net: add rte prefix to UDP structure
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_OUTER_IPV6 |      \
54                 PKT_TX_OUTER_IPV4 |      \
55                 PKT_TX_IPV6 |            \
56                 PKT_TX_IPV4 |            \
57                 PKT_TX_VLAN_PKT |                \
58                 PKT_TX_IP_CKSUM |                \
59                 PKT_TX_L4_MASK |                 \
60                 PKT_TX_TCP_SEG |                 \
61                 IGB_TX_IEEE1588_TMST)
62
63 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
64                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
65
66 /**
67  * Structure associated with each descriptor of the RX ring of a RX queue.
68  */
69 struct igb_rx_entry {
70         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
71 };
72
73 /**
74  * Structure associated with each descriptor of the TX ring of a TX queue.
75  */
76 struct igb_tx_entry {
77         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
78         uint16_t next_id; /**< Index of next descriptor in ring. */
79         uint16_t last_id; /**< Index of last scattered descriptor. */
80 };
81
82 /**
83  * rx queue flags
84  */
85 enum igb_rxq_flags {
86         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
87 };
88
89 /**
90  * Structure associated with each RX queue.
91  */
92 struct igb_rx_queue {
93         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
94         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
95         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
96         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
97         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
98         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
99         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
100         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
101         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
102         uint16_t            rx_tail;    /**< current value of RDT register. */
103         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
104         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
105         uint16_t            queue_id;   /**< RX queue index. */
106         uint16_t            reg_idx;    /**< RX queue register index. */
107         uint16_t            port_id;    /**< Device port identifier. */
108         uint8_t             pthresh;    /**< Prefetch threshold register. */
109         uint8_t             hthresh;    /**< Host threshold register. */
110         uint8_t             wthresh;    /**< Write-back threshold register. */
111         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
112         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
113         uint32_t            flags;      /**< RX flags. */
114         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
115 };
116
117 /**
118  * Hardware context number
119  */
120 enum igb_advctx_num {
121         IGB_CTX_0    = 0, /**< CTX0    */
122         IGB_CTX_1    = 1, /**< CTX1    */
123         IGB_CTX_NUM  = 2, /**< CTX_NUM */
124 };
125
126 /** Offload features */
127 union igb_tx_offload {
128         uint64_t data;
129         struct {
130                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
131                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
132                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
133                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
134                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
135
136                 /* uint64_t unused:8; */
137         };
138 };
139
140 /*
141  * Compare mask for igb_tx_offload.data,
142  * should be in sync with igb_tx_offload layout.
143  * */
144 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
145 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
146 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
147 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
148 /** Mac + IP + TCP + Mss mask. */
149 #define TX_TSO_CMP_MASK \
150         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
151
152 /**
153  * Strucutre to check if new context need be built
154  */
155 struct igb_advctx_info {
156         uint64_t flags;           /**< ol_flags related to context build. */
157         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
158         union igb_tx_offload tx_offload;
159         /** compare mask for tx offload. */
160         union igb_tx_offload tx_offload_mask;
161 };
162
163 /**
164  * Structure associated with each TX queue.
165  */
166 struct igb_tx_queue {
167         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
168         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
169         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
170         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
171         uint32_t               txd_type;      /**< Device-specific TXD type */
172         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
173         uint16_t               tx_tail; /**< Current value of TDT register. */
174         uint16_t               tx_head;
175         /**< Index of first used TX descriptor. */
176         uint16_t               queue_id; /**< TX queue index. */
177         uint16_t               reg_idx;  /**< TX queue register index. */
178         uint16_t               port_id;  /**< Device port identifier. */
179         uint8_t                pthresh;  /**< Prefetch threshold register. */
180         uint8_t                hthresh;  /**< Host threshold register. */
181         uint8_t                wthresh;  /**< Write-back threshold register. */
182         uint32_t               ctx_curr;
183         /**< Current used hardware descriptor. */
184         uint32_t               ctx_start;
185         /**< Start context position for transmit queue. */
186         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
187         /**< Hardware context history.*/
188         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
189 };
190
191 #if 1
192 #define RTE_PMD_USE_PREFETCH
193 #endif
194
195 #ifdef RTE_PMD_USE_PREFETCH
196 #define rte_igb_prefetch(p)     rte_prefetch0(p)
197 #else
198 #define rte_igb_prefetch(p)     do {} while(0)
199 #endif
200
201 #ifdef RTE_PMD_PACKET_PREFETCH
202 #define rte_packet_prefetch(p) rte_prefetch1(p)
203 #else
204 #define rte_packet_prefetch(p)  do {} while(0)
205 #endif
206
207 /*
208  * Macro for VMDq feature for 1 GbE NIC.
209  */
210 #define E1000_VMOLR_SIZE                        (8)
211 #define IGB_TSO_MAX_HDRLEN                      (512)
212 #define IGB_TSO_MAX_MSS                         (9216)
213
214 /*********************************************************************
215  *
216  *  TX function
217  *
218  **********************************************************************/
219
220 /*
221  *There're some limitations in hardware for TCP segmentation offload. We
222  *should check whether the parameters are valid.
223  */
224 static inline uint64_t
225 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
226 {
227         if (!(ol_req & PKT_TX_TCP_SEG))
228                 return ol_req;
229         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
230                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
231                 ol_req &= ~PKT_TX_TCP_SEG;
232                 ol_req |= PKT_TX_TCP_CKSUM;
233         }
234         return ol_req;
235 }
236
237 /*
238  * Advanced context descriptor are almost same between igb/ixgbe
239  * This is a separate function, looking for optimization opportunity here
240  * Rework required to go with the pre-defined values.
241  */
242
243 static inline void
244 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
245                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
246                 uint64_t ol_flags, union igb_tx_offload tx_offload)
247 {
248         uint32_t type_tucmd_mlhl;
249         uint32_t mss_l4len_idx;
250         uint32_t ctx_idx, ctx_curr;
251         uint32_t vlan_macip_lens;
252         union igb_tx_offload tx_offload_mask;
253
254         ctx_curr = txq->ctx_curr;
255         ctx_idx = ctx_curr + txq->ctx_start;
256
257         tx_offload_mask.data = 0;
258         type_tucmd_mlhl = 0;
259
260         /* Specify which HW CTX to upload. */
261         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
262
263         if (ol_flags & PKT_TX_VLAN_PKT)
264                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
265
266         /* check if TCP segmentation required for this packet */
267         if (ol_flags & PKT_TX_TCP_SEG) {
268                 /* implies IP cksum in IPv4 */
269                 if (ol_flags & PKT_TX_IP_CKSUM)
270                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
271                                 E1000_ADVTXD_TUCMD_L4T_TCP |
272                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
273                 else
274                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
275                                 E1000_ADVTXD_TUCMD_L4T_TCP |
276                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
277
278                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
279                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
280                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
281         } else { /* no TSO, check if hardware checksum is needed */
282                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
283                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
284
285                 if (ol_flags & PKT_TX_IP_CKSUM)
286                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
287
288                 switch (ol_flags & PKT_TX_L4_MASK) {
289                 case PKT_TX_UDP_CKSUM:
290                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
291                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
292                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
293                                 << E1000_ADVTXD_L4LEN_SHIFT;
294                         break;
295                 case PKT_TX_TCP_CKSUM:
296                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
297                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
298                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
299                                 << E1000_ADVTXD_L4LEN_SHIFT;
300                         break;
301                 case PKT_TX_SCTP_CKSUM:
302                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
303                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
304                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
305                                 << E1000_ADVTXD_L4LEN_SHIFT;
306                         break;
307                 default:
308                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
309                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
310                         break;
311                 }
312         }
313
314         txq->ctx_cache[ctx_curr].flags = ol_flags;
315         txq->ctx_cache[ctx_curr].tx_offload.data =
316                 tx_offload_mask.data & tx_offload.data;
317         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
318
319         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
320         vlan_macip_lens = (uint32_t)tx_offload.data;
321         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
322         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
323         ctx_txd->seqnum_seed = 0;
324 }
325
326 /*
327  * Check which hardware context can be used. Use the existing match
328  * or create a new context descriptor.
329  */
330 static inline uint32_t
331 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
332                 union igb_tx_offload tx_offload)
333 {
334         /* If match with the current context */
335         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
336                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
337                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
338                         return txq->ctx_curr;
339         }
340
341         /* If match with the second context */
342         txq->ctx_curr ^= 1;
343         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
344                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
345                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
346                         return txq->ctx_curr;
347         }
348
349         /* Mismatch, use the previous context */
350         return IGB_CTX_NUM;
351 }
352
353 static inline uint32_t
354 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
355 {
356         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
357         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
358         uint32_t tmp;
359
360         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
361         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
362         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
363         return tmp;
364 }
365
366 static inline uint32_t
367 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
368 {
369         uint32_t cmdtype;
370         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
371         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
372         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
373         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
374         return cmdtype;
375 }
376
377 uint16_t
378 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
379                uint16_t nb_pkts)
380 {
381         struct igb_tx_queue *txq;
382         struct igb_tx_entry *sw_ring;
383         struct igb_tx_entry *txe, *txn;
384         volatile union e1000_adv_tx_desc *txr;
385         volatile union e1000_adv_tx_desc *txd;
386         struct rte_mbuf     *tx_pkt;
387         struct rte_mbuf     *m_seg;
388         uint64_t buf_dma_addr;
389         uint32_t olinfo_status;
390         uint32_t cmd_type_len;
391         uint32_t pkt_len;
392         uint16_t slen;
393         uint64_t ol_flags;
394         uint16_t tx_end;
395         uint16_t tx_id;
396         uint16_t tx_last;
397         uint16_t nb_tx;
398         uint64_t tx_ol_req;
399         uint32_t new_ctx = 0;
400         uint32_t ctx = 0;
401         union igb_tx_offload tx_offload = {0};
402
403         txq = tx_queue;
404         sw_ring = txq->sw_ring;
405         txr     = txq->tx_ring;
406         tx_id   = txq->tx_tail;
407         txe = &sw_ring[tx_id];
408
409         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
410                 tx_pkt = *tx_pkts++;
411                 pkt_len = tx_pkt->pkt_len;
412
413                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
414
415                 /*
416                  * The number of descriptors that must be allocated for a
417                  * packet is the number of segments of that packet, plus 1
418                  * Context Descriptor for the VLAN Tag Identifier, if any.
419                  * Determine the last TX descriptor to allocate in the TX ring
420                  * for the packet, starting from the current position (tx_id)
421                  * in the ring.
422                  */
423                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
424
425                 ol_flags = tx_pkt->ol_flags;
426                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
427
428                 /* If a Context Descriptor need be built . */
429                 if (tx_ol_req) {
430                         tx_offload.l2_len = tx_pkt->l2_len;
431                         tx_offload.l3_len = tx_pkt->l3_len;
432                         tx_offload.l4_len = tx_pkt->l4_len;
433                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
434                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
435                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
436
437                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
438                         /* Only allocate context descriptor if required*/
439                         new_ctx = (ctx == IGB_CTX_NUM);
440                         ctx = txq->ctx_curr + txq->ctx_start;
441                         tx_last = (uint16_t) (tx_last + new_ctx);
442                 }
443                 if (tx_last >= txq->nb_tx_desc)
444                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
445
446                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
447                            " tx_first=%u tx_last=%u",
448                            (unsigned) txq->port_id,
449                            (unsigned) txq->queue_id,
450                            (unsigned) pkt_len,
451                            (unsigned) tx_id,
452                            (unsigned) tx_last);
453
454                 /*
455                  * Check if there are enough free descriptors in the TX ring
456                  * to transmit the next packet.
457                  * This operation is based on the two following rules:
458                  *
459                  *   1- Only check that the last needed TX descriptor can be
460                  *      allocated (by construction, if that descriptor is free,
461                  *      all intermediate ones are also free).
462                  *
463                  *      For this purpose, the index of the last TX descriptor
464                  *      used for a packet (the "last descriptor" of a packet)
465                  *      is recorded in the TX entries (the last one included)
466                  *      that are associated with all TX descriptors allocated
467                  *      for that packet.
468                  *
469                  *   2- Avoid to allocate the last free TX descriptor of the
470                  *      ring, in order to never set the TDT register with the
471                  *      same value stored in parallel by the NIC in the TDH
472                  *      register, which makes the TX engine of the NIC enter
473                  *      in a deadlock situation.
474                  *
475                  *      By extension, avoid to allocate a free descriptor that
476                  *      belongs to the last set of free descriptors allocated
477                  *      to the same packet previously transmitted.
478                  */
479
480                 /*
481                  * The "last descriptor" of the previously sent packet, if any,
482                  * which used the last descriptor to allocate.
483                  */
484                 tx_end = sw_ring[tx_last].last_id;
485
486                 /*
487                  * The next descriptor following that "last descriptor" in the
488                  * ring.
489                  */
490                 tx_end = sw_ring[tx_end].next_id;
491
492                 /*
493                  * The "last descriptor" associated with that next descriptor.
494                  */
495                 tx_end = sw_ring[tx_end].last_id;
496
497                 /*
498                  * Check that this descriptor is free.
499                  */
500                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
501                         if (nb_tx == 0)
502                                 return 0;
503                         goto end_of_tx;
504                 }
505
506                 /*
507                  * Set common flags of all TX Data Descriptors.
508                  *
509                  * The following bits must be set in all Data Descriptors:
510                  *   - E1000_ADVTXD_DTYP_DATA
511                  *   - E1000_ADVTXD_DCMD_DEXT
512                  *
513                  * The following bits must be set in the first Data Descriptor
514                  * and are ignored in the other ones:
515                  *   - E1000_ADVTXD_DCMD_IFCS
516                  *   - E1000_ADVTXD_MAC_1588
517                  *   - E1000_ADVTXD_DCMD_VLE
518                  *
519                  * The following bits must only be set in the last Data
520                  * Descriptor:
521                  *   - E1000_TXD_CMD_EOP
522                  *
523                  * The following bits can be set in any Data Descriptor, but
524                  * are only set in the last Data Descriptor:
525                  *   - E1000_TXD_CMD_RS
526                  */
527                 cmd_type_len = txq->txd_type |
528                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
529                 if (tx_ol_req & PKT_TX_TCP_SEG)
530                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
531                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
532 #if defined(RTE_LIBRTE_IEEE1588)
533                 if (ol_flags & PKT_TX_IEEE1588_TMST)
534                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
535 #endif
536                 if (tx_ol_req) {
537                         /* Setup TX Advanced context descriptor if required */
538                         if (new_ctx) {
539                                 volatile struct e1000_adv_tx_context_desc *
540                                     ctx_txd;
541
542                                 ctx_txd = (volatile struct
543                                     e1000_adv_tx_context_desc *)
544                                     &txr[tx_id];
545
546                                 txn = &sw_ring[txe->next_id];
547                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
548
549                                 if (txe->mbuf != NULL) {
550                                         rte_pktmbuf_free_seg(txe->mbuf);
551                                         txe->mbuf = NULL;
552                                 }
553
554                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
555
556                                 txe->last_id = tx_last;
557                                 tx_id = txe->next_id;
558                                 txe = txn;
559                         }
560
561                         /* Setup the TX Advanced Data Descriptor */
562                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
563                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
564                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
565                 }
566
567                 m_seg = tx_pkt;
568                 do {
569                         txn = &sw_ring[txe->next_id];
570                         txd = &txr[tx_id];
571
572                         if (txe->mbuf != NULL)
573                                 rte_pktmbuf_free_seg(txe->mbuf);
574                         txe->mbuf = m_seg;
575
576                         /*
577                          * Set up transmit descriptor.
578                          */
579                         slen = (uint16_t) m_seg->data_len;
580                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
581                         txd->read.buffer_addr =
582                                 rte_cpu_to_le_64(buf_dma_addr);
583                         txd->read.cmd_type_len =
584                                 rte_cpu_to_le_32(cmd_type_len | slen);
585                         txd->read.olinfo_status =
586                                 rte_cpu_to_le_32(olinfo_status);
587                         txe->last_id = tx_last;
588                         tx_id = txe->next_id;
589                         txe = txn;
590                         m_seg = m_seg->next;
591                 } while (m_seg != NULL);
592
593                 /*
594                  * The last packet data descriptor needs End Of Packet (EOP)
595                  * and Report Status (RS).
596                  */
597                 txd->read.cmd_type_len |=
598                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
599         }
600  end_of_tx:
601         rte_wmb();
602
603         /*
604          * Set the Transmit Descriptor Tail (TDT).
605          */
606         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
607         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
608                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
609                    (unsigned) tx_id, (unsigned) nb_tx);
610         txq->tx_tail = tx_id;
611
612         return nb_tx;
613 }
614
615 /*********************************************************************
616  *
617  *  TX prep functions
618  *
619  **********************************************************************/
620 uint16_t
621 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
622                 uint16_t nb_pkts)
623 {
624         int i, ret;
625         struct rte_mbuf *m;
626
627         for (i = 0; i < nb_pkts; i++) {
628                 m = tx_pkts[i];
629
630                 /* Check some limitations for TSO in hardware */
631                 if (m->ol_flags & PKT_TX_TCP_SEG)
632                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
633                                         (m->l2_len + m->l3_len + m->l4_len >
634                                         IGB_TSO_MAX_HDRLEN)) {
635                                 rte_errno = -EINVAL;
636                                 return i;
637                         }
638
639                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
640                         rte_errno = -ENOTSUP;
641                         return i;
642                 }
643
644 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
645                 ret = rte_validate_tx_offload(m);
646                 if (ret != 0) {
647                         rte_errno = ret;
648                         return i;
649                 }
650 #endif
651                 ret = rte_net_intel_cksum_prepare(m);
652                 if (ret != 0) {
653                         rte_errno = ret;
654                         return i;
655                 }
656         }
657
658         return i;
659 }
660
661 /*********************************************************************
662  *
663  *  RX functions
664  *
665  **********************************************************************/
666 #define IGB_PACKET_TYPE_IPV4              0X01
667 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
668 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
669 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
670 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
671 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
672 #define IGB_PACKET_TYPE_IPV6              0X04
673 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
674 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
675 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
676 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
677 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
678 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
679 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
680 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
681 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
682 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
683 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
684 #define IGB_PACKET_TYPE_MAX               0X80
685 #define IGB_PACKET_TYPE_MASK              0X7F
686 #define IGB_PACKET_TYPE_SHIFT             0X04
687 static inline uint32_t
688 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
689 {
690         static const uint32_t
691                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
692                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
693                         RTE_PTYPE_L3_IPV4,
694                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV4_EXT,
696                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV6,
698                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
699                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
700                         RTE_PTYPE_INNER_L3_IPV6,
701                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
702                         RTE_PTYPE_L3_IPV6_EXT,
703                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
705                         RTE_PTYPE_INNER_L3_IPV6_EXT,
706                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
708                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
710                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
711                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
712                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
713                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
718                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
720                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
722                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
723                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
724                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
725                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
727                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
728                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
729                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
730                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
731                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
732                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
733                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
734         };
735         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
736                 return RTE_PTYPE_UNKNOWN;
737
738         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
739
740         return ptype_table[pkt_info];
741 }
742
743 static inline uint64_t
744 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
745 {
746         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
747
748 #if defined(RTE_LIBRTE_IEEE1588)
749         static uint32_t ip_pkt_etqf_map[8] = {
750                 0, 0, 0, PKT_RX_IEEE1588_PTP,
751                 0, 0, 0, 0,
752         };
753
754         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
755         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
756
757         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
758         if (hw->mac.type == e1000_i210)
759                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
760         else
761                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
762 #else
763         RTE_SET_USED(rxq);
764 #endif
765
766         return pkt_flags;
767 }
768
769 static inline uint64_t
770 rx_desc_status_to_pkt_flags(uint32_t rx_status)
771 {
772         uint64_t pkt_flags;
773
774         /* Check if VLAN present */
775         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
776                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
777
778 #if defined(RTE_LIBRTE_IEEE1588)
779         if (rx_status & E1000_RXD_STAT_TMST)
780                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
781 #endif
782         return pkt_flags;
783 }
784
785 static inline uint64_t
786 rx_desc_error_to_pkt_flags(uint32_t rx_status)
787 {
788         /*
789          * Bit 30: IPE, IPv4 checksum error
790          * Bit 29: L4I, L4I integrity error
791          */
792
793         static uint64_t error_to_pkt_flags_map[4] = {
794                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
795                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
796                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
797                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
798         };
799         return error_to_pkt_flags_map[(rx_status >>
800                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
801 }
802
803 uint16_t
804 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
805                uint16_t nb_pkts)
806 {
807         struct igb_rx_queue *rxq;
808         volatile union e1000_adv_rx_desc *rx_ring;
809         volatile union e1000_adv_rx_desc *rxdp;
810         struct igb_rx_entry *sw_ring;
811         struct igb_rx_entry *rxe;
812         struct rte_mbuf *rxm;
813         struct rte_mbuf *nmb;
814         union e1000_adv_rx_desc rxd;
815         uint64_t dma_addr;
816         uint32_t staterr;
817         uint32_t hlen_type_rss;
818         uint16_t pkt_len;
819         uint16_t rx_id;
820         uint16_t nb_rx;
821         uint16_t nb_hold;
822         uint64_t pkt_flags;
823
824         nb_rx = 0;
825         nb_hold = 0;
826         rxq = rx_queue;
827         rx_id = rxq->rx_tail;
828         rx_ring = rxq->rx_ring;
829         sw_ring = rxq->sw_ring;
830         while (nb_rx < nb_pkts) {
831                 /*
832                  * The order of operations here is important as the DD status
833                  * bit must not be read after any other descriptor fields.
834                  * rx_ring and rxdp are pointing to volatile data so the order
835                  * of accesses cannot be reordered by the compiler. If they were
836                  * not volatile, they could be reordered which could lead to
837                  * using invalid descriptor fields when read from rxd.
838                  */
839                 rxdp = &rx_ring[rx_id];
840                 staterr = rxdp->wb.upper.status_error;
841                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
842                         break;
843                 rxd = *rxdp;
844
845                 /*
846                  * End of packet.
847                  *
848                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
849                  * likely to be invalid and to be dropped by the various
850                  * validation checks performed by the network stack.
851                  *
852                  * Allocate a new mbuf to replenish the RX ring descriptor.
853                  * If the allocation fails:
854                  *    - arrange for that RX descriptor to be the first one
855                  *      being parsed the next time the receive function is
856                  *      invoked [on the same queue].
857                  *
858                  *    - Stop parsing the RX ring and return immediately.
859                  *
860                  * This policy do not drop the packet received in the RX
861                  * descriptor for which the allocation of a new mbuf failed.
862                  * Thus, it allows that packet to be later retrieved if
863                  * mbuf have been freed in the mean time.
864                  * As a side effect, holding RX descriptors instead of
865                  * systematically giving them back to the NIC may lead to
866                  * RX ring exhaustion situations.
867                  * However, the NIC can gracefully prevent such situations
868                  * to happen by sending specific "back-pressure" flow control
869                  * frames to its peer(s).
870                  */
871                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
872                            "staterr=0x%x pkt_len=%u",
873                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
874                            (unsigned) rx_id, (unsigned) staterr,
875                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
876
877                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
878                 if (nmb == NULL) {
879                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
880                                    "queue_id=%u", (unsigned) rxq->port_id,
881                                    (unsigned) rxq->queue_id);
882                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
883                         break;
884                 }
885
886                 nb_hold++;
887                 rxe = &sw_ring[rx_id];
888                 rx_id++;
889                 if (rx_id == rxq->nb_rx_desc)
890                         rx_id = 0;
891
892                 /* Prefetch next mbuf while processing current one. */
893                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
894
895                 /*
896                  * When next RX descriptor is on a cache-line boundary,
897                  * prefetch the next 4 RX descriptors and the next 8 pointers
898                  * to mbufs.
899                  */
900                 if ((rx_id & 0x3) == 0) {
901                         rte_igb_prefetch(&rx_ring[rx_id]);
902                         rte_igb_prefetch(&sw_ring[rx_id]);
903                 }
904
905                 rxm = rxe->mbuf;
906                 rxe->mbuf = nmb;
907                 dma_addr =
908                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
909                 rxdp->read.hdr_addr = 0;
910                 rxdp->read.pkt_addr = dma_addr;
911
912                 /*
913                  * Initialize the returned mbuf.
914                  * 1) setup generic mbuf fields:
915                  *    - number of segments,
916                  *    - next segment,
917                  *    - packet length,
918                  *    - RX port identifier.
919                  * 2) integrate hardware offload data, if any:
920                  *    - RSS flag & hash,
921                  *    - IP checksum flag,
922                  *    - VLAN TCI, if any,
923                  *    - error flags.
924                  */
925                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
926                                       rxq->crc_len);
927                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
928                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
929                 rxm->nb_segs = 1;
930                 rxm->next = NULL;
931                 rxm->pkt_len = pkt_len;
932                 rxm->data_len = pkt_len;
933                 rxm->port = rxq->port_id;
934
935                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
936                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
937
938                 /*
939                  * The vlan_tci field is only valid when PKT_RX_VLAN is
940                  * set in the pkt_flags field and must be in CPU byte order.
941                  */
942                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
943                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
944                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
945                 } else {
946                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
947                 }
948                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
949                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
950                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
951                 rxm->ol_flags = pkt_flags;
952                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
953                                                 lo_dword.hs_rss.pkt_info);
954
955                 /*
956                  * Store the mbuf address into the next entry of the array
957                  * of returned packets.
958                  */
959                 rx_pkts[nb_rx++] = rxm;
960         }
961         rxq->rx_tail = rx_id;
962
963         /*
964          * If the number of free RX descriptors is greater than the RX free
965          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
966          * register.
967          * Update the RDT with the value of the last processed RX descriptor
968          * minus 1, to guarantee that the RDT register is never equal to the
969          * RDH register, which creates a "full" ring situtation from the
970          * hardware point of view...
971          */
972         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
973         if (nb_hold > rxq->rx_free_thresh) {
974                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
975                            "nb_hold=%u nb_rx=%u",
976                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
977                            (unsigned) rx_id, (unsigned) nb_hold,
978                            (unsigned) nb_rx);
979                 rx_id = (uint16_t) ((rx_id == 0) ?
980                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
981                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
982                 nb_hold = 0;
983         }
984         rxq->nb_rx_hold = nb_hold;
985         return nb_rx;
986 }
987
988 uint16_t
989 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
990                          uint16_t nb_pkts)
991 {
992         struct igb_rx_queue *rxq;
993         volatile union e1000_adv_rx_desc *rx_ring;
994         volatile union e1000_adv_rx_desc *rxdp;
995         struct igb_rx_entry *sw_ring;
996         struct igb_rx_entry *rxe;
997         struct rte_mbuf *first_seg;
998         struct rte_mbuf *last_seg;
999         struct rte_mbuf *rxm;
1000         struct rte_mbuf *nmb;
1001         union e1000_adv_rx_desc rxd;
1002         uint64_t dma; /* Physical address of mbuf data buffer */
1003         uint32_t staterr;
1004         uint32_t hlen_type_rss;
1005         uint16_t rx_id;
1006         uint16_t nb_rx;
1007         uint16_t nb_hold;
1008         uint16_t data_len;
1009         uint64_t pkt_flags;
1010
1011         nb_rx = 0;
1012         nb_hold = 0;
1013         rxq = rx_queue;
1014         rx_id = rxq->rx_tail;
1015         rx_ring = rxq->rx_ring;
1016         sw_ring = rxq->sw_ring;
1017
1018         /*
1019          * Retrieve RX context of current packet, if any.
1020          */
1021         first_seg = rxq->pkt_first_seg;
1022         last_seg = rxq->pkt_last_seg;
1023
1024         while (nb_rx < nb_pkts) {
1025         next_desc:
1026                 /*
1027                  * The order of operations here is important as the DD status
1028                  * bit must not be read after any other descriptor fields.
1029                  * rx_ring and rxdp are pointing to volatile data so the order
1030                  * of accesses cannot be reordered by the compiler. If they were
1031                  * not volatile, they could be reordered which could lead to
1032                  * using invalid descriptor fields when read from rxd.
1033                  */
1034                 rxdp = &rx_ring[rx_id];
1035                 staterr = rxdp->wb.upper.status_error;
1036                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1037                         break;
1038                 rxd = *rxdp;
1039
1040                 /*
1041                  * Descriptor done.
1042                  *
1043                  * Allocate a new mbuf to replenish the RX ring descriptor.
1044                  * If the allocation fails:
1045                  *    - arrange for that RX descriptor to be the first one
1046                  *      being parsed the next time the receive function is
1047                  *      invoked [on the same queue].
1048                  *
1049                  *    - Stop parsing the RX ring and return immediately.
1050                  *
1051                  * This policy does not drop the packet received in the RX
1052                  * descriptor for which the allocation of a new mbuf failed.
1053                  * Thus, it allows that packet to be later retrieved if
1054                  * mbuf have been freed in the mean time.
1055                  * As a side effect, holding RX descriptors instead of
1056                  * systematically giving them back to the NIC may lead to
1057                  * RX ring exhaustion situations.
1058                  * However, the NIC can gracefully prevent such situations
1059                  * to happen by sending specific "back-pressure" flow control
1060                  * frames to its peer(s).
1061                  */
1062                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1063                            "staterr=0x%x data_len=%u",
1064                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1065                            (unsigned) rx_id, (unsigned) staterr,
1066                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1067
1068                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1069                 if (nmb == NULL) {
1070                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1071                                    "queue_id=%u", (unsigned) rxq->port_id,
1072                                    (unsigned) rxq->queue_id);
1073                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1074                         break;
1075                 }
1076
1077                 nb_hold++;
1078                 rxe = &sw_ring[rx_id];
1079                 rx_id++;
1080                 if (rx_id == rxq->nb_rx_desc)
1081                         rx_id = 0;
1082
1083                 /* Prefetch next mbuf while processing current one. */
1084                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1085
1086                 /*
1087                  * When next RX descriptor is on a cache-line boundary,
1088                  * prefetch the next 4 RX descriptors and the next 8 pointers
1089                  * to mbufs.
1090                  */
1091                 if ((rx_id & 0x3) == 0) {
1092                         rte_igb_prefetch(&rx_ring[rx_id]);
1093                         rte_igb_prefetch(&sw_ring[rx_id]);
1094                 }
1095
1096                 /*
1097                  * Update RX descriptor with the physical address of the new
1098                  * data buffer of the new allocated mbuf.
1099                  */
1100                 rxm = rxe->mbuf;
1101                 rxe->mbuf = nmb;
1102                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1103                 rxdp->read.pkt_addr = dma;
1104                 rxdp->read.hdr_addr = 0;
1105
1106                 /*
1107                  * Set data length & data buffer address of mbuf.
1108                  */
1109                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1110                 rxm->data_len = data_len;
1111                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1112
1113                 /*
1114                  * If this is the first buffer of the received packet,
1115                  * set the pointer to the first mbuf of the packet and
1116                  * initialize its context.
1117                  * Otherwise, update the total length and the number of segments
1118                  * of the current scattered packet, and update the pointer to
1119                  * the last mbuf of the current packet.
1120                  */
1121                 if (first_seg == NULL) {
1122                         first_seg = rxm;
1123                         first_seg->pkt_len = data_len;
1124                         first_seg->nb_segs = 1;
1125                 } else {
1126                         first_seg->pkt_len += data_len;
1127                         first_seg->nb_segs++;
1128                         last_seg->next = rxm;
1129                 }
1130
1131                 /*
1132                  * If this is not the last buffer of the received packet,
1133                  * update the pointer to the last mbuf of the current scattered
1134                  * packet and continue to parse the RX ring.
1135                  */
1136                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1137                         last_seg = rxm;
1138                         goto next_desc;
1139                 }
1140
1141                 /*
1142                  * This is the last buffer of the received packet.
1143                  * If the CRC is not stripped by the hardware:
1144                  *   - Subtract the CRC length from the total packet length.
1145                  *   - If the last buffer only contains the whole CRC or a part
1146                  *     of it, free the mbuf associated to the last buffer.
1147                  *     If part of the CRC is also contained in the previous
1148                  *     mbuf, subtract the length of that CRC part from the
1149                  *     data length of the previous mbuf.
1150                  */
1151                 rxm->next = NULL;
1152                 if (unlikely(rxq->crc_len > 0)) {
1153                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1154                         if (data_len <= RTE_ETHER_CRC_LEN) {
1155                                 rte_pktmbuf_free_seg(rxm);
1156                                 first_seg->nb_segs--;
1157                                 last_seg->data_len = (uint16_t)
1158                                         (last_seg->data_len -
1159                                          (RTE_ETHER_CRC_LEN - data_len));
1160                                 last_seg->next = NULL;
1161                         } else
1162                                 rxm->data_len = (uint16_t)
1163                                         (data_len - RTE_ETHER_CRC_LEN);
1164                 }
1165
1166                 /*
1167                  * Initialize the first mbuf of the returned packet:
1168                  *    - RX port identifier,
1169                  *    - hardware offload data, if any:
1170                  *      - RSS flag & hash,
1171                  *      - IP checksum flag,
1172                  *      - VLAN TCI, if any,
1173                  *      - error flags.
1174                  */
1175                 first_seg->port = rxq->port_id;
1176                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1177
1178                 /*
1179                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1180                  * set in the pkt_flags field and must be in CPU byte order.
1181                  */
1182                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1183                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1184                         first_seg->vlan_tci =
1185                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1186                 } else {
1187                         first_seg->vlan_tci =
1188                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1189                 }
1190                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1191                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1192                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1193                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1194                 first_seg->ol_flags = pkt_flags;
1195                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1196                                         lower.lo_dword.hs_rss.pkt_info);
1197
1198                 /* Prefetch data of first segment, if configured to do so. */
1199                 rte_packet_prefetch((char *)first_seg->buf_addr +
1200                         first_seg->data_off);
1201
1202                 /*
1203                  * Store the mbuf address into the next entry of the array
1204                  * of returned packets.
1205                  */
1206                 rx_pkts[nb_rx++] = first_seg;
1207
1208                 /*
1209                  * Setup receipt context for a new packet.
1210                  */
1211                 first_seg = NULL;
1212         }
1213
1214         /*
1215          * Record index of the next RX descriptor to probe.
1216          */
1217         rxq->rx_tail = rx_id;
1218
1219         /*
1220          * Save receive context.
1221          */
1222         rxq->pkt_first_seg = first_seg;
1223         rxq->pkt_last_seg = last_seg;
1224
1225         /*
1226          * If the number of free RX descriptors is greater than the RX free
1227          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1228          * register.
1229          * Update the RDT with the value of the last processed RX descriptor
1230          * minus 1, to guarantee that the RDT register is never equal to the
1231          * RDH register, which creates a "full" ring situtation from the
1232          * hardware point of view...
1233          */
1234         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1235         if (nb_hold > rxq->rx_free_thresh) {
1236                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1237                            "nb_hold=%u nb_rx=%u",
1238                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1239                            (unsigned) rx_id, (unsigned) nb_hold,
1240                            (unsigned) nb_rx);
1241                 rx_id = (uint16_t) ((rx_id == 0) ?
1242                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1243                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1244                 nb_hold = 0;
1245         }
1246         rxq->nb_rx_hold = nb_hold;
1247         return nb_rx;
1248 }
1249
1250 /*
1251  * Maximum number of Ring Descriptors.
1252  *
1253  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1254  * desscriptors should meet the following condition:
1255  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1256  */
1257
1258 static void
1259 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1260 {
1261         unsigned i;
1262
1263         if (txq->sw_ring != NULL) {
1264                 for (i = 0; i < txq->nb_tx_desc; i++) {
1265                         if (txq->sw_ring[i].mbuf != NULL) {
1266                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1267                                 txq->sw_ring[i].mbuf = NULL;
1268                         }
1269                 }
1270         }
1271 }
1272
1273 static void
1274 igb_tx_queue_release(struct igb_tx_queue *txq)
1275 {
1276         if (txq != NULL) {
1277                 igb_tx_queue_release_mbufs(txq);
1278                 rte_free(txq->sw_ring);
1279                 rte_free(txq);
1280         }
1281 }
1282
1283 void
1284 eth_igb_tx_queue_release(void *txq)
1285 {
1286         igb_tx_queue_release(txq);
1287 }
1288
1289 static int
1290 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1291 {
1292         struct igb_tx_entry *sw_ring;
1293         volatile union e1000_adv_tx_desc *txr;
1294         uint16_t tx_first; /* First segment analyzed. */
1295         uint16_t tx_id;    /* Current segment being processed. */
1296         uint16_t tx_last;  /* Last segment in the current packet. */
1297         uint16_t tx_next;  /* First segment of the next packet. */
1298         int count;
1299
1300         if (txq != NULL) {
1301                 count = 0;
1302                 sw_ring = txq->sw_ring;
1303                 txr = txq->tx_ring;
1304
1305                 /*
1306                  * tx_tail is the last sent packet on the sw_ring. Goto the end
1307                  * of that packet (the last segment in the packet chain) and
1308                  * then the next segment will be the start of the oldest segment
1309                  * in the sw_ring. This is the first packet that will be
1310                  * attempted to be freed.
1311                  */
1312
1313                 /* Get last segment in most recently added packet. */
1314                 tx_first = sw_ring[txq->tx_tail].last_id;
1315
1316                 /* Get the next segment, which is the oldest segment in ring. */
1317                 tx_first = sw_ring[tx_first].next_id;
1318
1319                 /* Set the current index to the first. */
1320                 tx_id = tx_first;
1321
1322                 /*
1323                  * Loop through each packet. For each packet, verify that an
1324                  * mbuf exists and that the last segment is free. If so, free
1325                  * it and move on.
1326                  */
1327                 while (1) {
1328                         tx_last = sw_ring[tx_id].last_id;
1329
1330                         if (sw_ring[tx_last].mbuf) {
1331                                 if (txr[tx_last].wb.status &
1332                                                 E1000_TXD_STAT_DD) {
1333                                         /*
1334                                          * Increment the number of packets
1335                                          * freed.
1336                                          */
1337                                         count++;
1338
1339                                         /* Get the start of the next packet. */
1340                                         tx_next = sw_ring[tx_last].next_id;
1341
1342                                         /*
1343                                          * Loop through all segments in a
1344                                          * packet.
1345                                          */
1346                                         do {
1347                                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
1348                                                 sw_ring[tx_id].mbuf = NULL;
1349                                                 sw_ring[tx_id].last_id = tx_id;
1350
1351                                                 /* Move to next segemnt. */
1352                                                 tx_id = sw_ring[tx_id].next_id;
1353
1354                                         } while (tx_id != tx_next);
1355
1356                                         if (unlikely(count == (int)free_cnt))
1357                                                 break;
1358                                 } else
1359                                         /*
1360                                          * mbuf still in use, nothing left to
1361                                          * free.
1362                                          */
1363                                         break;
1364                         } else {
1365                                 /*
1366                                  * There are multiple reasons to be here:
1367                                  * 1) All the packets on the ring have been
1368                                  *    freed - tx_id is equal to tx_first
1369                                  *    and some packets have been freed.
1370                                  *    - Done, exit
1371                                  * 2) Interfaces has not sent a rings worth of
1372                                  *    packets yet, so the segment after tail is
1373                                  *    still empty. Or a previous call to this
1374                                  *    function freed some of the segments but
1375                                  *    not all so there is a hole in the list.
1376                                  *    Hopefully this is a rare case.
1377                                  *    - Walk the list and find the next mbuf. If
1378                                  *      there isn't one, then done.
1379                                  */
1380                                 if (likely((tx_id == tx_first) && (count != 0)))
1381                                         break;
1382
1383                                 /*
1384                                  * Walk the list and find the next mbuf, if any.
1385                                  */
1386                                 do {
1387                                         /* Move to next segemnt. */
1388                                         tx_id = sw_ring[tx_id].next_id;
1389
1390                                         if (sw_ring[tx_id].mbuf)
1391                                                 break;
1392
1393                                 } while (tx_id != tx_first);
1394
1395                                 /*
1396                                  * Determine why previous loop bailed. If there
1397                                  * is not an mbuf, done.
1398                                  */
1399                                 if (sw_ring[tx_id].mbuf == NULL)
1400                                         break;
1401                         }
1402                 }
1403         } else
1404                 count = -ENODEV;
1405
1406         return count;
1407 }
1408
1409 int
1410 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1411 {
1412         return igb_tx_done_cleanup(txq, free_cnt);
1413 }
1414
1415 static void
1416 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1417 {
1418         txq->tx_head = 0;
1419         txq->tx_tail = 0;
1420         txq->ctx_curr = 0;
1421         memset((void*)&txq->ctx_cache, 0,
1422                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1423 }
1424
1425 static void
1426 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1427 {
1428         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1429         struct igb_tx_entry *txe = txq->sw_ring;
1430         uint16_t i, prev;
1431         struct e1000_hw *hw;
1432
1433         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1434         /* Zero out HW ring memory */
1435         for (i = 0; i < txq->nb_tx_desc; i++) {
1436                 txq->tx_ring[i] = zeroed_desc;
1437         }
1438
1439         /* Initialize ring entries */
1440         prev = (uint16_t)(txq->nb_tx_desc - 1);
1441         for (i = 0; i < txq->nb_tx_desc; i++) {
1442                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1443
1444                 txd->wb.status = E1000_TXD_STAT_DD;
1445                 txe[i].mbuf = NULL;
1446                 txe[i].last_id = i;
1447                 txe[prev].next_id = i;
1448                 prev = i;
1449         }
1450
1451         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1452         /* 82575 specific, each tx queue will use 2 hw contexts */
1453         if (hw->mac.type == e1000_82575)
1454                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1455
1456         igb_reset_tx_queue_stat(txq);
1457 }
1458
1459 uint64_t
1460 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1461 {
1462         uint64_t tx_offload_capa;
1463
1464         RTE_SET_USED(dev);
1465         tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1466                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1467                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1468                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1469                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1470                           DEV_TX_OFFLOAD_TCP_TSO     |
1471                           DEV_TX_OFFLOAD_MULTI_SEGS;
1472
1473         return tx_offload_capa;
1474 }
1475
1476 uint64_t
1477 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1478 {
1479         uint64_t tx_queue_offload_capa;
1480
1481         tx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1482
1483         return tx_queue_offload_capa;
1484 }
1485
1486 int
1487 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1488                          uint16_t queue_idx,
1489                          uint16_t nb_desc,
1490                          unsigned int socket_id,
1491                          const struct rte_eth_txconf *tx_conf)
1492 {
1493         const struct rte_memzone *tz;
1494         struct igb_tx_queue *txq;
1495         struct e1000_hw     *hw;
1496         uint32_t size;
1497         uint64_t offloads;
1498
1499         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1500
1501         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1502
1503         /*
1504          * Validate number of transmit descriptors.
1505          * It must not exceed hardware maximum, and must be multiple
1506          * of E1000_ALIGN.
1507          */
1508         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1509                         (nb_desc > E1000_MAX_RING_DESC) ||
1510                         (nb_desc < E1000_MIN_RING_DESC)) {
1511                 return -EINVAL;
1512         }
1513
1514         /*
1515          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1516          * driver.
1517          */
1518         if (tx_conf->tx_free_thresh != 0)
1519                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1520                              "used for the 1G driver.");
1521         if (tx_conf->tx_rs_thresh != 0)
1522                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1523                              "used for the 1G driver.");
1524         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1525                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1526                              "consider setting the TX WTHRESH value to 4, 8, "
1527                              "or 16.");
1528
1529         /* Free memory prior to re-allocation if needed */
1530         if (dev->data->tx_queues[queue_idx] != NULL) {
1531                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1532                 dev->data->tx_queues[queue_idx] = NULL;
1533         }
1534
1535         /* First allocate the tx queue data structure */
1536         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1537                                                         RTE_CACHE_LINE_SIZE);
1538         if (txq == NULL)
1539                 return -ENOMEM;
1540
1541         /*
1542          * Allocate TX ring hardware descriptors. A memzone large enough to
1543          * handle the maximum ring size is allocated in order to allow for
1544          * resizing in later calls to the queue setup function.
1545          */
1546         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1547         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1548                                       E1000_ALIGN, socket_id);
1549         if (tz == NULL) {
1550                 igb_tx_queue_release(txq);
1551                 return -ENOMEM;
1552         }
1553
1554         txq->nb_tx_desc = nb_desc;
1555         txq->pthresh = tx_conf->tx_thresh.pthresh;
1556         txq->hthresh = tx_conf->tx_thresh.hthresh;
1557         txq->wthresh = tx_conf->tx_thresh.wthresh;
1558         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1559                 txq->wthresh = 1;
1560         txq->queue_id = queue_idx;
1561         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1562                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1563         txq->port_id = dev->data->port_id;
1564
1565         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1566         txq->tx_ring_phys_addr = tz->iova;
1567
1568         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1569         /* Allocate software ring */
1570         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1571                                    sizeof(struct igb_tx_entry) * nb_desc,
1572                                    RTE_CACHE_LINE_SIZE);
1573         if (txq->sw_ring == NULL) {
1574                 igb_tx_queue_release(txq);
1575                 return -ENOMEM;
1576         }
1577         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1578                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1579
1580         igb_reset_tx_queue(txq, dev);
1581         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1582         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1583         dev->data->tx_queues[queue_idx] = txq;
1584         txq->offloads = offloads;
1585
1586         return 0;
1587 }
1588
1589 static void
1590 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1591 {
1592         unsigned i;
1593
1594         if (rxq->sw_ring != NULL) {
1595                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1596                         if (rxq->sw_ring[i].mbuf != NULL) {
1597                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1598                                 rxq->sw_ring[i].mbuf = NULL;
1599                         }
1600                 }
1601         }
1602 }
1603
1604 static void
1605 igb_rx_queue_release(struct igb_rx_queue *rxq)
1606 {
1607         if (rxq != NULL) {
1608                 igb_rx_queue_release_mbufs(rxq);
1609                 rte_free(rxq->sw_ring);
1610                 rte_free(rxq);
1611         }
1612 }
1613
1614 void
1615 eth_igb_rx_queue_release(void *rxq)
1616 {
1617         igb_rx_queue_release(rxq);
1618 }
1619
1620 static void
1621 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1622 {
1623         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1624         unsigned i;
1625
1626         /* Zero out HW ring memory */
1627         for (i = 0; i < rxq->nb_rx_desc; i++) {
1628                 rxq->rx_ring[i] = zeroed_desc;
1629         }
1630
1631         rxq->rx_tail = 0;
1632         rxq->pkt_first_seg = NULL;
1633         rxq->pkt_last_seg = NULL;
1634 }
1635
1636 uint64_t
1637 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1638 {
1639         uint64_t rx_offload_capa;
1640
1641         RTE_SET_USED(dev);
1642         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1643                           DEV_RX_OFFLOAD_VLAN_FILTER |
1644                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1645                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1646                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1647                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1648                           DEV_RX_OFFLOAD_KEEP_CRC    |
1649                           DEV_RX_OFFLOAD_SCATTER;
1650
1651         return rx_offload_capa;
1652 }
1653
1654 uint64_t
1655 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1656 {
1657         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1658         uint64_t rx_queue_offload_capa;
1659
1660         switch (hw->mac.type) {
1661         case e1000_vfadapt_i350:
1662                 /*
1663                  * As only one Rx queue can be used, let per queue offloading
1664                  * capability be same to per port queue offloading capability
1665                  * for better convenience.
1666                  */
1667                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1668                 break;
1669         default:
1670                 rx_queue_offload_capa = 0;
1671         }
1672         return rx_queue_offload_capa;
1673 }
1674
1675 int
1676 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1677                          uint16_t queue_idx,
1678                          uint16_t nb_desc,
1679                          unsigned int socket_id,
1680                          const struct rte_eth_rxconf *rx_conf,
1681                          struct rte_mempool *mp)
1682 {
1683         const struct rte_memzone *rz;
1684         struct igb_rx_queue *rxq;
1685         struct e1000_hw     *hw;
1686         unsigned int size;
1687         uint64_t offloads;
1688
1689         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1690
1691         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1692
1693         /*
1694          * Validate number of receive descriptors.
1695          * It must not exceed hardware maximum, and must be multiple
1696          * of E1000_ALIGN.
1697          */
1698         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1699                         (nb_desc > E1000_MAX_RING_DESC) ||
1700                         (nb_desc < E1000_MIN_RING_DESC)) {
1701                 return -EINVAL;
1702         }
1703
1704         /* Free memory prior to re-allocation if needed */
1705         if (dev->data->rx_queues[queue_idx] != NULL) {
1706                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1707                 dev->data->rx_queues[queue_idx] = NULL;
1708         }
1709
1710         /* First allocate the RX queue data structure. */
1711         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1712                           RTE_CACHE_LINE_SIZE);
1713         if (rxq == NULL)
1714                 return -ENOMEM;
1715         rxq->offloads = offloads;
1716         rxq->mb_pool = mp;
1717         rxq->nb_rx_desc = nb_desc;
1718         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1719         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1720         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1721         if (rxq->wthresh > 0 &&
1722             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1723                 rxq->wthresh = 1;
1724         rxq->drop_en = rx_conf->rx_drop_en;
1725         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1726         rxq->queue_id = queue_idx;
1727         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1728                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1729         rxq->port_id = dev->data->port_id;
1730         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1731                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1732         else
1733                 rxq->crc_len = 0;
1734
1735         /*
1736          *  Allocate RX ring hardware descriptors. A memzone large enough to
1737          *  handle the maximum ring size is allocated in order to allow for
1738          *  resizing in later calls to the queue setup function.
1739          */
1740         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1741         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1742                                       E1000_ALIGN, socket_id);
1743         if (rz == NULL) {
1744                 igb_rx_queue_release(rxq);
1745                 return -ENOMEM;
1746         }
1747         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1748         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1749         rxq->rx_ring_phys_addr = rz->iova;
1750         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1751
1752         /* Allocate software ring. */
1753         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1754                                    sizeof(struct igb_rx_entry) * nb_desc,
1755                                    RTE_CACHE_LINE_SIZE);
1756         if (rxq->sw_ring == NULL) {
1757                 igb_rx_queue_release(rxq);
1758                 return -ENOMEM;
1759         }
1760         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1761                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1762
1763         dev->data->rx_queues[queue_idx] = rxq;
1764         igb_reset_rx_queue(rxq);
1765
1766         return 0;
1767 }
1768
1769 uint32_t
1770 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1771 {
1772 #define IGB_RXQ_SCAN_INTERVAL 4
1773         volatile union e1000_adv_rx_desc *rxdp;
1774         struct igb_rx_queue *rxq;
1775         uint32_t desc = 0;
1776
1777         rxq = dev->data->rx_queues[rx_queue_id];
1778         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1779
1780         while ((desc < rxq->nb_rx_desc) &&
1781                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1782                 desc += IGB_RXQ_SCAN_INTERVAL;
1783                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1784                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1785                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1786                                 desc - rxq->nb_rx_desc]);
1787         }
1788
1789         return desc;
1790 }
1791
1792 int
1793 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1794 {
1795         volatile union e1000_adv_rx_desc *rxdp;
1796         struct igb_rx_queue *rxq = rx_queue;
1797         uint32_t desc;
1798
1799         if (unlikely(offset >= rxq->nb_rx_desc))
1800                 return 0;
1801         desc = rxq->rx_tail + offset;
1802         if (desc >= rxq->nb_rx_desc)
1803                 desc -= rxq->nb_rx_desc;
1804
1805         rxdp = &rxq->rx_ring[desc];
1806         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1807 }
1808
1809 int
1810 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1811 {
1812         struct igb_rx_queue *rxq = rx_queue;
1813         volatile uint32_t *status;
1814         uint32_t desc;
1815
1816         if (unlikely(offset >= rxq->nb_rx_desc))
1817                 return -EINVAL;
1818
1819         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1820                 return RTE_ETH_RX_DESC_UNAVAIL;
1821
1822         desc = rxq->rx_tail + offset;
1823         if (desc >= rxq->nb_rx_desc)
1824                 desc -= rxq->nb_rx_desc;
1825
1826         status = &rxq->rx_ring[desc].wb.upper.status_error;
1827         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1828                 return RTE_ETH_RX_DESC_DONE;
1829
1830         return RTE_ETH_RX_DESC_AVAIL;
1831 }
1832
1833 int
1834 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1835 {
1836         struct igb_tx_queue *txq = tx_queue;
1837         volatile uint32_t *status;
1838         uint32_t desc;
1839
1840         if (unlikely(offset >= txq->nb_tx_desc))
1841                 return -EINVAL;
1842
1843         desc = txq->tx_tail + offset;
1844         if (desc >= txq->nb_tx_desc)
1845                 desc -= txq->nb_tx_desc;
1846
1847         status = &txq->tx_ring[desc].wb.status;
1848         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1849                 return RTE_ETH_TX_DESC_DONE;
1850
1851         return RTE_ETH_TX_DESC_FULL;
1852 }
1853
1854 void
1855 igb_dev_clear_queues(struct rte_eth_dev *dev)
1856 {
1857         uint16_t i;
1858         struct igb_tx_queue *txq;
1859         struct igb_rx_queue *rxq;
1860
1861         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1862                 txq = dev->data->tx_queues[i];
1863                 if (txq != NULL) {
1864                         igb_tx_queue_release_mbufs(txq);
1865                         igb_reset_tx_queue(txq, dev);
1866                 }
1867         }
1868
1869         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1870                 rxq = dev->data->rx_queues[i];
1871                 if (rxq != NULL) {
1872                         igb_rx_queue_release_mbufs(rxq);
1873                         igb_reset_rx_queue(rxq);
1874                 }
1875         }
1876 }
1877
1878 void
1879 igb_dev_free_queues(struct rte_eth_dev *dev)
1880 {
1881         uint16_t i;
1882
1883         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1884                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1885                 dev->data->rx_queues[i] = NULL;
1886         }
1887         dev->data->nb_rx_queues = 0;
1888
1889         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1890                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1891                 dev->data->tx_queues[i] = NULL;
1892         }
1893         dev->data->nb_tx_queues = 0;
1894 }
1895
1896 /**
1897  * Receive Side Scaling (RSS).
1898  * See section 7.1.1.7 in the following document:
1899  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1900  *
1901  * Principles:
1902  * The source and destination IP addresses of the IP header and the source and
1903  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1904  * against a configurable random key to compute a 32-bit RSS hash result.
1905  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1906  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1907  * RSS output index which is used as the RX queue index where to store the
1908  * received packets.
1909  * The following output is supplied in the RX write-back descriptor:
1910  *     - 32-bit result of the Microsoft RSS hash function,
1911  *     - 4-bit RSS type field.
1912  */
1913
1914 /*
1915  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1916  * Used as the default key.
1917  */
1918 static uint8_t rss_intel_key[40] = {
1919         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1920         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1921         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1922         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1923         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1924 };
1925
1926 static void
1927 igb_rss_disable(struct rte_eth_dev *dev)
1928 {
1929         struct e1000_hw *hw;
1930         uint32_t mrqc;
1931
1932         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1933         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1934         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1935         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1936 }
1937
1938 static void
1939 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1940 {
1941         uint8_t  *hash_key;
1942         uint32_t rss_key;
1943         uint32_t mrqc;
1944         uint64_t rss_hf;
1945         uint16_t i;
1946
1947         hash_key = rss_conf->rss_key;
1948         if (hash_key != NULL) {
1949                 /* Fill in RSS hash key */
1950                 for (i = 0; i < 10; i++) {
1951                         rss_key  = hash_key[(i * 4)];
1952                         rss_key |= hash_key[(i * 4) + 1] << 8;
1953                         rss_key |= hash_key[(i * 4) + 2] << 16;
1954                         rss_key |= hash_key[(i * 4) + 3] << 24;
1955                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1956                 }
1957         }
1958
1959         /* Set configured hashing protocols in MRQC register */
1960         rss_hf = rss_conf->rss_hf;
1961         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1962         if (rss_hf & ETH_RSS_IPV4)
1963                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1964         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1965                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1966         if (rss_hf & ETH_RSS_IPV6)
1967                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1968         if (rss_hf & ETH_RSS_IPV6_EX)
1969                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1970         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1971                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1972         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1973                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1974         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1975                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1976         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1977                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1978         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1979                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1980         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1981 }
1982
1983 int
1984 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1985                         struct rte_eth_rss_conf *rss_conf)
1986 {
1987         struct e1000_hw *hw;
1988         uint32_t mrqc;
1989         uint64_t rss_hf;
1990
1991         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1992
1993         /*
1994          * Before changing anything, first check that the update RSS operation
1995          * does not attempt to disable RSS, if RSS was enabled at
1996          * initialization time, or does not attempt to enable RSS, if RSS was
1997          * disabled at initialization time.
1998          */
1999         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
2000         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2001         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
2002                 if (rss_hf != 0) /* Enable RSS */
2003                         return -(EINVAL);
2004                 return 0; /* Nothing to do */
2005         }
2006         /* RSS enabled */
2007         if (rss_hf == 0) /* Disable RSS */
2008                 return -(EINVAL);
2009         igb_hw_rss_hash_set(hw, rss_conf);
2010         return 0;
2011 }
2012
2013 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2014                               struct rte_eth_rss_conf *rss_conf)
2015 {
2016         struct e1000_hw *hw;
2017         uint8_t *hash_key;
2018         uint32_t rss_key;
2019         uint32_t mrqc;
2020         uint64_t rss_hf;
2021         uint16_t i;
2022
2023         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2024         hash_key = rss_conf->rss_key;
2025         if (hash_key != NULL) {
2026                 /* Return RSS hash key */
2027                 for (i = 0; i < 10; i++) {
2028                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2029                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2030                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2031                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2032                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2033                 }
2034         }
2035
2036         /* Get RSS functions configured in MRQC register */
2037         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2038         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2039                 rss_conf->rss_hf = 0;
2040                 return 0;
2041         }
2042         rss_hf = 0;
2043         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2044                 rss_hf |= ETH_RSS_IPV4;
2045         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2046                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2047         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2048                 rss_hf |= ETH_RSS_IPV6;
2049         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2050                 rss_hf |= ETH_RSS_IPV6_EX;
2051         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2052                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2053         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2054                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2055         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2056                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2057         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2058                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2059         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2060                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2061         rss_conf->rss_hf = rss_hf;
2062         return 0;
2063 }
2064
2065 static void
2066 igb_rss_configure(struct rte_eth_dev *dev)
2067 {
2068         struct rte_eth_rss_conf rss_conf;
2069         struct e1000_hw *hw;
2070         uint32_t shift;
2071         uint16_t i;
2072
2073         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2074
2075         /* Fill in redirection table. */
2076         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2077         for (i = 0; i < 128; i++) {
2078                 union e1000_reta {
2079                         uint32_t dword;
2080                         uint8_t  bytes[4];
2081                 } reta;
2082                 uint8_t q_idx;
2083
2084                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2085                                    i % dev->data->nb_rx_queues : 0);
2086                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2087                 if ((i & 3) == 3)
2088                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2089         }
2090
2091         /*
2092          * Configure the RSS key and the RSS protocols used to compute
2093          * the RSS hash of input packets.
2094          */
2095         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2096         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2097                 igb_rss_disable(dev);
2098                 return;
2099         }
2100         if (rss_conf.rss_key == NULL)
2101                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2102         igb_hw_rss_hash_set(hw, &rss_conf);
2103 }
2104
2105 /*
2106  * Check if the mac type support VMDq or not.
2107  * Return 1 if it supports, otherwise, return 0.
2108  */
2109 static int
2110 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2111 {
2112         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2113
2114         switch (hw->mac.type) {
2115         case e1000_82576:
2116         case e1000_82580:
2117         case e1000_i350:
2118                 return 1;
2119         case e1000_82540:
2120         case e1000_82541:
2121         case e1000_82542:
2122         case e1000_82543:
2123         case e1000_82544:
2124         case e1000_82545:
2125         case e1000_82546:
2126         case e1000_82547:
2127         case e1000_82571:
2128         case e1000_82572:
2129         case e1000_82573:
2130         case e1000_82574:
2131         case e1000_82583:
2132         case e1000_i210:
2133         case e1000_i211:
2134         default:
2135                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2136                 return 0;
2137         }
2138 }
2139
2140 static int
2141 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2142 {
2143         struct rte_eth_vmdq_rx_conf *cfg;
2144         struct e1000_hw *hw;
2145         uint32_t mrqc, vt_ctl, vmolr, rctl;
2146         int i;
2147
2148         PMD_INIT_FUNC_TRACE();
2149
2150         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2151         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2152
2153         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2154         if (igb_is_vmdq_supported(dev) == 0)
2155                 return -1;
2156
2157         igb_rss_disable(dev);
2158
2159         /* RCTL: eanble VLAN filter */
2160         rctl = E1000_READ_REG(hw, E1000_RCTL);
2161         rctl |= E1000_RCTL_VFE;
2162         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2163
2164         /* MRQC: enable vmdq */
2165         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2166         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2167         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2168
2169         /* VTCTL:  pool selection according to VLAN tag */
2170         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2171         if (cfg->enable_default_pool)
2172                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2173         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2174         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2175
2176         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2177                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2178                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2179                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2180                         E1000_VMOLR_MPME);
2181
2182                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2183                         vmolr |= E1000_VMOLR_AUPE;
2184                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2185                         vmolr |= E1000_VMOLR_ROMPE;
2186                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2187                         vmolr |= E1000_VMOLR_ROPE;
2188                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2189                         vmolr |= E1000_VMOLR_BAM;
2190                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2191                         vmolr |= E1000_VMOLR_MPME;
2192
2193                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2194         }
2195
2196         /*
2197          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2198          * Both 82576 and 82580 support it
2199          */
2200         if (hw->mac.type != e1000_i350) {
2201                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2202                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2203                         vmolr |= E1000_VMOLR_STRVLAN;
2204                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2205                 }
2206         }
2207
2208         /* VFTA - enable all vlan filters */
2209         for (i = 0; i < IGB_VFTA_SIZE; i++)
2210                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2211
2212         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2213         if (hw->mac.type != e1000_82580)
2214                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2215
2216         /*
2217          * RAH/RAL - allow pools to read specific mac addresses
2218          * In this case, all pools should be able to read from mac addr 0
2219          */
2220         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2221         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2222
2223         /* VLVF: set up filters for vlan tags as configured */
2224         for (i = 0; i < cfg->nb_pool_maps; i++) {
2225                 /* set vlan id in VF register and set the valid bit */
2226                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2227                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2228                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2229                         E1000_VLVF_POOLSEL_MASK)));
2230         }
2231
2232         E1000_WRITE_FLUSH(hw);
2233
2234         return 0;
2235 }
2236
2237
2238 /*********************************************************************
2239  *
2240  *  Enable receive unit.
2241  *
2242  **********************************************************************/
2243
2244 static int
2245 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2246 {
2247         struct igb_rx_entry *rxe = rxq->sw_ring;
2248         uint64_t dma_addr;
2249         unsigned i;
2250
2251         /* Initialize software ring entries. */
2252         for (i = 0; i < rxq->nb_rx_desc; i++) {
2253                 volatile union e1000_adv_rx_desc *rxd;
2254                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2255
2256                 if (mbuf == NULL) {
2257                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2258                                      "queue_id=%hu", rxq->queue_id);
2259                         return -ENOMEM;
2260                 }
2261                 dma_addr =
2262                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2263                 rxd = &rxq->rx_ring[i];
2264                 rxd->read.hdr_addr = 0;
2265                 rxd->read.pkt_addr = dma_addr;
2266                 rxe[i].mbuf = mbuf;
2267         }
2268
2269         return 0;
2270 }
2271
2272 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2273 static int
2274 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2275 {
2276         struct e1000_hw *hw =
2277                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2278         uint32_t mrqc;
2279
2280         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2281                 /*
2282                  * SRIOV active scheme
2283                  * FIXME if support RSS together with VMDq & SRIOV
2284                  */
2285                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2286                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2287                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2288                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2289         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2290                 /*
2291                  * SRIOV inactive scheme
2292                  */
2293                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2294                         case ETH_MQ_RX_RSS:
2295                                 igb_rss_configure(dev);
2296                                 break;
2297                         case ETH_MQ_RX_VMDQ_ONLY:
2298                                 /*Configure general VMDQ only RX parameters*/
2299                                 igb_vmdq_rx_hw_configure(dev);
2300                                 break;
2301                         case ETH_MQ_RX_NONE:
2302                                 /* if mq_mode is none, disable rss mode.*/
2303                         default:
2304                                 igb_rss_disable(dev);
2305                                 break;
2306                 }
2307         }
2308
2309         return 0;
2310 }
2311
2312 int
2313 eth_igb_rx_init(struct rte_eth_dev *dev)
2314 {
2315         struct rte_eth_rxmode *rxmode;
2316         struct e1000_hw     *hw;
2317         struct igb_rx_queue *rxq;
2318         uint32_t rctl;
2319         uint32_t rxcsum;
2320         uint32_t srrctl;
2321         uint16_t buf_size;
2322         uint16_t rctl_bsize;
2323         uint16_t i;
2324         int ret;
2325
2326         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2327         srrctl = 0;
2328
2329         /*
2330          * Make sure receives are disabled while setting
2331          * up the descriptor ring.
2332          */
2333         rctl = E1000_READ_REG(hw, E1000_RCTL);
2334         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2335
2336         rxmode = &dev->data->dev_conf.rxmode;
2337
2338         /*
2339          * Configure support of jumbo frames, if any.
2340          */
2341         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2342                 rctl |= E1000_RCTL_LPE;
2343
2344                 /*
2345                  * Set maximum packet length by default, and might be updated
2346                  * together with enabling/disabling dual VLAN.
2347                  */
2348                 E1000_WRITE_REG(hw, E1000_RLPML,
2349                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2350                                                 VLAN_TAG_SIZE);
2351         } else
2352                 rctl &= ~E1000_RCTL_LPE;
2353
2354         /* Configure and enable each RX queue. */
2355         rctl_bsize = 0;
2356         dev->rx_pkt_burst = eth_igb_recv_pkts;
2357         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2358                 uint64_t bus_addr;
2359                 uint32_t rxdctl;
2360
2361                 rxq = dev->data->rx_queues[i];
2362
2363                 rxq->flags = 0;
2364                 /*
2365                  * i350 and i354 vlan packets have vlan tags byte swapped.
2366                  */
2367                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2368                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2369                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2370                 } else {
2371                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2372                 }
2373
2374                 /* Allocate buffers for descriptor rings and set up queue */
2375                 ret = igb_alloc_rx_queue_mbufs(rxq);
2376                 if (ret)
2377                         return ret;
2378
2379                 /*
2380                  * Reset crc_len in case it was changed after queue setup by a
2381                  *  call to configure
2382                  */
2383                 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2384                         rxq->crc_len = RTE_ETHER_CRC_LEN;
2385                 else
2386                         rxq->crc_len = 0;
2387
2388                 bus_addr = rxq->rx_ring_phys_addr;
2389                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2390                                 rxq->nb_rx_desc *
2391                                 sizeof(union e1000_adv_rx_desc));
2392                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2393                                 (uint32_t)(bus_addr >> 32));
2394                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2395
2396                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2397
2398                 /*
2399                  * Configure RX buffer size.
2400                  */
2401                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2402                         RTE_PKTMBUF_HEADROOM);
2403                 if (buf_size >= 1024) {
2404                         /*
2405                          * Configure the BSIZEPACKET field of the SRRCTL
2406                          * register of the queue.
2407                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2408                          * If this field is equal to 0b, then RCTL.BSIZE
2409                          * determines the RX packet buffer size.
2410                          */
2411                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2412                                    E1000_SRRCTL_BSIZEPKT_MASK);
2413                         buf_size = (uint16_t) ((srrctl &
2414                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2415                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2416
2417                         /* It adds dual VLAN length for supporting dual VLAN */
2418                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2419                                                 2 * VLAN_TAG_SIZE) > buf_size){
2420                                 if (!dev->data->scattered_rx)
2421                                         PMD_INIT_LOG(DEBUG,
2422                                                      "forcing scatter mode");
2423                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2424                                 dev->data->scattered_rx = 1;
2425                         }
2426                 } else {
2427                         /*
2428                          * Use BSIZE field of the device RCTL register.
2429                          */
2430                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2431                                 rctl_bsize = buf_size;
2432                         if (!dev->data->scattered_rx)
2433                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2434                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2435                         dev->data->scattered_rx = 1;
2436                 }
2437
2438                 /* Set if packets are dropped when no descriptors available */
2439                 if (rxq->drop_en)
2440                         srrctl |= E1000_SRRCTL_DROP_EN;
2441
2442                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2443
2444                 /* Enable this RX queue. */
2445                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2446                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2447                 rxdctl &= 0xFFF00000;
2448                 rxdctl |= (rxq->pthresh & 0x1F);
2449                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2450                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2451                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2452         }
2453
2454         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2455                 if (!dev->data->scattered_rx)
2456                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2457                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2458                 dev->data->scattered_rx = 1;
2459         }
2460
2461         /*
2462          * Setup BSIZE field of RCTL register, if needed.
2463          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2464          * register, since the code above configures the SRRCTL register of
2465          * the RX queue in such a case.
2466          * All configurable sizes are:
2467          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2468          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2469          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2470          *  2048: rctl |= E1000_RCTL_SZ_2048;
2471          *  1024: rctl |= E1000_RCTL_SZ_1024;
2472          *   512: rctl |= E1000_RCTL_SZ_512;
2473          *   256: rctl |= E1000_RCTL_SZ_256;
2474          */
2475         if (rctl_bsize > 0) {
2476                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2477                         rctl |= E1000_RCTL_SZ_512;
2478                 else /* 256 <= buf_size < 512 - use 256 */
2479                         rctl |= E1000_RCTL_SZ_256;
2480         }
2481
2482         /*
2483          * Configure RSS if device configured with multiple RX queues.
2484          */
2485         igb_dev_mq_rx_configure(dev);
2486
2487         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2488         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2489
2490         /*
2491          * Setup the Checksum Register.
2492          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2493          */
2494         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2495         rxcsum |= E1000_RXCSUM_PCSD;
2496
2497         /* Enable both L3/L4 rx checksum offload */
2498         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2499                 rxcsum |= E1000_RXCSUM_IPOFL;
2500         else
2501                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2502         if (rxmode->offloads &
2503                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2504                 rxcsum |= E1000_RXCSUM_TUOFL;
2505         else
2506                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2507         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2508                 rxcsum |= E1000_RXCSUM_CRCOFL;
2509         else
2510                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2511
2512         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2513
2514         /* Setup the Receive Control Register. */
2515         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
2516                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2517
2518                 /* clear STRCRC bit in all queues */
2519                 if (hw->mac.type == e1000_i350 ||
2520                     hw->mac.type == e1000_i210 ||
2521                     hw->mac.type == e1000_i211 ||
2522                     hw->mac.type == e1000_i354) {
2523                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2524                                 rxq = dev->data->rx_queues[i];
2525                                 uint32_t dvmolr = E1000_READ_REG(hw,
2526                                         E1000_DVMOLR(rxq->reg_idx));
2527                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2528                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2529                         }
2530                 }
2531         } else {
2532                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2533
2534                 /* set STRCRC bit in all queues */
2535                 if (hw->mac.type == e1000_i350 ||
2536                     hw->mac.type == e1000_i210 ||
2537                     hw->mac.type == e1000_i211 ||
2538                     hw->mac.type == e1000_i354) {
2539                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2540                                 rxq = dev->data->rx_queues[i];
2541                                 uint32_t dvmolr = E1000_READ_REG(hw,
2542                                         E1000_DVMOLR(rxq->reg_idx));
2543                                 dvmolr |= E1000_DVMOLR_STRCRC;
2544                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2545                         }
2546                 }
2547         }
2548
2549         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2550         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2551                 E1000_RCTL_RDMTS_HALF |
2552                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2553
2554         /* Make sure VLAN Filters are off. */
2555         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2556                 rctl &= ~E1000_RCTL_VFE;
2557         /* Don't store bad packets. */
2558         rctl &= ~E1000_RCTL_SBP;
2559
2560         /* Enable Receives. */
2561         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2562
2563         /*
2564          * Setup the HW Rx Head and Tail Descriptor Pointers.
2565          * This needs to be done after enable.
2566          */
2567         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2568                 rxq = dev->data->rx_queues[i];
2569                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2570                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2571         }
2572
2573         return 0;
2574 }
2575
2576 /*********************************************************************
2577  *
2578  *  Enable transmit unit.
2579  *
2580  **********************************************************************/
2581 void
2582 eth_igb_tx_init(struct rte_eth_dev *dev)
2583 {
2584         struct e1000_hw     *hw;
2585         struct igb_tx_queue *txq;
2586         uint32_t tctl;
2587         uint32_t txdctl;
2588         uint16_t i;
2589
2590         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2591
2592         /* Setup the Base and Length of the Tx Descriptor Rings. */
2593         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2594                 uint64_t bus_addr;
2595                 txq = dev->data->tx_queues[i];
2596                 bus_addr = txq->tx_ring_phys_addr;
2597
2598                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2599                                 txq->nb_tx_desc *
2600                                 sizeof(union e1000_adv_tx_desc));
2601                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2602                                 (uint32_t)(bus_addr >> 32));
2603                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2604
2605                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2606                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2607                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2608
2609                 /* Setup Transmit threshold registers. */
2610                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2611                 txdctl |= txq->pthresh & 0x1F;
2612                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2613                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2614                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2615                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2616         }
2617
2618         /* Program the Transmit Control Register. */
2619         tctl = E1000_READ_REG(hw, E1000_TCTL);
2620         tctl &= ~E1000_TCTL_CT;
2621         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2622                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2623
2624         e1000_config_collision_dist(hw);
2625
2626         /* This write will effectively turn on the transmit unit. */
2627         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2628 }
2629
2630 /*********************************************************************
2631  *
2632  *  Enable VF receive unit.
2633  *
2634  **********************************************************************/
2635 int
2636 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2637 {
2638         struct e1000_hw     *hw;
2639         struct igb_rx_queue *rxq;
2640         uint32_t srrctl;
2641         uint16_t buf_size;
2642         uint16_t rctl_bsize;
2643         uint16_t i;
2644         int ret;
2645
2646         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2647
2648         /* setup MTU */
2649         e1000_rlpml_set_vf(hw,
2650                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2651                 VLAN_TAG_SIZE));
2652
2653         /* Configure and enable each RX queue. */
2654         rctl_bsize = 0;
2655         dev->rx_pkt_burst = eth_igb_recv_pkts;
2656         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2657                 uint64_t bus_addr;
2658                 uint32_t rxdctl;
2659
2660                 rxq = dev->data->rx_queues[i];
2661
2662                 rxq->flags = 0;
2663                 /*
2664                  * i350VF LB vlan packets have vlan tags byte swapped.
2665                  */
2666                 if (hw->mac.type == e1000_vfadapt_i350) {
2667                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2668                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2669                 } else {
2670                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2671                 }
2672
2673                 /* Allocate buffers for descriptor rings and set up queue */
2674                 ret = igb_alloc_rx_queue_mbufs(rxq);
2675                 if (ret)
2676                         return ret;
2677
2678                 bus_addr = rxq->rx_ring_phys_addr;
2679                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2680                                 rxq->nb_rx_desc *
2681                                 sizeof(union e1000_adv_rx_desc));
2682                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2683                                 (uint32_t)(bus_addr >> 32));
2684                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2685
2686                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2687
2688                 /*
2689                  * Configure RX buffer size.
2690                  */
2691                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2692                         RTE_PKTMBUF_HEADROOM);
2693                 if (buf_size >= 1024) {
2694                         /*
2695                          * Configure the BSIZEPACKET field of the SRRCTL
2696                          * register of the queue.
2697                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2698                          * If this field is equal to 0b, then RCTL.BSIZE
2699                          * determines the RX packet buffer size.
2700                          */
2701                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2702                                    E1000_SRRCTL_BSIZEPKT_MASK);
2703                         buf_size = (uint16_t) ((srrctl &
2704                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2705                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2706
2707                         /* It adds dual VLAN length for supporting dual VLAN */
2708                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2709                                                 2 * VLAN_TAG_SIZE) > buf_size){
2710                                 if (!dev->data->scattered_rx)
2711                                         PMD_INIT_LOG(DEBUG,
2712                                                      "forcing scatter mode");
2713                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2714                                 dev->data->scattered_rx = 1;
2715                         }
2716                 } else {
2717                         /*
2718                          * Use BSIZE field of the device RCTL register.
2719                          */
2720                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2721                                 rctl_bsize = buf_size;
2722                         if (!dev->data->scattered_rx)
2723                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2724                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2725                         dev->data->scattered_rx = 1;
2726                 }
2727
2728                 /* Set if packets are dropped when no descriptors available */
2729                 if (rxq->drop_en)
2730                         srrctl |= E1000_SRRCTL_DROP_EN;
2731
2732                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2733
2734                 /* Enable this RX queue. */
2735                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2736                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2737                 rxdctl &= 0xFFF00000;
2738                 rxdctl |= (rxq->pthresh & 0x1F);
2739                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2740                 if (hw->mac.type == e1000_vfadapt) {
2741                         /*
2742                          * Workaround of 82576 VF Erratum
2743                          * force set WTHRESH to 1
2744                          * to avoid Write-Back not triggered sometimes
2745                          */
2746                         rxdctl |= 0x10000;
2747                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2748                 }
2749                 else
2750                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2751                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2752         }
2753
2754         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2755                 if (!dev->data->scattered_rx)
2756                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2757                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2758                 dev->data->scattered_rx = 1;
2759         }
2760
2761         /*
2762          * Setup the HW Rx Head and Tail Descriptor Pointers.
2763          * This needs to be done after enable.
2764          */
2765         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2766                 rxq = dev->data->rx_queues[i];
2767                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2768                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2769         }
2770
2771         return 0;
2772 }
2773
2774 /*********************************************************************
2775  *
2776  *  Enable VF transmit unit.
2777  *
2778  **********************************************************************/
2779 void
2780 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2781 {
2782         struct e1000_hw     *hw;
2783         struct igb_tx_queue *txq;
2784         uint32_t txdctl;
2785         uint16_t i;
2786
2787         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2788
2789         /* Setup the Base and Length of the Tx Descriptor Rings. */
2790         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2791                 uint64_t bus_addr;
2792
2793                 txq = dev->data->tx_queues[i];
2794                 bus_addr = txq->tx_ring_phys_addr;
2795                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2796                                 txq->nb_tx_desc *
2797                                 sizeof(union e1000_adv_tx_desc));
2798                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2799                                 (uint32_t)(bus_addr >> 32));
2800                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2801
2802                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2803                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2804                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2805
2806                 /* Setup Transmit threshold registers. */
2807                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2808                 txdctl |= txq->pthresh & 0x1F;
2809                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2810                 if (hw->mac.type == e1000_82576) {
2811                         /*
2812                          * Workaround of 82576 VF Erratum
2813                          * force set WTHRESH to 1
2814                          * to avoid Write-Back not triggered sometimes
2815                          */
2816                         txdctl |= 0x10000;
2817                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2818                 }
2819                 else
2820                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2821                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2822                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2823         }
2824
2825 }
2826
2827 void
2828 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2829         struct rte_eth_rxq_info *qinfo)
2830 {
2831         struct igb_rx_queue *rxq;
2832
2833         rxq = dev->data->rx_queues[queue_id];
2834
2835         qinfo->mp = rxq->mb_pool;
2836         qinfo->scattered_rx = dev->data->scattered_rx;
2837         qinfo->nb_desc = rxq->nb_rx_desc;
2838
2839         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2840         qinfo->conf.rx_drop_en = rxq->drop_en;
2841         qinfo->conf.offloads = rxq->offloads;
2842 }
2843
2844 void
2845 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2846         struct rte_eth_txq_info *qinfo)
2847 {
2848         struct igb_tx_queue *txq;
2849
2850         txq = dev->data->tx_queues[queue_id];
2851
2852         qinfo->nb_desc = txq->nb_tx_desc;
2853
2854         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2855         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2856         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2857         qinfo->conf.offloads = txq->offloads;
2858 }
2859
2860 int
2861 igb_rss_conf_init(struct rte_eth_dev *dev,
2862                   struct igb_rte_flow_rss_conf *out,
2863                   const struct rte_flow_action_rss *in)
2864 {
2865         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2866
2867         if (in->key_len > RTE_DIM(out->key) ||
2868             ((hw->mac.type == e1000_82576) &&
2869              (in->queue_num > IGB_MAX_RX_QUEUE_NUM_82576)) ||
2870             ((hw->mac.type != e1000_82576) &&
2871              (in->queue_num > IGB_MAX_RX_QUEUE_NUM)))
2872                 return -EINVAL;
2873         out->conf = (struct rte_flow_action_rss){
2874                 .func = in->func,
2875                 .level = in->level,
2876                 .types = in->types,
2877                 .key_len = in->key_len,
2878                 .queue_num = in->queue_num,
2879                 .key = memcpy(out->key, in->key, in->key_len),
2880                 .queue = memcpy(out->queue, in->queue,
2881                                 sizeof(*in->queue) * in->queue_num),
2882         };
2883         return 0;
2884 }
2885
2886 int
2887 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2888                     const struct rte_flow_action_rss *with)
2889 {
2890         return (comp->func == with->func &&
2891                 comp->level == with->level &&
2892                 comp->types == with->types &&
2893                 comp->key_len == with->key_len &&
2894                 comp->queue_num == with->queue_num &&
2895                 !memcmp(comp->key, with->key, with->key_len) &&
2896                 !memcmp(comp->queue, with->queue,
2897                         sizeof(*with->queue) * with->queue_num));
2898 }
2899
2900 int
2901 igb_config_rss_filter(struct rte_eth_dev *dev,
2902                 struct igb_rte_flow_rss_conf *conf, bool add)
2903 {
2904         uint32_t shift;
2905         uint16_t i, j;
2906         struct rte_eth_rss_conf rss_conf = {
2907                 .rss_key = conf->conf.key_len ?
2908                         (void *)(uintptr_t)conf->conf.key : NULL,
2909                 .rss_key_len = conf->conf.key_len,
2910                 .rss_hf = conf->conf.types,
2911         };
2912         struct e1000_filter_info *filter_info =
2913                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2914         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2915
2916         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2917
2918         if (!add) {
2919                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2920                                         &conf->conf)) {
2921                         igb_rss_disable(dev);
2922                         memset(&filter_info->rss_info, 0,
2923                                 sizeof(struct igb_rte_flow_rss_conf));
2924                         return 0;
2925                 }
2926                 return -EINVAL;
2927         }
2928
2929         if (filter_info->rss_info.conf.queue_num)
2930                 return -EINVAL;
2931
2932         /* Fill in redirection table. */
2933         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2934         for (i = 0, j = 0; i < 128; i++, j++) {
2935                 union e1000_reta {
2936                         uint32_t dword;
2937                         uint8_t  bytes[4];
2938                 } reta;
2939                 uint8_t q_idx;
2940
2941                 if (j == conf->conf.queue_num)
2942                         j = 0;
2943                 q_idx = conf->conf.queue[j];
2944                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2945                 if ((i & 3) == 3)
2946                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2947         }
2948
2949         /* Configure the RSS key and the RSS protocols used to compute
2950          * the RSS hash of input packets.
2951          */
2952         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2953                 igb_rss_disable(dev);
2954                 return 0;
2955         }
2956         if (rss_conf.rss_key == NULL)
2957                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2958         igb_hw_rss_hash_set(hw, &rss_conf);
2959
2960         if (igb_rss_conf_init(dev, &filter_info->rss_info, &conf->conf))
2961                 return -EINVAL;
2962
2963         return 0;
2964 }