278d5d2712af18707771c515a9259852e7134e36
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_OUTER_IPV6 |      \
54                 PKT_TX_OUTER_IPV4 |      \
55                 PKT_TX_IPV6 |            \
56                 PKT_TX_IPV4 |            \
57                 PKT_TX_VLAN_PKT |                \
58                 PKT_TX_IP_CKSUM |                \
59                 PKT_TX_L4_MASK |                 \
60                 PKT_TX_TCP_SEG |                 \
61                 IGB_TX_IEEE1588_TMST)
62
63 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
64                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
65
66 /**
67  * Structure associated with each descriptor of the RX ring of a RX queue.
68  */
69 struct igb_rx_entry {
70         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
71 };
72
73 /**
74  * Structure associated with each descriptor of the TX ring of a TX queue.
75  */
76 struct igb_tx_entry {
77         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
78         uint16_t next_id; /**< Index of next descriptor in ring. */
79         uint16_t last_id; /**< Index of last scattered descriptor. */
80 };
81
82 /**
83  * rx queue flags
84  */
85 enum igb_rxq_flags {
86         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
87 };
88
89 /**
90  * Structure associated with each RX queue.
91  */
92 struct igb_rx_queue {
93         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
94         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
95         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
96         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
97         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
98         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
99         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
100         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
101         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
102         uint16_t            rx_tail;    /**< current value of RDT register. */
103         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
104         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
105         uint16_t            queue_id;   /**< RX queue index. */
106         uint16_t            reg_idx;    /**< RX queue register index. */
107         uint16_t            port_id;    /**< Device port identifier. */
108         uint8_t             pthresh;    /**< Prefetch threshold register. */
109         uint8_t             hthresh;    /**< Host threshold register. */
110         uint8_t             wthresh;    /**< Write-back threshold register. */
111         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
112         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
113         uint32_t            flags;      /**< RX flags. */
114         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
115 };
116
117 /**
118  * Hardware context number
119  */
120 enum igb_advctx_num {
121         IGB_CTX_0    = 0, /**< CTX0    */
122         IGB_CTX_1    = 1, /**< CTX1    */
123         IGB_CTX_NUM  = 2, /**< CTX_NUM */
124 };
125
126 /** Offload features */
127 union igb_tx_offload {
128         uint64_t data;
129         struct {
130                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
131                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
132                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
133                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
134                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
135
136                 /* uint64_t unused:8; */
137         };
138 };
139
140 /*
141  * Compare mask for igb_tx_offload.data,
142  * should be in sync with igb_tx_offload layout.
143  * */
144 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
145 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
146 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
147 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
148 /** Mac + IP + TCP + Mss mask. */
149 #define TX_TSO_CMP_MASK \
150         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
151
152 /**
153  * Strucutre to check if new context need be built
154  */
155 struct igb_advctx_info {
156         uint64_t flags;           /**< ol_flags related to context build. */
157         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
158         union igb_tx_offload tx_offload;
159         /** compare mask for tx offload. */
160         union igb_tx_offload tx_offload_mask;
161 };
162
163 /**
164  * Structure associated with each TX queue.
165  */
166 struct igb_tx_queue {
167         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
168         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
169         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
170         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
171         uint32_t               txd_type;      /**< Device-specific TXD type */
172         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
173         uint16_t               tx_tail; /**< Current value of TDT register. */
174         uint16_t               tx_head;
175         /**< Index of first used TX descriptor. */
176         uint16_t               queue_id; /**< TX queue index. */
177         uint16_t               reg_idx;  /**< TX queue register index. */
178         uint16_t               port_id;  /**< Device port identifier. */
179         uint8_t                pthresh;  /**< Prefetch threshold register. */
180         uint8_t                hthresh;  /**< Host threshold register. */
181         uint8_t                wthresh;  /**< Write-back threshold register. */
182         uint32_t               ctx_curr;
183         /**< Current used hardware descriptor. */
184         uint32_t               ctx_start;
185         /**< Start context position for transmit queue. */
186         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
187         /**< Hardware context history.*/
188         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
189 };
190
191 #if 1
192 #define RTE_PMD_USE_PREFETCH
193 #endif
194
195 #ifdef RTE_PMD_USE_PREFETCH
196 #define rte_igb_prefetch(p)     rte_prefetch0(p)
197 #else
198 #define rte_igb_prefetch(p)     do {} while(0)
199 #endif
200
201 #ifdef RTE_PMD_PACKET_PREFETCH
202 #define rte_packet_prefetch(p) rte_prefetch1(p)
203 #else
204 #define rte_packet_prefetch(p)  do {} while(0)
205 #endif
206
207 /*
208  * Macro for VMDq feature for 1 GbE NIC.
209  */
210 #define E1000_VMOLR_SIZE                        (8)
211 #define IGB_TSO_MAX_HDRLEN                      (512)
212 #define IGB_TSO_MAX_MSS                         (9216)
213
214 /*********************************************************************
215  *
216  *  TX function
217  *
218  **********************************************************************/
219
220 /*
221  *There're some limitations in hardware for TCP segmentation offload. We
222  *should check whether the parameters are valid.
223  */
224 static inline uint64_t
225 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
226 {
227         if (!(ol_req & PKT_TX_TCP_SEG))
228                 return ol_req;
229         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
230                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
231                 ol_req &= ~PKT_TX_TCP_SEG;
232                 ol_req |= PKT_TX_TCP_CKSUM;
233         }
234         return ol_req;
235 }
236
237 /*
238  * Advanced context descriptor are almost same between igb/ixgbe
239  * This is a separate function, looking for optimization opportunity here
240  * Rework required to go with the pre-defined values.
241  */
242
243 static inline void
244 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
245                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
246                 uint64_t ol_flags, union igb_tx_offload tx_offload)
247 {
248         uint32_t type_tucmd_mlhl;
249         uint32_t mss_l4len_idx;
250         uint32_t ctx_idx, ctx_curr;
251         uint32_t vlan_macip_lens;
252         union igb_tx_offload tx_offload_mask;
253
254         ctx_curr = txq->ctx_curr;
255         ctx_idx = ctx_curr + txq->ctx_start;
256
257         tx_offload_mask.data = 0;
258         type_tucmd_mlhl = 0;
259
260         /* Specify which HW CTX to upload. */
261         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
262
263         if (ol_flags & PKT_TX_VLAN_PKT)
264                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
265
266         /* check if TCP segmentation required for this packet */
267         if (ol_flags & PKT_TX_TCP_SEG) {
268                 /* implies IP cksum in IPv4 */
269                 if (ol_flags & PKT_TX_IP_CKSUM)
270                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
271                                 E1000_ADVTXD_TUCMD_L4T_TCP |
272                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
273                 else
274                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
275                                 E1000_ADVTXD_TUCMD_L4T_TCP |
276                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
277
278                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
279                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
280                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
281         } else { /* no TSO, check if hardware checksum is needed */
282                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
283                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
284
285                 if (ol_flags & PKT_TX_IP_CKSUM)
286                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
287
288                 switch (ol_flags & PKT_TX_L4_MASK) {
289                 case PKT_TX_UDP_CKSUM:
290                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
291                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
292                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
293                                 << E1000_ADVTXD_L4LEN_SHIFT;
294                         break;
295                 case PKT_TX_TCP_CKSUM:
296                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
297                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
298                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
299                                 << E1000_ADVTXD_L4LEN_SHIFT;
300                         break;
301                 case PKT_TX_SCTP_CKSUM:
302                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
303                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
304                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
305                                 << E1000_ADVTXD_L4LEN_SHIFT;
306                         break;
307                 default:
308                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
309                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
310                         break;
311                 }
312         }
313
314         txq->ctx_cache[ctx_curr].flags = ol_flags;
315         txq->ctx_cache[ctx_curr].tx_offload.data =
316                 tx_offload_mask.data & tx_offload.data;
317         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
318
319         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
320         vlan_macip_lens = (uint32_t)tx_offload.data;
321         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
322         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
323         ctx_txd->u.seqnum_seed = 0;
324 }
325
326 /*
327  * Check which hardware context can be used. Use the existing match
328  * or create a new context descriptor.
329  */
330 static inline uint32_t
331 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
332                 union igb_tx_offload tx_offload)
333 {
334         /* If match with the current context */
335         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
336                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
337                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
338                         return txq->ctx_curr;
339         }
340
341         /* If match with the second context */
342         txq->ctx_curr ^= 1;
343         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
344                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
345                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
346                         return txq->ctx_curr;
347         }
348
349         /* Mismatch, use the previous context */
350         return IGB_CTX_NUM;
351 }
352
353 static inline uint32_t
354 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
355 {
356         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
357         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
358         uint32_t tmp;
359
360         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
361         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
362         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
363         return tmp;
364 }
365
366 static inline uint32_t
367 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
368 {
369         uint32_t cmdtype;
370         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
371         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
372         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
373         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
374         return cmdtype;
375 }
376
377 uint16_t
378 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
379                uint16_t nb_pkts)
380 {
381         struct igb_tx_queue *txq;
382         struct igb_tx_entry *sw_ring;
383         struct igb_tx_entry *txe, *txn;
384         volatile union e1000_adv_tx_desc *txr;
385         volatile union e1000_adv_tx_desc *txd;
386         struct rte_mbuf     *tx_pkt;
387         struct rte_mbuf     *m_seg;
388         uint64_t buf_dma_addr;
389         uint32_t olinfo_status;
390         uint32_t cmd_type_len;
391         uint32_t pkt_len;
392         uint16_t slen;
393         uint64_t ol_flags;
394         uint16_t tx_end;
395         uint16_t tx_id;
396         uint16_t tx_last;
397         uint16_t nb_tx;
398         uint64_t tx_ol_req;
399         uint32_t new_ctx = 0;
400         uint32_t ctx = 0;
401         union igb_tx_offload tx_offload = {0};
402
403         txq = tx_queue;
404         sw_ring = txq->sw_ring;
405         txr     = txq->tx_ring;
406         tx_id   = txq->tx_tail;
407         txe = &sw_ring[tx_id];
408
409         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
410                 tx_pkt = *tx_pkts++;
411                 pkt_len = tx_pkt->pkt_len;
412
413                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
414
415                 /*
416                  * The number of descriptors that must be allocated for a
417                  * packet is the number of segments of that packet, plus 1
418                  * Context Descriptor for the VLAN Tag Identifier, if any.
419                  * Determine the last TX descriptor to allocate in the TX ring
420                  * for the packet, starting from the current position (tx_id)
421                  * in the ring.
422                  */
423                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
424
425                 ol_flags = tx_pkt->ol_flags;
426                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
427
428                 /* If a Context Descriptor need be built . */
429                 if (tx_ol_req) {
430                         tx_offload.l2_len = tx_pkt->l2_len;
431                         tx_offload.l3_len = tx_pkt->l3_len;
432                         tx_offload.l4_len = tx_pkt->l4_len;
433                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
434                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
435                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
436
437                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
438                         /* Only allocate context descriptor if required*/
439                         new_ctx = (ctx == IGB_CTX_NUM);
440                         ctx = txq->ctx_curr + txq->ctx_start;
441                         tx_last = (uint16_t) (tx_last + new_ctx);
442                 }
443                 if (tx_last >= txq->nb_tx_desc)
444                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
445
446                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
447                            " tx_first=%u tx_last=%u",
448                            (unsigned) txq->port_id,
449                            (unsigned) txq->queue_id,
450                            (unsigned) pkt_len,
451                            (unsigned) tx_id,
452                            (unsigned) tx_last);
453
454                 /*
455                  * Check if there are enough free descriptors in the TX ring
456                  * to transmit the next packet.
457                  * This operation is based on the two following rules:
458                  *
459                  *   1- Only check that the last needed TX descriptor can be
460                  *      allocated (by construction, if that descriptor is free,
461                  *      all intermediate ones are also free).
462                  *
463                  *      For this purpose, the index of the last TX descriptor
464                  *      used for a packet (the "last descriptor" of a packet)
465                  *      is recorded in the TX entries (the last one included)
466                  *      that are associated with all TX descriptors allocated
467                  *      for that packet.
468                  *
469                  *   2- Avoid to allocate the last free TX descriptor of the
470                  *      ring, in order to never set the TDT register with the
471                  *      same value stored in parallel by the NIC in the TDH
472                  *      register, which makes the TX engine of the NIC enter
473                  *      in a deadlock situation.
474                  *
475                  *      By extension, avoid to allocate a free descriptor that
476                  *      belongs to the last set of free descriptors allocated
477                  *      to the same packet previously transmitted.
478                  */
479
480                 /*
481                  * The "last descriptor" of the previously sent packet, if any,
482                  * which used the last descriptor to allocate.
483                  */
484                 tx_end = sw_ring[tx_last].last_id;
485
486                 /*
487                  * The next descriptor following that "last descriptor" in the
488                  * ring.
489                  */
490                 tx_end = sw_ring[tx_end].next_id;
491
492                 /*
493                  * The "last descriptor" associated with that next descriptor.
494                  */
495                 tx_end = sw_ring[tx_end].last_id;
496
497                 /*
498                  * Check that this descriptor is free.
499                  */
500                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
501                         if (nb_tx == 0)
502                                 return 0;
503                         goto end_of_tx;
504                 }
505
506                 /*
507                  * Set common flags of all TX Data Descriptors.
508                  *
509                  * The following bits must be set in all Data Descriptors:
510                  *   - E1000_ADVTXD_DTYP_DATA
511                  *   - E1000_ADVTXD_DCMD_DEXT
512                  *
513                  * The following bits must be set in the first Data Descriptor
514                  * and are ignored in the other ones:
515                  *   - E1000_ADVTXD_DCMD_IFCS
516                  *   - E1000_ADVTXD_MAC_1588
517                  *   - E1000_ADVTXD_DCMD_VLE
518                  *
519                  * The following bits must only be set in the last Data
520                  * Descriptor:
521                  *   - E1000_TXD_CMD_EOP
522                  *
523                  * The following bits can be set in any Data Descriptor, but
524                  * are only set in the last Data Descriptor:
525                  *   - E1000_TXD_CMD_RS
526                  */
527                 cmd_type_len = txq->txd_type |
528                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
529                 if (tx_ol_req & PKT_TX_TCP_SEG)
530                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
531                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
532 #if defined(RTE_LIBRTE_IEEE1588)
533                 if (ol_flags & PKT_TX_IEEE1588_TMST)
534                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
535 #endif
536                 if (tx_ol_req) {
537                         /* Setup TX Advanced context descriptor if required */
538                         if (new_ctx) {
539                                 volatile struct e1000_adv_tx_context_desc *
540                                     ctx_txd;
541
542                                 ctx_txd = (volatile struct
543                                     e1000_adv_tx_context_desc *)
544                                     &txr[tx_id];
545
546                                 txn = &sw_ring[txe->next_id];
547                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
548
549                                 if (txe->mbuf != NULL) {
550                                         rte_pktmbuf_free_seg(txe->mbuf);
551                                         txe->mbuf = NULL;
552                                 }
553
554                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
555
556                                 txe->last_id = tx_last;
557                                 tx_id = txe->next_id;
558                                 txe = txn;
559                         }
560
561                         /* Setup the TX Advanced Data Descriptor */
562                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
563                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
564                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
565                 }
566
567                 m_seg = tx_pkt;
568                 do {
569                         txn = &sw_ring[txe->next_id];
570                         txd = &txr[tx_id];
571
572                         if (txe->mbuf != NULL)
573                                 rte_pktmbuf_free_seg(txe->mbuf);
574                         txe->mbuf = m_seg;
575
576                         /*
577                          * Set up transmit descriptor.
578                          */
579                         slen = (uint16_t) m_seg->data_len;
580                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
581                         txd->read.buffer_addr =
582                                 rte_cpu_to_le_64(buf_dma_addr);
583                         txd->read.cmd_type_len =
584                                 rte_cpu_to_le_32(cmd_type_len | slen);
585                         txd->read.olinfo_status =
586                                 rte_cpu_to_le_32(olinfo_status);
587                         txe->last_id = tx_last;
588                         tx_id = txe->next_id;
589                         txe = txn;
590                         m_seg = m_seg->next;
591                 } while (m_seg != NULL);
592
593                 /*
594                  * The last packet data descriptor needs End Of Packet (EOP)
595                  * and Report Status (RS).
596                  */
597                 txd->read.cmd_type_len |=
598                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
599         }
600  end_of_tx:
601         rte_wmb();
602
603         /*
604          * Set the Transmit Descriptor Tail (TDT).
605          */
606         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
607         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
608                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
609                    (unsigned) tx_id, (unsigned) nb_tx);
610         txq->tx_tail = tx_id;
611
612         return nb_tx;
613 }
614
615 /*********************************************************************
616  *
617  *  TX prep functions
618  *
619  **********************************************************************/
620 uint16_t
621 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
622                 uint16_t nb_pkts)
623 {
624         int i, ret;
625         struct rte_mbuf *m;
626
627         for (i = 0; i < nb_pkts; i++) {
628                 m = tx_pkts[i];
629
630                 /* Check some limitations for TSO in hardware */
631                 if (m->ol_flags & PKT_TX_TCP_SEG)
632                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
633                                         (m->l2_len + m->l3_len + m->l4_len >
634                                         IGB_TSO_MAX_HDRLEN)) {
635                                 rte_errno = EINVAL;
636                                 return i;
637                         }
638
639                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
640                         rte_errno = ENOTSUP;
641                         return i;
642                 }
643
644 #ifdef RTE_ETHDEV_DEBUG_TX
645                 ret = rte_validate_tx_offload(m);
646                 if (ret != 0) {
647                         rte_errno = -ret;
648                         return i;
649                 }
650 #endif
651                 ret = rte_net_intel_cksum_prepare(m);
652                 if (ret != 0) {
653                         rte_errno = -ret;
654                         return i;
655                 }
656         }
657
658         return i;
659 }
660
661 /*********************************************************************
662  *
663  *  RX functions
664  *
665  **********************************************************************/
666 #define IGB_PACKET_TYPE_IPV4              0X01
667 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
668 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
669 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
670 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
671 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
672 #define IGB_PACKET_TYPE_IPV6              0X04
673 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
674 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
675 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
676 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
677 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
678 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
679 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
680 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
681 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
682 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
683 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
684 #define IGB_PACKET_TYPE_MAX               0X80
685 #define IGB_PACKET_TYPE_MASK              0X7F
686 #define IGB_PACKET_TYPE_SHIFT             0X04
687 static inline uint32_t
688 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
689 {
690         static const uint32_t
691                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
692                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
693                         RTE_PTYPE_L3_IPV4,
694                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV4_EXT,
696                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV6,
698                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
699                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
700                         RTE_PTYPE_INNER_L3_IPV6,
701                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
702                         RTE_PTYPE_L3_IPV6_EXT,
703                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
705                         RTE_PTYPE_INNER_L3_IPV6_EXT,
706                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
708                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
710                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
711                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
712                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
713                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
718                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
720                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
722                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
723                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
724                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
725                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
727                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
728                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
729                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
730                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
731                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
732                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
733                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
734         };
735         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
736                 return RTE_PTYPE_UNKNOWN;
737
738         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
739
740         return ptype_table[pkt_info];
741 }
742
743 static inline uint64_t
744 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
745 {
746         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
747
748 #if defined(RTE_LIBRTE_IEEE1588)
749         static uint32_t ip_pkt_etqf_map[8] = {
750                 0, 0, 0, PKT_RX_IEEE1588_PTP,
751                 0, 0, 0, 0,
752         };
753
754         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
755         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
756
757         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
758         if (hw->mac.type == e1000_i210)
759                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
760         else
761                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
762 #else
763         RTE_SET_USED(rxq);
764 #endif
765
766         return pkt_flags;
767 }
768
769 static inline uint64_t
770 rx_desc_status_to_pkt_flags(uint32_t rx_status)
771 {
772         uint64_t pkt_flags;
773
774         /* Check if VLAN present */
775         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
776                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
777
778 #if defined(RTE_LIBRTE_IEEE1588)
779         if (rx_status & E1000_RXD_STAT_TMST)
780                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
781 #endif
782         return pkt_flags;
783 }
784
785 static inline uint64_t
786 rx_desc_error_to_pkt_flags(uint32_t rx_status)
787 {
788         /*
789          * Bit 30: IPE, IPv4 checksum error
790          * Bit 29: L4I, L4I integrity error
791          */
792
793         static uint64_t error_to_pkt_flags_map[4] = {
794                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
795                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
796                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
797                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
798         };
799         return error_to_pkt_flags_map[(rx_status >>
800                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
801 }
802
803 uint16_t
804 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
805                uint16_t nb_pkts)
806 {
807         struct igb_rx_queue *rxq;
808         volatile union e1000_adv_rx_desc *rx_ring;
809         volatile union e1000_adv_rx_desc *rxdp;
810         struct igb_rx_entry *sw_ring;
811         struct igb_rx_entry *rxe;
812         struct rte_mbuf *rxm;
813         struct rte_mbuf *nmb;
814         union e1000_adv_rx_desc rxd;
815         uint64_t dma_addr;
816         uint32_t staterr;
817         uint32_t hlen_type_rss;
818         uint16_t pkt_len;
819         uint16_t rx_id;
820         uint16_t nb_rx;
821         uint16_t nb_hold;
822         uint64_t pkt_flags;
823
824         nb_rx = 0;
825         nb_hold = 0;
826         rxq = rx_queue;
827         rx_id = rxq->rx_tail;
828         rx_ring = rxq->rx_ring;
829         sw_ring = rxq->sw_ring;
830         while (nb_rx < nb_pkts) {
831                 /*
832                  * The order of operations here is important as the DD status
833                  * bit must not be read after any other descriptor fields.
834                  * rx_ring and rxdp are pointing to volatile data so the order
835                  * of accesses cannot be reordered by the compiler. If they were
836                  * not volatile, they could be reordered which could lead to
837                  * using invalid descriptor fields when read from rxd.
838                  */
839                 rxdp = &rx_ring[rx_id];
840                 staterr = rxdp->wb.upper.status_error;
841                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
842                         break;
843                 rxd = *rxdp;
844
845                 /*
846                  * End of packet.
847                  *
848                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
849                  * likely to be invalid and to be dropped by the various
850                  * validation checks performed by the network stack.
851                  *
852                  * Allocate a new mbuf to replenish the RX ring descriptor.
853                  * If the allocation fails:
854                  *    - arrange for that RX descriptor to be the first one
855                  *      being parsed the next time the receive function is
856                  *      invoked [on the same queue].
857                  *
858                  *    - Stop parsing the RX ring and return immediately.
859                  *
860                  * This policy do not drop the packet received in the RX
861                  * descriptor for which the allocation of a new mbuf failed.
862                  * Thus, it allows that packet to be later retrieved if
863                  * mbuf have been freed in the mean time.
864                  * As a side effect, holding RX descriptors instead of
865                  * systematically giving them back to the NIC may lead to
866                  * RX ring exhaustion situations.
867                  * However, the NIC can gracefully prevent such situations
868                  * to happen by sending specific "back-pressure" flow control
869                  * frames to its peer(s).
870                  */
871                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
872                            "staterr=0x%x pkt_len=%u",
873                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
874                            (unsigned) rx_id, (unsigned) staterr,
875                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
876
877                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
878                 if (nmb == NULL) {
879                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
880                                    "queue_id=%u", (unsigned) rxq->port_id,
881                                    (unsigned) rxq->queue_id);
882                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
883                         break;
884                 }
885
886                 nb_hold++;
887                 rxe = &sw_ring[rx_id];
888                 rx_id++;
889                 if (rx_id == rxq->nb_rx_desc)
890                         rx_id = 0;
891
892                 /* Prefetch next mbuf while processing current one. */
893                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
894
895                 /*
896                  * When next RX descriptor is on a cache-line boundary,
897                  * prefetch the next 4 RX descriptors and the next 8 pointers
898                  * to mbufs.
899                  */
900                 if ((rx_id & 0x3) == 0) {
901                         rte_igb_prefetch(&rx_ring[rx_id]);
902                         rte_igb_prefetch(&sw_ring[rx_id]);
903                 }
904
905                 rxm = rxe->mbuf;
906                 rxe->mbuf = nmb;
907                 dma_addr =
908                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
909                 rxdp->read.hdr_addr = 0;
910                 rxdp->read.pkt_addr = dma_addr;
911
912                 /*
913                  * Initialize the returned mbuf.
914                  * 1) setup generic mbuf fields:
915                  *    - number of segments,
916                  *    - next segment,
917                  *    - packet length,
918                  *    - RX port identifier.
919                  * 2) integrate hardware offload data, if any:
920                  *    - RSS flag & hash,
921                  *    - IP checksum flag,
922                  *    - VLAN TCI, if any,
923                  *    - error flags.
924                  */
925                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
926                                       rxq->crc_len);
927                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
928                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
929                 rxm->nb_segs = 1;
930                 rxm->next = NULL;
931                 rxm->pkt_len = pkt_len;
932                 rxm->data_len = pkt_len;
933                 rxm->port = rxq->port_id;
934
935                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
936                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
937
938                 /*
939                  * The vlan_tci field is only valid when PKT_RX_VLAN is
940                  * set in the pkt_flags field and must be in CPU byte order.
941                  */
942                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
943                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
944                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
945                 } else {
946                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
947                 }
948                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
949                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
950                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
951                 rxm->ol_flags = pkt_flags;
952                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
953                                                 lo_dword.hs_rss.pkt_info);
954
955                 /*
956                  * Store the mbuf address into the next entry of the array
957                  * of returned packets.
958                  */
959                 rx_pkts[nb_rx++] = rxm;
960         }
961         rxq->rx_tail = rx_id;
962
963         /*
964          * If the number of free RX descriptors is greater than the RX free
965          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
966          * register.
967          * Update the RDT with the value of the last processed RX descriptor
968          * minus 1, to guarantee that the RDT register is never equal to the
969          * RDH register, which creates a "full" ring situtation from the
970          * hardware point of view...
971          */
972         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
973         if (nb_hold > rxq->rx_free_thresh) {
974                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
975                            "nb_hold=%u nb_rx=%u",
976                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
977                            (unsigned) rx_id, (unsigned) nb_hold,
978                            (unsigned) nb_rx);
979                 rx_id = (uint16_t) ((rx_id == 0) ?
980                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
981                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
982                 nb_hold = 0;
983         }
984         rxq->nb_rx_hold = nb_hold;
985         return nb_rx;
986 }
987
988 uint16_t
989 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
990                          uint16_t nb_pkts)
991 {
992         struct igb_rx_queue *rxq;
993         volatile union e1000_adv_rx_desc *rx_ring;
994         volatile union e1000_adv_rx_desc *rxdp;
995         struct igb_rx_entry *sw_ring;
996         struct igb_rx_entry *rxe;
997         struct rte_mbuf *first_seg;
998         struct rte_mbuf *last_seg;
999         struct rte_mbuf *rxm;
1000         struct rte_mbuf *nmb;
1001         union e1000_adv_rx_desc rxd;
1002         uint64_t dma; /* Physical address of mbuf data buffer */
1003         uint32_t staterr;
1004         uint32_t hlen_type_rss;
1005         uint16_t rx_id;
1006         uint16_t nb_rx;
1007         uint16_t nb_hold;
1008         uint16_t data_len;
1009         uint64_t pkt_flags;
1010
1011         nb_rx = 0;
1012         nb_hold = 0;
1013         rxq = rx_queue;
1014         rx_id = rxq->rx_tail;
1015         rx_ring = rxq->rx_ring;
1016         sw_ring = rxq->sw_ring;
1017
1018         /*
1019          * Retrieve RX context of current packet, if any.
1020          */
1021         first_seg = rxq->pkt_first_seg;
1022         last_seg = rxq->pkt_last_seg;
1023
1024         while (nb_rx < nb_pkts) {
1025         next_desc:
1026                 /*
1027                  * The order of operations here is important as the DD status
1028                  * bit must not be read after any other descriptor fields.
1029                  * rx_ring and rxdp are pointing to volatile data so the order
1030                  * of accesses cannot be reordered by the compiler. If they were
1031                  * not volatile, they could be reordered which could lead to
1032                  * using invalid descriptor fields when read from rxd.
1033                  */
1034                 rxdp = &rx_ring[rx_id];
1035                 staterr = rxdp->wb.upper.status_error;
1036                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1037                         break;
1038                 rxd = *rxdp;
1039
1040                 /*
1041                  * Descriptor done.
1042                  *
1043                  * Allocate a new mbuf to replenish the RX ring descriptor.
1044                  * If the allocation fails:
1045                  *    - arrange for that RX descriptor to be the first one
1046                  *      being parsed the next time the receive function is
1047                  *      invoked [on the same queue].
1048                  *
1049                  *    - Stop parsing the RX ring and return immediately.
1050                  *
1051                  * This policy does not drop the packet received in the RX
1052                  * descriptor for which the allocation of a new mbuf failed.
1053                  * Thus, it allows that packet to be later retrieved if
1054                  * mbuf have been freed in the mean time.
1055                  * As a side effect, holding RX descriptors instead of
1056                  * systematically giving them back to the NIC may lead to
1057                  * RX ring exhaustion situations.
1058                  * However, the NIC can gracefully prevent such situations
1059                  * to happen by sending specific "back-pressure" flow control
1060                  * frames to its peer(s).
1061                  */
1062                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1063                            "staterr=0x%x data_len=%u",
1064                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1065                            (unsigned) rx_id, (unsigned) staterr,
1066                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1067
1068                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1069                 if (nmb == NULL) {
1070                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1071                                    "queue_id=%u", (unsigned) rxq->port_id,
1072                                    (unsigned) rxq->queue_id);
1073                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1074                         break;
1075                 }
1076
1077                 nb_hold++;
1078                 rxe = &sw_ring[rx_id];
1079                 rx_id++;
1080                 if (rx_id == rxq->nb_rx_desc)
1081                         rx_id = 0;
1082
1083                 /* Prefetch next mbuf while processing current one. */
1084                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1085
1086                 /*
1087                  * When next RX descriptor is on a cache-line boundary,
1088                  * prefetch the next 4 RX descriptors and the next 8 pointers
1089                  * to mbufs.
1090                  */
1091                 if ((rx_id & 0x3) == 0) {
1092                         rte_igb_prefetch(&rx_ring[rx_id]);
1093                         rte_igb_prefetch(&sw_ring[rx_id]);
1094                 }
1095
1096                 /*
1097                  * Update RX descriptor with the physical address of the new
1098                  * data buffer of the new allocated mbuf.
1099                  */
1100                 rxm = rxe->mbuf;
1101                 rxe->mbuf = nmb;
1102                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1103                 rxdp->read.pkt_addr = dma;
1104                 rxdp->read.hdr_addr = 0;
1105
1106                 /*
1107                  * Set data length & data buffer address of mbuf.
1108                  */
1109                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1110                 rxm->data_len = data_len;
1111                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1112
1113                 /*
1114                  * If this is the first buffer of the received packet,
1115                  * set the pointer to the first mbuf of the packet and
1116                  * initialize its context.
1117                  * Otherwise, update the total length and the number of segments
1118                  * of the current scattered packet, and update the pointer to
1119                  * the last mbuf of the current packet.
1120                  */
1121                 if (first_seg == NULL) {
1122                         first_seg = rxm;
1123                         first_seg->pkt_len = data_len;
1124                         first_seg->nb_segs = 1;
1125                 } else {
1126                         first_seg->pkt_len += data_len;
1127                         first_seg->nb_segs++;
1128                         last_seg->next = rxm;
1129                 }
1130
1131                 /*
1132                  * If this is not the last buffer of the received packet,
1133                  * update the pointer to the last mbuf of the current scattered
1134                  * packet and continue to parse the RX ring.
1135                  */
1136                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1137                         last_seg = rxm;
1138                         goto next_desc;
1139                 }
1140
1141                 /*
1142                  * This is the last buffer of the received packet.
1143                  * If the CRC is not stripped by the hardware:
1144                  *   - Subtract the CRC length from the total packet length.
1145                  *   - If the last buffer only contains the whole CRC or a part
1146                  *     of it, free the mbuf associated to the last buffer.
1147                  *     If part of the CRC is also contained in the previous
1148                  *     mbuf, subtract the length of that CRC part from the
1149                  *     data length of the previous mbuf.
1150                  */
1151                 rxm->next = NULL;
1152                 if (unlikely(rxq->crc_len > 0)) {
1153                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1154                         if (data_len <= RTE_ETHER_CRC_LEN) {
1155                                 rte_pktmbuf_free_seg(rxm);
1156                                 first_seg->nb_segs--;
1157                                 last_seg->data_len = (uint16_t)
1158                                         (last_seg->data_len -
1159                                          (RTE_ETHER_CRC_LEN - data_len));
1160                                 last_seg->next = NULL;
1161                         } else
1162                                 rxm->data_len = (uint16_t)
1163                                         (data_len - RTE_ETHER_CRC_LEN);
1164                 }
1165
1166                 /*
1167                  * Initialize the first mbuf of the returned packet:
1168                  *    - RX port identifier,
1169                  *    - hardware offload data, if any:
1170                  *      - RSS flag & hash,
1171                  *      - IP checksum flag,
1172                  *      - VLAN TCI, if any,
1173                  *      - error flags.
1174                  */
1175                 first_seg->port = rxq->port_id;
1176                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1177
1178                 /*
1179                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1180                  * set in the pkt_flags field and must be in CPU byte order.
1181                  */
1182                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1183                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1184                         first_seg->vlan_tci =
1185                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1186                 } else {
1187                         first_seg->vlan_tci =
1188                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1189                 }
1190                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1191                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1192                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1193                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1194                 first_seg->ol_flags = pkt_flags;
1195                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1196                                         lower.lo_dword.hs_rss.pkt_info);
1197
1198                 /* Prefetch data of first segment, if configured to do so. */
1199                 rte_packet_prefetch((char *)first_seg->buf_addr +
1200                         first_seg->data_off);
1201
1202                 /*
1203                  * Store the mbuf address into the next entry of the array
1204                  * of returned packets.
1205                  */
1206                 rx_pkts[nb_rx++] = first_seg;
1207
1208                 /*
1209                  * Setup receipt context for a new packet.
1210                  */
1211                 first_seg = NULL;
1212         }
1213
1214         /*
1215          * Record index of the next RX descriptor to probe.
1216          */
1217         rxq->rx_tail = rx_id;
1218
1219         /*
1220          * Save receive context.
1221          */
1222         rxq->pkt_first_seg = first_seg;
1223         rxq->pkt_last_seg = last_seg;
1224
1225         /*
1226          * If the number of free RX descriptors is greater than the RX free
1227          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1228          * register.
1229          * Update the RDT with the value of the last processed RX descriptor
1230          * minus 1, to guarantee that the RDT register is never equal to the
1231          * RDH register, which creates a "full" ring situtation from the
1232          * hardware point of view...
1233          */
1234         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1235         if (nb_hold > rxq->rx_free_thresh) {
1236                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1237                            "nb_hold=%u nb_rx=%u",
1238                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1239                            (unsigned) rx_id, (unsigned) nb_hold,
1240                            (unsigned) nb_rx);
1241                 rx_id = (uint16_t) ((rx_id == 0) ?
1242                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1243                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1244                 nb_hold = 0;
1245         }
1246         rxq->nb_rx_hold = nb_hold;
1247         return nb_rx;
1248 }
1249
1250 /*
1251  * Maximum number of Ring Descriptors.
1252  *
1253  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1254  * desscriptors should meet the following condition:
1255  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1256  */
1257
1258 static void
1259 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1260 {
1261         unsigned i;
1262
1263         if (txq->sw_ring != NULL) {
1264                 for (i = 0; i < txq->nb_tx_desc; i++) {
1265                         if (txq->sw_ring[i].mbuf != NULL) {
1266                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1267                                 txq->sw_ring[i].mbuf = NULL;
1268                         }
1269                 }
1270         }
1271 }
1272
1273 static void
1274 igb_tx_queue_release(struct igb_tx_queue *txq)
1275 {
1276         if (txq != NULL) {
1277                 igb_tx_queue_release_mbufs(txq);
1278                 rte_free(txq->sw_ring);
1279                 rte_free(txq);
1280         }
1281 }
1282
1283 void
1284 eth_igb_tx_queue_release(void *txq)
1285 {
1286         igb_tx_queue_release(txq);
1287 }
1288
1289 static int
1290 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1291 {
1292         struct igb_tx_entry *sw_ring;
1293         volatile union e1000_adv_tx_desc *txr;
1294         uint16_t tx_first; /* First segment analyzed. */
1295         uint16_t tx_id;    /* Current segment being processed. */
1296         uint16_t tx_last;  /* Last segment in the current packet. */
1297         uint16_t tx_next;  /* First segment of the next packet. */
1298         int count = 0;
1299
1300         if (!txq)
1301                 return -ENODEV;
1302
1303         sw_ring = txq->sw_ring;
1304         txr = txq->tx_ring;
1305
1306         /* tx_tail is the last sent packet on the sw_ring. Goto the end
1307          * of that packet (the last segment in the packet chain) and
1308          * then the next segment will be the start of the oldest segment
1309          * in the sw_ring. This is the first packet that will be
1310          * attempted to be freed.
1311          */
1312
1313         /* Get last segment in most recently added packet. */
1314         tx_first = sw_ring[txq->tx_tail].last_id;
1315
1316         /* Get the next segment, which is the oldest segment in ring. */
1317         tx_first = sw_ring[tx_first].next_id;
1318
1319         /* Set the current index to the first. */
1320         tx_id = tx_first;
1321
1322         /* Loop through each packet. For each packet, verify that an
1323          * mbuf exists and that the last segment is free. If so, free
1324          * it and move on.
1325          */
1326         while (1) {
1327                 tx_last = sw_ring[tx_id].last_id;
1328
1329                 if (sw_ring[tx_last].mbuf) {
1330                         if (txr[tx_last].wb.status &
1331                             E1000_TXD_STAT_DD) {
1332                                 /* Increment the number of packets
1333                                  * freed.
1334                                  */
1335                                 count++;
1336
1337                                 /* Get the start of the next packet. */
1338                                 tx_next = sw_ring[tx_last].next_id;
1339
1340                                 /* Loop through all segments in a
1341                                  * packet.
1342                                  */
1343                                 do {
1344                                         if (sw_ring[tx_id].mbuf) {
1345                                                 rte_pktmbuf_free_seg(
1346                                                         sw_ring[tx_id].mbuf);
1347                                                 sw_ring[tx_id].mbuf = NULL;
1348                                                 sw_ring[tx_id].last_id = tx_id;
1349                                         }
1350
1351                                         /* Move to next segemnt. */
1352                                         tx_id = sw_ring[tx_id].next_id;
1353
1354                                 } while (tx_id != tx_next);
1355
1356                                 if (unlikely(count == (int)free_cnt))
1357                                         break;
1358                         } else {
1359                                 /* mbuf still in use, nothing left to
1360                                  * free.
1361                                  */
1362                                 break;
1363                         }
1364                 } else {
1365                         /* There are multiple reasons to be here:
1366                          * 1) All the packets on the ring have been
1367                          *    freed - tx_id is equal to tx_first
1368                          *    and some packets have been freed.
1369                          *    - Done, exit
1370                          * 2) Interfaces has not sent a rings worth of
1371                          *    packets yet, so the segment after tail is
1372                          *    still empty. Or a previous call to this
1373                          *    function freed some of the segments but
1374                          *    not all so there is a hole in the list.
1375                          *    Hopefully this is a rare case.
1376                          *    - Walk the list and find the next mbuf. If
1377                          *      there isn't one, then done.
1378                          */
1379                         if (likely(tx_id == tx_first && count != 0))
1380                                 break;
1381
1382                         /* Walk the list and find the next mbuf, if any. */
1383                         do {
1384                                 /* Move to next segemnt. */
1385                                 tx_id = sw_ring[tx_id].next_id;
1386
1387                                 if (sw_ring[tx_id].mbuf)
1388                                         break;
1389
1390                         } while (tx_id != tx_first);
1391
1392                         /* Determine why previous loop bailed. If there
1393                          * is not an mbuf, done.
1394                          */
1395                         if (!sw_ring[tx_id].mbuf)
1396                                 break;
1397                 }
1398         }
1399
1400         return count;
1401 }
1402
1403 int
1404 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1405 {
1406         return igb_tx_done_cleanup(txq, free_cnt);
1407 }
1408
1409 static void
1410 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1411 {
1412         txq->tx_head = 0;
1413         txq->tx_tail = 0;
1414         txq->ctx_curr = 0;
1415         memset((void*)&txq->ctx_cache, 0,
1416                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1417 }
1418
1419 static void
1420 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1421 {
1422         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1423         struct igb_tx_entry *txe = txq->sw_ring;
1424         uint16_t i, prev;
1425         struct e1000_hw *hw;
1426
1427         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1428         /* Zero out HW ring memory */
1429         for (i = 0; i < txq->nb_tx_desc; i++) {
1430                 txq->tx_ring[i] = zeroed_desc;
1431         }
1432
1433         /* Initialize ring entries */
1434         prev = (uint16_t)(txq->nb_tx_desc - 1);
1435         for (i = 0; i < txq->nb_tx_desc; i++) {
1436                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1437
1438                 txd->wb.status = E1000_TXD_STAT_DD;
1439                 txe[i].mbuf = NULL;
1440                 txe[i].last_id = i;
1441                 txe[prev].next_id = i;
1442                 prev = i;
1443         }
1444
1445         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1446         /* 82575 specific, each tx queue will use 2 hw contexts */
1447         if (hw->mac.type == e1000_82575)
1448                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1449
1450         igb_reset_tx_queue_stat(txq);
1451 }
1452
1453 uint64_t
1454 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1455 {
1456         uint64_t tx_offload_capa;
1457
1458         RTE_SET_USED(dev);
1459         tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1460                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1461                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1462                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1463                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1464                           DEV_TX_OFFLOAD_TCP_TSO     |
1465                           DEV_TX_OFFLOAD_MULTI_SEGS;
1466
1467         return tx_offload_capa;
1468 }
1469
1470 uint64_t
1471 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1472 {
1473         uint64_t tx_queue_offload_capa;
1474
1475         tx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1476
1477         return tx_queue_offload_capa;
1478 }
1479
1480 int
1481 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1482                          uint16_t queue_idx,
1483                          uint16_t nb_desc,
1484                          unsigned int socket_id,
1485                          const struct rte_eth_txconf *tx_conf)
1486 {
1487         const struct rte_memzone *tz;
1488         struct igb_tx_queue *txq;
1489         struct e1000_hw     *hw;
1490         uint32_t size;
1491         uint64_t offloads;
1492
1493         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1494
1495         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1496
1497         /*
1498          * Validate number of transmit descriptors.
1499          * It must not exceed hardware maximum, and must be multiple
1500          * of E1000_ALIGN.
1501          */
1502         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1503                         (nb_desc > E1000_MAX_RING_DESC) ||
1504                         (nb_desc < E1000_MIN_RING_DESC)) {
1505                 return -EINVAL;
1506         }
1507
1508         /*
1509          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1510          * driver.
1511          */
1512         if (tx_conf->tx_free_thresh != 0)
1513                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1514                              "used for the 1G driver.");
1515         if (tx_conf->tx_rs_thresh != 0)
1516                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1517                              "used for the 1G driver.");
1518         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1519                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1520                              "consider setting the TX WTHRESH value to 4, 8, "
1521                              "or 16.");
1522
1523         /* Free memory prior to re-allocation if needed */
1524         if (dev->data->tx_queues[queue_idx] != NULL) {
1525                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1526                 dev->data->tx_queues[queue_idx] = NULL;
1527         }
1528
1529         /* First allocate the tx queue data structure */
1530         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1531                                                         RTE_CACHE_LINE_SIZE);
1532         if (txq == NULL)
1533                 return -ENOMEM;
1534
1535         /*
1536          * Allocate TX ring hardware descriptors. A memzone large enough to
1537          * handle the maximum ring size is allocated in order to allow for
1538          * resizing in later calls to the queue setup function.
1539          */
1540         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1541         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1542                                       E1000_ALIGN, socket_id);
1543         if (tz == NULL) {
1544                 igb_tx_queue_release(txq);
1545                 return -ENOMEM;
1546         }
1547
1548         txq->nb_tx_desc = nb_desc;
1549         txq->pthresh = tx_conf->tx_thresh.pthresh;
1550         txq->hthresh = tx_conf->tx_thresh.hthresh;
1551         txq->wthresh = tx_conf->tx_thresh.wthresh;
1552         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1553                 txq->wthresh = 1;
1554         txq->queue_id = queue_idx;
1555         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1556                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1557         txq->port_id = dev->data->port_id;
1558
1559         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1560         txq->tx_ring_phys_addr = tz->iova;
1561
1562         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1563         /* Allocate software ring */
1564         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1565                                    sizeof(struct igb_tx_entry) * nb_desc,
1566                                    RTE_CACHE_LINE_SIZE);
1567         if (txq->sw_ring == NULL) {
1568                 igb_tx_queue_release(txq);
1569                 return -ENOMEM;
1570         }
1571         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1572                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1573
1574         igb_reset_tx_queue(txq, dev);
1575         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1576         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1577         dev->data->tx_queues[queue_idx] = txq;
1578         txq->offloads = offloads;
1579
1580         return 0;
1581 }
1582
1583 static void
1584 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1585 {
1586         unsigned i;
1587
1588         if (rxq->sw_ring != NULL) {
1589                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1590                         if (rxq->sw_ring[i].mbuf != NULL) {
1591                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1592                                 rxq->sw_ring[i].mbuf = NULL;
1593                         }
1594                 }
1595         }
1596 }
1597
1598 static void
1599 igb_rx_queue_release(struct igb_rx_queue *rxq)
1600 {
1601         if (rxq != NULL) {
1602                 igb_rx_queue_release_mbufs(rxq);
1603                 rte_free(rxq->sw_ring);
1604                 rte_free(rxq);
1605         }
1606 }
1607
1608 void
1609 eth_igb_rx_queue_release(void *rxq)
1610 {
1611         igb_rx_queue_release(rxq);
1612 }
1613
1614 static void
1615 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1616 {
1617         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1618         unsigned i;
1619
1620         /* Zero out HW ring memory */
1621         for (i = 0; i < rxq->nb_rx_desc; i++) {
1622                 rxq->rx_ring[i] = zeroed_desc;
1623         }
1624
1625         rxq->rx_tail = 0;
1626         rxq->pkt_first_seg = NULL;
1627         rxq->pkt_last_seg = NULL;
1628 }
1629
1630 uint64_t
1631 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1632 {
1633         uint64_t rx_offload_capa;
1634         struct e1000_hw *hw;
1635
1636         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1637
1638         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1639                           DEV_RX_OFFLOAD_VLAN_FILTER |
1640                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1641                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1642                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1643                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1644                           DEV_RX_OFFLOAD_KEEP_CRC    |
1645                           DEV_RX_OFFLOAD_SCATTER     |
1646                           DEV_RX_OFFLOAD_RSS_HASH;
1647
1648         if (hw->mac.type == e1000_i350 ||
1649             hw->mac.type == e1000_i210 ||
1650             hw->mac.type == e1000_i211)
1651                 rx_offload_capa |= DEV_RX_OFFLOAD_VLAN_EXTEND;
1652
1653         return rx_offload_capa;
1654 }
1655
1656 uint64_t
1657 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1658 {
1659         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1660         uint64_t rx_queue_offload_capa;
1661
1662         switch (hw->mac.type) {
1663         case e1000_vfadapt_i350:
1664                 /*
1665                  * As only one Rx queue can be used, let per queue offloading
1666                  * capability be same to per port queue offloading capability
1667                  * for better convenience.
1668                  */
1669                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1670                 break;
1671         default:
1672                 rx_queue_offload_capa = 0;
1673         }
1674         return rx_queue_offload_capa;
1675 }
1676
1677 int
1678 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1679                          uint16_t queue_idx,
1680                          uint16_t nb_desc,
1681                          unsigned int socket_id,
1682                          const struct rte_eth_rxconf *rx_conf,
1683                          struct rte_mempool *mp)
1684 {
1685         const struct rte_memzone *rz;
1686         struct igb_rx_queue *rxq;
1687         struct e1000_hw     *hw;
1688         unsigned int size;
1689         uint64_t offloads;
1690
1691         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1692
1693         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1694
1695         /*
1696          * Validate number of receive descriptors.
1697          * It must not exceed hardware maximum, and must be multiple
1698          * of E1000_ALIGN.
1699          */
1700         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1701                         (nb_desc > E1000_MAX_RING_DESC) ||
1702                         (nb_desc < E1000_MIN_RING_DESC)) {
1703                 return -EINVAL;
1704         }
1705
1706         /* Free memory prior to re-allocation if needed */
1707         if (dev->data->rx_queues[queue_idx] != NULL) {
1708                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1709                 dev->data->rx_queues[queue_idx] = NULL;
1710         }
1711
1712         /* First allocate the RX queue data structure. */
1713         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1714                           RTE_CACHE_LINE_SIZE);
1715         if (rxq == NULL)
1716                 return -ENOMEM;
1717         rxq->offloads = offloads;
1718         rxq->mb_pool = mp;
1719         rxq->nb_rx_desc = nb_desc;
1720         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1721         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1722         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1723         if (rxq->wthresh > 0 &&
1724             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1725                 rxq->wthresh = 1;
1726         rxq->drop_en = rx_conf->rx_drop_en;
1727         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1728         rxq->queue_id = queue_idx;
1729         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1730                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1731         rxq->port_id = dev->data->port_id;
1732         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1733                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1734         else
1735                 rxq->crc_len = 0;
1736
1737         /*
1738          *  Allocate RX ring hardware descriptors. A memzone large enough to
1739          *  handle the maximum ring size is allocated in order to allow for
1740          *  resizing in later calls to the queue setup function.
1741          */
1742         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1743         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1744                                       E1000_ALIGN, socket_id);
1745         if (rz == NULL) {
1746                 igb_rx_queue_release(rxq);
1747                 return -ENOMEM;
1748         }
1749         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1750         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1751         rxq->rx_ring_phys_addr = rz->iova;
1752         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1753
1754         /* Allocate software ring. */
1755         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1756                                    sizeof(struct igb_rx_entry) * nb_desc,
1757                                    RTE_CACHE_LINE_SIZE);
1758         if (rxq->sw_ring == NULL) {
1759                 igb_rx_queue_release(rxq);
1760                 return -ENOMEM;
1761         }
1762         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1763                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1764
1765         dev->data->rx_queues[queue_idx] = rxq;
1766         igb_reset_rx_queue(rxq);
1767
1768         return 0;
1769 }
1770
1771 uint32_t
1772 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1773 {
1774 #define IGB_RXQ_SCAN_INTERVAL 4
1775         volatile union e1000_adv_rx_desc *rxdp;
1776         struct igb_rx_queue *rxq;
1777         uint32_t desc = 0;
1778
1779         rxq = dev->data->rx_queues[rx_queue_id];
1780         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1781
1782         while ((desc < rxq->nb_rx_desc) &&
1783                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1784                 desc += IGB_RXQ_SCAN_INTERVAL;
1785                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1786                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1787                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1788                                 desc - rxq->nb_rx_desc]);
1789         }
1790
1791         return desc;
1792 }
1793
1794 int
1795 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1796 {
1797         volatile union e1000_adv_rx_desc *rxdp;
1798         struct igb_rx_queue *rxq = rx_queue;
1799         uint32_t desc;
1800
1801         if (unlikely(offset >= rxq->nb_rx_desc))
1802                 return 0;
1803         desc = rxq->rx_tail + offset;
1804         if (desc >= rxq->nb_rx_desc)
1805                 desc -= rxq->nb_rx_desc;
1806
1807         rxdp = &rxq->rx_ring[desc];
1808         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1809 }
1810
1811 int
1812 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1813 {
1814         struct igb_rx_queue *rxq = rx_queue;
1815         volatile uint32_t *status;
1816         uint32_t desc;
1817
1818         if (unlikely(offset >= rxq->nb_rx_desc))
1819                 return -EINVAL;
1820
1821         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1822                 return RTE_ETH_RX_DESC_UNAVAIL;
1823
1824         desc = rxq->rx_tail + offset;
1825         if (desc >= rxq->nb_rx_desc)
1826                 desc -= rxq->nb_rx_desc;
1827
1828         status = &rxq->rx_ring[desc].wb.upper.status_error;
1829         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1830                 return RTE_ETH_RX_DESC_DONE;
1831
1832         return RTE_ETH_RX_DESC_AVAIL;
1833 }
1834
1835 int
1836 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1837 {
1838         struct igb_tx_queue *txq = tx_queue;
1839         volatile uint32_t *status;
1840         uint32_t desc;
1841
1842         if (unlikely(offset >= txq->nb_tx_desc))
1843                 return -EINVAL;
1844
1845         desc = txq->tx_tail + offset;
1846         if (desc >= txq->nb_tx_desc)
1847                 desc -= txq->nb_tx_desc;
1848
1849         status = &txq->tx_ring[desc].wb.status;
1850         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1851                 return RTE_ETH_TX_DESC_DONE;
1852
1853         return RTE_ETH_TX_DESC_FULL;
1854 }
1855
1856 void
1857 igb_dev_clear_queues(struct rte_eth_dev *dev)
1858 {
1859         uint16_t i;
1860         struct igb_tx_queue *txq;
1861         struct igb_rx_queue *rxq;
1862
1863         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1864                 txq = dev->data->tx_queues[i];
1865                 if (txq != NULL) {
1866                         igb_tx_queue_release_mbufs(txq);
1867                         igb_reset_tx_queue(txq, dev);
1868                 }
1869         }
1870
1871         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1872                 rxq = dev->data->rx_queues[i];
1873                 if (rxq != NULL) {
1874                         igb_rx_queue_release_mbufs(rxq);
1875                         igb_reset_rx_queue(rxq);
1876                 }
1877         }
1878 }
1879
1880 void
1881 igb_dev_free_queues(struct rte_eth_dev *dev)
1882 {
1883         uint16_t i;
1884
1885         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1886                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1887                 dev->data->rx_queues[i] = NULL;
1888                 rte_eth_dma_zone_free(dev, "rx_ring", i);
1889         }
1890         dev->data->nb_rx_queues = 0;
1891
1892         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1893                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1894                 dev->data->tx_queues[i] = NULL;
1895                 rte_eth_dma_zone_free(dev, "tx_ring", i);
1896         }
1897         dev->data->nb_tx_queues = 0;
1898 }
1899
1900 /**
1901  * Receive Side Scaling (RSS).
1902  * See section 7.1.1.7 in the following document:
1903  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1904  *
1905  * Principles:
1906  * The source and destination IP addresses of the IP header and the source and
1907  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1908  * against a configurable random key to compute a 32-bit RSS hash result.
1909  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1910  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1911  * RSS output index which is used as the RX queue index where to store the
1912  * received packets.
1913  * The following output is supplied in the RX write-back descriptor:
1914  *     - 32-bit result of the Microsoft RSS hash function,
1915  *     - 4-bit RSS type field.
1916  */
1917
1918 /*
1919  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1920  * Used as the default key.
1921  */
1922 static uint8_t rss_intel_key[40] = {
1923         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1924         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1925         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1926         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1927         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1928 };
1929
1930 static void
1931 igb_rss_disable(struct rte_eth_dev *dev)
1932 {
1933         struct e1000_hw *hw;
1934         uint32_t mrqc;
1935
1936         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1937         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1938         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1939         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1940 }
1941
1942 static void
1943 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1944 {
1945         uint8_t  *hash_key;
1946         uint32_t rss_key;
1947         uint32_t mrqc;
1948         uint64_t rss_hf;
1949         uint16_t i;
1950
1951         hash_key = rss_conf->rss_key;
1952         if (hash_key != NULL) {
1953                 /* Fill in RSS hash key */
1954                 for (i = 0; i < 10; i++) {
1955                         rss_key  = hash_key[(i * 4)];
1956                         rss_key |= hash_key[(i * 4) + 1] << 8;
1957                         rss_key |= hash_key[(i * 4) + 2] << 16;
1958                         rss_key |= hash_key[(i * 4) + 3] << 24;
1959                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1960                 }
1961         }
1962
1963         /* Set configured hashing protocols in MRQC register */
1964         rss_hf = rss_conf->rss_hf;
1965         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1966         if (rss_hf & ETH_RSS_IPV4)
1967                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1968         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1969                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1970         if (rss_hf & ETH_RSS_IPV6)
1971                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1972         if (rss_hf & ETH_RSS_IPV6_EX)
1973                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1974         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1975                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1976         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1977                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1978         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1979                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1980         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1981                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1982         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1983                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1984         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1985 }
1986
1987 int
1988 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1989                         struct rte_eth_rss_conf *rss_conf)
1990 {
1991         struct e1000_hw *hw;
1992         uint32_t mrqc;
1993         uint64_t rss_hf;
1994
1995         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1996
1997         /*
1998          * Before changing anything, first check that the update RSS operation
1999          * does not attempt to disable RSS, if RSS was enabled at
2000          * initialization time, or does not attempt to enable RSS, if RSS was
2001          * disabled at initialization time.
2002          */
2003         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
2004         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2005         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
2006                 if (rss_hf != 0) /* Enable RSS */
2007                         return -(EINVAL);
2008                 return 0; /* Nothing to do */
2009         }
2010         /* RSS enabled */
2011         if (rss_hf == 0) /* Disable RSS */
2012                 return -(EINVAL);
2013         igb_hw_rss_hash_set(hw, rss_conf);
2014         return 0;
2015 }
2016
2017 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2018                               struct rte_eth_rss_conf *rss_conf)
2019 {
2020         struct e1000_hw *hw;
2021         uint8_t *hash_key;
2022         uint32_t rss_key;
2023         uint32_t mrqc;
2024         uint64_t rss_hf;
2025         uint16_t i;
2026
2027         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2028         hash_key = rss_conf->rss_key;
2029         if (hash_key != NULL) {
2030                 /* Return RSS hash key */
2031                 for (i = 0; i < 10; i++) {
2032                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2033                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2034                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2035                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2036                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2037                 }
2038         }
2039
2040         /* Get RSS functions configured in MRQC register */
2041         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2042         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2043                 rss_conf->rss_hf = 0;
2044                 return 0;
2045         }
2046         rss_hf = 0;
2047         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2048                 rss_hf |= ETH_RSS_IPV4;
2049         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2050                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2051         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2052                 rss_hf |= ETH_RSS_IPV6;
2053         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2054                 rss_hf |= ETH_RSS_IPV6_EX;
2055         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2056                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2057         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2058                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2059         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2060                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2061         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2062                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2063         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2064                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2065         rss_conf->rss_hf = rss_hf;
2066         return 0;
2067 }
2068
2069 static void
2070 igb_rss_configure(struct rte_eth_dev *dev)
2071 {
2072         struct rte_eth_rss_conf rss_conf;
2073         struct e1000_hw *hw;
2074         uint32_t shift;
2075         uint16_t i;
2076
2077         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2078
2079         /* Fill in redirection table. */
2080         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2081         for (i = 0; i < 128; i++) {
2082                 union e1000_reta {
2083                         uint32_t dword;
2084                         uint8_t  bytes[4];
2085                 } reta;
2086                 uint8_t q_idx;
2087
2088                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2089                                    i % dev->data->nb_rx_queues : 0);
2090                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2091                 if ((i & 3) == 3)
2092                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2093         }
2094
2095         /*
2096          * Configure the RSS key and the RSS protocols used to compute
2097          * the RSS hash of input packets.
2098          */
2099         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2100         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2101                 igb_rss_disable(dev);
2102                 return;
2103         }
2104         if (rss_conf.rss_key == NULL)
2105                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2106         igb_hw_rss_hash_set(hw, &rss_conf);
2107 }
2108
2109 /*
2110  * Check if the mac type support VMDq or not.
2111  * Return 1 if it supports, otherwise, return 0.
2112  */
2113 static int
2114 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2115 {
2116         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2117
2118         switch (hw->mac.type) {
2119         case e1000_82576:
2120         case e1000_82580:
2121         case e1000_i350:
2122                 return 1;
2123         case e1000_82540:
2124         case e1000_82541:
2125         case e1000_82542:
2126         case e1000_82543:
2127         case e1000_82544:
2128         case e1000_82545:
2129         case e1000_82546:
2130         case e1000_82547:
2131         case e1000_82571:
2132         case e1000_82572:
2133         case e1000_82573:
2134         case e1000_82574:
2135         case e1000_82583:
2136         case e1000_i210:
2137         case e1000_i211:
2138         default:
2139                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2140                 return 0;
2141         }
2142 }
2143
2144 static int
2145 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2146 {
2147         struct rte_eth_vmdq_rx_conf *cfg;
2148         struct e1000_hw *hw;
2149         uint32_t mrqc, vt_ctl, vmolr, rctl;
2150         int i;
2151
2152         PMD_INIT_FUNC_TRACE();
2153
2154         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2155         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2156
2157         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2158         if (igb_is_vmdq_supported(dev) == 0)
2159                 return -1;
2160
2161         igb_rss_disable(dev);
2162
2163         /* RCTL: eanble VLAN filter */
2164         rctl = E1000_READ_REG(hw, E1000_RCTL);
2165         rctl |= E1000_RCTL_VFE;
2166         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2167
2168         /* MRQC: enable vmdq */
2169         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2170         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2171         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2172
2173         /* VTCTL:  pool selection according to VLAN tag */
2174         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2175         if (cfg->enable_default_pool)
2176                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2177         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2178         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2179
2180         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2181                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2182                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2183                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2184                         E1000_VMOLR_MPME);
2185
2186                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2187                         vmolr |= E1000_VMOLR_AUPE;
2188                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2189                         vmolr |= E1000_VMOLR_ROMPE;
2190                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2191                         vmolr |= E1000_VMOLR_ROPE;
2192                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2193                         vmolr |= E1000_VMOLR_BAM;
2194                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2195                         vmolr |= E1000_VMOLR_MPME;
2196
2197                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2198         }
2199
2200         /*
2201          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2202          * Both 82576 and 82580 support it
2203          */
2204         if (hw->mac.type != e1000_i350) {
2205                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2206                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2207                         vmolr |= E1000_VMOLR_STRVLAN;
2208                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2209                 }
2210         }
2211
2212         /* VFTA - enable all vlan filters */
2213         for (i = 0; i < IGB_VFTA_SIZE; i++)
2214                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2215
2216         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2217         if (hw->mac.type != e1000_82580)
2218                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2219
2220         /*
2221          * RAH/RAL - allow pools to read specific mac addresses
2222          * In this case, all pools should be able to read from mac addr 0
2223          */
2224         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2225         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2226
2227         /* VLVF: set up filters for vlan tags as configured */
2228         for (i = 0; i < cfg->nb_pool_maps; i++) {
2229                 /* set vlan id in VF register and set the valid bit */
2230                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2231                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2232                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2233                         E1000_VLVF_POOLSEL_MASK)));
2234         }
2235
2236         E1000_WRITE_FLUSH(hw);
2237
2238         return 0;
2239 }
2240
2241
2242 /*********************************************************************
2243  *
2244  *  Enable receive unit.
2245  *
2246  **********************************************************************/
2247
2248 static int
2249 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2250 {
2251         struct igb_rx_entry *rxe = rxq->sw_ring;
2252         uint64_t dma_addr;
2253         unsigned i;
2254
2255         /* Initialize software ring entries. */
2256         for (i = 0; i < rxq->nb_rx_desc; i++) {
2257                 volatile union e1000_adv_rx_desc *rxd;
2258                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2259
2260                 if (mbuf == NULL) {
2261                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2262                                      "queue_id=%hu", rxq->queue_id);
2263                         return -ENOMEM;
2264                 }
2265                 dma_addr =
2266                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2267                 rxd = &rxq->rx_ring[i];
2268                 rxd->read.hdr_addr = 0;
2269                 rxd->read.pkt_addr = dma_addr;
2270                 rxe[i].mbuf = mbuf;
2271         }
2272
2273         return 0;
2274 }
2275
2276 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2277 static int
2278 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2279 {
2280         struct e1000_hw *hw =
2281                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2282         uint32_t mrqc;
2283
2284         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2285                 /*
2286                  * SRIOV active scheme
2287                  * FIXME if support RSS together with VMDq & SRIOV
2288                  */
2289                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2290                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2291                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2292                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2293         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2294                 /*
2295                  * SRIOV inactive scheme
2296                  */
2297                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2298                         case ETH_MQ_RX_RSS:
2299                                 igb_rss_configure(dev);
2300                                 break;
2301                         case ETH_MQ_RX_VMDQ_ONLY:
2302                                 /*Configure general VMDQ only RX parameters*/
2303                                 igb_vmdq_rx_hw_configure(dev);
2304                                 break;
2305                         case ETH_MQ_RX_NONE:
2306                                 /* if mq_mode is none, disable rss mode.*/
2307                         default:
2308                                 igb_rss_disable(dev);
2309                                 break;
2310                 }
2311         }
2312
2313         return 0;
2314 }
2315
2316 int
2317 eth_igb_rx_init(struct rte_eth_dev *dev)
2318 {
2319         struct rte_eth_rxmode *rxmode;
2320         struct e1000_hw     *hw;
2321         struct igb_rx_queue *rxq;
2322         uint32_t rctl;
2323         uint32_t rxcsum;
2324         uint32_t srrctl;
2325         uint16_t buf_size;
2326         uint16_t rctl_bsize;
2327         uint16_t i;
2328         int ret;
2329
2330         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2331         srrctl = 0;
2332
2333         /*
2334          * Make sure receives are disabled while setting
2335          * up the descriptor ring.
2336          */
2337         rctl = E1000_READ_REG(hw, E1000_RCTL);
2338         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2339
2340         rxmode = &dev->data->dev_conf.rxmode;
2341
2342         /*
2343          * Configure support of jumbo frames, if any.
2344          */
2345         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2346                 uint32_t max_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
2347
2348                 rctl |= E1000_RCTL_LPE;
2349
2350                 /*
2351                  * Set maximum packet length by default, and might be updated
2352                  * together with enabling/disabling dual VLAN.
2353                  */
2354                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2355                         max_len += VLAN_TAG_SIZE;
2356
2357                 E1000_WRITE_REG(hw, E1000_RLPML, max_len);
2358         } else
2359                 rctl &= ~E1000_RCTL_LPE;
2360
2361         /* Configure and enable each RX queue. */
2362         rctl_bsize = 0;
2363         dev->rx_pkt_burst = eth_igb_recv_pkts;
2364         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2365                 uint64_t bus_addr;
2366                 uint32_t rxdctl;
2367
2368                 rxq = dev->data->rx_queues[i];
2369
2370                 rxq->flags = 0;
2371                 /*
2372                  * i350 and i354 vlan packets have vlan tags byte swapped.
2373                  */
2374                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2375                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2376                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2377                 } else {
2378                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2379                 }
2380
2381                 /* Allocate buffers for descriptor rings and set up queue */
2382                 ret = igb_alloc_rx_queue_mbufs(rxq);
2383                 if (ret)
2384                         return ret;
2385
2386                 /*
2387                  * Reset crc_len in case it was changed after queue setup by a
2388                  *  call to configure
2389                  */
2390                 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2391                         rxq->crc_len = RTE_ETHER_CRC_LEN;
2392                 else
2393                         rxq->crc_len = 0;
2394
2395                 bus_addr = rxq->rx_ring_phys_addr;
2396                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2397                                 rxq->nb_rx_desc *
2398                                 sizeof(union e1000_adv_rx_desc));
2399                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2400                                 (uint32_t)(bus_addr >> 32));
2401                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2402
2403                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2404
2405                 /*
2406                  * Configure RX buffer size.
2407                  */
2408                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2409                         RTE_PKTMBUF_HEADROOM);
2410                 if (buf_size >= 1024) {
2411                         /*
2412                          * Configure the BSIZEPACKET field of the SRRCTL
2413                          * register of the queue.
2414                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2415                          * If this field is equal to 0b, then RCTL.BSIZE
2416                          * determines the RX packet buffer size.
2417                          */
2418                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2419                                    E1000_SRRCTL_BSIZEPKT_MASK);
2420                         buf_size = (uint16_t) ((srrctl &
2421                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2422                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2423
2424                         /* It adds dual VLAN length for supporting dual VLAN */
2425                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2426                                                 2 * VLAN_TAG_SIZE) > buf_size){
2427                                 if (!dev->data->scattered_rx)
2428                                         PMD_INIT_LOG(DEBUG,
2429                                                      "forcing scatter mode");
2430                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2431                                 dev->data->scattered_rx = 1;
2432                         }
2433                 } else {
2434                         /*
2435                          * Use BSIZE field of the device RCTL register.
2436                          */
2437                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2438                                 rctl_bsize = buf_size;
2439                         if (!dev->data->scattered_rx)
2440                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2441                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2442                         dev->data->scattered_rx = 1;
2443                 }
2444
2445                 /* Set if packets are dropped when no descriptors available */
2446                 if (rxq->drop_en)
2447                         srrctl |= E1000_SRRCTL_DROP_EN;
2448
2449                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2450
2451                 /* Enable this RX queue. */
2452                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2453                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2454                 rxdctl &= 0xFFF00000;
2455                 rxdctl |= (rxq->pthresh & 0x1F);
2456                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2457                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2458                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2459         }
2460
2461         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2462                 if (!dev->data->scattered_rx)
2463                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2464                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2465                 dev->data->scattered_rx = 1;
2466         }
2467
2468         /*
2469          * Setup BSIZE field of RCTL register, if needed.
2470          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2471          * register, since the code above configures the SRRCTL register of
2472          * the RX queue in such a case.
2473          * All configurable sizes are:
2474          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2475          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2476          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2477          *  2048: rctl |= E1000_RCTL_SZ_2048;
2478          *  1024: rctl |= E1000_RCTL_SZ_1024;
2479          *   512: rctl |= E1000_RCTL_SZ_512;
2480          *   256: rctl |= E1000_RCTL_SZ_256;
2481          */
2482         if (rctl_bsize > 0) {
2483                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2484                         rctl |= E1000_RCTL_SZ_512;
2485                 else /* 256 <= buf_size < 512 - use 256 */
2486                         rctl |= E1000_RCTL_SZ_256;
2487         }
2488
2489         /*
2490          * Configure RSS if device configured with multiple RX queues.
2491          */
2492         igb_dev_mq_rx_configure(dev);
2493
2494         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2495         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2496
2497         /*
2498          * Setup the Checksum Register.
2499          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2500          */
2501         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2502         rxcsum |= E1000_RXCSUM_PCSD;
2503
2504         /* Enable both L3/L4 rx checksum offload */
2505         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2506                 rxcsum |= E1000_RXCSUM_IPOFL;
2507         else
2508                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2509         if (rxmode->offloads &
2510                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2511                 rxcsum |= E1000_RXCSUM_TUOFL;
2512         else
2513                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2514         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2515                 rxcsum |= E1000_RXCSUM_CRCOFL;
2516         else
2517                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2518
2519         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2520
2521         /* Setup the Receive Control Register. */
2522         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
2523                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2524
2525                 /* clear STRCRC bit in all queues */
2526                 if (hw->mac.type == e1000_i350 ||
2527                     hw->mac.type == e1000_i210 ||
2528                     hw->mac.type == e1000_i211 ||
2529                     hw->mac.type == e1000_i354) {
2530                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2531                                 rxq = dev->data->rx_queues[i];
2532                                 uint32_t dvmolr = E1000_READ_REG(hw,
2533                                         E1000_DVMOLR(rxq->reg_idx));
2534                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2535                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2536                         }
2537                 }
2538         } else {
2539                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2540
2541                 /* set STRCRC bit in all queues */
2542                 if (hw->mac.type == e1000_i350 ||
2543                     hw->mac.type == e1000_i210 ||
2544                     hw->mac.type == e1000_i211 ||
2545                     hw->mac.type == e1000_i354) {
2546                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2547                                 rxq = dev->data->rx_queues[i];
2548                                 uint32_t dvmolr = E1000_READ_REG(hw,
2549                                         E1000_DVMOLR(rxq->reg_idx));
2550                                 dvmolr |= E1000_DVMOLR_STRCRC;
2551                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2552                         }
2553                 }
2554         }
2555
2556         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2557         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2558                 E1000_RCTL_RDMTS_HALF |
2559                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2560
2561         /* Make sure VLAN Filters are off. */
2562         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2563                 rctl &= ~E1000_RCTL_VFE;
2564         /* Don't store bad packets. */
2565         rctl &= ~E1000_RCTL_SBP;
2566
2567         /* Enable Receives. */
2568         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2569
2570         /*
2571          * Setup the HW Rx Head and Tail Descriptor Pointers.
2572          * This needs to be done after enable.
2573          */
2574         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2575                 rxq = dev->data->rx_queues[i];
2576                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2577                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2578         }
2579
2580         return 0;
2581 }
2582
2583 /*********************************************************************
2584  *
2585  *  Enable transmit unit.
2586  *
2587  **********************************************************************/
2588 void
2589 eth_igb_tx_init(struct rte_eth_dev *dev)
2590 {
2591         struct e1000_hw     *hw;
2592         struct igb_tx_queue *txq;
2593         uint32_t tctl;
2594         uint32_t txdctl;
2595         uint16_t i;
2596
2597         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2598
2599         /* Setup the Base and Length of the Tx Descriptor Rings. */
2600         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2601                 uint64_t bus_addr;
2602                 txq = dev->data->tx_queues[i];
2603                 bus_addr = txq->tx_ring_phys_addr;
2604
2605                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2606                                 txq->nb_tx_desc *
2607                                 sizeof(union e1000_adv_tx_desc));
2608                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2609                                 (uint32_t)(bus_addr >> 32));
2610                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2611
2612                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2613                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2614                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2615
2616                 /* Setup Transmit threshold registers. */
2617                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2618                 txdctl |= txq->pthresh & 0x1F;
2619                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2620                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2621                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2622                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2623         }
2624
2625         /* Program the Transmit Control Register. */
2626         tctl = E1000_READ_REG(hw, E1000_TCTL);
2627         tctl &= ~E1000_TCTL_CT;
2628         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2629                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2630
2631         e1000_config_collision_dist(hw);
2632
2633         /* This write will effectively turn on the transmit unit. */
2634         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2635 }
2636
2637 /*********************************************************************
2638  *
2639  *  Enable VF receive unit.
2640  *
2641  **********************************************************************/
2642 int
2643 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2644 {
2645         struct e1000_hw     *hw;
2646         struct igb_rx_queue *rxq;
2647         uint32_t srrctl;
2648         uint16_t buf_size;
2649         uint16_t rctl_bsize;
2650         uint16_t i;
2651         int ret;
2652
2653         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2654
2655         /* setup MTU */
2656         e1000_rlpml_set_vf(hw,
2657                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2658                 VLAN_TAG_SIZE));
2659
2660         /* Configure and enable each RX queue. */
2661         rctl_bsize = 0;
2662         dev->rx_pkt_burst = eth_igb_recv_pkts;
2663         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2664                 uint64_t bus_addr;
2665                 uint32_t rxdctl;
2666
2667                 rxq = dev->data->rx_queues[i];
2668
2669                 rxq->flags = 0;
2670                 /*
2671                  * i350VF LB vlan packets have vlan tags byte swapped.
2672                  */
2673                 if (hw->mac.type == e1000_vfadapt_i350) {
2674                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2675                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2676                 } else {
2677                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2678                 }
2679
2680                 /* Allocate buffers for descriptor rings and set up queue */
2681                 ret = igb_alloc_rx_queue_mbufs(rxq);
2682                 if (ret)
2683                         return ret;
2684
2685                 bus_addr = rxq->rx_ring_phys_addr;
2686                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2687                                 rxq->nb_rx_desc *
2688                                 sizeof(union e1000_adv_rx_desc));
2689                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2690                                 (uint32_t)(bus_addr >> 32));
2691                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2692
2693                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2694
2695                 /*
2696                  * Configure RX buffer size.
2697                  */
2698                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2699                         RTE_PKTMBUF_HEADROOM);
2700                 if (buf_size >= 1024) {
2701                         /*
2702                          * Configure the BSIZEPACKET field of the SRRCTL
2703                          * register of the queue.
2704                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2705                          * If this field is equal to 0b, then RCTL.BSIZE
2706                          * determines the RX packet buffer size.
2707                          */
2708                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2709                                    E1000_SRRCTL_BSIZEPKT_MASK);
2710                         buf_size = (uint16_t) ((srrctl &
2711                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2712                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2713
2714                         /* It adds dual VLAN length for supporting dual VLAN */
2715                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2716                                                 2 * VLAN_TAG_SIZE) > buf_size){
2717                                 if (!dev->data->scattered_rx)
2718                                         PMD_INIT_LOG(DEBUG,
2719                                                      "forcing scatter mode");
2720                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2721                                 dev->data->scattered_rx = 1;
2722                         }
2723                 } else {
2724                         /*
2725                          * Use BSIZE field of the device RCTL register.
2726                          */
2727                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2728                                 rctl_bsize = buf_size;
2729                         if (!dev->data->scattered_rx)
2730                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2731                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2732                         dev->data->scattered_rx = 1;
2733                 }
2734
2735                 /* Set if packets are dropped when no descriptors available */
2736                 if (rxq->drop_en)
2737                         srrctl |= E1000_SRRCTL_DROP_EN;
2738
2739                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2740
2741                 /* Enable this RX queue. */
2742                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2743                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2744                 rxdctl &= 0xFFF00000;
2745                 rxdctl |= (rxq->pthresh & 0x1F);
2746                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2747                 if (hw->mac.type == e1000_vfadapt) {
2748                         /*
2749                          * Workaround of 82576 VF Erratum
2750                          * force set WTHRESH to 1
2751                          * to avoid Write-Back not triggered sometimes
2752                          */
2753                         rxdctl |= 0x10000;
2754                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2755                 }
2756                 else
2757                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2758                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2759         }
2760
2761         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2762                 if (!dev->data->scattered_rx)
2763                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2764                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2765                 dev->data->scattered_rx = 1;
2766         }
2767
2768         /*
2769          * Setup the HW Rx Head and Tail Descriptor Pointers.
2770          * This needs to be done after enable.
2771          */
2772         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2773                 rxq = dev->data->rx_queues[i];
2774                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2775                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2776         }
2777
2778         return 0;
2779 }
2780
2781 /*********************************************************************
2782  *
2783  *  Enable VF transmit unit.
2784  *
2785  **********************************************************************/
2786 void
2787 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2788 {
2789         struct e1000_hw     *hw;
2790         struct igb_tx_queue *txq;
2791         uint32_t txdctl;
2792         uint16_t i;
2793
2794         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2795
2796         /* Setup the Base and Length of the Tx Descriptor Rings. */
2797         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2798                 uint64_t bus_addr;
2799
2800                 txq = dev->data->tx_queues[i];
2801                 bus_addr = txq->tx_ring_phys_addr;
2802                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2803                                 txq->nb_tx_desc *
2804                                 sizeof(union e1000_adv_tx_desc));
2805                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2806                                 (uint32_t)(bus_addr >> 32));
2807                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2808
2809                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2810                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2811                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2812
2813                 /* Setup Transmit threshold registers. */
2814                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2815                 txdctl |= txq->pthresh & 0x1F;
2816                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2817                 if (hw->mac.type == e1000_82576) {
2818                         /*
2819                          * Workaround of 82576 VF Erratum
2820                          * force set WTHRESH to 1
2821                          * to avoid Write-Back not triggered sometimes
2822                          */
2823                         txdctl |= 0x10000;
2824                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2825                 }
2826                 else
2827                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2828                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2829                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2830         }
2831
2832 }
2833
2834 void
2835 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2836         struct rte_eth_rxq_info *qinfo)
2837 {
2838         struct igb_rx_queue *rxq;
2839
2840         rxq = dev->data->rx_queues[queue_id];
2841
2842         qinfo->mp = rxq->mb_pool;
2843         qinfo->scattered_rx = dev->data->scattered_rx;
2844         qinfo->nb_desc = rxq->nb_rx_desc;
2845
2846         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2847         qinfo->conf.rx_drop_en = rxq->drop_en;
2848         qinfo->conf.offloads = rxq->offloads;
2849 }
2850
2851 void
2852 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2853         struct rte_eth_txq_info *qinfo)
2854 {
2855         struct igb_tx_queue *txq;
2856
2857         txq = dev->data->tx_queues[queue_id];
2858
2859         qinfo->nb_desc = txq->nb_tx_desc;
2860
2861         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2862         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2863         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2864         qinfo->conf.offloads = txq->offloads;
2865 }
2866
2867 int
2868 igb_rss_conf_init(struct rte_eth_dev *dev,
2869                   struct igb_rte_flow_rss_conf *out,
2870                   const struct rte_flow_action_rss *in)
2871 {
2872         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2873
2874         if (in->key_len > RTE_DIM(out->key) ||
2875             ((hw->mac.type == e1000_82576) &&
2876              (in->queue_num > IGB_MAX_RX_QUEUE_NUM_82576)) ||
2877             ((hw->mac.type != e1000_82576) &&
2878              (in->queue_num > IGB_MAX_RX_QUEUE_NUM)))
2879                 return -EINVAL;
2880         out->conf = (struct rte_flow_action_rss){
2881                 .func = in->func,
2882                 .level = in->level,
2883                 .types = in->types,
2884                 .key_len = in->key_len,
2885                 .queue_num = in->queue_num,
2886                 .key = memcpy(out->key, in->key, in->key_len),
2887                 .queue = memcpy(out->queue, in->queue,
2888                                 sizeof(*in->queue) * in->queue_num),
2889         };
2890         return 0;
2891 }
2892
2893 int
2894 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2895                     const struct rte_flow_action_rss *with)
2896 {
2897         return (comp->func == with->func &&
2898                 comp->level == with->level &&
2899                 comp->types == with->types &&
2900                 comp->key_len == with->key_len &&
2901                 comp->queue_num == with->queue_num &&
2902                 !memcmp(comp->key, with->key, with->key_len) &&
2903                 !memcmp(comp->queue, with->queue,
2904                         sizeof(*with->queue) * with->queue_num));
2905 }
2906
2907 int
2908 igb_config_rss_filter(struct rte_eth_dev *dev,
2909                 struct igb_rte_flow_rss_conf *conf, bool add)
2910 {
2911         uint32_t shift;
2912         uint16_t i, j;
2913         struct rte_eth_rss_conf rss_conf = {
2914                 .rss_key = conf->conf.key_len ?
2915                         (void *)(uintptr_t)conf->conf.key : NULL,
2916                 .rss_key_len = conf->conf.key_len,
2917                 .rss_hf = conf->conf.types,
2918         };
2919         struct e1000_filter_info *filter_info =
2920                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2921         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2922
2923         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2924
2925         if (!add) {
2926                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2927                                         &conf->conf)) {
2928                         igb_rss_disable(dev);
2929                         memset(&filter_info->rss_info, 0,
2930                                 sizeof(struct igb_rte_flow_rss_conf));
2931                         return 0;
2932                 }
2933                 return -EINVAL;
2934         }
2935
2936         if (filter_info->rss_info.conf.queue_num)
2937                 return -EINVAL;
2938
2939         /* Fill in redirection table. */
2940         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2941         for (i = 0, j = 0; i < 128; i++, j++) {
2942                 union e1000_reta {
2943                         uint32_t dword;
2944                         uint8_t  bytes[4];
2945                 } reta;
2946                 uint8_t q_idx;
2947
2948                 if (j == conf->conf.queue_num)
2949                         j = 0;
2950                 q_idx = conf->conf.queue[j];
2951                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2952                 if ((i & 3) == 3)
2953                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2954         }
2955
2956         /* Configure the RSS key and the RSS protocols used to compute
2957          * the RSS hash of input packets.
2958          */
2959         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2960                 igb_rss_disable(dev);
2961                 return 0;
2962         }
2963         if (rss_conf.rss_key == NULL)
2964                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2965         igb_hw_rss_hash_set(hw, &rss_conf);
2966
2967         if (igb_rss_conf_init(dev, &filter_info->rss_info, &conf->conf))
2968                 return -EINVAL;
2969
2970         return 0;
2971 }