996e7da4a4386e12a8010e677bc28dae4a5ce322
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <errno.h>
40 #include <stdint.h>
41 #include <stdarg.h>
42 #include <inttypes.h>
43
44 #include <rte_interrupts.h>
45 #include <rte_byteorder.h>
46 #include <rte_common.h>
47 #include <rte_log.h>
48 #include <rte_debug.h>
49 #include <rte_pci.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_atomic.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_ring.h>
60 #include <rte_mempool.h>
61 #include <rte_malloc.h>
62 #include <rte_mbuf.h>
63 #include <rte_ether.h>
64 #include <rte_ethdev.h>
65 #include <rte_prefetch.h>
66 #include <rte_udp.h>
67 #include <rte_tcp.h>
68 #include <rte_sctp.h>
69 #include <rte_string_fns.h>
70
71 #include "e1000_logs.h"
72 #include "base/e1000_api.h"
73 #include "e1000_ethdev.h"
74
75 /* Bit Mask to indicate what bits required for building TX context */
76 #define IGB_TX_OFFLOAD_MASK (                    \
77                 PKT_TX_VLAN_PKT |                \
78                 PKT_TX_IP_CKSUM |                \
79                 PKT_TX_L4_MASK |                 \
80                 PKT_TX_TCP_SEG)
81
82 static inline struct rte_mbuf *
83 rte_rxmbuf_alloc(struct rte_mempool *mp)
84 {
85         struct rte_mbuf *m;
86
87         m = __rte_mbuf_raw_alloc(mp);
88         __rte_mbuf_sanity_check_raw(m, 0);
89         return (m);
90 }
91
92 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
93         (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
94
95 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
96         (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
97
98 /**
99  * Structure associated with each descriptor of the RX ring of a RX queue.
100  */
101 struct igb_rx_entry {
102         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
103 };
104
105 /**
106  * Structure associated with each descriptor of the TX ring of a TX queue.
107  */
108 struct igb_tx_entry {
109         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
110         uint16_t next_id; /**< Index of next descriptor in ring. */
111         uint16_t last_id; /**< Index of last scattered descriptor. */
112 };
113
114 /**
115  * Structure associated with each RX queue.
116  */
117 struct igb_rx_queue {
118         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
119         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
120         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
121         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
122         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
123         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
124         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
125         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
126         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
127         uint16_t            rx_tail;    /**< current value of RDT register. */
128         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
129         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
130         uint16_t            queue_id;   /**< RX queue index. */
131         uint16_t            reg_idx;    /**< RX queue register index. */
132         uint8_t             port_id;    /**< Device port identifier. */
133         uint8_t             pthresh;    /**< Prefetch threshold register. */
134         uint8_t             hthresh;    /**< Host threshold register. */
135         uint8_t             wthresh;    /**< Write-back threshold register. */
136         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
137         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
138 };
139
140 /**
141  * Hardware context number
142  */
143 enum igb_advctx_num {
144         IGB_CTX_0    = 0, /**< CTX0    */
145         IGB_CTX_1    = 1, /**< CTX1    */
146         IGB_CTX_NUM  = 2, /**< CTX_NUM */
147 };
148
149 /** Offload features */
150 union igb_tx_offload {
151         uint64_t data;
152         struct {
153                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
154                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
155                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
156                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
157                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
158
159                 /* uint64_t unused:8; */
160         };
161 };
162
163 /*
164  * Compare mask for igb_tx_offload.data,
165  * should be in sync with igb_tx_offload layout.
166  * */
167 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
168 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
169 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
170 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
171 /** Mac + IP + TCP + Mss mask. */
172 #define TX_TSO_CMP_MASK \
173         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
174
175 /**
176  * Strucutre to check if new context need be built
177  */
178 struct igb_advctx_info {
179         uint64_t flags;           /**< ol_flags related to context build. */
180         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
181         union igb_tx_offload tx_offload;
182         /** compare mask for tx offload. */
183         union igb_tx_offload tx_offload_mask;
184 };
185
186 /**
187  * Structure associated with each TX queue.
188  */
189 struct igb_tx_queue {
190         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
191         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
192         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
193         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
194         uint32_t               txd_type;      /**< Device-specific TXD type */
195         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
196         uint16_t               tx_tail; /**< Current value of TDT register. */
197         uint16_t               tx_head;
198         /**< Index of first used TX descriptor. */
199         uint16_t               queue_id; /**< TX queue index. */
200         uint16_t               reg_idx;  /**< TX queue register index. */
201         uint8_t                port_id;  /**< Device port identifier. */
202         uint8_t                pthresh;  /**< Prefetch threshold register. */
203         uint8_t                hthresh;  /**< Host threshold register. */
204         uint8_t                wthresh;  /**< Write-back threshold register. */
205         uint32_t               ctx_curr;
206         /**< Current used hardware descriptor. */
207         uint32_t               ctx_start;
208         /**< Start context position for transmit queue. */
209         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
210         /**< Hardware context history.*/
211 };
212
213 #if 1
214 #define RTE_PMD_USE_PREFETCH
215 #endif
216
217 #ifdef RTE_PMD_USE_PREFETCH
218 #define rte_igb_prefetch(p)     rte_prefetch0(p)
219 #else
220 #define rte_igb_prefetch(p)     do {} while(0)
221 #endif
222
223 #ifdef RTE_PMD_PACKET_PREFETCH
224 #define rte_packet_prefetch(p) rte_prefetch1(p)
225 #else
226 #define rte_packet_prefetch(p)  do {} while(0)
227 #endif
228
229 /*
230  * Macro for VMDq feature for 1 GbE NIC.
231  */
232 #define E1000_VMOLR_SIZE                        (8)
233 #define IGB_TSO_MAX_HDRLEN                      (512)
234 #define IGB_TSO_MAX_MSS                         (9216)
235
236 /*********************************************************************
237  *
238  *  TX function
239  *
240  **********************************************************************/
241
242 /*
243  *There're some limitations in hardware for TCP segmentation offload. We
244  *should check whether the parameters are valid.
245  */
246 static inline uint64_t
247 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
248 {
249         if (!(ol_req & PKT_TX_TCP_SEG))
250                 return ol_req;
251         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
252                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
253                 ol_req &= ~PKT_TX_TCP_SEG;
254                 ol_req |= PKT_TX_TCP_CKSUM;
255         }
256         return ol_req;
257 }
258
259 /*
260  * Advanced context descriptor are almost same between igb/ixgbe
261  * This is a separate function, looking for optimization opportunity here
262  * Rework required to go with the pre-defined values.
263  */
264
265 static inline void
266 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
267                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
268                 uint64_t ol_flags, union igb_tx_offload tx_offload)
269 {
270         uint32_t type_tucmd_mlhl;
271         uint32_t mss_l4len_idx;
272         uint32_t ctx_idx, ctx_curr;
273         uint32_t vlan_macip_lens;
274         union igb_tx_offload tx_offload_mask;
275
276         ctx_curr = txq->ctx_curr;
277         ctx_idx = ctx_curr + txq->ctx_start;
278
279         tx_offload_mask.data = 0;
280         type_tucmd_mlhl = 0;
281
282         /* Specify which HW CTX to upload. */
283         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
284
285         if (ol_flags & PKT_TX_VLAN_PKT)
286                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
287
288         /* check if TCP segmentation required for this packet */
289         if (ol_flags & PKT_TX_TCP_SEG) {
290                 /* implies IP cksum in IPv4 */
291                 if (ol_flags & PKT_TX_IP_CKSUM)
292                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
293                                 E1000_ADVTXD_TUCMD_L4T_TCP |
294                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
295                 else
296                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
297                                 E1000_ADVTXD_TUCMD_L4T_TCP |
298                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
299
300                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
301                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
302                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
303         } else { /* no TSO, check if hardware checksum is needed */
304                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
305                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
306
307                 if (ol_flags & PKT_TX_IP_CKSUM)
308                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
309
310                 switch (ol_flags & PKT_TX_L4_MASK) {
311                 case PKT_TX_UDP_CKSUM:
312                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
313                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
314                         mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
315                         break;
316                 case PKT_TX_TCP_CKSUM:
317                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
318                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
319                         mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
320                         break;
321                 case PKT_TX_SCTP_CKSUM:
322                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
323                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
324                         mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
325                         break;
326                 default:
327                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
328                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
329                         break;
330                 }
331         }
332
333         txq->ctx_cache[ctx_curr].flags = ol_flags;
334         txq->ctx_cache[ctx_idx].tx_offload.data =
335                 tx_offload_mask.data & tx_offload.data;
336         txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
337
338         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
339         vlan_macip_lens = (uint32_t)tx_offload.data;
340         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
341         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
342         ctx_txd->seqnum_seed = 0;
343 }
344
345 /*
346  * Check which hardware context can be used. Use the existing match
347  * or create a new context descriptor.
348  */
349 static inline uint32_t
350 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
351                 union igb_tx_offload tx_offload)
352 {
353         /* If match with the current context */
354         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
355                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
356                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
357                         return txq->ctx_curr;
358         }
359
360         /* If match with the second context */
361         txq->ctx_curr ^= 1;
362         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
363                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
364                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
365                         return txq->ctx_curr;
366         }
367
368         /* Mismatch, use the previous context */
369         return (IGB_CTX_NUM);
370 }
371
372 static inline uint32_t
373 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
374 {
375         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
376         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
377         uint32_t tmp;
378
379         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
380         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
381         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
382         return tmp;
383 }
384
385 static inline uint32_t
386 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
387 {
388         uint32_t cmdtype;
389         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
390         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
391         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
392         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
393         return cmdtype;
394 }
395
396 uint16_t
397 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
398                uint16_t nb_pkts)
399 {
400         struct igb_tx_queue *txq;
401         struct igb_tx_entry *sw_ring;
402         struct igb_tx_entry *txe, *txn;
403         volatile union e1000_adv_tx_desc *txr;
404         volatile union e1000_adv_tx_desc *txd;
405         struct rte_mbuf     *tx_pkt;
406         struct rte_mbuf     *m_seg;
407         uint64_t buf_dma_addr;
408         uint32_t olinfo_status;
409         uint32_t cmd_type_len;
410         uint32_t pkt_len;
411         uint16_t slen;
412         uint64_t ol_flags;
413         uint16_t tx_end;
414         uint16_t tx_id;
415         uint16_t tx_last;
416         uint16_t nb_tx;
417         uint64_t tx_ol_req;
418         uint32_t new_ctx = 0;
419         uint32_t ctx = 0;
420         union igb_tx_offload tx_offload = {0};
421
422         txq = tx_queue;
423         sw_ring = txq->sw_ring;
424         txr     = txq->tx_ring;
425         tx_id   = txq->tx_tail;
426         txe = &sw_ring[tx_id];
427
428         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
429                 tx_pkt = *tx_pkts++;
430                 pkt_len = tx_pkt->pkt_len;
431
432                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
433
434                 /*
435                  * The number of descriptors that must be allocated for a
436                  * packet is the number of segments of that packet, plus 1
437                  * Context Descriptor for the VLAN Tag Identifier, if any.
438                  * Determine the last TX descriptor to allocate in the TX ring
439                  * for the packet, starting from the current position (tx_id)
440                  * in the ring.
441                  */
442                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
443
444                 ol_flags = tx_pkt->ol_flags;
445                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
446
447                 /* If a Context Descriptor need be built . */
448                 if (tx_ol_req) {
449                         tx_offload.l2_len = tx_pkt->l2_len;
450                         tx_offload.l3_len = tx_pkt->l3_len;
451                         tx_offload.l4_len = tx_pkt->l4_len;
452                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
453                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
454                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
455
456                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
457                         /* Only allocate context descriptor if required*/
458                         new_ctx = (ctx == IGB_CTX_NUM);
459                         ctx = txq->ctx_curr;
460                         tx_last = (uint16_t) (tx_last + new_ctx);
461                 }
462                 if (tx_last >= txq->nb_tx_desc)
463                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
464
465                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
466                            " tx_first=%u tx_last=%u",
467                            (unsigned) txq->port_id,
468                            (unsigned) txq->queue_id,
469                            (unsigned) pkt_len,
470                            (unsigned) tx_id,
471                            (unsigned) tx_last);
472
473                 /*
474                  * Check if there are enough free descriptors in the TX ring
475                  * to transmit the next packet.
476                  * This operation is based on the two following rules:
477                  *
478                  *   1- Only check that the last needed TX descriptor can be
479                  *      allocated (by construction, if that descriptor is free,
480                  *      all intermediate ones are also free).
481                  *
482                  *      For this purpose, the index of the last TX descriptor
483                  *      used for a packet (the "last descriptor" of a packet)
484                  *      is recorded in the TX entries (the last one included)
485                  *      that are associated with all TX descriptors allocated
486                  *      for that packet.
487                  *
488                  *   2- Avoid to allocate the last free TX descriptor of the
489                  *      ring, in order to never set the TDT register with the
490                  *      same value stored in parallel by the NIC in the TDH
491                  *      register, which makes the TX engine of the NIC enter
492                  *      in a deadlock situation.
493                  *
494                  *      By extension, avoid to allocate a free descriptor that
495                  *      belongs to the last set of free descriptors allocated
496                  *      to the same packet previously transmitted.
497                  */
498
499                 /*
500                  * The "last descriptor" of the previously sent packet, if any,
501                  * which used the last descriptor to allocate.
502                  */
503                 tx_end = sw_ring[tx_last].last_id;
504
505                 /*
506                  * The next descriptor following that "last descriptor" in the
507                  * ring.
508                  */
509                 tx_end = sw_ring[tx_end].next_id;
510
511                 /*
512                  * The "last descriptor" associated with that next descriptor.
513                  */
514                 tx_end = sw_ring[tx_end].last_id;
515
516                 /*
517                  * Check that this descriptor is free.
518                  */
519                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
520                         if (nb_tx == 0)
521                                 return (0);
522                         goto end_of_tx;
523                 }
524
525                 /*
526                  * Set common flags of all TX Data Descriptors.
527                  *
528                  * The following bits must be set in all Data Descriptors:
529                  *   - E1000_ADVTXD_DTYP_DATA
530                  *   - E1000_ADVTXD_DCMD_DEXT
531                  *
532                  * The following bits must be set in the first Data Descriptor
533                  * and are ignored in the other ones:
534                  *   - E1000_ADVTXD_DCMD_IFCS
535                  *   - E1000_ADVTXD_MAC_1588
536                  *   - E1000_ADVTXD_DCMD_VLE
537                  *
538                  * The following bits must only be set in the last Data
539                  * Descriptor:
540                  *   - E1000_TXD_CMD_EOP
541                  *
542                  * The following bits can be set in any Data Descriptor, but
543                  * are only set in the last Data Descriptor:
544                  *   - E1000_TXD_CMD_RS
545                  */
546                 cmd_type_len = txq->txd_type |
547                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
548                 if (tx_ol_req & PKT_TX_TCP_SEG)
549                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
550                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
551 #if defined(RTE_LIBRTE_IEEE1588)
552                 if (ol_flags & PKT_TX_IEEE1588_TMST)
553                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
554 #endif
555                 if (tx_ol_req) {
556                         /* Setup TX Advanced context descriptor if required */
557                         if (new_ctx) {
558                                 volatile struct e1000_adv_tx_context_desc *
559                                     ctx_txd;
560
561                                 ctx_txd = (volatile struct
562                                     e1000_adv_tx_context_desc *)
563                                     &txr[tx_id];
564
565                                 txn = &sw_ring[txe->next_id];
566                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
567
568                                 if (txe->mbuf != NULL) {
569                                         rte_pktmbuf_free_seg(txe->mbuf);
570                                         txe->mbuf = NULL;
571                                 }
572
573                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
574
575                                 txe->last_id = tx_last;
576                                 tx_id = txe->next_id;
577                                 txe = txn;
578                         }
579
580                         /* Setup the TX Advanced Data Descriptor */
581                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
582                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
583                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
584                 }
585
586                 m_seg = tx_pkt;
587                 do {
588                         txn = &sw_ring[txe->next_id];
589                         txd = &txr[tx_id];
590
591                         if (txe->mbuf != NULL)
592                                 rte_pktmbuf_free_seg(txe->mbuf);
593                         txe->mbuf = m_seg;
594
595                         /*
596                          * Set up transmit descriptor.
597                          */
598                         slen = (uint16_t) m_seg->data_len;
599                         buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
600                         txd->read.buffer_addr =
601                                 rte_cpu_to_le_64(buf_dma_addr);
602                         txd->read.cmd_type_len =
603                                 rte_cpu_to_le_32(cmd_type_len | slen);
604                         txd->read.olinfo_status =
605                                 rte_cpu_to_le_32(olinfo_status);
606                         txe->last_id = tx_last;
607                         tx_id = txe->next_id;
608                         txe = txn;
609                         m_seg = m_seg->next;
610                 } while (m_seg != NULL);
611
612                 /*
613                  * The last packet data descriptor needs End Of Packet (EOP)
614                  * and Report Status (RS).
615                  */
616                 txd->read.cmd_type_len |=
617                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
618         }
619  end_of_tx:
620         rte_wmb();
621
622         /*
623          * Set the Transmit Descriptor Tail (TDT).
624          */
625         E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
626         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
627                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
628                    (unsigned) tx_id, (unsigned) nb_tx);
629         txq->tx_tail = tx_id;
630
631         return (nb_tx);
632 }
633
634 /*********************************************************************
635  *
636  *  RX functions
637  *
638  **********************************************************************/
639 #define IGB_PACKET_TYPE_IPV4              0X01
640 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
641 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
642 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
643 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
644 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
645 #define IGB_PACKET_TYPE_IPV6              0X04
646 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
647 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
648 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
649 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
650 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
651 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
652 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
653 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
654 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
655 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
656 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
657 #define IGB_PACKET_TYPE_MAX               0X80
658 #define IGB_PACKET_TYPE_MASK              0X7F
659 #define IGB_PACKET_TYPE_SHIFT             0X04
660 static inline uint32_t
661 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
662 {
663         static const uint32_t
664                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
665                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
666                         RTE_PTYPE_L3_IPV4,
667                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
668                         RTE_PTYPE_L3_IPV4_EXT,
669                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
670                         RTE_PTYPE_L3_IPV6,
671                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
672                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
673                         RTE_PTYPE_INNER_L3_IPV6,
674                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
675                         RTE_PTYPE_L3_IPV6_EXT,
676                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
677                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
678                         RTE_PTYPE_INNER_L3_IPV6_EXT,
679                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
680                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
681                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
682                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
683                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
684                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
685                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
686                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
687                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
688                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
689                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
690                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
691                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
692                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
693                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
694                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
695                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
696                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
697                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
698                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
699                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
700                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
701                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
702                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
703                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
705                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
706                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
707         };
708         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
709                 return RTE_PTYPE_UNKNOWN;
710
711         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
712
713         return ptype_table[pkt_info];
714 }
715
716 static inline uint64_t
717 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
718 {
719         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
720
721 #if defined(RTE_LIBRTE_IEEE1588)
722         static uint32_t ip_pkt_etqf_map[8] = {
723                 0, 0, 0, PKT_RX_IEEE1588_PTP,
724                 0, 0, 0, 0,
725         };
726
727         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
728         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
729
730         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
731         if (hw->mac.type == e1000_i210)
732                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
733         else
734                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
735 #else
736         RTE_SET_USED(rxq);
737 #endif
738
739         return pkt_flags;
740 }
741
742 static inline uint64_t
743 rx_desc_status_to_pkt_flags(uint32_t rx_status)
744 {
745         uint64_t pkt_flags;
746
747         /* Check if VLAN present */
748         pkt_flags = (rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0;
749
750 #if defined(RTE_LIBRTE_IEEE1588)
751         if (rx_status & E1000_RXD_STAT_TMST)
752                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
753 #endif
754         return pkt_flags;
755 }
756
757 static inline uint64_t
758 rx_desc_error_to_pkt_flags(uint32_t rx_status)
759 {
760         /*
761          * Bit 30: IPE, IPv4 checksum error
762          * Bit 29: L4I, L4I integrity error
763          */
764
765         static uint64_t error_to_pkt_flags_map[4] = {
766                 0,  PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
767                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
768         };
769         return error_to_pkt_flags_map[(rx_status >>
770                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
771 }
772
773 uint16_t
774 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
775                uint16_t nb_pkts)
776 {
777         struct igb_rx_queue *rxq;
778         volatile union e1000_adv_rx_desc *rx_ring;
779         volatile union e1000_adv_rx_desc *rxdp;
780         struct igb_rx_entry *sw_ring;
781         struct igb_rx_entry *rxe;
782         struct rte_mbuf *rxm;
783         struct rte_mbuf *nmb;
784         union e1000_adv_rx_desc rxd;
785         uint64_t dma_addr;
786         uint32_t staterr;
787         uint32_t hlen_type_rss;
788         uint16_t pkt_len;
789         uint16_t rx_id;
790         uint16_t nb_rx;
791         uint16_t nb_hold;
792         uint64_t pkt_flags;
793
794         nb_rx = 0;
795         nb_hold = 0;
796         rxq = rx_queue;
797         rx_id = rxq->rx_tail;
798         rx_ring = rxq->rx_ring;
799         sw_ring = rxq->sw_ring;
800         while (nb_rx < nb_pkts) {
801                 /*
802                  * The order of operations here is important as the DD status
803                  * bit must not be read after any other descriptor fields.
804                  * rx_ring and rxdp are pointing to volatile data so the order
805                  * of accesses cannot be reordered by the compiler. If they were
806                  * not volatile, they could be reordered which could lead to
807                  * using invalid descriptor fields when read from rxd.
808                  */
809                 rxdp = &rx_ring[rx_id];
810                 staterr = rxdp->wb.upper.status_error;
811                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
812                         break;
813                 rxd = *rxdp;
814
815                 /*
816                  * End of packet.
817                  *
818                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
819                  * likely to be invalid and to be dropped by the various
820                  * validation checks performed by the network stack.
821                  *
822                  * Allocate a new mbuf to replenish the RX ring descriptor.
823                  * If the allocation fails:
824                  *    - arrange for that RX descriptor to be the first one
825                  *      being parsed the next time the receive function is
826                  *      invoked [on the same queue].
827                  *
828                  *    - Stop parsing the RX ring and return immediately.
829                  *
830                  * This policy do not drop the packet received in the RX
831                  * descriptor for which the allocation of a new mbuf failed.
832                  * Thus, it allows that packet to be later retrieved if
833                  * mbuf have been freed in the mean time.
834                  * As a side effect, holding RX descriptors instead of
835                  * systematically giving them back to the NIC may lead to
836                  * RX ring exhaustion situations.
837                  * However, the NIC can gracefully prevent such situations
838                  * to happen by sending specific "back-pressure" flow control
839                  * frames to its peer(s).
840                  */
841                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
842                            "staterr=0x%x pkt_len=%u",
843                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
844                            (unsigned) rx_id, (unsigned) staterr,
845                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
846
847                 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
848                 if (nmb == NULL) {
849                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
850                                    "queue_id=%u", (unsigned) rxq->port_id,
851                                    (unsigned) rxq->queue_id);
852                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
853                         break;
854                 }
855
856                 nb_hold++;
857                 rxe = &sw_ring[rx_id];
858                 rx_id++;
859                 if (rx_id == rxq->nb_rx_desc)
860                         rx_id = 0;
861
862                 /* Prefetch next mbuf while processing current one. */
863                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
864
865                 /*
866                  * When next RX descriptor is on a cache-line boundary,
867                  * prefetch the next 4 RX descriptors and the next 8 pointers
868                  * to mbufs.
869                  */
870                 if ((rx_id & 0x3) == 0) {
871                         rte_igb_prefetch(&rx_ring[rx_id]);
872                         rte_igb_prefetch(&sw_ring[rx_id]);
873                 }
874
875                 rxm = rxe->mbuf;
876                 rxe->mbuf = nmb;
877                 dma_addr =
878                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
879                 rxdp->read.hdr_addr = 0;
880                 rxdp->read.pkt_addr = dma_addr;
881
882                 /*
883                  * Initialize the returned mbuf.
884                  * 1) setup generic mbuf fields:
885                  *    - number of segments,
886                  *    - next segment,
887                  *    - packet length,
888                  *    - RX port identifier.
889                  * 2) integrate hardware offload data, if any:
890                  *    - RSS flag & hash,
891                  *    - IP checksum flag,
892                  *    - VLAN TCI, if any,
893                  *    - error flags.
894                  */
895                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
896                                       rxq->crc_len);
897                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
898                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
899                 rxm->nb_segs = 1;
900                 rxm->next = NULL;
901                 rxm->pkt_len = pkt_len;
902                 rxm->data_len = pkt_len;
903                 rxm->port = rxq->port_id;
904
905                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
906                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
907                 /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
908                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
909
910                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
911                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
912                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
913                 rxm->ol_flags = pkt_flags;
914                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
915                                                 lo_dword.hs_rss.pkt_info);
916
917                 /*
918                  * Store the mbuf address into the next entry of the array
919                  * of returned packets.
920                  */
921                 rx_pkts[nb_rx++] = rxm;
922         }
923         rxq->rx_tail = rx_id;
924
925         /*
926          * If the number of free RX descriptors is greater than the RX free
927          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
928          * register.
929          * Update the RDT with the value of the last processed RX descriptor
930          * minus 1, to guarantee that the RDT register is never equal to the
931          * RDH register, which creates a "full" ring situtation from the
932          * hardware point of view...
933          */
934         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
935         if (nb_hold > rxq->rx_free_thresh) {
936                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
937                            "nb_hold=%u nb_rx=%u",
938                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
939                            (unsigned) rx_id, (unsigned) nb_hold,
940                            (unsigned) nb_rx);
941                 rx_id = (uint16_t) ((rx_id == 0) ?
942                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
943                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
944                 nb_hold = 0;
945         }
946         rxq->nb_rx_hold = nb_hold;
947         return (nb_rx);
948 }
949
950 uint16_t
951 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
952                          uint16_t nb_pkts)
953 {
954         struct igb_rx_queue *rxq;
955         volatile union e1000_adv_rx_desc *rx_ring;
956         volatile union e1000_adv_rx_desc *rxdp;
957         struct igb_rx_entry *sw_ring;
958         struct igb_rx_entry *rxe;
959         struct rte_mbuf *first_seg;
960         struct rte_mbuf *last_seg;
961         struct rte_mbuf *rxm;
962         struct rte_mbuf *nmb;
963         union e1000_adv_rx_desc rxd;
964         uint64_t dma; /* Physical address of mbuf data buffer */
965         uint32_t staterr;
966         uint32_t hlen_type_rss;
967         uint16_t rx_id;
968         uint16_t nb_rx;
969         uint16_t nb_hold;
970         uint16_t data_len;
971         uint64_t pkt_flags;
972
973         nb_rx = 0;
974         nb_hold = 0;
975         rxq = rx_queue;
976         rx_id = rxq->rx_tail;
977         rx_ring = rxq->rx_ring;
978         sw_ring = rxq->sw_ring;
979
980         /*
981          * Retrieve RX context of current packet, if any.
982          */
983         first_seg = rxq->pkt_first_seg;
984         last_seg = rxq->pkt_last_seg;
985
986         while (nb_rx < nb_pkts) {
987         next_desc:
988                 /*
989                  * The order of operations here is important as the DD status
990                  * bit must not be read after any other descriptor fields.
991                  * rx_ring and rxdp are pointing to volatile data so the order
992                  * of accesses cannot be reordered by the compiler. If they were
993                  * not volatile, they could be reordered which could lead to
994                  * using invalid descriptor fields when read from rxd.
995                  */
996                 rxdp = &rx_ring[rx_id];
997                 staterr = rxdp->wb.upper.status_error;
998                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
999                         break;
1000                 rxd = *rxdp;
1001
1002                 /*
1003                  * Descriptor done.
1004                  *
1005                  * Allocate a new mbuf to replenish the RX ring descriptor.
1006                  * If the allocation fails:
1007                  *    - arrange for that RX descriptor to be the first one
1008                  *      being parsed the next time the receive function is
1009                  *      invoked [on the same queue].
1010                  *
1011                  *    - Stop parsing the RX ring and return immediately.
1012                  *
1013                  * This policy does not drop the packet received in the RX
1014                  * descriptor for which the allocation of a new mbuf failed.
1015                  * Thus, it allows that packet to be later retrieved if
1016                  * mbuf have been freed in the mean time.
1017                  * As a side effect, holding RX descriptors instead of
1018                  * systematically giving them back to the NIC may lead to
1019                  * RX ring exhaustion situations.
1020                  * However, the NIC can gracefully prevent such situations
1021                  * to happen by sending specific "back-pressure" flow control
1022                  * frames to its peer(s).
1023                  */
1024                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1025                            "staterr=0x%x data_len=%u",
1026                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1027                            (unsigned) rx_id, (unsigned) staterr,
1028                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1029
1030                 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
1031                 if (nmb == NULL) {
1032                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1033                                    "queue_id=%u", (unsigned) rxq->port_id,
1034                                    (unsigned) rxq->queue_id);
1035                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1036                         break;
1037                 }
1038
1039                 nb_hold++;
1040                 rxe = &sw_ring[rx_id];
1041                 rx_id++;
1042                 if (rx_id == rxq->nb_rx_desc)
1043                         rx_id = 0;
1044
1045                 /* Prefetch next mbuf while processing current one. */
1046                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1047
1048                 /*
1049                  * When next RX descriptor is on a cache-line boundary,
1050                  * prefetch the next 4 RX descriptors and the next 8 pointers
1051                  * to mbufs.
1052                  */
1053                 if ((rx_id & 0x3) == 0) {
1054                         rte_igb_prefetch(&rx_ring[rx_id]);
1055                         rte_igb_prefetch(&sw_ring[rx_id]);
1056                 }
1057
1058                 /*
1059                  * Update RX descriptor with the physical address of the new
1060                  * data buffer of the new allocated mbuf.
1061                  */
1062                 rxm = rxe->mbuf;
1063                 rxe->mbuf = nmb;
1064                 dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1065                 rxdp->read.pkt_addr = dma;
1066                 rxdp->read.hdr_addr = 0;
1067
1068                 /*
1069                  * Set data length & data buffer address of mbuf.
1070                  */
1071                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1072                 rxm->data_len = data_len;
1073                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1074
1075                 /*
1076                  * If this is the first buffer of the received packet,
1077                  * set the pointer to the first mbuf of the packet and
1078                  * initialize its context.
1079                  * Otherwise, update the total length and the number of segments
1080                  * of the current scattered packet, and update the pointer to
1081                  * the last mbuf of the current packet.
1082                  */
1083                 if (first_seg == NULL) {
1084                         first_seg = rxm;
1085                         first_seg->pkt_len = data_len;
1086                         first_seg->nb_segs = 1;
1087                 } else {
1088                         first_seg->pkt_len += data_len;
1089                         first_seg->nb_segs++;
1090                         last_seg->next = rxm;
1091                 }
1092
1093                 /*
1094                  * If this is not the last buffer of the received packet,
1095                  * update the pointer to the last mbuf of the current scattered
1096                  * packet and continue to parse the RX ring.
1097                  */
1098                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1099                         last_seg = rxm;
1100                         goto next_desc;
1101                 }
1102
1103                 /*
1104                  * This is the last buffer of the received packet.
1105                  * If the CRC is not stripped by the hardware:
1106                  *   - Subtract the CRC length from the total packet length.
1107                  *   - If the last buffer only contains the whole CRC or a part
1108                  *     of it, free the mbuf associated to the last buffer.
1109                  *     If part of the CRC is also contained in the previous
1110                  *     mbuf, subtract the length of that CRC part from the
1111                  *     data length of the previous mbuf.
1112                  */
1113                 rxm->next = NULL;
1114                 if (unlikely(rxq->crc_len > 0)) {
1115                         first_seg->pkt_len -= ETHER_CRC_LEN;
1116                         if (data_len <= ETHER_CRC_LEN) {
1117                                 rte_pktmbuf_free_seg(rxm);
1118                                 first_seg->nb_segs--;
1119                                 last_seg->data_len = (uint16_t)
1120                                         (last_seg->data_len -
1121                                          (ETHER_CRC_LEN - data_len));
1122                                 last_seg->next = NULL;
1123                         } else
1124                                 rxm->data_len =
1125                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1126                 }
1127
1128                 /*
1129                  * Initialize the first mbuf of the returned packet:
1130                  *    - RX port identifier,
1131                  *    - hardware offload data, if any:
1132                  *      - RSS flag & hash,
1133                  *      - IP checksum flag,
1134                  *      - VLAN TCI, if any,
1135                  *      - error flags.
1136                  */
1137                 first_seg->port = rxq->port_id;
1138                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1139
1140                 /*
1141                  * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
1142                  * set in the pkt_flags field.
1143                  */
1144                 first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1145                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1146                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1147                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1148                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1149                 first_seg->ol_flags = pkt_flags;
1150                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1151                                         lower.lo_dword.hs_rss.pkt_info);
1152
1153                 /* Prefetch data of first segment, if configured to do so. */
1154                 rte_packet_prefetch((char *)first_seg->buf_addr +
1155                         first_seg->data_off);
1156
1157                 /*
1158                  * Store the mbuf address into the next entry of the array
1159                  * of returned packets.
1160                  */
1161                 rx_pkts[nb_rx++] = first_seg;
1162
1163                 /*
1164                  * Setup receipt context for a new packet.
1165                  */
1166                 first_seg = NULL;
1167         }
1168
1169         /*
1170          * Record index of the next RX descriptor to probe.
1171          */
1172         rxq->rx_tail = rx_id;
1173
1174         /*
1175          * Save receive context.
1176          */
1177         rxq->pkt_first_seg = first_seg;
1178         rxq->pkt_last_seg = last_seg;
1179
1180         /*
1181          * If the number of free RX descriptors is greater than the RX free
1182          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1183          * register.
1184          * Update the RDT with the value of the last processed RX descriptor
1185          * minus 1, to guarantee that the RDT register is never equal to the
1186          * RDH register, which creates a "full" ring situtation from the
1187          * hardware point of view...
1188          */
1189         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1190         if (nb_hold > rxq->rx_free_thresh) {
1191                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1192                            "nb_hold=%u nb_rx=%u",
1193                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1194                            (unsigned) rx_id, (unsigned) nb_hold,
1195                            (unsigned) nb_rx);
1196                 rx_id = (uint16_t) ((rx_id == 0) ?
1197                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1198                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1199                 nb_hold = 0;
1200         }
1201         rxq->nb_rx_hold = nb_hold;
1202         return (nb_rx);
1203 }
1204
1205 /*
1206  * Maximum number of Ring Descriptors.
1207  *
1208  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1209  * desscriptors should meet the following condition:
1210  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1211  */
1212
1213 static void
1214 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1215 {
1216         unsigned i;
1217
1218         if (txq->sw_ring != NULL) {
1219                 for (i = 0; i < txq->nb_tx_desc; i++) {
1220                         if (txq->sw_ring[i].mbuf != NULL) {
1221                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1222                                 txq->sw_ring[i].mbuf = NULL;
1223                         }
1224                 }
1225         }
1226 }
1227
1228 static void
1229 igb_tx_queue_release(struct igb_tx_queue *txq)
1230 {
1231         if (txq != NULL) {
1232                 igb_tx_queue_release_mbufs(txq);
1233                 rte_free(txq->sw_ring);
1234                 rte_free(txq);
1235         }
1236 }
1237
1238 void
1239 eth_igb_tx_queue_release(void *txq)
1240 {
1241         igb_tx_queue_release(txq);
1242 }
1243
1244 static void
1245 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1246 {
1247         txq->tx_head = 0;
1248         txq->tx_tail = 0;
1249         txq->ctx_curr = 0;
1250         memset((void*)&txq->ctx_cache, 0,
1251                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1252 }
1253
1254 static void
1255 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1256 {
1257         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1258         struct igb_tx_entry *txe = txq->sw_ring;
1259         uint16_t i, prev;
1260         struct e1000_hw *hw;
1261
1262         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1263         /* Zero out HW ring memory */
1264         for (i = 0; i < txq->nb_tx_desc; i++) {
1265                 txq->tx_ring[i] = zeroed_desc;
1266         }
1267
1268         /* Initialize ring entries */
1269         prev = (uint16_t)(txq->nb_tx_desc - 1);
1270         for (i = 0; i < txq->nb_tx_desc; i++) {
1271                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1272
1273                 txd->wb.status = E1000_TXD_STAT_DD;
1274                 txe[i].mbuf = NULL;
1275                 txe[i].last_id = i;
1276                 txe[prev].next_id = i;
1277                 prev = i;
1278         }
1279
1280         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1281         /* 82575 specific, each tx queue will use 2 hw contexts */
1282         if (hw->mac.type == e1000_82575)
1283                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1284
1285         igb_reset_tx_queue_stat(txq);
1286 }
1287
1288 int
1289 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1290                          uint16_t queue_idx,
1291                          uint16_t nb_desc,
1292                          unsigned int socket_id,
1293                          const struct rte_eth_txconf *tx_conf)
1294 {
1295         const struct rte_memzone *tz;
1296         struct igb_tx_queue *txq;
1297         struct e1000_hw     *hw;
1298         uint32_t size;
1299
1300         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1301
1302         /*
1303          * Validate number of transmit descriptors.
1304          * It must not exceed hardware maximum, and must be multiple
1305          * of E1000_ALIGN.
1306          */
1307         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1308                         (nb_desc > E1000_MAX_RING_DESC) ||
1309                         (nb_desc < E1000_MIN_RING_DESC)) {
1310                 return -EINVAL;
1311         }
1312
1313         /*
1314          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1315          * driver.
1316          */
1317         if (tx_conf->tx_free_thresh != 0)
1318                 PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
1319                              "used for the 1G driver.");
1320         if (tx_conf->tx_rs_thresh != 0)
1321                 PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
1322                              "used for the 1G driver.");
1323         if (tx_conf->tx_thresh.wthresh == 0)
1324                 PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
1325                              "consider setting the TX WTHRESH value to 4, 8, "
1326                              "or 16.");
1327
1328         /* Free memory prior to re-allocation if needed */
1329         if (dev->data->tx_queues[queue_idx] != NULL) {
1330                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1331                 dev->data->tx_queues[queue_idx] = NULL;
1332         }
1333
1334         /* First allocate the tx queue data structure */
1335         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1336                                                         RTE_CACHE_LINE_SIZE);
1337         if (txq == NULL)
1338                 return (-ENOMEM);
1339
1340         /*
1341          * Allocate TX ring hardware descriptors. A memzone large enough to
1342          * handle the maximum ring size is allocated in order to allow for
1343          * resizing in later calls to the queue setup function.
1344          */
1345         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1346         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1347                                       E1000_ALIGN, socket_id);
1348         if (tz == NULL) {
1349                 igb_tx_queue_release(txq);
1350                 return (-ENOMEM);
1351         }
1352
1353         txq->nb_tx_desc = nb_desc;
1354         txq->pthresh = tx_conf->tx_thresh.pthresh;
1355         txq->hthresh = tx_conf->tx_thresh.hthresh;
1356         txq->wthresh = tx_conf->tx_thresh.wthresh;
1357         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1358                 txq->wthresh = 1;
1359         txq->queue_id = queue_idx;
1360         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1361                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1362         txq->port_id = dev->data->port_id;
1363
1364         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1365         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
1366
1367         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1368         /* Allocate software ring */
1369         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1370                                    sizeof(struct igb_tx_entry) * nb_desc,
1371                                    RTE_CACHE_LINE_SIZE);
1372         if (txq->sw_ring == NULL) {
1373                 igb_tx_queue_release(txq);
1374                 return (-ENOMEM);
1375         }
1376         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1377                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1378
1379         igb_reset_tx_queue(txq, dev);
1380         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1381         dev->data->tx_queues[queue_idx] = txq;
1382
1383         return (0);
1384 }
1385
1386 static void
1387 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1388 {
1389         unsigned i;
1390
1391         if (rxq->sw_ring != NULL) {
1392                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1393                         if (rxq->sw_ring[i].mbuf != NULL) {
1394                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1395                                 rxq->sw_ring[i].mbuf = NULL;
1396                         }
1397                 }
1398         }
1399 }
1400
1401 static void
1402 igb_rx_queue_release(struct igb_rx_queue *rxq)
1403 {
1404         if (rxq != NULL) {
1405                 igb_rx_queue_release_mbufs(rxq);
1406                 rte_free(rxq->sw_ring);
1407                 rte_free(rxq);
1408         }
1409 }
1410
1411 void
1412 eth_igb_rx_queue_release(void *rxq)
1413 {
1414         igb_rx_queue_release(rxq);
1415 }
1416
1417 static void
1418 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1419 {
1420         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1421         unsigned i;
1422
1423         /* Zero out HW ring memory */
1424         for (i = 0; i < rxq->nb_rx_desc; i++) {
1425                 rxq->rx_ring[i] = zeroed_desc;
1426         }
1427
1428         rxq->rx_tail = 0;
1429         rxq->pkt_first_seg = NULL;
1430         rxq->pkt_last_seg = NULL;
1431 }
1432
1433 int
1434 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1435                          uint16_t queue_idx,
1436                          uint16_t nb_desc,
1437                          unsigned int socket_id,
1438                          const struct rte_eth_rxconf *rx_conf,
1439                          struct rte_mempool *mp)
1440 {
1441         const struct rte_memzone *rz;
1442         struct igb_rx_queue *rxq;
1443         struct e1000_hw     *hw;
1444         unsigned int size;
1445
1446         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1447
1448         /*
1449          * Validate number of receive descriptors.
1450          * It must not exceed hardware maximum, and must be multiple
1451          * of E1000_ALIGN.
1452          */
1453         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1454                         (nb_desc > E1000_MAX_RING_DESC) ||
1455                         (nb_desc < E1000_MIN_RING_DESC)) {
1456                 return (-EINVAL);
1457         }
1458
1459         /* Free memory prior to re-allocation if needed */
1460         if (dev->data->rx_queues[queue_idx] != NULL) {
1461                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1462                 dev->data->rx_queues[queue_idx] = NULL;
1463         }
1464
1465         /* First allocate the RX queue data structure. */
1466         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1467                           RTE_CACHE_LINE_SIZE);
1468         if (rxq == NULL)
1469                 return (-ENOMEM);
1470         rxq->mb_pool = mp;
1471         rxq->nb_rx_desc = nb_desc;
1472         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1473         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1474         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1475         if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
1476                 rxq->wthresh = 1;
1477         rxq->drop_en = rx_conf->rx_drop_en;
1478         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1479         rxq->queue_id = queue_idx;
1480         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1481                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1482         rxq->port_id = dev->data->port_id;
1483         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
1484                                   ETHER_CRC_LEN);
1485
1486         /*
1487          *  Allocate RX ring hardware descriptors. A memzone large enough to
1488          *  handle the maximum ring size is allocated in order to allow for
1489          *  resizing in later calls to the queue setup function.
1490          */
1491         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1492         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1493                                       E1000_ALIGN, socket_id);
1494         if (rz == NULL) {
1495                 igb_rx_queue_release(rxq);
1496                 return (-ENOMEM);
1497         }
1498         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1499         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1500         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1501         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1502
1503         /* Allocate software ring. */
1504         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1505                                    sizeof(struct igb_rx_entry) * nb_desc,
1506                                    RTE_CACHE_LINE_SIZE);
1507         if (rxq->sw_ring == NULL) {
1508                 igb_rx_queue_release(rxq);
1509                 return (-ENOMEM);
1510         }
1511         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1512                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1513
1514         dev->data->rx_queues[queue_idx] = rxq;
1515         igb_reset_rx_queue(rxq);
1516
1517         return 0;
1518 }
1519
1520 uint32_t
1521 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1522 {
1523 #define IGB_RXQ_SCAN_INTERVAL 4
1524         volatile union e1000_adv_rx_desc *rxdp;
1525         struct igb_rx_queue *rxq;
1526         uint32_t desc = 0;
1527
1528         if (rx_queue_id >= dev->data->nb_rx_queues) {
1529                 PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
1530                 return 0;
1531         }
1532
1533         rxq = dev->data->rx_queues[rx_queue_id];
1534         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1535
1536         while ((desc < rxq->nb_rx_desc) &&
1537                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1538                 desc += IGB_RXQ_SCAN_INTERVAL;
1539                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1540                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1541                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1542                                 desc - rxq->nb_rx_desc]);
1543         }
1544
1545         return 0;
1546 }
1547
1548 int
1549 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1550 {
1551         volatile union e1000_adv_rx_desc *rxdp;
1552         struct igb_rx_queue *rxq = rx_queue;
1553         uint32_t desc;
1554
1555         if (unlikely(offset >= rxq->nb_rx_desc))
1556                 return 0;
1557         desc = rxq->rx_tail + offset;
1558         if (desc >= rxq->nb_rx_desc)
1559                 desc -= rxq->nb_rx_desc;
1560
1561         rxdp = &rxq->rx_ring[desc];
1562         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1563 }
1564
1565 void
1566 igb_dev_clear_queues(struct rte_eth_dev *dev)
1567 {
1568         uint16_t i;
1569         struct igb_tx_queue *txq;
1570         struct igb_rx_queue *rxq;
1571
1572         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1573                 txq = dev->data->tx_queues[i];
1574                 if (txq != NULL) {
1575                         igb_tx_queue_release_mbufs(txq);
1576                         igb_reset_tx_queue(txq, dev);
1577                 }
1578         }
1579
1580         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1581                 rxq = dev->data->rx_queues[i];
1582                 if (rxq != NULL) {
1583                         igb_rx_queue_release_mbufs(rxq);
1584                         igb_reset_rx_queue(rxq);
1585                 }
1586         }
1587 }
1588
1589 void
1590 igb_dev_free_queues(struct rte_eth_dev *dev)
1591 {
1592         uint16_t i;
1593
1594         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1595                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1596                 dev->data->rx_queues[i] = NULL;
1597         }
1598         dev->data->nb_rx_queues = 0;
1599
1600         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1601                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1602                 dev->data->tx_queues[i] = NULL;
1603         }
1604         dev->data->nb_tx_queues = 0;
1605 }
1606
1607 /**
1608  * Receive Side Scaling (RSS).
1609  * See section 7.1.1.7 in the following document:
1610  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1611  *
1612  * Principles:
1613  * The source and destination IP addresses of the IP header and the source and
1614  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1615  * against a configurable random key to compute a 32-bit RSS hash result.
1616  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1617  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1618  * RSS output index which is used as the RX queue index where to store the
1619  * received packets.
1620  * The following output is supplied in the RX write-back descriptor:
1621  *     - 32-bit result of the Microsoft RSS hash function,
1622  *     - 4-bit RSS type field.
1623  */
1624
1625 /*
1626  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1627  * Used as the default key.
1628  */
1629 static uint8_t rss_intel_key[40] = {
1630         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1631         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1632         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1633         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1634         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1635 };
1636
1637 static void
1638 igb_rss_disable(struct rte_eth_dev *dev)
1639 {
1640         struct e1000_hw *hw;
1641         uint32_t mrqc;
1642
1643         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1645         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1646         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1647 }
1648
1649 static void
1650 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1651 {
1652         uint8_t  *hash_key;
1653         uint32_t rss_key;
1654         uint32_t mrqc;
1655         uint64_t rss_hf;
1656         uint16_t i;
1657
1658         hash_key = rss_conf->rss_key;
1659         if (hash_key != NULL) {
1660                 /* Fill in RSS hash key */
1661                 for (i = 0; i < 10; i++) {
1662                         rss_key  = hash_key[(i * 4)];
1663                         rss_key |= hash_key[(i * 4) + 1] << 8;
1664                         rss_key |= hash_key[(i * 4) + 2] << 16;
1665                         rss_key |= hash_key[(i * 4) + 3] << 24;
1666                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1667                 }
1668         }
1669
1670         /* Set configured hashing protocols in MRQC register */
1671         rss_hf = rss_conf->rss_hf;
1672         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1673         if (rss_hf & ETH_RSS_IPV4)
1674                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1675         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1676                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1677         if (rss_hf & ETH_RSS_IPV6)
1678                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1679         if (rss_hf & ETH_RSS_IPV6_EX)
1680                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1681         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1682                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1683         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1684                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1685         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1686                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1687         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1688                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1689         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1690                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1691         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1692 }
1693
1694 int
1695 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1696                         struct rte_eth_rss_conf *rss_conf)
1697 {
1698         struct e1000_hw *hw;
1699         uint32_t mrqc;
1700         uint64_t rss_hf;
1701
1702         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1703
1704         /*
1705          * Before changing anything, first check that the update RSS operation
1706          * does not attempt to disable RSS, if RSS was enabled at
1707          * initialization time, or does not attempt to enable RSS, if RSS was
1708          * disabled at initialization time.
1709          */
1710         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1711         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1712         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1713                 if (rss_hf != 0) /* Enable RSS */
1714                         return -(EINVAL);
1715                 return 0; /* Nothing to do */
1716         }
1717         /* RSS enabled */
1718         if (rss_hf == 0) /* Disable RSS */
1719                 return -(EINVAL);
1720         igb_hw_rss_hash_set(hw, rss_conf);
1721         return 0;
1722 }
1723
1724 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
1725                               struct rte_eth_rss_conf *rss_conf)
1726 {
1727         struct e1000_hw *hw;
1728         uint8_t *hash_key;
1729         uint32_t rss_key;
1730         uint32_t mrqc;
1731         uint64_t rss_hf;
1732         uint16_t i;
1733
1734         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1735         hash_key = rss_conf->rss_key;
1736         if (hash_key != NULL) {
1737                 /* Return RSS hash key */
1738                 for (i = 0; i < 10; i++) {
1739                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
1740                         hash_key[(i * 4)] = rss_key & 0x000000FF;
1741                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
1742                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
1743                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
1744                 }
1745         }
1746
1747         /* Get RSS functions configured in MRQC register */
1748         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1749         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
1750                 rss_conf->rss_hf = 0;
1751                 return 0;
1752         }
1753         rss_hf = 0;
1754         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
1755                 rss_hf |= ETH_RSS_IPV4;
1756         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
1757                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1758         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
1759                 rss_hf |= ETH_RSS_IPV6;
1760         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
1761                 rss_hf |= ETH_RSS_IPV6_EX;
1762         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
1763                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1764         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
1765                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
1766         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
1767                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1768         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
1769                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1770         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
1771                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
1772         rss_conf->rss_hf = rss_hf;
1773         return 0;
1774 }
1775
1776 static void
1777 igb_rss_configure(struct rte_eth_dev *dev)
1778 {
1779         struct rte_eth_rss_conf rss_conf;
1780         struct e1000_hw *hw;
1781         uint32_t shift;
1782         uint16_t i;
1783
1784         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1785
1786         /* Fill in redirection table. */
1787         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
1788         for (i = 0; i < 128; i++) {
1789                 union e1000_reta {
1790                         uint32_t dword;
1791                         uint8_t  bytes[4];
1792                 } reta;
1793                 uint8_t q_idx;
1794
1795                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
1796                                    i % dev->data->nb_rx_queues : 0);
1797                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
1798                 if ((i & 3) == 3)
1799                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
1800         }
1801
1802         /*
1803          * Configure the RSS key and the RSS protocols used to compute
1804          * the RSS hash of input packets.
1805          */
1806         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
1807         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
1808                 igb_rss_disable(dev);
1809                 return;
1810         }
1811         if (rss_conf.rss_key == NULL)
1812                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
1813         igb_hw_rss_hash_set(hw, &rss_conf);
1814 }
1815
1816 /*
1817  * Check if the mac type support VMDq or not.
1818  * Return 1 if it supports, otherwise, return 0.
1819  */
1820 static int
1821 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
1822 {
1823         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1824
1825         switch (hw->mac.type) {
1826         case e1000_82576:
1827         case e1000_82580:
1828         case e1000_i350:
1829                 return 1;
1830         case e1000_82540:
1831         case e1000_82541:
1832         case e1000_82542:
1833         case e1000_82543:
1834         case e1000_82544:
1835         case e1000_82545:
1836         case e1000_82546:
1837         case e1000_82547:
1838         case e1000_82571:
1839         case e1000_82572:
1840         case e1000_82573:
1841         case e1000_82574:
1842         case e1000_82583:
1843         case e1000_i210:
1844         case e1000_i211:
1845         default:
1846                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
1847                 return 0;
1848         }
1849 }
1850
1851 static int
1852 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
1853 {
1854         struct rte_eth_vmdq_rx_conf *cfg;
1855         struct e1000_hw *hw;
1856         uint32_t mrqc, vt_ctl, vmolr, rctl;
1857         int i;
1858
1859         PMD_INIT_FUNC_TRACE();
1860
1861         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1862         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
1863
1864         /* Check if mac type can support VMDq, return value of 0 means NOT support */
1865         if (igb_is_vmdq_supported(dev) == 0)
1866                 return -1;
1867
1868         igb_rss_disable(dev);
1869
1870         /* RCTL: eanble VLAN filter */
1871         rctl = E1000_READ_REG(hw, E1000_RCTL);
1872         rctl |= E1000_RCTL_VFE;
1873         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1874
1875         /* MRQC: enable vmdq */
1876         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1877         mrqc |= E1000_MRQC_ENABLE_VMDQ;
1878         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1879
1880         /* VTCTL:  pool selection according to VLAN tag */
1881         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
1882         if (cfg->enable_default_pool)
1883                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1884         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
1885         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
1886
1887         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
1888                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
1889                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
1890                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
1891                         E1000_VMOLR_MPME);
1892
1893                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
1894                         vmolr |= E1000_VMOLR_AUPE;
1895                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
1896                         vmolr |= E1000_VMOLR_ROMPE;
1897                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
1898                         vmolr |= E1000_VMOLR_ROPE;
1899                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
1900                         vmolr |= E1000_VMOLR_BAM;
1901                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
1902                         vmolr |= E1000_VMOLR_MPME;
1903
1904                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
1905         }
1906
1907         /*
1908          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
1909          * Both 82576 and 82580 support it
1910          */
1911         if (hw->mac.type != e1000_i350) {
1912                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
1913                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
1914                         vmolr |= E1000_VMOLR_STRVLAN;
1915                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
1916                 }
1917         }
1918
1919         /* VFTA - enable all vlan filters */
1920         for (i = 0; i < IGB_VFTA_SIZE; i++)
1921                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
1922
1923         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
1924         if (hw->mac.type != e1000_82580)
1925                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
1926
1927         /*
1928          * RAH/RAL - allow pools to read specific mac addresses
1929          * In this case, all pools should be able to read from mac addr 0
1930          */
1931         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
1932         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
1933
1934         /* VLVF: set up filters for vlan tags as configured */
1935         for (i = 0; i < cfg->nb_pool_maps; i++) {
1936                 /* set vlan id in VF register and set the valid bit */
1937                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
1938                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
1939                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
1940                         E1000_VLVF_POOLSEL_MASK)));
1941         }
1942
1943         E1000_WRITE_FLUSH(hw);
1944
1945         return 0;
1946 }
1947
1948
1949 /*********************************************************************
1950  *
1951  *  Enable receive unit.
1952  *
1953  **********************************************************************/
1954
1955 static int
1956 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
1957 {
1958         struct igb_rx_entry *rxe = rxq->sw_ring;
1959         uint64_t dma_addr;
1960         unsigned i;
1961
1962         /* Initialize software ring entries. */
1963         for (i = 0; i < rxq->nb_rx_desc; i++) {
1964                 volatile union e1000_adv_rx_desc *rxd;
1965                 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
1966
1967                 if (mbuf == NULL) {
1968                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
1969                                      "queue_id=%hu", rxq->queue_id);
1970                         return (-ENOMEM);
1971                 }
1972                 dma_addr =
1973                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
1974                 rxd = &rxq->rx_ring[i];
1975                 rxd->read.hdr_addr = 0;
1976                 rxd->read.pkt_addr = dma_addr;
1977                 rxe[i].mbuf = mbuf;
1978         }
1979
1980         return 0;
1981 }
1982
1983 #define E1000_MRQC_DEF_Q_SHIFT               (3)
1984 static int
1985 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
1986 {
1987         struct e1000_hw *hw =
1988                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1989         uint32_t mrqc;
1990
1991         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
1992                 /*
1993                  * SRIOV active scheme
1994                  * FIXME if support RSS together with VMDq & SRIOV
1995                  */
1996                 mrqc = E1000_MRQC_ENABLE_VMDQ;
1997                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
1998                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
1999                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2000         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2001                 /*
2002                  * SRIOV inactive scheme
2003                  */
2004                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2005                         case ETH_MQ_RX_RSS:
2006                                 igb_rss_configure(dev);
2007                                 break;
2008                         case ETH_MQ_RX_VMDQ_ONLY:
2009                                 /*Configure general VMDQ only RX parameters*/
2010                                 igb_vmdq_rx_hw_configure(dev);
2011                                 break;
2012                         case ETH_MQ_RX_NONE:
2013                                 /* if mq_mode is none, disable rss mode.*/
2014                         default:
2015                                 igb_rss_disable(dev);
2016                                 break;
2017                 }
2018         }
2019
2020         return 0;
2021 }
2022
2023 int
2024 eth_igb_rx_init(struct rte_eth_dev *dev)
2025 {
2026         struct e1000_hw     *hw;
2027         struct igb_rx_queue *rxq;
2028         uint32_t rctl;
2029         uint32_t rxcsum;
2030         uint32_t srrctl;
2031         uint16_t buf_size;
2032         uint16_t rctl_bsize;
2033         uint16_t i;
2034         int ret;
2035
2036         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2037         srrctl = 0;
2038
2039         /*
2040          * Make sure receives are disabled while setting
2041          * up the descriptor ring.
2042          */
2043         rctl = E1000_READ_REG(hw, E1000_RCTL);
2044         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2045
2046         /*
2047          * Configure support of jumbo frames, if any.
2048          */
2049         if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
2050                 rctl |= E1000_RCTL_LPE;
2051
2052                 /*
2053                  * Set maximum packet length by default, and might be updated
2054                  * together with enabling/disabling dual VLAN.
2055                  */
2056                 E1000_WRITE_REG(hw, E1000_RLPML,
2057                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2058                                                 VLAN_TAG_SIZE);
2059         } else
2060                 rctl &= ~E1000_RCTL_LPE;
2061
2062         /* Configure and enable each RX queue. */
2063         rctl_bsize = 0;
2064         dev->rx_pkt_burst = eth_igb_recv_pkts;
2065         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2066                 uint64_t bus_addr;
2067                 uint32_t rxdctl;
2068
2069                 rxq = dev->data->rx_queues[i];
2070
2071                 /* Allocate buffers for descriptor rings and set up queue */
2072                 ret = igb_alloc_rx_queue_mbufs(rxq);
2073                 if (ret)
2074                         return ret;
2075
2076                 /*
2077                  * Reset crc_len in case it was changed after queue setup by a
2078                  *  call to configure
2079                  */
2080                 rxq->crc_len =
2081                         (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
2082                                                         0 : ETHER_CRC_LEN);
2083
2084                 bus_addr = rxq->rx_ring_phys_addr;
2085                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2086                                 rxq->nb_rx_desc *
2087                                 sizeof(union e1000_adv_rx_desc));
2088                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2089                                 (uint32_t)(bus_addr >> 32));
2090                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2091
2092                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2093
2094                 /*
2095                  * Configure RX buffer size.
2096                  */
2097                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2098                         RTE_PKTMBUF_HEADROOM);
2099                 if (buf_size >= 1024) {
2100                         /*
2101                          * Configure the BSIZEPACKET field of the SRRCTL
2102                          * register of the queue.
2103                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2104                          * If this field is equal to 0b, then RCTL.BSIZE
2105                          * determines the RX packet buffer size.
2106                          */
2107                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2108                                    E1000_SRRCTL_BSIZEPKT_MASK);
2109                         buf_size = (uint16_t) ((srrctl &
2110                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2111                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2112
2113                         /* It adds dual VLAN length for supporting dual VLAN */
2114                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2115                                                 2 * VLAN_TAG_SIZE) > buf_size){
2116                                 if (!dev->data->scattered_rx)
2117                                         PMD_INIT_LOG(DEBUG,
2118                                                      "forcing scatter mode");
2119                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2120                                 dev->data->scattered_rx = 1;
2121                         }
2122                 } else {
2123                         /*
2124                          * Use BSIZE field of the device RCTL register.
2125                          */
2126                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2127                                 rctl_bsize = buf_size;
2128                         if (!dev->data->scattered_rx)
2129                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2130                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2131                         dev->data->scattered_rx = 1;
2132                 }
2133
2134                 /* Set if packets are dropped when no descriptors available */
2135                 if (rxq->drop_en)
2136                         srrctl |= E1000_SRRCTL_DROP_EN;
2137
2138                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2139
2140                 /* Enable this RX queue. */
2141                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2142                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2143                 rxdctl &= 0xFFF00000;
2144                 rxdctl |= (rxq->pthresh & 0x1F);
2145                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2146                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2147                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2148         }
2149
2150         if (dev->data->dev_conf.rxmode.enable_scatter) {
2151                 if (!dev->data->scattered_rx)
2152                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2153                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2154                 dev->data->scattered_rx = 1;
2155         }
2156
2157         /*
2158          * Setup BSIZE field of RCTL register, if needed.
2159          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2160          * register, since the code above configures the SRRCTL register of
2161          * the RX queue in such a case.
2162          * All configurable sizes are:
2163          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2164          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2165          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2166          *  2048: rctl |= E1000_RCTL_SZ_2048;
2167          *  1024: rctl |= E1000_RCTL_SZ_1024;
2168          *   512: rctl |= E1000_RCTL_SZ_512;
2169          *   256: rctl |= E1000_RCTL_SZ_256;
2170          */
2171         if (rctl_bsize > 0) {
2172                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2173                         rctl |= E1000_RCTL_SZ_512;
2174                 else /* 256 <= buf_size < 512 - use 256 */
2175                         rctl |= E1000_RCTL_SZ_256;
2176         }
2177
2178         /*
2179          * Configure RSS if device configured with multiple RX queues.
2180          */
2181         igb_dev_mq_rx_configure(dev);
2182
2183         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2184         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2185
2186         /*
2187          * Setup the Checksum Register.
2188          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2189          */
2190         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2191         rxcsum |= E1000_RXCSUM_PCSD;
2192
2193         /* Enable both L3/L4 rx checksum offload */
2194         if (dev->data->dev_conf.rxmode.hw_ip_checksum)
2195                 rxcsum |= (E1000_RXCSUM_IPOFL  | E1000_RXCSUM_TUOFL);
2196         else
2197                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2198         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2199
2200         /* Setup the Receive Control Register. */
2201         if (dev->data->dev_conf.rxmode.hw_strip_crc) {
2202                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2203
2204                 /* set STRCRC bit in all queues */
2205                 if (hw->mac.type == e1000_i350 ||
2206                     hw->mac.type == e1000_i210 ||
2207                     hw->mac.type == e1000_i211 ||
2208                     hw->mac.type == e1000_i354) {
2209                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2210                                 rxq = dev->data->rx_queues[i];
2211                                 uint32_t dvmolr = E1000_READ_REG(hw,
2212                                         E1000_DVMOLR(rxq->reg_idx));
2213                                 dvmolr |= E1000_DVMOLR_STRCRC;
2214                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2215                         }
2216                 }
2217         } else {
2218                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2219
2220                 /* clear STRCRC bit in all queues */
2221                 if (hw->mac.type == e1000_i350 ||
2222                     hw->mac.type == e1000_i210 ||
2223                     hw->mac.type == e1000_i211 ||
2224                     hw->mac.type == e1000_i354) {
2225                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2226                                 rxq = dev->data->rx_queues[i];
2227                                 uint32_t dvmolr = E1000_READ_REG(hw,
2228                                         E1000_DVMOLR(rxq->reg_idx));
2229                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2230                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2231                         }
2232                 }
2233         }
2234
2235         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2236         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2237                 E1000_RCTL_RDMTS_HALF |
2238                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2239
2240         /* Make sure VLAN Filters are off. */
2241         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2242                 rctl &= ~E1000_RCTL_VFE;
2243         /* Don't store bad packets. */
2244         rctl &= ~E1000_RCTL_SBP;
2245
2246         /* Enable Receives. */
2247         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2248
2249         /*
2250          * Setup the HW Rx Head and Tail Descriptor Pointers.
2251          * This needs to be done after enable.
2252          */
2253         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2254                 rxq = dev->data->rx_queues[i];
2255                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2256                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2257         }
2258
2259         return 0;
2260 }
2261
2262 /*********************************************************************
2263  *
2264  *  Enable transmit unit.
2265  *
2266  **********************************************************************/
2267 void
2268 eth_igb_tx_init(struct rte_eth_dev *dev)
2269 {
2270         struct e1000_hw     *hw;
2271         struct igb_tx_queue *txq;
2272         uint32_t tctl;
2273         uint32_t txdctl;
2274         uint16_t i;
2275
2276         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2277
2278         /* Setup the Base and Length of the Tx Descriptor Rings. */
2279         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2280                 uint64_t bus_addr;
2281                 txq = dev->data->tx_queues[i];
2282                 bus_addr = txq->tx_ring_phys_addr;
2283
2284                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2285                                 txq->nb_tx_desc *
2286                                 sizeof(union e1000_adv_tx_desc));
2287                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2288                                 (uint32_t)(bus_addr >> 32));
2289                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2290
2291                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2292                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2293                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2294
2295                 /* Setup Transmit threshold registers. */
2296                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2297                 txdctl |= txq->pthresh & 0x1F;
2298                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2299                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2300                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2301                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2302         }
2303
2304         /* Program the Transmit Control Register. */
2305         tctl = E1000_READ_REG(hw, E1000_TCTL);
2306         tctl &= ~E1000_TCTL_CT;
2307         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2308                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2309
2310         e1000_config_collision_dist(hw);
2311
2312         /* This write will effectively turn on the transmit unit. */
2313         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2314 }
2315
2316 /*********************************************************************
2317  *
2318  *  Enable VF receive unit.
2319  *
2320  **********************************************************************/
2321 int
2322 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2323 {
2324         struct e1000_hw     *hw;
2325         struct igb_rx_queue *rxq;
2326         uint32_t srrctl;
2327         uint16_t buf_size;
2328         uint16_t rctl_bsize;
2329         uint16_t i;
2330         int ret;
2331
2332         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2333
2334         /* setup MTU */
2335         e1000_rlpml_set_vf(hw,
2336                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2337                 VLAN_TAG_SIZE));
2338
2339         /* Configure and enable each RX queue. */
2340         rctl_bsize = 0;
2341         dev->rx_pkt_burst = eth_igb_recv_pkts;
2342         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2343                 uint64_t bus_addr;
2344                 uint32_t rxdctl;
2345
2346                 rxq = dev->data->rx_queues[i];
2347
2348                 /* Allocate buffers for descriptor rings and set up queue */
2349                 ret = igb_alloc_rx_queue_mbufs(rxq);
2350                 if (ret)
2351                         return ret;
2352
2353                 bus_addr = rxq->rx_ring_phys_addr;
2354                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2355                                 rxq->nb_rx_desc *
2356                                 sizeof(union e1000_adv_rx_desc));
2357                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2358                                 (uint32_t)(bus_addr >> 32));
2359                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2360
2361                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2362
2363                 /*
2364                  * Configure RX buffer size.
2365                  */
2366                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2367                         RTE_PKTMBUF_HEADROOM);
2368                 if (buf_size >= 1024) {
2369                         /*
2370                          * Configure the BSIZEPACKET field of the SRRCTL
2371                          * register of the queue.
2372                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2373                          * If this field is equal to 0b, then RCTL.BSIZE
2374                          * determines the RX packet buffer size.
2375                          */
2376                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2377                                    E1000_SRRCTL_BSIZEPKT_MASK);
2378                         buf_size = (uint16_t) ((srrctl &
2379                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2380                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2381
2382                         /* It adds dual VLAN length for supporting dual VLAN */
2383                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2384                                                 2 * VLAN_TAG_SIZE) > buf_size){
2385                                 if (!dev->data->scattered_rx)
2386                                         PMD_INIT_LOG(DEBUG,
2387                                                      "forcing scatter mode");
2388                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2389                                 dev->data->scattered_rx = 1;
2390                         }
2391                 } else {
2392                         /*
2393                          * Use BSIZE field of the device RCTL register.
2394                          */
2395                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2396                                 rctl_bsize = buf_size;
2397                         if (!dev->data->scattered_rx)
2398                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2399                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2400                         dev->data->scattered_rx = 1;
2401                 }
2402
2403                 /* Set if packets are dropped when no descriptors available */
2404                 if (rxq->drop_en)
2405                         srrctl |= E1000_SRRCTL_DROP_EN;
2406
2407                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2408
2409                 /* Enable this RX queue. */
2410                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2411                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2412                 rxdctl &= 0xFFF00000;
2413                 rxdctl |= (rxq->pthresh & 0x1F);
2414                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2415                 if (hw->mac.type == e1000_vfadapt) {
2416                         /*
2417                          * Workaround of 82576 VF Erratum
2418                          * force set WTHRESH to 1
2419                          * to avoid Write-Back not triggered sometimes
2420                          */
2421                         rxdctl |= 0x10000;
2422                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2423                 }
2424                 else
2425                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2426                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2427         }
2428
2429         if (dev->data->dev_conf.rxmode.enable_scatter) {
2430                 if (!dev->data->scattered_rx)
2431                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2432                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2433                 dev->data->scattered_rx = 1;
2434         }
2435
2436         /*
2437          * Setup the HW Rx Head and Tail Descriptor Pointers.
2438          * This needs to be done after enable.
2439          */
2440         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2441                 rxq = dev->data->rx_queues[i];
2442                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2443                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2444         }
2445
2446         return 0;
2447 }
2448
2449 /*********************************************************************
2450  *
2451  *  Enable VF transmit unit.
2452  *
2453  **********************************************************************/
2454 void
2455 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2456 {
2457         struct e1000_hw     *hw;
2458         struct igb_tx_queue *txq;
2459         uint32_t txdctl;
2460         uint16_t i;
2461
2462         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2463
2464         /* Setup the Base and Length of the Tx Descriptor Rings. */
2465         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2466                 uint64_t bus_addr;
2467
2468                 txq = dev->data->tx_queues[i];
2469                 bus_addr = txq->tx_ring_phys_addr;
2470                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2471                                 txq->nb_tx_desc *
2472                                 sizeof(union e1000_adv_tx_desc));
2473                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2474                                 (uint32_t)(bus_addr >> 32));
2475                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2476
2477                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2478                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2479                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2480
2481                 /* Setup Transmit threshold registers. */
2482                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2483                 txdctl |= txq->pthresh & 0x1F;
2484                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2485                 if (hw->mac.type == e1000_82576) {
2486                         /*
2487                          * Workaround of 82576 VF Erratum
2488                          * force set WTHRESH to 1
2489                          * to avoid Write-Back not triggered sometimes
2490                          */
2491                         txdctl |= 0x10000;
2492                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2493                 }
2494                 else
2495                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2496                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2497                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2498         }
2499
2500 }
2501
2502 void
2503 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2504         struct rte_eth_rxq_info *qinfo)
2505 {
2506         struct igb_rx_queue *rxq;
2507
2508         rxq = dev->data->rx_queues[queue_id];
2509
2510         qinfo->mp = rxq->mb_pool;
2511         qinfo->scattered_rx = dev->data->scattered_rx;
2512         qinfo->nb_desc = rxq->nb_rx_desc;
2513
2514         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2515         qinfo->conf.rx_drop_en = rxq->drop_en;
2516 }
2517
2518 void
2519 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2520         struct rte_eth_txq_info *qinfo)
2521 {
2522         struct igb_tx_queue *txq;
2523
2524         txq = dev->data->tx_queues[queue_id];
2525
2526         qinfo->nb_desc = txq->nb_tx_desc;
2527
2528         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2529         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2530         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2531 }