226                 break;
2227
2228         case e1000_i350:
2229                 dev_info->max_rx_queues = 8;
2230                 dev_info->max_tx_queues = 8;
2231                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2232                 dev_info->vmdq_queue_num = 8;
2233                 break;
2234
2235         case e1000_i354:
2236                 dev_info->max_rx_queues = 8;
2237                 dev_info->max_tx_queues = 8;
2238                 break;
2239
2240         case e1000_i210:
2241                 dev_info->max_rx_queues = 4;
2242                 dev_info->max_tx_queues = 4;
2243                 dev_info->max_vmdq_pools = 0;
2244                 break;
2245
2246         case e1000_i211:
2247                 dev_info->max_rx_queues = 2;
2248                 dev_info->max_tx_queues = 2;
2249                 dev_info->max_vmdq_pools = 0;
2250                 break;
2251
2252         default:
2253                 /* Should not happen */
2254                 break;
2255         }
2256         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2257         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2258         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2259
2260         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2261                 .rx_thresh = {
2262                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2263                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2264                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2265                 },
2266                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2267                 .rx_drop_en = 0,
2268                 .offloads = 0,
2269         };
2270
2271         dev_info->default_txconf = (struct rte_eth_txconf) {
2272                 .tx_thresh = {
2273                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2274                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2275                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2276                 },
2277                 .offloads = 0,
2278         };
2279
2280         dev_info->rx_desc_lim = rx_desc_lim;
2281         dev_info->tx_desc_lim = tx_desc_lim;
2282
2283         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2284                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2285                         ETH_LINK_SPEED_1G;
2286
2287         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2288         dev_info->min_mtu = ETHER_MIN_MTU;
2289
2290 }
2291
2292 static const uint32_t *
2293 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2294 {
2295         static const uint32_t ptypes[] = {
2296                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2297                 RTE_PTYPE_L2_ETHER,
2298                 RTE_PTYPE_L3_IPV4,
2299                 RTE_PTYPE_L3_IPV4_EXT,
2300                 RTE_PTYPE_L3_IPV6,
2301                 RTE_PTYPE_L3_IPV6_EXT,
2302                 RTE_PTYPE_L4_TCP,
2303                 RTE_PTYPE_L4_UDP,
2304                 RTE_PTYPE_L4_SCTP,
2305                 RTE_PTYPE_TUNNEL_IP,
2306                 RTE_PTYPE_INNER_L3_IPV6,
2307                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2308                 RTE_PTYPE_INNER_L4_TCP,
2309                 RTE_PTYPE_INNER_L4_UDP,
2310                 RTE_PTYPE_UNKNOWN
2311         };
2312
2313         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2314             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2315                 return ptypes;
2316         return NULL;
2317 }
2318
2319 static void
2320 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2321 {
2322         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2323
2324         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2325         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2326         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2327         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2328                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2329                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2330                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2331                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2332                                 DEV_TX_OFFLOAD_TCP_TSO;
2333         switch (hw->mac.type) {
2334         case e1000_vfadapt:
2335                 dev_info->max_rx_queues = 2;
2336                 dev_info->max_tx_queues = 2;
2337                 break;
2338         case e1000_vfadapt_i350:
2339                 dev_info->max_rx_queues = 1;
2340                 dev_info->max_tx_queues = 1;
2341                 break;
2342         default:
2343                 /* Should not happen */
2344                 break;
2345         }
2346
2347         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2348         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2349                                     dev_info->rx_queue_offload_capa;
2350         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2351         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2352                                     dev_info->tx_queue_offload_capa;
2353
2354         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2355                 .rx_thresh = {
2356                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2357                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2358                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2359                 },
2360                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2361                 .rx_drop_en = 0,
2362                 .offloads = 0,
2363         };
2364
2365         dev_info->default_txconf = (struct rte_eth_txconf) {
2366                 .tx_thresh = {
2367                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2368                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2369                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2370                 },
2371                 .offloads = 0,
2372         };
2373
2374         dev_info->rx_desc_lim = rx_desc_lim;
2375         dev_info->tx_desc_lim = tx_desc_lim;
2376 }
2377
2378 /* return 0 means link status changed, -1 means not changed */
2379 static int
2380 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2381 {
2382         struct e1000_hw *hw =
2383                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2384         struct rte_eth_link link;
2385         int link_check, count;
2386
2387         link_check = 0;
2388         hw->mac.get_link_status = 1;
2389
2390         /* possible wait-to-complete in up to 9 seconds */
2391         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2392                 /* Read the real link status */
2393                 switch (hw->phy.media_type) {
2394                 case e1000_media_type_copper:
2395                         /* Do the work to read phy */
2396                         e1000_check_for_link(hw);
2397                         link_check = !hw->mac.get_link_status;
2398                         break;
2399
2400                 case e1000_media_type_fiber:
2401                         e1000_check_for_link(hw);
2402                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2403                                       E1000_STATUS_LU);
2404                         break;
2405
2406                 case e1000_media_type_internal_serdes:
2407                         e1000_check_for_link(hw);
2408                         link_check = hw->mac.serdes_has_link;
2409                         break;
2410
2411                 /* VF device is type_unknown */
2412                 case e1000_media_type_unknown:
2413                         eth_igbvf_link_update(hw);
2414                         link_check = !hw->mac.get_link_status;
2415                         break;
2416
2417                 default:
2418                         break;
2419                 }
2420                 if (link_check || wait_to_complete == 0)
2421                         break;
2422                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2423         }
2424         memset(&link, 0, sizeof(link));
2425
2426         /* Now we check if a transition has happened */
2427         if (link_check) {
2428                 uint16_t duplex, speed;
2429                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2430                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2431                                 ETH_LINK_FULL_DUPLEX :
2432                                 ETH_LINK_HALF_DUPLEX;
2433                 link.link_speed = speed;
2434                 link.link_status = ETH_LINK_UP;
2435                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2436                                 ETH_LINK_SPEED_FIXED);
2437         } else if (!link_check) {
2438                 link.link_speed = 0;
2439                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2440                 link.link_status = ETH_LINK_DOWN;
2441                 link.link_autoneg = ETH_LINK_FIXED;
2442         }
2443
2444         return rte_eth_linkstatus_set(dev, &link);
2445 }
2446
2447 /*
2448  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2449  * For ASF and Pass Through versions of f/w this means
2450  * that the driver is loaded.
2451  */
2452 static void
2453 igb_hw_control_acquire(struct e1000_hw *hw)
2454 {
2455         uint32_t ctrl_ext;
2456
2457         /* Let firmware know the driver has taken over */
2458         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2459         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2460 }
2461
2462 /*
2463  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2464  * For ASF and Pass Through versions of f/w this means that the
2465  * driver is no longer loaded.
2466  */
2467 static void
2468 igb_hw_control_release(struct e1000_hw *hw)
2469 {
2470         uint32_t ctrl_ext;
2471
2472         /* Let firmware taken over control of h/w */
2473         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2474         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2475                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2476 }
2477
2478 /*
2479  * Bit of a misnomer, what this really means is
2480  * to enable OS management of the system... aka
2481  * to disable special hardware management features.
2482  */
2483 static void
2484 igb_init_manageability(struct e1000_hw *hw)
2485 {
2486         if (e1000_enable_mng_pass_thru(hw)) {
2487                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2488                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2489
2490                 /* disable hardware interception of ARP */
2491                 manc &= ~(E1000_MANC_ARP_EN);
2492
2493                 /* enable receiving management packets to the host */
2494                 manc |= E1000_MANC_EN_MNG2HOST;
2495                 manc2h |= 1 << 5;  /* Mng Port 623 */
2496                 manc2h |= 1 << 6;  /* Mng Port 664 */
2497                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2498                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2499         }
2500 }
2501
2502 static void
2503 igb_release_manageability(struct e1000_hw *hw)
2504 {
2505         if (e1000_enable_mng_pass_thru(hw)) {
2506                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2507
2508                 manc |= E1000_MANC_ARP_EN;
2509                 manc &= ~E1000_MANC_EN_MNG2HOST;
2510
2511                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2512         }
2513 }
2514
2515 static void
2516 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2517 {
2518         struct e1000_hw *hw =
2519                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2520         uint32_t rctl;
2521
2522         rctl = E1000_READ_REG(hw, E1000_RCTL);
2523         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2524         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2525 }
2526
2527 static void
2528 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2529 {
2530         struct e1000_hw *hw =
2531                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2532         uint32_t rctl;
2533
2534         rctl = E1000_READ_REG(hw, E1000_RCTL);
2535         rctl &= (~E1000_RCTL_UPE);
2536         if (dev->data->all_multicast == 1)
2537                 rctl |= E1000_RCTL_MPE;
2538         else
2539                 rctl &= (~E1000_RCTL_MPE);
2540         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2541 }
2542
2543 static void
2544 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2545 {
2546         struct e1000_hw *hw =
2547                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2548         uint32_t rctl;
2549
2550         rctl = E1000_READ_REG(hw, E1000_RCTL);
2551         rctl |= E1000_RCTL_MPE;
2552         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2553 }
2554
2555 static void
2556 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2557 {
2558         struct e1000_hw *hw =
2559                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2560         uint32_t rctl;
2561
2562         if (dev->data->promiscuous == 1)
2563                 return; /* must remain in all_multicast mode */
2564         rctl = E1000_READ_REG(hw, E1000_RCTL);
2565         rctl &= (~E1000_RCTL_MPE);
2566         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2567 }
2568
2569 static int
2570 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2571 {
2572         struct e1000_hw *hw =
2573                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2574         struct e1000_vfta * shadow_vfta =
2575                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2576         uint32_t vfta;
2577         uint32_t vid_idx;
2578         uint32_t vid_bit;
2579
2580         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2581                               E1000_VFTA_ENTRY_MASK);
2582         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2583         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2584         if (on)
2585                 vfta |= vid_bit;
2586         else
2587                 vfta &= ~vid_bit;
2588         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2589
2590         /* update local VFTA copy */
2591         shadow_vfta->vfta[vid_idx] = vfta;
2592
2593         return 0;
2594 }
2595
2596 static int
2597 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2598                       enum rte_vlan_type vlan_type,
2599                       uint16_t tpid)
2600 {
2601         struct e1000_hw *hw =
2602                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2603         uint32_t reg, qinq;
2604
2605         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2606         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2607
2608         /* only outer TPID of double VLAN can be configured*/
2609         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2610                 reg = E1000_READ_REG(hw, E1000_VET);
2611                 reg = (reg & (~E1000_VET_VET_EXT)) |
2612                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2613                 E1000_WRITE_REG(hw, E1000_VET, reg);
2614
2615                 return 0;
2616         }
2617
2618         /* all other TPID values are read-only*/
2619         PMD_DRV_LOG(ERR, "Not supported");
2620
2621         return -ENOTSUP;
2622 }
2623
2624 static void
2625 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2626 {
2627         struct e1000_hw *hw =
2628                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2629         uint32_t reg;
2630
2631         /* Filter Table Disable */
2632         reg = E1000_READ_REG(hw, E1000_RCTL);
2633         reg &= ~E1000_RCTL_CFIEN;
2634         reg &= ~E1000_RCTL_VFE;
2635         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2636 }
2637
2638 static void
2639 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2640 {
2641         struct e1000_hw *hw =
2642                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2643         struct e1000_vfta * shadow_vfta =
2644                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2645         uint32_t reg;
2646         int i;
2647
2648         /* Filter Table Enable, CFI not used for packet acceptance */
2649         reg = E1000_READ_REG(hw, E1000_RCTL);
2650         reg &= ~E1000_RCTL_CFIEN;
2651         reg |= E1000_RCTL_VFE;
2652         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2653
2654         /* restore VFTA table */
2655         for (i = 0; i < IGB_VFTA_SIZE; i++)
2656                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2657 }
2658
2659 static void
2660 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2661 {
2662         struct e1000_hw *hw =
2663                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2664         uint32_t reg;
2665
2666         /* VLAN Mode Disable */
2667         reg = E1000_READ_REG(hw, E1000_CTRL);
2668         reg &= ~E1000_CTRL_VME;
2669         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2670 }
2671
2672 static void
2673 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2674 {
2675         struct e1000_hw *hw =
2676                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2677         uint32_t reg;
2678
2679         /* VLAN Mode Enable */
2680         reg = E1000_READ_REG(hw, E1000_CTRL);
2681         reg |= E1000_CTRL_VME;
2682         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2683 }
2684
2685 static void
2686 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2687 {
2688         struct e1000_hw *hw =
2689                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2690         uint32_t reg;
2691
2692         /* CTRL_EXT: Extended VLAN */
2693         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2694         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2695         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2696
2697         /* Update maximum packet length */
2698         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2699                 E1000_WRITE_REG(hw, E1000_RLPML,
2700                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2701                                                 VLAN_TAG_SIZE);
2702 }
2703
2704 static void
2705 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2706 {
2707         struct e1000_hw *hw =
2708                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2709         uint32_t reg;
2710
2711         /* CTRL_EXT: Extended VLAN */
2712         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2713         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2714         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2715
2716         /* Update maximum packet length */
2717         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2718                 E1000_WRITE_REG(hw, E1000_RLPML,
2719                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2720                                                 2 * VLAN_TAG_SIZE);
2721 }
2722
2723 static int
2724 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2725 {
2726         struct rte_eth_rxmode *rxmode;
2727
2728         rxmode = &dev->data->dev_conf.rxmode;
2729         if(mask & ETH_VLAN_STRIP_MASK){
2730                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2731                         igb_vlan_hw_strip_enable(dev);
2732                 else
2733                         igb_vlan_hw_strip_disable(dev);
2734         }
2735
2736         if(mask & ETH_VLAN_FILTER_MASK){
2737                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2738                         igb_vlan_hw_filter_enable(dev);
2739                 else
2740                         igb_vlan_hw_filter_disable(dev);
2741         }
2742
2743         if(mask & ETH_VLAN_EXTEND_MASK){
2744                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2745                         igb_vlan_hw_extend_enable(dev);
2746                 else
2747                         igb_vlan_hw_extend_disable(dev);
2748         }
2749
2750         return 0;
2751 }
2752
2753
2754 /**
2755  * It enables the interrupt mask and then enable the interrupt.
2756  *
2757  * @param dev
2758  *  Pointer to struct rte_eth_dev.
2759  * @param on
2760  *  Enable or Disable
2761  *
2762  * @return
2763  *  - On success, zero.
2764  *  - On failure, a negative value.
2765  */
2766 static int
2767 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2768 {
2769         struct e1000_interrupt *intr =
2770                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2771
2772         if (on)
2773                 intr->mask |= E1000_ICR_LSC;
2774         else
2775                 intr->mask &= ~E1000_ICR_LSC;
2776
2777         return 0;
2778 }
2779
2780 /* It clears the interrupt causes and enables the interrupt.
2781  * It will be called once only during nic initialized.
2782  *
2783  * @param dev
2784  *  Pointer to struct rte_eth_dev.
2785  *
2786  * @return
2787  *  - On success, zero.
2788  *  - On failure, a negative value.
2789  */
2790 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2791 {
2792         uint32_t mask, regval;
2793         struct e1000_hw *hw =
2794                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2795         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2796         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2797         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2798         struct rte_eth_dev_info dev_info;
2799
2800         memset(&dev_info, 0, sizeof(dev_info));
2801         eth_igb_infos_get(dev, &dev_info);
2802
2803         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2804         regval = E1000_READ_REG(hw, E1000_EIMS);
2805         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2806
2807         return 0;
2808 }
2809
2810 /*
2811  * It reads ICR and gets interrupt causes, check it and set a bit flag
2812  * to update link status.
2813  *
2814  * @param dev
2815  *  Pointer to struct rte_eth_dev.
2816  *
2817  * @return
2818  *  - On success, zero.
2819  *  - On failure, a negative value.
2820  */
2821 static int
2822 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2823 {
2824         uint32_t icr;
2825         struct e1000_hw *hw =
2826                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2827         struct e1000_interrupt *intr =
2828                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2829
2830         igb_intr_disable(dev);
2831
2832         /* read-on-clear nic registers here */
2833         icr = E1000_READ_REG(hw, E1000_ICR);
2834
2835         intr->flags = 0;
2836         if (icr & E1000_ICR_LSC) {
2837                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2838         }
2839
2840         if (icr & E1000_ICR_VMMB)
2841                 intr->flags |= E1000_FLAG_MAILBOX;
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * It executes link_update after knowing an interrupt is prsent.
2848  *
2849  * @param dev
2850  *  Pointer to struct rte_eth_dev.
2851  *
2852  * @return
2853  *  - On success, zero.
2854  *  - On failure, a negative value.
2855  */
2856 static int
2857 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2858                          struct rte_intr_handle *intr_handle)
2859 {
2860         struct e1000_hw *hw =
2861                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2862         struct e1000_interrupt *intr =
2863                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2864         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2865         struct rte_eth_link link;
2866         int ret;
2867
2868         if (intr->flags & E1000_FLAG_MAILBOX) {
2869                 igb_pf_mbx_process(dev);
2870                 intr->flags &= ~E1000_FLAG_MAILBOX;
2871         }
2872
2873         igb_intr_enable(dev);
2874         rte_intr_enable(intr_handle);
2875
2876         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2877                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2878
2879                 /* set get_link_status to check register later */
2880                 hw->mac.get_link_status = 1;
2881                 ret = eth_igb_link_update(dev, 0);
2882
2883                 /* check if link has changed */
2884                 if (ret < 0)
2885                         return 0;
2886
2887                 rte_eth_linkstatus_get(dev, &link);
2888                 if (link.link_status) {
2889                         PMD_INIT_LOG(INFO,
2890                                      " Port %d: Link Up - speed %u Mbps - %s",
2891                                      dev->data->port_id,
2892                                      (unsigned)link.link_speed,
2893                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2894                                      "full-duplex" : "half-duplex");
2895                 } else {
2896                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2897                                      dev->data->port_id);
2898                 }
2899
2900                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2901                              pci_dev->addr.domain,
2902                              pci_dev->addr.bus,
2903                              pci_dev->addr.devid,
2904                              pci_dev->addr.function);
2905                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2906                                               NULL);
2907         }
2908
2909         return 0;
2910 }
2911
2912 /**
2913  * Interrupt handler which shall be registered at first.
2914  *
2915  * @param handle
2916  *  Pointer to interrupt handle.
2917  * @param param
2918  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2919  *
2920  * @return
2921  *  void
2922  */
2923 static void
2924 eth_igb_interrupt_handler(void *param)
2925 {
2926         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2927
2928         eth_igb_interrupt_get_status(dev);
2929         eth_igb_interrupt_action(dev, dev->intr_handle);
2930 }
2931
2932 static int
2933 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2934 {
2935         uint32_t eicr;
2936         struct e1000_hw *hw =
2937                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2938         struct e1000_interrupt *intr =
2939                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2940
2941         igbvf_intr_disable(hw);
2942
2943         /* read-on-clear nic registers here */
2944         eicr = E1000_READ_REG(hw, E1000_EICR);
2945         intr->flags = 0;
2946
2947         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2948                 intr->flags |= E1000_FLAG_MAILBOX;
2949
2950         return 0;
2951 }
2952
2953 void igbvf_mbx_process(struct rte_eth_dev *dev)
2954 {
2955         struct e1000_hw *hw =
2956                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2957         struct e1000_mbx_info *mbx = &hw->mbx;
2958         u32 in_msg = 0;
2959
2960         /* peek the message first */
2961         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2962
2963         /* PF reset VF event */
2964         if (in_msg == E1000_PF_CONTROL_MSG) {
2965                 /* dummy mbx read to ack pf */
2966                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2967                         return;
2968                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2969                                               NULL);
2970         }
2971 }
2972
2973 static int
2974 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2975 {
2976         struct e1000_interrupt *intr =
2977                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2978
2979         if (intr->flags & E1000_FLAG_MAILBOX) {
2980                 igbvf_mbx_process(dev);
2981                 intr->flags &= ~E1000_FLAG_MAILBOX;
2982         }
2983
2984         igbvf_intr_enable(dev);
2985         rte_intr_enable(intr_handle);
2986
2987         return 0;
2988 }
2989
2990 static void
2991 eth_igbvf_interrupt_handler(void *param)
2992 {
2993         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2994
2995         eth_igbvf_interrupt_get_status(dev);
2996         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2997 }
2998
2999 static int
3000 eth_igb_led_on(struct rte_eth_dev *dev)
3001 {
3002         struct e1000_hw *hw;
3003
3004         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3005         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3006 }
3007
3008 static int
3009 eth_igb_led_off(struct rte_eth_dev *dev)
3010 {
3011         struct e1000_hw *hw;
3012
3013         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3014         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3015 }
3016
3017 static int
3018 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3019 {
3020         struct e1000_hw *hw;
3021         uint32_t ctrl;
3022         int tx_pause;
3023         int rx_pause;
3024
3025         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3026         fc_conf->pause_time = hw->fc.pause_time;
3027         fc_conf->high_water = hw->fc.high_water;
3028         fc_conf->low_water = hw->fc.low_water;
3029         fc_conf->send_xon = hw->fc.send_xon;
3030         fc_conf->autoneg = hw->mac.autoneg;
3031
3032         /*
3033          * Return rx_pause and tx_pause status according to actual setting of
3034          * the TFCE and RFCE bits in the CTRL register.
3035          */
3036         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3037         if (ctrl & E1000_CTRL_TFCE)
3038                 tx_pause = 1;
3039         else
3040                 tx_pause = 0;
3041
3042         if (ctrl & E1000_CTRL_RFCE)
3043                 rx_pause = 1;
3044         else
3045                 rx_pause = 0;
3046
3047         if (rx_pause && tx_pause)
3048                 fc_conf->mode = RTE_FC_FULL;
3049         else if (rx_pause)
3050                 fc_conf->mode = RTE_FC_RX_PAUSE;
3051         else if (tx_pause)
3052                 fc_conf->mode = RTE_FC_TX_PAUSE;
3053         else
3054                 fc_conf->mode = RTE_FC_NONE;
3055
3056         return 0;
3057 }
3058
3059 static int
3060 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3061 {
3062         struct e1000_hw *hw;
3063         int err;
3064         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3065                 e1000_fc_none,
3066                 e1000_fc_rx_pause,
3067                 e1000_fc_tx_pause,
3068                 e1000_fc_full
3069         };
3070         uint32_t rx_buf_size;
3071         uint32_t max_high_water;
3072         uint32_t rctl;
3073
3074         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3075         if (fc_conf->autoneg != hw->mac.autoneg)
3076                 return -ENOTSUP;
3077         rx_buf_size = igb_get_rx_buffer_size(hw);
3078         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3079
3080         /* At least reserve one Ethernet frame for watermark */
3081         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3082         if ((fc_conf->high_water > max_high_water) ||
3083             (fc_conf->high_water < fc_conf->low_water)) {
3084                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3085                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3086                 return -EINVAL;
3087         }
3088
3089         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3090         hw->fc.pause_time     = fc_conf->pause_time;
3091         hw->fc.high_water     = fc_conf->high_water;
3092         hw->fc.low_water      = fc_conf->low_water;
3093         hw->fc.send_xon       = fc_conf->send_xon;
3094
3095         err = e1000_setup_link_generic(hw);
3096         if (err == E1000_SUCCESS) {
3097
3098                 /* check if we want to forward MAC frames - driver doesn't have native
3099                  * capability to do that, so we'll write the registers ourselves */
3100
3101                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3102
3103                 /* set or clear MFLCN.PMCF bit depending on configuration */
3104                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3105                         rctl |= E1000_RCTL_PMCF;
3106                 else
3107                         rctl &= ~E1000_RCTL_PMCF;
3108
3109                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3110                 E1000_WRITE_FLUSH(hw);
3111
3112                 return 0;
3113         }
3114
3115         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3116         return -EIO;
3117 }
3118
3119 #define E1000_RAH_POOLSEL_SHIFT      (18)
3120 static int
3121 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3122                 uint32_t index, uint32_t pool)
3123 {
3124         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3125         uint32_t rah;
3126
3127         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3128         rah = E1000_READ_REG(hw, E1000_RAH(index));
3129         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3130         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3131         return 0;
3132 }
3133
3134 static void
3135 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3136 {
3137         uint8_t addr[ETHER_ADDR_LEN];
3138         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3139
3140         memset(addr, 0, sizeof(addr));
3141
3142         e1000_rar_set(hw, addr, index);
3143 }
3144
3145 static int
3146 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3147                                 struct ether_addr *addr)
3148 {
3149         eth_igb_rar_clear(dev, 0);
3150         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3151
3152         return 0;
3153 }
3154 /*
3155  * Virtual Function operations
3156  */
3157 static void
3158 igbvf_intr_disable(struct e1000_hw *hw)
3159 {
3160         PMD_INIT_FUNC_TRACE();
3161
3162         /* Clear interrupt mask to stop from interrupts being generated */
3163         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3164
3165         E1000_WRITE_FLUSH(hw);
3166 }
3167
3168 static void
3169 igbvf_stop_adapter(struct rte_eth_dev *dev)
3170 {
3171         u32 reg_val;
3172         u16 i;
3173         struct rte_eth_dev_info dev_info;
3174         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3175
3176         memset(&dev_info, 0, sizeof(dev_info));
3177         eth_igbvf_infos_get(dev, &dev_info);
3178
3179         /* Clear interrupt mask to stop from interrupts being generated */
3180         igbvf_intr_disable(hw);
3181
3182         /* Clear any pending interrupts, flush previous writes */
3183         E1000_READ_REG(hw, E1000_EICR);
3184
3185         /* Disable the transmit unit.  Each queue must be disabled. */
3186         for (i = 0; i < dev_info.max_tx_queues; i++)
3187                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3188
3189         /* Disable the receive unit by stopping each queue */
3190         for (i = 0; i < dev_info.max_rx_queues; i++) {
3191                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3192                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3193                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3194                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3195                         ;
3196         }
3197
3198         /* flush all queues disables */
3199         E1000_WRITE_FLUSH(hw);
3200         msec_delay(2);
3201 }
3202
3203 static int eth_igbvf_link_update(struct e1000_hw *hw)
3204 {
3205         struct e1000_mbx_info *mbx = &hw->mbx;
3206         struct e1000_mac_info *mac = &hw->mac;
3207         int ret_val = E1000_SUCCESS;
3208
3209         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3210
3211         /*
3212          * We only want to run this if there has been a rst asserted.
3213          * in this case that could mean a link change, device reset,
3214          * or a virtual function reset
3215          */
3216
3217         /* If we were hit with a reset or timeout drop the link */
3218         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3219                 mac->get_link_status = TRUE;
3220
3221         if (!mac->get_link_status)
3222                 goto out;
3223
3224         /* if link status is down no point in checking to see if pf is up */
3225         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3226                 goto out;
3227
3228         /* if we passed all the tests above then the link is up and we no
3229          * longer need to check for link */
3230         mac->get_link_status = FALSE;
3231
3232 out:
3233         return ret_val;
3234 }
3235
3236
3237 static int
3238 igbvf_dev_configure(struct rte_eth_dev *dev)
3239 {
3240         struct rte_eth_conf* conf = &dev->data->dev_conf;
3241
3242         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3243                      dev->data->port_id);
3244
3245         /*
3246          * VF has no ability to enable/disable HW CRC
3247          * Keep the persistent behavior the same as Host PF
3248          */
3249 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3250         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3251                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3252                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3253         }
3254 #else
3255         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3256                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3257                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3258         }
3259 #endif
3260
3261         return 0;
3262 }
3263
3264 static int
3265 igbvf_dev_start(struct rte_eth_dev *dev)
3266 {
3267         struct e1000_hw *hw =
3268                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3269         struct e1000_adapter *adapter =
3270                 E1000_DEV_PRIVATE(dev->data->dev_private);
3271         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3272         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3273         int ret;
3274         uint32_t intr_vector = 0;
3275
3276         PMD_INIT_FUNC_TRACE();
3277
3278         hw->mac.ops.reset_hw(hw);
3279         adapter->stopped = 0;
3280
3281         /* Set all vfta */
3282         igbvf_set_vfta_all(dev,1);
3283
3284         eth_igbvf_tx_init(dev);
3285
3286         /* This can fail when allocating mbufs for descriptor rings */
3287         ret = eth_igbvf_rx_init(dev);
3288         if (ret) {
3289                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3290                 igb_dev_clear_queues(dev);
3291                 return ret;
3292         }
3293
3294         /* check and configure queue intr-vector mapping */
3295         if (rte_intr_cap_multiple(intr_handle) &&
3296             dev->data->dev_conf.intr_conf.rxq) {
3297                 intr_vector = dev->data->nb_rx_queues;
3298                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3299                 if (ret)
3300                         return ret;
3301         }
3302
3303         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3304                 intr_handle->intr_vec =
3305                         rte_zmalloc("intr_vec",
3306                                     dev->data->nb_rx_queues * sizeof(int), 0);
3307                 if (!intr_handle->intr_vec) {
3308                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3309                                      " intr_vec", dev->data->nb_rx_queues);
3310                         return -ENOMEM;
3311                 }
3312         }
3313
3314         eth_igbvf_configure_msix_intr(dev);
3315
3316         /* enable uio/vfio intr/eventfd mapping */
3317         rte_intr_enable(intr_handle);
3318
3319         /* resume enabled intr since hw reset */
3320         igbvf_intr_enable(dev);
3321
3322         return 0;
3323 }
3324
3325 static void
3326 igbvf_dev_stop(struct rte_eth_dev *dev)
3327 {
3328         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3329         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3330
3331         PMD_INIT_FUNC_TRACE();
3332
3333         igbvf_stop_adapter(dev);
3334
3335         /*
3336           * Clear what we set, but we still keep shadow_vfta to
3337           * restore after device starts
3338           */
3339         igbvf_set_vfta_all(dev,0);
3340
3341         igb_dev_clear_queues(dev);
3342
3343         /* disable intr eventfd mapping */
3344         rte_intr_disable(intr_handle);
3345
3346         /* Clean datapath event and queue/vec mapping */
3347         rte_intr_efd_disable(intr_handle);
3348         if (intr_handle->intr_vec) {
3349                 rte_free(intr_handle->intr_vec);
3350                 intr_handle->intr_vec = NULL;
3351         }
3352 }
3353
3354 static void
3355 igbvf_dev_close(struct rte_eth_dev *dev)
3356 {
3357         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3358         struct e1000_adapter *adapter =
3359                 E1000_DEV_PRIVATE(dev->data->dev_private);
3360         struct ether_addr addr;
3361
3362         PMD_INIT_FUNC_TRACE();
3363
3364         e1000_reset_hw(hw);
3365
3366         igbvf_dev_stop(dev);
3367         adapter->stopped = 1;
3368         igb_dev_free_queues(dev);
3369
3370         /**
3371          * reprogram the RAR with a zero mac address,
3372          * to ensure that the VF traffic goes to the PF
3373          * after stop, close and detach of the VF.
3374          **/
3375
3376         memset(&addr, 0, sizeof(addr));
3377         igbvf_default_mac_addr_set(dev, &addr);
3378 }
3379
3380 static void
3381 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3382 {
3383         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3384
3385         /* Set both unicast and multicast promisc */
3386         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3387 }
3388
3389 static void
3390 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3391 {
3392         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3393
3394         /* If in allmulticast mode leave multicast promisc */
3395         if (dev->data->all_multicast == 1)
3396                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3397         else
3398                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3399 }
3400
3401 static void
3402 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3403 {
3404         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3405
3406         /* In promiscuous mode multicast promisc already set */
3407         if (dev->data->promiscuous == 0)
3408                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3409 }
3410
3411 static void
3412 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3413 {
3414         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3415
3416         /* In promiscuous mode leave multicast promisc enabled */
3417         if (dev->data->promiscuous == 0)
3418                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3419 }
3420
3421 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3422 {
3423         struct e1000_mbx_info *mbx = &hw->mbx;
3424         uint32_t msgbuf[2];
3425         s32 err;
3426
3427         /* After set vlan, vlan strip will also be enabled in igb driver*/
3428         msgbuf[0] = E1000_VF_SET_VLAN;
3429         msgbuf[1] = vid;
3430         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3431         if (on)
3432                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3433
3434         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3435         if (err)
3436                 goto mbx_err;
3437
3438         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3439         if (err)
3440                 goto mbx_err;
3441
3442         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3443         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3444                 err = -EINVAL;
3445
3446 mbx_err:
3447         return err;
3448 }
3449
3450 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3451 {
3452         struct e1000_hw *hw =
3453                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3454         struct e1000_vfta * shadow_vfta =
3455                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3456         int i = 0, j = 0, vfta = 0, mask = 1;
3457
3458         for (i = 0; i < IGB_VFTA_SIZE; i++){
3459                 vfta = shadow_vfta->vfta[i];
3460                 if(vfta){
3461                         mask = 1;
3462                         for (j = 0; j < 32; j++){
3463                                 if(vfta & mask)
3464                                         igbvf_set_vfta(hw,
3465                                                 (uint16_t)((i<<5)+j), on);
3466                                 mask<<=1;
3467                         }
3468                 }
3469         }
3470
3471 }
3472
3473 static int
3474 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3475 {
3476         struct e1000_hw *hw =
3477                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3478         struct e1000_vfta * shadow_vfta =
3479                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3480         uint32_t vid_idx = 0;
3481         uint32_t vid_bit = 0;
3482         int ret = 0;
3483
3484         PMD_INIT_FUNC_TRACE();
3485
3486         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3487         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3488         if(ret){
3489                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3490                 return ret;
3491         }
3492         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3493         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3494
3495         /*Save what we set and retore it after device reset*/
3496         if (on)
3497                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3498         else
3499                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3500
3501         return 0;
3502 }
3503
3504 static int
3505 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3506 {
3507         struct e1000_hw *hw =
3508                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3509
3510         /* index is not used by rar_set() */
3511         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3512         return 0;
3513 }
3514
3515
3516 static int
3517 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3518                         struct rte_eth_rss_reta_entry64 *reta_conf,
3519                         uint16_t reta_size)
3520 {
3521         uint8_t i, j, mask;
3522         uint32_t reta, r;
3523         uint16_t idx, shift;
3524         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3525
3526         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3527                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3528                         "(%d) doesn't match the number hardware can supported "
3529                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3530                 return -EINVAL;
3531         }
3532
3533         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3534                 idx = i / RTE_RETA_GROUP_SIZE;
3535                 shift = i % RTE_RETA_GROUP_SIZE;
3536                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3537                                                 IGB_4_BIT_MASK);
3538                 if (!mask)
3539                         continue;
3540                 if (mask == IGB_4_BIT_MASK)
3541                         r = 0;
3542                 else
3543                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3544                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3545                         if (mask & (0x1 << j))
3546                                 reta |= reta_conf[idx].reta[shift + j] <<
3547                                                         (CHAR_BIT * j);
3548                         else
3549                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3550                 }
3551                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3552         }
3553
3554         return 0;
3555 }
3556
3557 static int
3558 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3559                        struct rte_eth_rss_reta_entry64 *reta_conf,
3560                        uint16_t reta_size)
3561 {
3562         uint8_t i, j, mask;
3563         uint32_t reta;
3564         uint16_t idx, shift;
3565         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3566
3567         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3568                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3569                         "(%d) doesn't match the number hardware can supported "
3570                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3571                 return -EINVAL;
3572         }
3573
3574         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3575                 idx = i / RTE_RETA_GROUP_SIZE;
3576                 shift = i % RTE_RETA_GROUP_SIZE;
3577                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3578                                                 IGB_4_BIT_MASK);
3579                 if (!mask)
3580                         continue;
3581                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3582                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3583                         if (mask & (0x1 << j))
3584                                 reta_conf[idx].reta[shift + j] =
3585                                         ((reta >> (CHAR_BIT * j)) &
3586                                                 IGB_8_BIT_MASK);
3587                 }
3588         }
3589
3590         return 0;
3591 }
3592
3593 int
3594 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3595                         struct rte_eth_syn_filter *filter,
3596                         bool add)
3597 {
3598         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3599         struct e1000_filter_info *filter_info =
3600                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3601         uint32_t synqf, rfctl;
3602
3603         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3604                 return -EINVAL;
3605
3606         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3607
3608         if (add) {
3609                 if (synqf & E1000_SYN_FILTER_ENABLE)
3610                         return -EINVAL;
3611
3612                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3613                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3614
3615                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3616                 if (filter->hig_pri)
3617                         rfctl |= E1000_RFCTL_SYNQFP;
3618                 else
3619                         rfctl &= ~E1000_RFCTL_SYNQFP;
3620
3621                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3622         } else {
3623                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3624                         return -ENOENT;
3625                 synqf = 0;
3626         }
3627
3628         filter_info->syn_info = synqf;
3629         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3630         E1000_WRITE_FLUSH(hw);
3631         return 0;
3632 }
3633
3634 static int
3635 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3636                         struct rte_eth_syn_filter *filter)
3637 {
3638         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3639         uint32_t synqf, rfctl;
3640
3641         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3642         if (synqf & E1000_SYN_FILTER_ENABLE) {
3643                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3644                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3645                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3646                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3647                 return 0;
3648         }
3649
3650         return -ENOENT;
3651 }
3652
3653 static int
3654 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3655                         enum rte_filter_op filter_op,
3656                         void *arg)
3657 {
3658         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3659         int ret;
3660
3661         MAC_TYPE_FILTER_SUP(hw->mac.type);
3662
3663         if (filter_op == RTE_ETH_FILTER_NOP)
3664                 return 0;
3665
3666         if (arg == NULL) {
3667                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3668                             filter_op);
3669                 return -EINVAL;
3670         }
3671
3672         switch (filter_op) {
3673         case RTE_ETH_FILTER_ADD:
3674                 ret = eth_igb_syn_filter_set(dev,
3675                                 (struct rte_eth_syn_filter *)arg,
3676                                 TRUE);
3677                 break;
3678         case RTE_ETH_FILTER_DELETE:
3679                 ret = eth_igb_syn_filter_set(dev,
3680                                 (struct rte_eth_syn_filter *)arg,
3681                                 FALSE);
3682                 break;
3683         case RTE_ETH_FILTER_GET:
3684                 ret = eth_igb_syn_filter_get(dev,
3685                                 (struct rte_eth_syn_filter *)arg);
3686                 break;
3687         default:
3688                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3689                 ret = -EINVAL;
3690                 break;
3691         }
3692
3693         return ret;
3694 }
3695
3696 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3697 static inline int
3698 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3699                         struct e1000_2tuple_filter_info *filter_info)
3700 {
3701         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3702                 return -EINVAL;
3703         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3704                 return -EINVAL;  /* filter index is out of range. */
3705         if (filter->tcp_flags > TCP_FLAG_ALL)
3706                 return -EINVAL;  /* flags is invalid. */
3707
3708         switch (filter->dst_port_mask) {
3709         case UINT16_MAX:
3710                 filter_info->dst_port_mask = 0;
3711                 filter_info->dst_port = filter->dst_port;
3712                 break;
3713         case 0:
3714                 filter_info->dst_port_mask = 1;
3715                 break;
3716         default:
3717                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3718                 return -EINVAL;
3719         }
3720
3721         switch (filter->proto_mask) {
3722         case UINT8_MAX:
3723                 filter_info->proto_mask = 0;
3724                 filter_info->proto = filter->proto;
3725                 break;
3726         case 0:
3727                 filter_info->proto_mask = 1;
3728                 break;
3729         default:
3730                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3731                 return -EINVAL;
3732         }
3733
3734         filter_info->priority = (uint8_t)filter->priority;
3735         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3736                 filter_info->tcp_flags = filter->tcp_flags;
3737         else
3738                 filter_info->tcp_flags = 0;
3739
3740         return 0;
3741 }
3742
3743 static inline struct e1000_2tuple_filter *
3744 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3745                         struct e1000_2tuple_filter_info *key)
3746 {
3747         struct e1000_2tuple_filter *it;
3748
3749         TAILQ_FOREACH(it, filter_list, entries) {
3750                 if (memcmp(key, &it->filter_info,
3751                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3752                         return it;
3753                 }
3754         }
3755         return NULL;
3756 }
3757
3758 /* inject a igb 2tuple filter to HW */
3759 static inline void
3760 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3761                            struct e1000_2tuple_filter *filter)
3762 {
3763         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3764         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3765         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3766         int i;
3767
3768         i = filter->index;
3769         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3770         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3771                 imir |= E1000_IMIR_PORT_BP;
3772         else
3773                 imir &= ~E1000_IMIR_PORT_BP;
3774
3775         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3776
3777         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3778         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3779         ttqf |= (uint32_t)(filter->filter_info.proto &
3780                                                 E1000_TTQF_PROTOCOL_MASK);
3781         if (filter->filter_info.proto_mask == 0)
3782                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3783
3784         /* tcp flags bits setting. */
3785         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3786                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3787                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3788                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3789                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3790                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3791                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3792                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3793                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3794                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3795                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3796                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3797                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3798         } else {
3799                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3800         }
3801         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3802         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3803         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3804 }
3805
3806 /*
3807  * igb_add_2tuple_filter - add a 2tuple filter
3808  *
3809  * @param
3810  * dev: Pointer to struct rte_eth_dev.
3811  * ntuple_filter: ponter to the filter that will be added.
3812  *
3813  * @return
3814  *    - On success, zero.
3815  *    - On failure, a negative value.
3816  */
3817 static int
3818 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3819                         struct rte_eth_ntuple_filter *ntuple_filter)
3820 {
3821         struct e1000_filter_info *filter_info =
3822                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3823         struct e1000_2tuple_filter *filter;
3824         int i, ret;
3825
3826         filter = rte_zmalloc("e1000_2tuple_filter",
3827                         sizeof(struct e1000_2tuple_filter), 0);
3828         if (filter == NULL)
3829                 return -ENOMEM;
3830
3831         ret = ntuple_filter_to_2tuple(ntuple_filter,
3832                                       &filter->filter_info);
3833         if (ret < 0) {
3834                 rte_free(filter);
3835                 return ret;
3836         }
3837         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3838                                          &filter->filter_info) != NULL) {
3839                 PMD_DRV_LOG(ERR, "filter exists.");
3840                 rte_free(filter);
3841                 return -EEXIST;
3842         }
3843         filter->queue = ntuple_filter->queue;
3844
3845         /*
3846          * look for an unused 2tuple filter index,
3847          * and insert the filter to list.
3848          */
3849         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3850                 if (!(filter_info->twotuple_mask & (1 << i))) {
3851                         filter_info->twotuple_mask |= 1 << i;
3852                         filter->index = i;
3853                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3854                                           filter,
3855                                           entries);
3856                         break;
3857                 }
3858         }
3859         if (i >= E1000_MAX_TTQF_FILTERS) {
3860                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3861                 rte_free(filter);
3862                 return -ENOSYS;
3863         }
3864
3865         igb_inject_2uple_filter(dev, filter);
3866         return 0;
3867 }
3868
3869 int
3870 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3871                         struct e1000_2tuple_filter *filter)
3872 {
3873         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3874         struct e1000_filter_info *filter_info =
3875                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3876
3877         filter_info->twotuple_mask &= ~(1 << filter->index);
3878         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3879         rte_free(filter);
3880
3881         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3882         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3883         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3884         return 0;
3885 }
3886
3887 /*
3888  * igb_remove_2tuple_filter - remove a 2tuple filter
3889  *
3890  * @param
3891  * dev: Pointer to struct rte_eth_dev.
3892  * ntuple_filter: ponter to the filter that will be removed.
3893  *
3894  * @return
3895  *    - On success, zero.
3896  *    - On failure, a negative value.
3897  */
3898 static int
3899 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3900                         struct rte_eth_ntuple_filter *ntuple_filter)
3901 {
3902         struct e1000_filter_info *filter_info =
3903                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3904         struct e1000_2tuple_filter_info filter_2tuple;
3905         struct e1000_2tuple_filter *filter;
3906         int ret;
3907
3908         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3909         ret = ntuple_filter_to_2tuple(ntuple_filter,
3910                                       &filter_2tuple);
3911         if (ret < 0)
3912                 return ret;
3913
3914         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3915                                          &filter_2tuple);
3916         if (filter == NULL) {
3917                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3918                 return -ENOENT;
3919         }
3920
3921         igb_delete_2tuple_filter(dev, filter);
3922
3923         return 0;
3924 }
3925
3926 /* inject a igb flex filter to HW */
3927 static inline void
3928 igb_inject_flex_filter(struct rte_eth_dev *dev,
3929                            struct e1000_flex_filter *filter)
3930 {
3931         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3932         uint32_t wufc, queueing;
3933         uint32_t reg_off;
3934         uint8_t i, j = 0;
3935
3936         wufc = E1000_READ_REG(hw, E1000_WUFC);
3937         if (filter->index < E1000_MAX_FHFT)
3938                 reg_off = E1000_FHFT(filter->index);
3939         else
3940                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3941
3942         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3943                         (E1000_WUFC_FLX0 << filter->index));
3944         queueing = filter->filter_info.len |
3945                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3946                 (filter->filter_info.priority <<
3947                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3948         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3949                         queueing);
3950
3951         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3952                 E1000_WRITE_REG(hw, reg_off,
3953                                 filter->filter_info.dwords[j]);
3954                 reg_off += sizeof(uint32_t);
3955                 E1000_WRITE_REG(hw, reg_off,
3956                                 filter->filter_info.dwords[++j]);
3957                 reg_off += sizeof(uint32_t);
3958                 E1000_WRITE_REG(hw, reg_off,
3959                         (uint32_t)filter->filter_info.mask[i]);
3960                 reg_off += sizeof(uint32_t) * 2;
3961                 ++j;
3962         }
3963 }
3964
3965 static inline struct e1000_flex_filter *
3966 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3967                         struct e1000_flex_filter_info *key)
3968 {
3969         struct e1000_flex_filter *it;
3970
3971         TAILQ_FOREACH(it, filter_list, entries) {
3972                 if (memcmp(key, &it->filter_info,
3973                         sizeof(struct e1000_flex_filter_info)) == 0)
3974                         return it;
3975         }
3976
3977         return NULL;
3978 }
3979
3980 /* remove a flex byte filter
3981  * @param
3982  * dev: Pointer to struct rte_eth_dev.
3983  * filter: the pointer of the filter will be removed.
3984  */
3985 void
3986 igb_remove_flex_filter(struct rte_eth_dev *dev,
3987                         struct e1000_flex_filter *filter)
3988 {
3989         struct e1000_filter_info *filter_info =
3990                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3991         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3992         uint32_t wufc, i;
3993         uint32_t reg_off;
3994
3995         wufc = E1000_READ_REG(hw, E1000_WUFC);
3996         if (filter->index < E1000_MAX_FHFT)
3997                 reg_off = E1000_FHFT(filter->index);
3998         else
3999                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4000
4001         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4002                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4003
4004         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4005                 (~(E1000_WUFC_FLX0 << filter->index)));
4006
4007         filter_info->flex_mask &= ~(1 << filter->index);
4008         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4009         rte_free(filter);
4010 }
4011
4012 int
4013 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4014                         struct rte_eth_flex_filter *filter,
4015                         bool add)
4016 {
4017         struct e1000_filter_info *filter_info =
4018                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4019         struct e1000_flex_filter *flex_filter, *it;
4020         uint32_t mask;
4021         uint8_t shift, i;
4022
4023         flex_filter = rte_zmalloc("e1000_flex_filter",
4024                         sizeof(struct e1000_flex_filter), 0);
4025         if (flex_filter == NULL)
4026                 return -ENOMEM;
4027
4028         flex_filter->filter_info.len = filter->len;
4029         flex_filter->filter_info.priority = filter->priority;
4030         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4031         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4032                 mask = 0;
4033                 /* reverse bits in flex filter's mask*/
4034                 for (shift = 0; shift < CHAR_BIT; shift++) {
4035                         if (filter->mask[i] & (0x01 << shift))
4036                                 mask |= (0x80 >> shift);
4037                 }
4038                 flex_filter->filter_info.mask[i] = mask;
4039         }
4040
4041         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4042                                 &flex_filter->filter_info);
4043         if (it == NULL && !add) {
4044                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4045                 rte_free(flex_filter);
4046                 return -ENOENT;
4047         }
4048         if (it != NULL && add) {
4049                 PMD_DRV_LOG(ERR, "filter exists.");
4050                 rte_free(flex_filter);
4051                 return -EEXIST;
4052         }
4053
4054         if (add) {
4055                 flex_filter->queue = filter->queue;
4056                 /*
4057                  * look for an unused flex filter index
4058                  * and insert the filter into the list.
4059                  */
4060                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4061                         if (!(filter_info->flex_mask & (1 << i))) {
4062                                 filter_info->flex_mask |= 1 << i;
4063                                 flex_filter->index = i;
4064                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4065                                         flex_filter,
4066                                         entries);
4067                                 break;
4068                         }
4069                 }
4070                 if (i >= E1000_MAX_FLEX_FILTERS) {
4071                         PMD_DRV_LOG(ERR, "flex filters are full.");
4072                         rte_free(flex_filter);
4073                         return -ENOSYS;
4074                 }
4075
4076                 igb_inject_flex_filter(dev, flex_filter);
4077
4078         } else {
4079                 igb_remove_flex_filter(dev, it);
4080                 rte_free(flex_filter);
4081         }
4082
4083         return 0;
4084 }
4085
4086 static int
4087 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4088                         struct rte_eth_flex_filter *filter)
4089 {
4090         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4091         struct e1000_filter_info *filter_info =
4092                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4093         struct e1000_flex_filter flex_filter, *it;
4094         uint32_t wufc, queueing, wufc_en = 0;
4095
4096         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4097         flex_filter.filter_info.len = filter->len;
4098         flex_filter.filter_info.priority = filter->priority;
4099         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4100         memcpy(flex_filter.filter_info.mask, filter->mask,
4101                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4102
4103         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4104                                 &flex_filter.filter_info);
4105         if (it == NULL) {
4106                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4107                 return -ENOENT;
4108         }
4109
4110         wufc = E1000_READ_REG(hw, E1000_WUFC);
4111         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4112
4113         if ((wufc & wufc_en) == wufc_en) {
4114                 uint32_t reg_off = 0;
4115                 if (it->index < E1000_MAX_FHFT)
4116                         reg_off = E1000_FHFT(it->index);
4117                 else
4118                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4119
4120                 queueing = E1000_READ_REG(hw,
4121                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4122                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4123                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4124                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4125                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4126                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4127                 return 0;
4128         }
4129         return -ENOENT;
4130 }
4131
4132 static int
4133 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4134                         enum rte_filter_op filter_op,
4135                         void *arg)
4136 {
4137         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4138         struct rte_eth_flex_filter *filter;
4139         int ret = 0;
4140
4141         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4142
4143         if (filter_op == RTE_ETH_FILTER_NOP)
4144                 return ret;
4145
4146         if (arg == NULL) {
4147                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4148                             filter_op);
4149                 return -EINVAL;
4150         }
4151
4152         filter = (struct rte_eth_flex_filter *)arg;
4153         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4154             || filter->len % sizeof(uint64_t) != 0) {
4155                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4156                 return -EINVAL;
4157         }
4158         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4159                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4160                 return -EINVAL;
4161         }
4162
4163         switch (filter_op) {
4164         case RTE_ETH_FILTER_ADD:
4165                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4166                 break;
4167         case RTE_ETH_FILTER_DELETE:
4168                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4169                 break;
4170         case RTE_ETH_FILTER_GET:
4171                 ret = eth_igb_get_flex_filter(dev, filter);
4172                 break;
4173         default:
4174                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4175                 ret = -EINVAL;
4176                 break;
4177         }
4178
4179         return ret;
4180 }
4181
4182 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4183 static inline int
4184 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4185                         struct e1000_5tuple_filter_info *filter_info)
4186 {
4187         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4188                 return -EINVAL;
4189         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4190                 return -EINVAL;  /* filter index is out of range. */
4191         if (filter->tcp_flags > TCP_FLAG_ALL)
4192                 return -EINVAL;  /* flags is invalid. */
4193
4194         switch (filter->dst_ip_mask) {
4195         case UINT32_MAX:
4196                 filter_info->dst_ip_mask = 0;
4197                 filter_info->dst_ip = filter->dst_ip;
4198                 break;
4199         case 0:
4200                 filter_info->dst_ip_mask = 1;
4201                 break;
4202         default:
4203                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4204                 return -EINVAL;
4205         }
4206
4207         switch (filter->src_ip_mask) {
4208         case UINT32_MAX:
4209                 filter_info->src_ip_mask = 0;
4210                 filter_info->src_ip = filter->src_ip;
4211                 break;
4212         case 0:
4213                 filter_info->src_ip_mask = 1;
4214                 break;
4215         default:
4216                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4217                 return -EINVAL;
4218         }
4219
4220         switch (filter->dst_port_mask) {
4221         case UINT16_MAX:
4222                 filter_info->dst_port_mask = 0;
4223                 filter_info->dst_port = filter->dst_port;
4224                 break;
4225         case 0:
4226                 filter_info->dst_port_mask = 1;
4227                 break;
4228         default:
4229                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4230                 return -EINVAL;
4231         }
4232
4233         switch (filter->src_port_mask) {
4234         case UINT16_MAX:
4235                 filter_info->src_port_mask = 0;
4236                 filter_info->src_port = filter->src_port;
4237                 break;
4238         case 0:
4239                 filter_info->src_port_mask = 1;
4240                 break;
4241         default:
4242                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4243                 return -EINVAL;
4244         }
4245
4246         switch (filter->proto_mask) {
4247         case UINT8_MAX:
4248                 filter_info->proto_mask = 0;
4249                 filter_info->proto = filter->proto;
4250                 break;
4251         case 0:
4252                 filter_info->proto_mask = 1;
4253                 break;
4254         default:
4255                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4256                 return -EINVAL;
4257         }
4258
4259         filter_info->priority = (uint8_t)filter->priority;
4260         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4261                 filter_info->tcp_flags = filter->tcp_flags;
4262         else
4263                 filter_info->tcp_flags = 0;
4264
4265         return 0;
4266 }
4267
4268 static inline struct e1000_5tuple_filter *
4269 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4270                         struct e1000_5tuple_filter_info *key)
4271 {
4272         struct e1000_5tuple_filter *it;
4273
4274         TAILQ_FOREACH(it, filter_list, entries) {
4275                 if (memcmp(key, &it->filter_info,
4276                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4277                         return it;
4278                 }
4279         }
4280         return NULL;
4281 }
4282
4283 /* inject a igb 5-tuple filter to HW */
4284 static inline void
4285 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4286                            struct e1000_5tuple_filter *filter)
4287 {
4288         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4289         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4290         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4291         uint8_t i;
4292
4293         i = filter->index;
4294         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4295         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4296                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4297         if (filter->filter_info.dst_ip_mask == 0)
4298                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4299         if (filter->filter_info.src_port_mask == 0)
4300                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4301         if (filter->filter_info.proto_mask == 0)
4302                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4303         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4304                 E1000_FTQF_QUEUE_MASK;
4305         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4306         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4307         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4308         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4309
4310         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4311         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4312
4313         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4314         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4315                 imir |= E1000_IMIR_PORT_BP;
4316         else
4317                 imir &= ~E1000_IMIR_PORT_BP;
4318         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4319
4320         /* tcp flags bits setting. */
4321         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4322                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4323                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4324                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4325                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4326                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4327                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4328                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4329                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4330                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4331                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4332                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4333                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4334         } else {
4335                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4336         }
4337         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4338         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4339 }
4340
4341 /*
4342  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4343  *
4344  * @param
4345  * dev: Pointer to struct rte_eth_dev.
4346  * ntuple_filter: ponter to the filter that will be added.
4347  *
4348  * @return
4349  *    - On success, zero.
4350  *    - On failure, a negative value.
4351  */
4352 static int
4353 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4354                         struct rte_eth_ntuple_filter *ntuple_filter)
4355 {
4356         struct e1000_filter_info *filter_info =
4357                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4358         struct e1000_5tuple_filter *filter;
4359         uint8_t i;
4360         int ret;
4361
4362         filter = rte_zmalloc("e1000_5tuple_filter",
4363                         sizeof(struct e1000_5tuple_filter), 0);
4364         if (filter == NULL)
4365                 return -ENOMEM;
4366
4367         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4368                                             &filter->filter_info);
4369         if (ret < 0) {
4370                 rte_free(filter);
4371                 return ret;
4372         }
4373
4374         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4375                                          &filter->filter_info) != NULL) {
4376                 PMD_DRV_LOG(ERR, "filter exists.");
4377                 rte_free(filter);
4378                 return -EEXIST;
4379         }
4380         filter->queue = ntuple_filter->queue;
4381
4382         /*
4383          * look for an unused 5tuple filter index,
4384          * and insert the filter to list.
4385          */
4386         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4387                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4388                         filter_info->fivetuple_mask |= 1 << i;
4389                         filter->index = i;
4390                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4391                                           filter,
4392                                           entries);
4393                         break;
4394                 }
4395         }
4396         if (i >= E1000_MAX_FTQF_FILTERS) {
4397                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4398                 rte_free(filter);
4399                 return -ENOSYS;
4400         }
4401
4402         igb_inject_5tuple_filter_82576(dev, filter);
4403         return 0;
4404 }
4405
4406 int
4407 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4408                                 struct e1000_5tuple_filter *filter)
4409 {
4410         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4411         struct e1000_filter_info *filter_info =
4412                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4413
4414         filter_info->fivetuple_mask &= ~(1 << filter->index);
4415         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4416         rte_free(filter);
4417
4418         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4419                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4420         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4421         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4422         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4423         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4424         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4425         return 0;
4426 }
4427
4428 /*
4429  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4430  *
4431  * @param
4432  * dev: Pointer to struct rte_eth_dev.
4433  * ntuple_filter: ponter to the filter that will be removed.
4434  *
4435  * @return
4436  *    - On success, zero.
4437  *    - On failure, a negative value.
4438  */
4439 static int
4440 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4441                                 struct rte_eth_ntuple_filter *ntuple_filter)
4442 {
4443         struct e1000_filter_info *filter_info =
4444                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4445         struct e1000_5tuple_filter_info filter_5tuple;
4446         struct e1000_5tuple_filter *filter;
4447         int ret;
4448
4449         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4450         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4451                                             &filter_5tuple);
4452         if (ret < 0)
4453                 return ret;
4454
4455         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4456                                          &filter_5tuple);
4457         if (filter == NULL) {
4458                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4459                 return -ENOENT;
4460         }
4461
4462         igb_delete_5tuple_filter_82576(dev, filter);
4463
4464         return 0;
4465 }
4466
4467 static int
4468 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4469 {
4470         uint32_t rctl;
4471         struct e1000_hw *hw;
4472         struct rte_eth_dev_info dev_info;
4473         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4474
4475         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4476
4477 #ifdef RTE_LIBRTE_82571_SUPPORT
4478         /* XXX: not bigger than max_rx_pktlen */
4479         if (hw->mac.type == e1000_82571)
4480                 return -ENOTSUP;
4481 #endif
4482         eth_igb_infos_get(dev, &dev_info);
4483
4484         /* check that mtu is within the allowed range */
4485         if ((mtu < ETHER_MIN_MTU) ||
4486             (frame_size > dev_info.max_rx_pktlen))
4487                 return -EINVAL;
4488
4489         /* refuse mtu that requires the support of scattered packets when this
4490          * feature has not been enabled before. */
4491         if (!dev->data->scattered_rx &&
4492             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4493                 return -EINVAL;
4494
4495         rctl = E1000_READ_REG(hw, E1000_RCTL);
4496
4497         /* switch to jumbo mode if needed */
4498         if (frame_size > ETHER_MAX_LEN) {
4499                 dev->data->dev_conf.rxmode.offloads |=
4500                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4501                 rctl |= E1000_RCTL_LPE;
4502         } else {
4503                 dev->data->dev_conf.rxmode.offloads &=
4504                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4505                 rctl &= ~E1000_RCTL_LPE;
4506         }
4507         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4508
4509         /* update max frame size */
4510         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4511
4512         E1000_WRITE_REG(hw, E1000_RLPML,
4513                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4514
4515         return 0;
4516 }
4517
4518 /*
4519  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4520  *
4521  * @param
4522  * dev: Pointer to struct rte_eth_dev.
4523  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4524  * add: if true, add filter, if false, remove filter
4525  *
4526  * @return
4527  *    - On success, zero.
4528  *    - On failure, a negative value.
4529  */
4530 int
4531 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4532                         struct rte_eth_ntuple_filter *ntuple_filter,
4533                         bool add)
4534 {
4535         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4536         int ret;
4537
4538         switch (ntuple_filter->flags) {
4539         case RTE_5TUPLE_FLAGS:
4540         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4541                 if (hw->mac.type != e1000_82576)
4542                         return -ENOTSUP;
4543                 if (add)
4544                         ret = igb_add_5tuple_filter_82576(dev,
4545                                                           ntuple_filter);
4546                 else
4547                         ret = igb_remove_5tuple_filter_82576(dev,
4548                                                              ntuple_filter);
4549                 break;
4550         case RTE_2TUPLE_FLAGS:
4551         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4552                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4553                         hw->mac.type != e1000_i210 &&
4554                         hw->mac.type != e1000_i211)
4555                         return -ENOTSUP;
4556                 if (add)
4557                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4558                 else
4559                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4560                 break;
4561         default:
4562                 ret = -EINVAL;
4563                 break;
4564         }
4565
4566         return ret;
4567 }
4568
4569 /*
4570  * igb_get_ntuple_filter - get a ntuple filter
4571  *
4572  * @param
4573  * dev: Pointer to struct rte_eth_dev.
4574  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4575  *
4576  * @return
4577  *    - On success, zero.
4578  *    - On failure, a negative value.
4579  */
4580 static int
4581 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4582                         struct rte_eth_ntuple_filter *ntuple_filter)
4583 {
4584         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4585         struct e1000_filter_info *filter_info =
4586                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4587         struct e1000_5tuple_filter_info filter_5tuple;
4588         struct e1000_2tuple_filter_info filter_2tuple;
4589         struct e1000_5tuple_filter *p_5tuple_filter;
4590         struct e1000_2tuple_filter *p_2tuple_filter;
4591         int ret;
4592
4593         switch (ntuple_filter->flags) {
4594         case RTE_5TUPLE_FLAGS:
4595         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4596                 if (hw->mac.type != e1000_82576)
4597                         return -ENOTSUP;
4598                 memset(&filter_5tuple,
4599                         0,
4600                         sizeof(struct e1000_5tuple_filter_info));
4601                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4602                                                     &filter_5tuple);
4603                 if (ret < 0)
4604                         return ret;
4605                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4606                                         &filter_info->fivetuple_list,
4607                                         &filter_5tuple);
4608                 if (p_5tuple_filter == NULL) {
4609                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4610                         return -ENOENT;
4611                 }
4612                 ntuple_filter->queue = p_5tuple_filter->queue;
4613                 break;
4614         case RTE_2TUPLE_FLAGS:
4615         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4616                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4617                         return -ENOTSUP;
4618                 memset(&filter_2tuple,
4619                         0,
4620                         sizeof(struct e1000_2tuple_filter_info));
4621                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4622                 if (ret < 0)
4623                         return ret;
4624                 p_2tuple_filter = igb_2tuple_filter_lookup(
4625                                         &filter_info->twotuple_list,
4626                                         &filter_2tuple);
4627                 if (p_2tuple_filter == NULL) {
4628                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4629                         return -ENOENT;
4630                 }
4631                 ntuple_filter->queue = p_2tuple_filter->queue;
4632                 break;
4633         default:
4634                 ret = -EINVAL;
4635                 break;
4636         }
4637
4638         return 0;
4639 }
4640
4641 /*
4642  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4643  * @dev: pointer to rte_eth_dev structure
4644  * @filter_op:operation will be taken.
4645  * @arg: a pointer to specific structure corresponding to the filter_op
4646  */
4647 static int
4648 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4649                                 enum rte_filter_op filter_op,
4650                                 void *arg)
4651 {
4652         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4653         int ret;
4654
4655         MAC_TYPE_FILTER_SUP(hw->mac.type);
4656
4657         if (filter_op == RTE_ETH_FILTER_NOP)
4658                 return 0;
4659
4660         if (arg == NULL) {
4661                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4662                             filter_op);
4663                 return -EINVAL;
4664         }
4665
4666         switch (filter_op) {
4667         case RTE_ETH_FILTER_ADD:
4668                 ret = igb_add_del_ntuple_filter(dev,
4669                         (struct rte_eth_ntuple_filter *)arg,
4670                         TRUE);
4671                 break;
4672         case RTE_ETH_FILTER_DELETE:
4673                 ret = igb_add_del_ntuple_filter(dev,
4674                         (struct rte_eth_ntuple_filter *)arg,
4675                         FALSE);
4676                 break;
4677         case RTE_ETH_FILTER_GET:
4678                 ret = igb_get_ntuple_filter(dev,
4679                         (struct rte_eth_ntuple_filter *)arg);
4680                 break;
4681         default:
4682                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4683                 ret = -EINVAL;
4684                 break;
4685         }
4686         return ret;
4687 }
4688
4689 static inline int
4690 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4691                         uint16_t ethertype)
4692 {
4693         int i;
4694
4695         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4696                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4697                     (filter_info->ethertype_mask & (1 << i)))
4698                         return i;
4699         }
4700         return -1;
4701 }
4702
4703 static inline int
4704 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4705                         uint16_t ethertype, uint32_t etqf)
4706 {
4707         int i;
4708
4709         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4710                 if (!(filter_info->ethertype_mask & (1 << i))) {
4711                         filter_info->ethertype_mask |= 1 << i;
4712                         filter_info->ethertype_filters[i].ethertype = ethertype;
4713                         filter_info->ethertype_filters[i].etqf = etqf;
4714                         return i;
4715                 }
4716         }
4717         return -1;
4718 }
4719
4720 int
4721 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4722                         uint8_t idx)
4723 {
4724         if (idx >= E1000_MAX_ETQF_FILTERS)
4725                 return -1;
4726         filter_info->ethertype_mask &= ~(1 << idx);
4727         filter_info->ethertype_filters[idx].ethertype = 0;
4728         filter_info->ethertype_filters[idx].etqf = 0;
4729         return idx;
4730 }
4731
4732
4733 int
4734 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4735                         struct rte_eth_ethertype_filter *filter,
4736                         bool add)
4737 {
4738         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4739         struct e1000_filter_info *filter_info =
4740                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4741         uint32_t etqf = 0;
4742         int ret;
4743
4744         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4745                 filter->ether_type == ETHER_TYPE_IPv6) {
4746                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4747                         " ethertype filter.", filter->ether_type);
4748                 return -EINVAL;
4749         }
4750
4751         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4752                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4753                 return -EINVAL;
4754         }
4755         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4756                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4757                 return -EINVAL;
4758         }
4759
4760         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4761         if (ret >= 0 && add) {
4762                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4763                             filter->ether_type);
4764                 return -EEXIST;
4765         }
4766         if (ret < 0 && !add) {
4767                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4768                             filter->ether_type);
4769                 return -ENOENT;
4770         }
4771
4772         if (add) {
4773                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4774                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4775                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4776                 ret = igb_ethertype_filter_insert(filter_info,
4777                                 filter->ether_type, etqf);
4778                 if (ret < 0) {
4779                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4780                         return -ENOSYS;
4781                 }
4782         } else {
4783                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4784                 if (ret < 0)
4785                         return -ENOSYS;
4786         }
4787         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4788         E1000_WRITE_FLUSH(hw);
4789
4790         return 0;
4791 }
4792
4793 static int
4794 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4795                         struct rte_eth_ethertype_filter *filter)
4796 {
4797         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4798         struct e1000_filter_info *filter_info =
4799                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4800         uint32_t etqf;
4801         int ret;
4802
4803         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4804         if (ret < 0) {
4805                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4806                             filter->ether_type);
4807                 return -ENOENT;
4808         }
4809
4810         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4811         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4812                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4813                 filter->flags = 0;
4814                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4815                                 E1000_ETQF_QUEUE_SHIFT;
4816                 return 0;
4817         }
4818
4819         return -ENOENT;
4820 }
4821
4822 /*
4823  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4824  * @dev: pointer to rte_eth_dev structure
4825  * @filter_op:operation will be taken.
4826  * @arg: a pointer to specific structure corresponding to the filter_op
4827  */
4828 static int
4829 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4830                                 enum rte_filter_op filter_op,
4831                                 void *arg)
4832 {
4833         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4834         int ret;
4835
4836         MAC_TYPE_FILTER_SUP(hw->mac.type);
4837
4838         if (filter_op == RTE_ETH_FILTER_NOP)
4839                 return 0;
4840
4841         if (arg == NULL) {
4842                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4843                             filter_op);
4844                 return -EINVAL;
4845         }
4846
4847         switch (filter_op) {
4848         case RTE_ETH_FILTER_ADD:
4849                 ret = igb_add_del_ethertype_filter(dev,
4850                         (struct rte_eth_ethertype_filter *)arg,
4851                         TRUE);
4852                 break;
4853         case RTE_ETH_FILTER_DELETE:
4854                 ret = igb_add_del_ethertype_filter(dev,
4855                         (struct rte_eth_ethertype_filter *)arg,
4856                         FALSE);
4857                 break;
4858         case RTE_ETH_FILTER_GET:
4859                 ret = igb_get_ethertype_filter(dev,
4860                         (struct rte_eth_ethertype_filter *)arg);
4861                 break;
4862         default:
4863                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4864                 ret = -EINVAL;
4865                 break;
4866         }
4867         return ret;
4868 }
4869
4870 static int
4871 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4872                      enum rte_filter_type filter_type,
4873                      enum rte_filter_op filter_op,
4874                      void *arg)
4875 {
4876         int ret = 0;
4877
4878         switch (filter_type) {
4879         case RTE_ETH_FILTER_NTUPLE:
4880                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4881                 break;
4882         case RTE_ETH_FILTER_ETHERTYPE:
4883                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4884                 break;
4885         case RTE_ETH_FILTER_SYN:
4886                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4887                 break;
4888         case RTE_ETH_FILTER_FLEXIBLE:
4889                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4890                 break;
4891         case RTE_ETH_FILTER_GENERIC:
4892                 if (filter_op != RTE_ETH_FILTER_GET)
4893                         return -EINVAL;
4894                 *(const void **)arg = &igb_flow_ops;
4895                 break;
4896         default:
4897                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4898                                                         filter_type);
4899                 break;
4900         }
4901
4902         return ret;
4903 }
4904
4905 static int
4906 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4907                          struct ether_addr *mc_addr_set,
4908                          uint32_t nb_mc_addr)
4909 {
4910         struct e1000_hw *hw;
4911
4912         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4913         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4914         return 0;
4915 }
4916
4917 static uint64_t
4918 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4919 {
4920         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4921         uint64_t systime_cycles;
4922
4923         switch (hw->mac.type) {
4924         case e1000_i210:
4925         case e1000_i211:
4926                 /*
4927                  * Need to read System Time Residue Register to be able
4928                  * to read the other two registers.
4929                  */
4930                 E1000_READ_REG(hw, E1000_SYSTIMR);
4931                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4932                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4933                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4934                                 * NSEC_PER_SEC;
4935                 break;
4936         case e1000_82580:
4937         case e1000_i350:
4938         case e1000_i354:
4939                 /*
4940                  * Need to read System Time Residue Register to be able
4941                  * to read the other two registers.
4942                  */
4943                 E1000_READ_REG(hw, E1000_SYSTIMR);
4944                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4945                 /* Only the 8 LSB are valid. */
4946                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4947                                 & 0xff) << 32;
4948                 break;
4949         default:
4950                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4951                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4952                                 << 32;
4953                 break;
4954         }
4955
4956         return systime_cycles;
4957 }
4958
4959 static uint64_t
4960 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4961 {
4962         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4963         uint64_t rx_tstamp_cycles;
4964
4965         switch (hw->mac.type) {
4966         case e1000_i210:
4967         case e1000_i211:
4968                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4969                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4970                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4971                                 * NSEC_PER_SEC;
4972                 break;
4973         case e1000_82580:
4974         case e1000_i350:
4975         case e1000_i354:
4976                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4977                 /* Only the 8 LSB are valid. */
4978                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4979                                 & 0xff) << 32;
4980                 break;
4981         default:
4982                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4983                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4984                                 << 32;
4985                 break;
4986         }
4987
4988         return rx_tstamp_cycles;
4989 }
4990
4991 static uint64_t
4992 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4993 {
4994         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4995         uint64_t tx_tstamp_cycles;
4996
4997         switch (hw->mac.type) {
4998         case e1000_i210:
4999         case e1000_i211:
5000                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5001                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5002                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5003                                 * NSEC_PER_SEC;
5004                 break;
5005         case e1000_82580:
5006         case e1000_i350:
5007         case e1000_i354:
5008                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5009                 /* Only the 8 LSB are valid. */
5010                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5011                                 & 0xff) << 32;
5012                 break;
5013         default:
5014                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5015                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5016                                 << 32;
5017                 break;
5018         }
5019
5020         return tx_tstamp_cycles;
5021 }
5022
5023 static void
5024 igb_start_timecounters(struct rte_eth_dev *dev)
5025 {
5026         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5027         struct e1000_adapter *adapter =
5028                 (struct e1000_adapter *)dev->data->dev_private;
5029         uint32_t incval = 1;
5030         uint32_t shift = 0;
5031         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5032
5033         switch (hw->mac.type) {
5034         case e1000_82580:
5035         case e1000_i350:
5036         case e1000_i354:
5037                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5038                 mask = (1ULL << 40) - 1;
5039                 /* fall-through */
5040         case e1000_i210:
5041         case e1000_i211:
5042                 /*
5043                  * Start incrementing the register
5044                  * used to timestamp PTP packets.
5045                  */
5046                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5047                 break;
5048         case e1000_82576:
5049                 incval = E1000_INCVALUE_82576;
5050                 shift = IGB_82576_TSYNC_SHIFT;
5051                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5052                                 E1000_INCPERIOD_82576 | incval);
5053                 break;
5054         default:
5055                 /* Not supported */
5056                 return;
5057         }
5058
5059         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5060         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5061         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5062
5063         adapter->systime_tc.cc_mask = mask;
5064         adapter->systime_tc.cc_shift = shift;
5065         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5066
5067         adapter->rx_tstamp_tc.cc_mask = mask;
5068         adapter->rx_tstamp_tc.cc_shift = shift;
5069         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5070
5071         adapter->tx_tstamp_tc.cc_mask = mask;
5072         adapter->tx_tstamp_tc.cc_shift = shift;
5073         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5074 }
5075
5076 static int
5077 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5078 {
5079         struct e1000_adapter *adapter =
5080                         (struct e1000_adapter *)dev->data->dev_private;
5081
5082         adapter->systime_tc.nsec += delta;
5083         adapter->rx_tstamp_tc.nsec += delta;
5084         adapter->tx_tstamp_tc.nsec += delta;
5085
5086         return 0;
5087 }
5088
5089 static int
5090 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5091 {
5092         uint64_t ns;
5093         struct e1000_adapter *adapter =
5094                         (struct e1000_adapter *)dev->data->dev_private;
5095
5096         ns = rte_timespec_to_ns(ts);
5097
5098         /* Set the timecounters to a new value. */
5099         adapter->systime_tc.nsec = ns;
5100         adapter->rx_tstamp_tc.nsec = ns;
5101         adapter->tx_tstamp_tc.nsec = ns;
5102
5103         return 0;
5104 }
5105
5106 static int
5107 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5108 {
5109         uint64_t ns, systime_cycles;
5110         struct e1000_adapter *adapter =
5111                         (struct e1000_adapter *)dev->data->dev_private;
5112
5113         systime_cycles = igb_read_systime_cyclecounter(dev);
5114         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5115         *ts = rte_ns_to_timespec(ns);
5116
5117         return 0;
5118 }
5119
5120 static int
5121 igb_timesync_enable(struct rte_eth_dev *dev)
5122 {
5123         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5124         uint32_t tsync_ctl;
5125         uint32_t tsauxc;
5126
5127         /* Stop the timesync system time. */
5128         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5129         /* Reset the timesync system time value. */
5130         switch (hw->mac.type) {
5131         case e1000_82580:
5132         case e1000_i350:
5133         case e1000_i354:
5134         case e1000_i210:
5135         case e1000_i211:
5136                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5137                 /* fall-through */
5138         case e1000_82576:
5139                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5140                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5141                 break;
5142         default:
5143                 /* Not supported. */
5144                 return -ENOTSUP;
5145         }
5146
5147         /* Enable system time for it isn't on by default. */
5148         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5149         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5150         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5151
5152         igb_start_timecounters(dev);
5153
5154         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5155         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5156                         (ETHER_TYPE_1588 |
5157                          E1000_ETQF_FILTER_ENABLE |
5158                          E1000_ETQF_1588));
5159
5160         /* Enable timestamping of received PTP packets. */
5161         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5162         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5163         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5164
5165         /* Enable Timestamping of transmitted PTP packets. */
5166         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5167         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5168         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5169
5170         return 0;
5171 }
5172
5173 static int
5174 igb_timesync_disable(struct rte_eth_dev *dev)
5175 {
5176         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5177         uint32_t tsync_ctl;
5178
5179         /* Disable timestamping of transmitted PTP packets. */
5180         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5181         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5182         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5183
5184         /* Disable timestamping of received PTP packets. */
5185         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5186         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5187         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5188
5189         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5190         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5191
5192         /* Stop incrementating the System Time registers. */
5193         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5194
5195         return 0;
5196 }
5197
5198 static int
5199 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5200                                struct timespec *timestamp,
5201                                uint32_t flags __rte_unused)
5202 {
5203         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5204         struct e1000_adapter *adapter =
5205                         (struct e1000_adapter *)dev->data->dev_private;
5206         uint32_t tsync_rxctl;
5207         uint64_t rx_tstamp_cycles;
5208         uint64_t ns;
5209
5210         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5211         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5212                 return -EINVAL;
5213
5214         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5215         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5216         *timestamp = rte_ns_to_timespec(ns);
5217
5218         return  0;
5219 }
5220
5221 static int
5222 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5223                                struct timespec *timestamp)
5224 {
5225         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5226         struct e1000_adapter *adapter =
5227                         (struct e1000_adapter *)dev->data->dev_private;
5228         uint32_t tsync_txctl;
5229         uint64_t tx_tstamp_cycles;
5230         uint64_t ns;
5231
5232         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5233         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5234                 return -EINVAL;
5235
5236         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5237         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5238         *timestamp = rte_ns_to_timespec(ns);
5239
5240         return  0;
5241 }
5242
5243 static int
5244 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5245 {
5246         int count = 0;
5247         int g_ind = 0;
5248         const struct reg_info *reg_group;
5249
5250         while ((reg_group = igb_regs[g_ind++]))
5251                 count += igb_reg_group_count(reg_group);
5252
5253         return count;
5254 }
5255
5256 static int
5257 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5258 {
5259         int count = 0;
5260         int g_ind = 0;
5261         const struct reg_info *reg_group;
5262
5263         while ((reg_group = igbvf_regs[g_ind++]))
5264                 count += igb_reg_group_count(reg_group);
5265
5266         return count;
5267 }
5268
5269 static int
5270 eth_igb_get_regs(struct rte_eth_dev *dev,
5271         struct rte_dev_reg_info *regs)
5272 {
5273         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5274         uint32_t *data = regs->data;
5275         int g_ind = 0;
5276         int count = 0;
5277         const struct reg_info *reg_group;
5278
5279         if (data == NULL) {
5280                 regs->length = eth_igb_get_reg_length(dev);
5281                 regs->width = sizeof(uint32_t);
5282                 return 0;
5283         }
5284
5285         /* Support only full register dump */
5286         if ((regs->length == 0) ||
5287             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5288                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5289                         hw->device_id;
5290                 while ((reg_group = igb_regs[g_ind++]))
5291                         count += igb_read_regs_group(dev, &data[count],
5292                                                         reg_group);
5293                 return 0;
5294         }
5295
5296         return -ENOTSUP;
5297 }
5298
5299 static int
5300 igbvf_get_regs(struct rte_eth_dev *dev,
5301         struct rte_dev_reg_info *regs)
5302 {
5303         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5304         uint32_t *data = regs->data;
5305         int g_ind = 0;
5306         int count = 0;
5307         const struct reg_info *reg_group;
5308
5309         if (data == NULL) {
5310                 regs->length = igbvf_get_reg_length(dev);
5311                 regs->width = sizeof(uint32_t);
5312                 return 0;
5313         }
5314
5315         /* Support only full register dump */
5316         if ((regs->length == 0) ||
5317             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5318                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5319                         hw->device_id;
5320                 while ((reg_group = igbvf_regs[g_ind++]))
5321                         count += igb_read_regs_group(dev, &data[count],
5322                                                         reg_group);
5323                 return 0;
5324         }
5325
5326         return -ENOTSUP;
5327 }
5328
5329 static int
5330 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5331 {
5332         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5333
5334         /* Return unit is byte count */
5335         return hw->nvm.word_size * 2;
5336 }
5337
5338 static int
5339 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5340         struct rte_dev_eeprom_info *in_eeprom)
5341 {
5342         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5343         struct e1000_nvm_info *nvm = &hw->nvm;
5344         uint16_t *data = in_eeprom->data;
5345         int first, length;
5346
5347         first = in_eeprom->offset >> 1;
5348         length = in_eeprom->length >> 1;
5349         if ((first >= hw->nvm.word_size) ||
5350             ((first + length) >= hw->nvm.word_size))
5351                 return -EINVAL;
5352
5353         in_eeprom->magic = hw->vendor_id |
5354                 ((uint32_t)hw->device_id << 16);
5355
5356         if ((nvm->ops.read) == NULL)
5357                 return -ENOTSUP;
5358
5359         return nvm->ops.read(hw, first, length, data);
5360 }
5361
5362 static int
5363 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5364         struct rte_dev_eeprom_info *in_eeprom)
5365 {
5366         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5367         struct e1000_nvm_info *nvm = &hw->nvm;
5368         uint16_t *data = in_eeprom->data;
5369         int first, length;
5370
5371         first = in_eeprom->offset >> 1;
5372         length = in_eeprom->length >> 1;
5373         if ((first >= hw->nvm.word_size) ||
5374             ((first + length) >= hw->nvm.word_size))
5375                 return -EINVAL;
5376
5377         in_eeprom->magic = (uint32_t)hw->vendor_id |
5378                 ((uint32_t)hw->device_id << 16);
5379
5380         if ((nvm->ops.write) == NULL)
5381                 return -ENOTSUP;
5382         return nvm->ops.write(hw,  first, length, data);
5383 }
5384
5385 static int
5386 eth_igb_get_module_info(struct rte_eth_dev *dev,
5387                         struct rte_eth_dev_module_info *modinfo)
5388 {
5389         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5390
5391         uint32_t status = 0;
5392         uint16_t sff8472_rev, addr_mode;
5393         bool page_swap = false;
5394
5395         if (hw->phy.media_type == e1000_media_type_copper ||
5396             hw->phy.media_type == e1000_media_type_unknown)
5397                 return -EOPNOTSUPP;
5398
5399         /* Check whether we support SFF-8472 or not */
5400         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5401         if (status)
5402                 return -EIO;
5403
5404         /* addressing mode is not supported */
5405         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5406         if (status)
5407                 return -EIO;
5408
5409         /* addressing mode is not supported */
5410         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5411                 PMD_DRV_LOG(ERR,
5412                             "Address change required to access page 0xA2, "
5413                             "but not supported. Please report the module "
5414                             "type to the driver maintainers.\n");
5415                 page_swap = true;
5416         }
5417
5418         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5419                 /* We have an SFP, but it does not support SFF-8472 */
5420                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5421                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5422         } else {
5423                 /* We have an SFP which supports a revision of SFF-8472 */
5424                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5425                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5426         }
5427
5428         return 0;
5429 }
5430
5431 static int
5432 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5433                           struct rte_dev_eeprom_info *info)
5434 {
5435         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5436
5437         uint32_t status = 0;
5438         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5439         u16 first_word, last_word;
5440         int i = 0;
5441
5442         if (info->length == 0)
5443                 return -EINVAL;
5444
5445         first_word = info->offset >> 1;
5446         last_word = (info->offset + info->length - 1) >> 1;
5447
5448         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5449         for (i = 0; i < last_word - first_word + 1; i++) {
5450                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5451                                                 &dataword[i]);
5452                 if (status) {
5453                         /* Error occurred while reading module */
5454                         return -EIO;
5455                 }
5456
5457                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5458         }
5459
5460         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5461
5462         return 0;
5463 }
5464
5465 static int
5466 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5467 {
5468         struct e1000_hw *hw =
5469                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5470         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5471         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5472         uint32_t vec = E1000_MISC_VEC_ID;
5473
5474         if (rte_intr_allow_others(intr_handle))
5475                 vec = E1000_RX_VEC_START;
5476
5477         uint32_t mask = 1 << (queue_id + vec);
5478
5479         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5480         E1000_WRITE_FLUSH(hw);
5481
5482         return 0;
5483 }
5484
5485 static int
5486 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5487 {
5488         struct e1000_hw *hw =
5489                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5490         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5491         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5492         uint32_t vec = E1000_MISC_VEC_ID;
5493
5494         if (rte_intr_allow_others(intr_handle))
5495                 vec = E1000_RX_VEC_START;
5496
5497         uint32_t mask = 1 << (queue_id + vec);
5498         uint32_t regval;
5499
5500         regval = E1000_READ_REG(hw, E1000_EIMS);
5501         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5502         E1000_WRITE_FLUSH(hw);
5503
5504         rte_intr_enable(intr_handle);
5505
5506         return 0;
5507 }
5508
5509 static void
5510 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5511                    uint8_t index, uint8_t offset)
5512 {
5513         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5514
5515         /* clear bits */
5516         val &= ~((uint32_t)0xFF << offset);
5517
5518         /* write vector and valid bit */
5519         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5520
5521         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5522 }
5523
5524 static void
5525 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5526                            uint8_t queue, uint8_t msix_vector)
5527 {
5528         uint32_t tmp = 0;
5529
5530         if (hw->mac.type == e1000_82575) {
5531                 if (direction == 0)
5532                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5533                 else if (direction == 1)
5534                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5535                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5536         } else if (hw->mac.type == e1000_82576) {
5537                 if ((direction == 0) || (direction == 1))
5538                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5539                                            ((queue & 0x8) << 1) +
5540                                            8 * direction);
5541         } else if ((hw->mac.type == e1000_82580) ||
5542                         (hw->mac.type == e1000_i350) ||
5543                         (hw->mac.type == e1000_i354) ||
5544                         (hw->mac.type == e1000_i210) ||
5545                         (hw->mac.type == e1000_i211)) {
5546                 if ((direction == 0) || (direction == 1))
5547                         eth_igb_write_ivar(hw, msix_vector,
5548                                            queue >> 1,
5549                                            ((queue & 0x1) << 4) +
5550                                            8 * direction);
5551         }
5552 }
5553
5554 /* Sets up the hardware to generate MSI-X interrupts properly
5555  * @hw
5556  *  board private structure
5557  */
5558 static void
5559 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5560 {
5561         int queue_id;
5562         uint32_t tmpval, regval, intr_mask;
5563         struct e1000_hw *hw =
5564                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5565         uint32_t vec = E1000_MISC_VEC_ID;
5566         uint32_t base = E1000_MISC_VEC_ID;
5567         uint32_t misc_shift = 0;
5568         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5569         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5570
5571         /* won't configure msix register if no mapping is done
5572          * between intr vector and event fd
5573          */
5574         if (!rte_intr_dp_is_en(intr_handle))
5575                 return;
5576
5577         if (rte_intr_allow_others(intr_handle)) {
5578                 vec = base = E1000_RX_VEC_START;
5579                 misc_shift = 1;
5580         }
5581
5582         /* set interrupt vector for other causes */
5583         if (hw->mac.type == e1000_82575) {
5584                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5585                 /* enable MSI-X PBA support */
5586                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5587
5588                 /* Auto-Mask interrupts upon ICR read */
5589                 tmpval |= E1000_CTRL_EXT_EIAME;
5590                 tmpval |= E1000_CTRL_EXT_IRCA;
5591
5592                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5593
5594                 /* enable msix_other interrupt */
5595                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5596                 regval = E1000_READ_REG(hw, E1000_EIAC);
5597                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5598                 regval = E1000_READ_REG(hw, E1000_EIAM);
5599                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5600         } else if ((hw->mac.type == e1000_82576) ||
5601                         (hw->mac.type == e1000_82580) ||
5602                         (hw->mac.type == e1000_i350) ||
5603                         (hw->mac.type == e1000_i354) ||
5604                         (hw->mac.type == e1000_i210) ||
5605                         (hw->mac.type == e1000_i211)) {
5606                 /* turn on MSI-X capability first */
5607                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5608                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5609                                         E1000_GPIE_NSICR);
5610                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5611                         misc_shift;
5612
5613                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5614                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5615
5616                 regval = E1000_READ_REG(hw, E1000_EIAC);
5617                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5618
5619                 /* enable msix_other interrupt */
5620                 regval = E1000_READ_REG(hw, E1000_EIMS);
5621                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5622                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5623                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5624         }
5625
5626         /* use EIAM to auto-mask when MSI-X interrupt
5627          * is asserted, this saves a register write for every interrupt
5628          */
5629         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5630                 misc_shift;
5631
5632         if (dev->data->dev_conf.intr_conf.lsc != 0)
5633                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5634
5635         regval = E1000_READ_REG(hw, E1000_EIAM);
5636         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5637
5638         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5639                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5640                 intr_handle->intr_vec[queue_id] = vec;
5641                 if (vec < base + intr_handle->nb_efd - 1)
5642                         vec++;
5643         }
5644
5645         E1000_WRITE_FLUSH(hw);
5646 }
5647
5648 /* restore n-tuple filter */
5649 static inline void
5650 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5651 {
5652         struct e1000_filter_info *filter_info =
5653                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5654         struct e1000_5tuple_filter *p_5tuple;
5655         struct e1000_2tuple_filter *p_2tuple;
5656
5657         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5658                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5659         }
5660
5661         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5662                 igb_inject_2uple_filter(dev, p_2tuple);
5663         }
5664 }
5665
5666 /* restore SYN filter */
5667 static inline void
5668 igb_syn_filter_restore(struct rte_eth_dev *dev)
5669 {
5670         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5671         struct e1000_filter_info *filter_info =
5672                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5673         uint32_t synqf;
5674
5675         synqf = filter_info->syn_info;
5676
5677         if (synqf & E1000_SYN_FILTER_ENABLE) {
5678                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5679                 E1000_WRITE_FLUSH(hw);
5680         }
5681 }
5682
5683 /* restore ethernet type filter */
5684 static inline void
5685 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5686 {
5687         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5688         struct e1000_filter_info *filter_info =
5689                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5690         int i;
5691
5692         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5693                 if (filter_info->ethertype_mask & (1 << i)) {
5694                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5695                                 filter_info->ethertype_filters[i].etqf);
5696                         E1000_WRITE_FLUSH(hw);
5697                 }
5698         }
5699 }
5700
5701 /* restore flex byte filter */
5702 static inline void
5703 igb_flex_filter_restore(struct rte_eth_dev *dev)
5704 {
5705         struct e1000_filter_info *filter_info =
5706                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5707         struct e1000_flex_filter *flex_filter;
5708
5709         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5710                 igb_inject_flex_filter(dev, flex_filter);
5711         }
5712 }
5713
5714 /* restore rss filter */
5715 static inline void
5716 igb_rss_filter_restore(struct rte_eth_dev *dev)
5717 {
5718         struct e1000_filter_info *filter_info =
5719                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5720
5721         if (filter_info->rss_info.conf.queue_num)
5722                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5723 }
5724
5725 /* restore all types filter */
5726 static int
5727 igb_filter_restore(struct rte_eth_dev *dev)
5728 {
5729         igb_ntuple_filter_restore(dev);
5730         igb_ethertype_filter_restore(dev);
5731         igb_syn_filter_restore(dev);
5732         igb_flex_filter_restore(dev);
5733         igb_rss_filter_restore(dev);
5734
5735         return 0;
5736 }
5737
5738 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5739 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5740 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5741 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5742 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5743 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5744
5745 /* see e1000_logs.c */
5746 RTE_INIT(e1000_init_log)
5747 {
5748         e1000_igb_init_log();
5749 }