d734a19fc609d73636609d0898888e4550923a04
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <errno.h>
40 #include <stdint.h>
41 #include <stdarg.h>
42 #include <inttypes.h>
43
44 #include <rte_interrupts.h>
45 #include <rte_byteorder.h>
46 #include <rte_common.h>
47 #include <rte_log.h>
48 #include <rte_debug.h>
49 #include <rte_pci.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_atomic.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_ring.h>
60 #include <rte_mempool.h>
61 #include <rte_malloc.h>
62 #include <rte_mbuf.h>
63 #include <rte_ether.h>
64 #include <rte_ethdev.h>
65 #include <rte_prefetch.h>
66 #include <rte_udp.h>
67 #include <rte_tcp.h>
68 #include <rte_sctp.h>
69 #include <rte_string_fns.h>
70
71 #include "e1000_logs.h"
72 #include "base/e1000_api.h"
73 #include "e1000_ethdev.h"
74
75 /* Bit Mask to indicate what bits required for building TX context */
76 #define IGB_TX_OFFLOAD_MASK (                    \
77                 PKT_TX_VLAN_PKT |                \
78                 PKT_TX_IP_CKSUM |                \
79                 PKT_TX_L4_MASK |                 \
80                 PKT_TX_TCP_SEG)
81
82 static inline struct rte_mbuf *
83 rte_rxmbuf_alloc(struct rte_mempool *mp)
84 {
85         struct rte_mbuf *m;
86
87         m = __rte_mbuf_raw_alloc(mp);
88         __rte_mbuf_sanity_check_raw(m, 0);
89         return (m);
90 }
91
92 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
93         (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
94
95 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
96         (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
97
98 /**
99  * Structure associated with each descriptor of the RX ring of a RX queue.
100  */
101 struct igb_rx_entry {
102         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
103 };
104
105 /**
106  * Structure associated with each descriptor of the TX ring of a TX queue.
107  */
108 struct igb_tx_entry {
109         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
110         uint16_t next_id; /**< Index of next descriptor in ring. */
111         uint16_t last_id; /**< Index of last scattered descriptor. */
112 };
113
114 /**
115  * Structure associated with each RX queue.
116  */
117 struct igb_rx_queue {
118         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
119         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
120         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
121         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
122         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
123         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
124         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
125         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
126         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
127         uint16_t            rx_tail;    /**< current value of RDT register. */
128         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
129         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
130         uint16_t            queue_id;   /**< RX queue index. */
131         uint16_t            reg_idx;    /**< RX queue register index. */
132         uint8_t             port_id;    /**< Device port identifier. */
133         uint8_t             pthresh;    /**< Prefetch threshold register. */
134         uint8_t             hthresh;    /**< Host threshold register. */
135         uint8_t             wthresh;    /**< Write-back threshold register. */
136         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
137         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
138 };
139
140 /**
141  * Hardware context number
142  */
143 enum igb_advctx_num {
144         IGB_CTX_0    = 0, /**< CTX0    */
145         IGB_CTX_1    = 1, /**< CTX1    */
146         IGB_CTX_NUM  = 2, /**< CTX_NUM */
147 };
148
149 /** Offload features */
150 union igb_tx_offload {
151         uint64_t data;
152         struct {
153                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
154                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
155                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
156                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
157                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
158
159                 /* uint64_t unused:8; */
160         };
161 };
162
163 /*
164  * Compare mask for igb_tx_offload.data,
165  * should be in sync with igb_tx_offload layout.
166  * */
167 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
168 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
169 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
170 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
171 /** Mac + IP + TCP + Mss mask. */
172 #define TX_TSO_CMP_MASK \
173         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
174
175 /**
176  * Strucutre to check if new context need be built
177  */
178 struct igb_advctx_info {
179         uint64_t flags;           /**< ol_flags related to context build. */
180         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
181         union igb_tx_offload tx_offload;
182         /** compare mask for tx offload. */
183         union igb_tx_offload tx_offload_mask;
184 };
185
186 /**
187  * Structure associated with each TX queue.
188  */
189 struct igb_tx_queue {
190         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
191         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
192         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
193         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
194         uint32_t               txd_type;      /**< Device-specific TXD type */
195         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
196         uint16_t               tx_tail; /**< Current value of TDT register. */
197         uint16_t               tx_head;
198         /**< Index of first used TX descriptor. */
199         uint16_t               queue_id; /**< TX queue index. */
200         uint16_t               reg_idx;  /**< TX queue register index. */
201         uint8_t                port_id;  /**< Device port identifier. */
202         uint8_t                pthresh;  /**< Prefetch threshold register. */
203         uint8_t                hthresh;  /**< Host threshold register. */
204         uint8_t                wthresh;  /**< Write-back threshold register. */
205         uint32_t               ctx_curr;
206         /**< Current used hardware descriptor. */
207         uint32_t               ctx_start;
208         /**< Start context position for transmit queue. */
209         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
210         /**< Hardware context history.*/
211 };
212
213 #if 1
214 #define RTE_PMD_USE_PREFETCH
215 #endif
216
217 #ifdef RTE_PMD_USE_PREFETCH
218 #define rte_igb_prefetch(p)     rte_prefetch0(p)
219 #else
220 #define rte_igb_prefetch(p)     do {} while(0)
221 #endif
222
223 #ifdef RTE_PMD_PACKET_PREFETCH
224 #define rte_packet_prefetch(p) rte_prefetch1(p)
225 #else
226 #define rte_packet_prefetch(p)  do {} while(0)
227 #endif
228
229 /*
230  * Macro for VMDq feature for 1 GbE NIC.
231  */
232 #define E1000_VMOLR_SIZE                        (8)
233 #define IGB_TSO_MAX_HDRLEN                      (512)
234 #define IGB_TSO_MAX_MSS                         (9216)
235
236 /*********************************************************************
237  *
238  *  TX function
239  *
240  **********************************************************************/
241
242 /*
243  *There're some limitations in hardware for TCP segmentation offload. We
244  *should check whether the parameters are valid.
245  */
246 static inline uint64_t
247 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
248 {
249         if (!(ol_req & PKT_TX_TCP_SEG))
250                 return ol_req;
251         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
252                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
253                 ol_req &= ~PKT_TX_TCP_SEG;
254                 ol_req |= PKT_TX_TCP_CKSUM;
255         }
256         return ol_req;
257 }
258
259 /*
260  * Advanced context descriptor are almost same between igb/ixgbe
261  * This is a separate function, looking for optimization opportunity here
262  * Rework required to go with the pre-defined values.
263  */
264
265 static inline void
266 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
267                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
268                 uint64_t ol_flags, union igb_tx_offload tx_offload)
269 {
270         uint32_t type_tucmd_mlhl;
271         uint32_t mss_l4len_idx;
272         uint32_t ctx_idx, ctx_curr;
273         uint32_t vlan_macip_lens;
274         union igb_tx_offload tx_offload_mask;
275
276         ctx_curr = txq->ctx_curr;
277         ctx_idx = ctx_curr + txq->ctx_start;
278
279         tx_offload_mask.data = 0;
280         type_tucmd_mlhl = 0;
281
282         /* Specify which HW CTX to upload. */
283         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
284
285         if (ol_flags & PKT_TX_VLAN_PKT)
286                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
287
288         /* check if TCP segmentation required for this packet */
289         if (ol_flags & PKT_TX_TCP_SEG) {
290                 /* implies IP cksum in IPv4 */
291                 if (ol_flags & PKT_TX_IP_CKSUM)
292                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
293                                 E1000_ADVTXD_TUCMD_L4T_TCP |
294                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
295                 else
296                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
297                                 E1000_ADVTXD_TUCMD_L4T_TCP |
298                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
299
300                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
301                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
302                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
303         } else { /* no TSO, check if hardware checksum is needed */
304                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
305                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
306
307                 if (ol_flags & PKT_TX_IP_CKSUM)
308                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
309
310                 switch (ol_flags & PKT_TX_L4_MASK) {
311                 case PKT_TX_UDP_CKSUM:
312                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
313                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
314                         mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
315                         break;
316                 case PKT_TX_TCP_CKSUM:
317                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
318                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
319                         mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
320                         break;
321                 case PKT_TX_SCTP_CKSUM:
322                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
323                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
324                         mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
325                         break;
326                 default:
327                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
328                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
329                         break;
330                 }
331         }
332
333         txq->ctx_cache[ctx_curr].flags = ol_flags;
334         txq->ctx_cache[ctx_idx].tx_offload.data =
335                 tx_offload_mask.data & tx_offload.data;
336         txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
337
338         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
339         vlan_macip_lens = (uint32_t)tx_offload.data;
340         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
341         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
342         ctx_txd->seqnum_seed = 0;
343 }
344
345 /*
346  * Check which hardware context can be used. Use the existing match
347  * or create a new context descriptor.
348  */
349 static inline uint32_t
350 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
351                 union igb_tx_offload tx_offload)
352 {
353         /* If match with the current context */
354         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
355                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
356                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
357                         return txq->ctx_curr;
358         }
359
360         /* If match with the second context */
361         txq->ctx_curr ^= 1;
362         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
363                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
364                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
365                         return txq->ctx_curr;
366         }
367
368         /* Mismatch, use the previous context */
369         return (IGB_CTX_NUM);
370 }
371
372 static inline uint32_t
373 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
374 {
375         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
376         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
377         uint32_t tmp;
378
379         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
380         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
381         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
382         return tmp;
383 }
384
385 static inline uint32_t
386 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
387 {
388         uint32_t cmdtype;
389         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
390         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
391         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
392         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
393         return cmdtype;
394 }
395
396 uint16_t
397 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
398                uint16_t nb_pkts)
399 {
400         struct igb_tx_queue *txq;
401         struct igb_tx_entry *sw_ring;
402         struct igb_tx_entry *txe, *txn;
403         volatile union e1000_adv_tx_desc *txr;
404         volatile union e1000_adv_tx_desc *txd;
405         struct rte_mbuf     *tx_pkt;
406         struct rte_mbuf     *m_seg;
407         uint64_t buf_dma_addr;
408         uint32_t olinfo_status;
409         uint32_t cmd_type_len;
410         uint32_t pkt_len;
411         uint16_t slen;
412         uint64_t ol_flags;
413         uint16_t tx_end;
414         uint16_t tx_id;
415         uint16_t tx_last;
416         uint16_t nb_tx;
417         uint64_t tx_ol_req;
418         uint32_t new_ctx = 0;
419         uint32_t ctx = 0;
420         union igb_tx_offload tx_offload = {0};
421
422         txq = tx_queue;
423         sw_ring = txq->sw_ring;
424         txr     = txq->tx_ring;
425         tx_id   = txq->tx_tail;
426         txe = &sw_ring[tx_id];
427
428         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
429                 tx_pkt = *tx_pkts++;
430                 pkt_len = tx_pkt->pkt_len;
431
432                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
433
434                 /*
435                  * The number of descriptors that must be allocated for a
436                  * packet is the number of segments of that packet, plus 1
437                  * Context Descriptor for the VLAN Tag Identifier, if any.
438                  * Determine the last TX descriptor to allocate in the TX ring
439                  * for the packet, starting from the current position (tx_id)
440                  * in the ring.
441                  */
442                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
443
444                 ol_flags = tx_pkt->ol_flags;
445                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
446
447                 /* If a Context Descriptor need be built . */
448                 if (tx_ol_req) {
449                         tx_offload.l2_len = tx_pkt->l2_len;
450                         tx_offload.l3_len = tx_pkt->l3_len;
451                         tx_offload.l4_len = tx_pkt->l4_len;
452                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
453                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
454                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
455
456                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
457                         /* Only allocate context descriptor if required*/
458                         new_ctx = (ctx == IGB_CTX_NUM);
459                         ctx = txq->ctx_curr;
460                         tx_last = (uint16_t) (tx_last + new_ctx);
461                 }
462                 if (tx_last >= txq->nb_tx_desc)
463                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
464
465                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
466                            " tx_first=%u tx_last=%u",
467                            (unsigned) txq->port_id,
468                            (unsigned) txq->queue_id,
469                            (unsigned) pkt_len,
470                            (unsigned) tx_id,
471                            (unsigned) tx_last);
472
473                 /*
474                  * Check if there are enough free descriptors in the TX ring
475                  * to transmit the next packet.
476                  * This operation is based on the two following rules:
477                  *
478                  *   1- Only check that the last needed TX descriptor can be
479                  *      allocated (by construction, if that descriptor is free,
480                  *      all intermediate ones are also free).
481                  *
482                  *      For this purpose, the index of the last TX descriptor
483                  *      used for a packet (the "last descriptor" of a packet)
484                  *      is recorded in the TX entries (the last one included)
485                  *      that are associated with all TX descriptors allocated
486                  *      for that packet.
487                  *
488                  *   2- Avoid to allocate the last free TX descriptor of the
489                  *      ring, in order to never set the TDT register with the
490                  *      same value stored in parallel by the NIC in the TDH
491                  *      register, which makes the TX engine of the NIC enter
492                  *      in a deadlock situation.
493                  *
494                  *      By extension, avoid to allocate a free descriptor that
495                  *      belongs to the last set of free descriptors allocated
496                  *      to the same packet previously transmitted.
497                  */
498
499                 /*
500                  * The "last descriptor" of the previously sent packet, if any,
501                  * which used the last descriptor to allocate.
502                  */
503                 tx_end = sw_ring[tx_last].last_id;
504
505                 /*
506                  * The next descriptor following that "last descriptor" in the
507                  * ring.
508                  */
509                 tx_end = sw_ring[tx_end].next_id;
510
511                 /*
512                  * The "last descriptor" associated with that next descriptor.
513                  */
514                 tx_end = sw_ring[tx_end].last_id;
515
516                 /*
517                  * Check that this descriptor is free.
518                  */
519                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
520                         if (nb_tx == 0)
521                                 return (0);
522                         goto end_of_tx;
523                 }
524
525                 /*
526                  * Set common flags of all TX Data Descriptors.
527                  *
528                  * The following bits must be set in all Data Descriptors:
529                  *   - E1000_ADVTXD_DTYP_DATA
530                  *   - E1000_ADVTXD_DCMD_DEXT
531                  *
532                  * The following bits must be set in the first Data Descriptor
533                  * and are ignored in the other ones:
534                  *   - E1000_ADVTXD_DCMD_IFCS
535                  *   - E1000_ADVTXD_MAC_1588
536                  *   - E1000_ADVTXD_DCMD_VLE
537                  *
538                  * The following bits must only be set in the last Data
539                  * Descriptor:
540                  *   - E1000_TXD_CMD_EOP
541                  *
542                  * The following bits can be set in any Data Descriptor, but
543                  * are only set in the last Data Descriptor:
544                  *   - E1000_TXD_CMD_RS
545                  */
546                 cmd_type_len = txq->txd_type |
547                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
548                 if (tx_ol_req & PKT_TX_TCP_SEG)
549                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
550                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
551 #if defined(RTE_LIBRTE_IEEE1588)
552                 if (ol_flags & PKT_TX_IEEE1588_TMST)
553                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
554 #endif
555                 if (tx_ol_req) {
556                         /* Setup TX Advanced context descriptor if required */
557                         if (new_ctx) {
558                                 volatile struct e1000_adv_tx_context_desc *
559                                     ctx_txd;
560
561                                 ctx_txd = (volatile struct
562                                     e1000_adv_tx_context_desc *)
563                                     &txr[tx_id];
564
565                                 txn = &sw_ring[txe->next_id];
566                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
567
568                                 if (txe->mbuf != NULL) {
569                                         rte_pktmbuf_free_seg(txe->mbuf);
570                                         txe->mbuf = NULL;
571                                 }
572
573                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
574
575                                 txe->last_id = tx_last;
576                                 tx_id = txe->next_id;
577                                 txe = txn;
578                         }
579
580                         /* Setup the TX Advanced Data Descriptor */
581                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
582                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
583                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
584                 }
585
586                 m_seg = tx_pkt;
587                 do {
588                         txn = &sw_ring[txe->next_id];
589                         txd = &txr[tx_id];
590
591                         if (txe->mbuf != NULL)
592                                 rte_pktmbuf_free_seg(txe->mbuf);
593                         txe->mbuf = m_seg;
594
595                         /*
596                          * Set up transmit descriptor.
597                          */
598                         slen = (uint16_t) m_seg->data_len;
599                         buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
600                         txd->read.buffer_addr =
601                                 rte_cpu_to_le_64(buf_dma_addr);
602                         txd->read.cmd_type_len =
603                                 rte_cpu_to_le_32(cmd_type_len | slen);
604                         txd->read.olinfo_status =
605                                 rte_cpu_to_le_32(olinfo_status);
606                         txe->last_id = tx_last;
607                         tx_id = txe->next_id;
608                         txe = txn;
609                         m_seg = m_seg->next;
610                 } while (m_seg != NULL);
611
612                 /*
613                  * The last packet data descriptor needs End Of Packet (EOP)
614                  * and Report Status (RS).
615                  */
616                 txd->read.cmd_type_len |=
617                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
618         }
619  end_of_tx:
620         rte_wmb();
621
622         /*
623          * Set the Transmit Descriptor Tail (TDT).
624          */
625         E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
626         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
627                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
628                    (unsigned) tx_id, (unsigned) nb_tx);
629         txq->tx_tail = tx_id;
630
631         return (nb_tx);
632 }
633
634 /*********************************************************************
635  *
636  *  RX functions
637  *
638  **********************************************************************/
639 #define IGB_PACKET_TYPE_IPV4              0X01
640 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
641 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
642 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
643 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
644 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
645 #define IGB_PACKET_TYPE_IPV6              0X04
646 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
647 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
648 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
649 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
650 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
651 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
652 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
653 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
654 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
655 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
656 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
657 #define IGB_PACKET_TYPE_MAX               0X80
658 #define IGB_PACKET_TYPE_MASK              0X7F
659 #define IGB_PACKET_TYPE_SHIFT             0X04
660 static inline uint32_t
661 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
662 {
663         static const uint32_t
664                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
665                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
666                         RTE_PTYPE_L3_IPV4,
667                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
668                         RTE_PTYPE_L3_IPV4_EXT,
669                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
670                         RTE_PTYPE_L3_IPV6,
671                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
672                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
673                         RTE_PTYPE_INNER_L3_IPV6,
674                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
675                         RTE_PTYPE_L3_IPV6_EXT,
676                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
677                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
678                         RTE_PTYPE_INNER_L3_IPV6_EXT,
679                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
680                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
681                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
682                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
683                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
684                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
685                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
686                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
687                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
688                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
689                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
690                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
691                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
692                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
693                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
694                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
695                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
696                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
697                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
698                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
699                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
700                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
701                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
702                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
703                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
705                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
706                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
707         };
708         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
709                 return RTE_PTYPE_UNKNOWN;
710
711         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
712
713         return ptype_table[pkt_info];
714 }
715
716 static inline uint64_t
717 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
718 {
719         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
720
721 #if defined(RTE_LIBRTE_IEEE1588)
722         static uint32_t ip_pkt_etqf_map[8] = {
723                 0, 0, 0, PKT_RX_IEEE1588_PTP,
724                 0, 0, 0, 0,
725         };
726
727         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
728         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
729
730         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
731         if (hw->mac.type == e1000_i210)
732                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
733         else
734                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
735 #else
736         RTE_SET_USED(rxq);
737 #endif
738
739         return pkt_flags;
740 }
741
742 static inline uint64_t
743 rx_desc_status_to_pkt_flags(uint32_t rx_status)
744 {
745         uint64_t pkt_flags;
746
747         /* Check if VLAN present */
748         pkt_flags = (rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0;
749
750 #if defined(RTE_LIBRTE_IEEE1588)
751         if (rx_status & E1000_RXD_STAT_TMST)
752                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
753 #endif
754         return pkt_flags;
755 }
756
757 static inline uint64_t
758 rx_desc_error_to_pkt_flags(uint32_t rx_status)
759 {
760         /*
761          * Bit 30: IPE, IPv4 checksum error
762          * Bit 29: L4I, L4I integrity error
763          */
764
765         static uint64_t error_to_pkt_flags_map[4] = {
766                 0,  PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
767                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
768         };
769         return error_to_pkt_flags_map[(rx_status >>
770                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
771 }
772
773 uint16_t
774 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
775                uint16_t nb_pkts)
776 {
777         struct igb_rx_queue *rxq;
778         volatile union e1000_adv_rx_desc *rx_ring;
779         volatile union e1000_adv_rx_desc *rxdp;
780         struct igb_rx_entry *sw_ring;
781         struct igb_rx_entry *rxe;
782         struct rte_mbuf *rxm;
783         struct rte_mbuf *nmb;
784         union e1000_adv_rx_desc rxd;
785         uint64_t dma_addr;
786         uint32_t staterr;
787         uint32_t hlen_type_rss;
788         uint16_t pkt_len;
789         uint16_t rx_id;
790         uint16_t nb_rx;
791         uint16_t nb_hold;
792         uint64_t pkt_flags;
793
794         nb_rx = 0;
795         nb_hold = 0;
796         rxq = rx_queue;
797         rx_id = rxq->rx_tail;
798         rx_ring = rxq->rx_ring;
799         sw_ring = rxq->sw_ring;
800         while (nb_rx < nb_pkts) {
801                 /*
802                  * The order of operations here is important as the DD status
803                  * bit must not be read after any other descriptor fields.
804                  * rx_ring and rxdp are pointing to volatile data so the order
805                  * of accesses cannot be reordered by the compiler. If they were
806                  * not volatile, they could be reordered which could lead to
807                  * using invalid descriptor fields when read from rxd.
808                  */
809                 rxdp = &rx_ring[rx_id];
810                 staterr = rxdp->wb.upper.status_error;
811                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
812                         break;
813                 rxd = *rxdp;
814
815                 /*
816                  * End of packet.
817                  *
818                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
819                  * likely to be invalid and to be dropped by the various
820                  * validation checks performed by the network stack.
821                  *
822                  * Allocate a new mbuf to replenish the RX ring descriptor.
823                  * If the allocation fails:
824                  *    - arrange for that RX descriptor to be the first one
825                  *      being parsed the next time the receive function is
826                  *      invoked [on the same queue].
827                  *
828                  *    - Stop parsing the RX ring and return immediately.
829                  *
830                  * This policy do not drop the packet received in the RX
831                  * descriptor for which the allocation of a new mbuf failed.
832                  * Thus, it allows that packet to be later retrieved if
833                  * mbuf have been freed in the mean time.
834                  * As a side effect, holding RX descriptors instead of
835                  * systematically giving them back to the NIC may lead to
836                  * RX ring exhaustion situations.
837                  * However, the NIC can gracefully prevent such situations
838                  * to happen by sending specific "back-pressure" flow control
839                  * frames to its peer(s).
840                  */
841                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
842                            "staterr=0x%x pkt_len=%u",
843                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
844                            (unsigned) rx_id, (unsigned) staterr,
845                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
846
847                 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
848                 if (nmb == NULL) {
849                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
850                                    "queue_id=%u", (unsigned) rxq->port_id,
851                                    (unsigned) rxq->queue_id);
852                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
853                         break;
854                 }
855
856                 nb_hold++;
857                 rxe = &sw_ring[rx_id];
858                 rx_id++;
859                 if (rx_id == rxq->nb_rx_desc)
860                         rx_id = 0;
861
862                 /* Prefetch next mbuf while processing current one. */
863                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
864
865                 /*
866                  * When next RX descriptor is on a cache-line boundary,
867                  * prefetch the next 4 RX descriptors and the next 8 pointers
868                  * to mbufs.
869                  */
870                 if ((rx_id & 0x3) == 0) {
871                         rte_igb_prefetch(&rx_ring[rx_id]);
872                         rte_igb_prefetch(&sw_ring[rx_id]);
873                 }
874
875                 rxm = rxe->mbuf;
876                 rxe->mbuf = nmb;
877                 dma_addr =
878                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
879                 rxdp->read.hdr_addr = 0;
880                 rxdp->read.pkt_addr = dma_addr;
881
882                 /*
883                  * Initialize the returned mbuf.
884                  * 1) setup generic mbuf fields:
885                  *    - number of segments,
886                  *    - next segment,
887                  *    - packet length,
888                  *    - RX port identifier.
889                  * 2) integrate hardware offload data, if any:
890                  *    - RSS flag & hash,
891                  *    - IP checksum flag,
892                  *    - VLAN TCI, if any,
893                  *    - error flags.
894                  */
895                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
896                                       rxq->crc_len);
897                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
898                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
899                 rxm->nb_segs = 1;
900                 rxm->next = NULL;
901                 rxm->pkt_len = pkt_len;
902                 rxm->data_len = pkt_len;
903                 rxm->port = rxq->port_id;
904
905                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
906                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
907                 /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
908                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
909
910                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
911                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
912                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
913                 rxm->ol_flags = pkt_flags;
914                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
915                                                 lo_dword.hs_rss.pkt_info);
916
917                 /*
918                  * Store the mbuf address into the next entry of the array
919                  * of returned packets.
920                  */
921                 rx_pkts[nb_rx++] = rxm;
922         }
923         rxq->rx_tail = rx_id;
924
925         /*
926          * If the number of free RX descriptors is greater than the RX free
927          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
928          * register.
929          * Update the RDT with the value of the last processed RX descriptor
930          * minus 1, to guarantee that the RDT register is never equal to the
931          * RDH register, which creates a "full" ring situtation from the
932          * hardware point of view...
933          */
934         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
935         if (nb_hold > rxq->rx_free_thresh) {
936                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
937                            "nb_hold=%u nb_rx=%u",
938                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
939                            (unsigned) rx_id, (unsigned) nb_hold,
940                            (unsigned) nb_rx);
941                 rx_id = (uint16_t) ((rx_id == 0) ?
942                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
943                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
944                 nb_hold = 0;
945         }
946         rxq->nb_rx_hold = nb_hold;
947         return (nb_rx);
948 }
949
950 uint16_t
951 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
952                          uint16_t nb_pkts)
953 {
954         struct igb_rx_queue *rxq;
955         volatile union e1000_adv_rx_desc *rx_ring;
956         volatile union e1000_adv_rx_desc *rxdp;
957         struct igb_rx_entry *sw_ring;
958         struct igb_rx_entry *rxe;
959         struct rte_mbuf *first_seg;
960         struct rte_mbuf *last_seg;
961         struct rte_mbuf *rxm;
962         struct rte_mbuf *nmb;
963         union e1000_adv_rx_desc rxd;
964         uint64_t dma; /* Physical address of mbuf data buffer */
965         uint32_t staterr;
966         uint32_t hlen_type_rss;
967         uint16_t rx_id;
968         uint16_t nb_rx;
969         uint16_t nb_hold;
970         uint16_t data_len;
971         uint64_t pkt_flags;
972
973         nb_rx = 0;
974         nb_hold = 0;
975         rxq = rx_queue;
976         rx_id = rxq->rx_tail;
977         rx_ring = rxq->rx_ring;
978         sw_ring = rxq->sw_ring;
979
980         /*
981          * Retrieve RX context of current packet, if any.
982          */
983         first_seg = rxq->pkt_first_seg;
984         last_seg = rxq->pkt_last_seg;
985
986         while (nb_rx < nb_pkts) {
987         next_desc:
988                 /*
989                  * The order of operations here is important as the DD status
990                  * bit must not be read after any other descriptor fields.
991                  * rx_ring and rxdp are pointing to volatile data so the order
992                  * of accesses cannot be reordered by the compiler. If they were
993                  * not volatile, they could be reordered which could lead to
994                  * using invalid descriptor fields when read from rxd.
995                  */
996                 rxdp = &rx_ring[rx_id];
997                 staterr = rxdp->wb.upper.status_error;
998                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
999                         break;
1000                 rxd = *rxdp;
1001
1002                 /*
1003                  * Descriptor done.
1004                  *
1005                  * Allocate a new mbuf to replenish the RX ring descriptor.
1006                  * If the allocation fails:
1007                  *    - arrange for that RX descriptor to be the first one
1008                  *      being parsed the next time the receive function is
1009                  *      invoked [on the same queue].
1010                  *
1011                  *    - Stop parsing the RX ring and return immediately.
1012                  *
1013                  * This policy does not drop the packet received in the RX
1014                  * descriptor for which the allocation of a new mbuf failed.
1015                  * Thus, it allows that packet to be later retrieved if
1016                  * mbuf have been freed in the mean time.
1017                  * As a side effect, holding RX descriptors instead of
1018                  * systematically giving them back to the NIC may lead to
1019                  * RX ring exhaustion situations.
1020                  * However, the NIC can gracefully prevent such situations
1021                  * to happen by sending specific "back-pressure" flow control
1022                  * frames to its peer(s).
1023                  */
1024                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1025                            "staterr=0x%x data_len=%u",
1026                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1027                            (unsigned) rx_id, (unsigned) staterr,
1028                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1029
1030                 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
1031                 if (nmb == NULL) {
1032                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1033                                    "queue_id=%u", (unsigned) rxq->port_id,
1034                                    (unsigned) rxq->queue_id);
1035                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1036                         break;
1037                 }
1038
1039                 nb_hold++;
1040                 rxe = &sw_ring[rx_id];
1041                 rx_id++;
1042                 if (rx_id == rxq->nb_rx_desc)
1043                         rx_id = 0;
1044
1045                 /* Prefetch next mbuf while processing current one. */
1046                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1047
1048                 /*
1049                  * When next RX descriptor is on a cache-line boundary,
1050                  * prefetch the next 4 RX descriptors and the next 8 pointers
1051                  * to mbufs.
1052                  */
1053                 if ((rx_id & 0x3) == 0) {
1054                         rte_igb_prefetch(&rx_ring[rx_id]);
1055                         rte_igb_prefetch(&sw_ring[rx_id]);
1056                 }
1057
1058                 /*
1059                  * Update RX descriptor with the physical address of the new
1060                  * data buffer of the new allocated mbuf.
1061                  */
1062                 rxm = rxe->mbuf;
1063                 rxe->mbuf = nmb;
1064                 dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1065                 rxdp->read.pkt_addr = dma;
1066                 rxdp->read.hdr_addr = 0;
1067
1068                 /*
1069                  * Set data length & data buffer address of mbuf.
1070                  */
1071                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1072                 rxm->data_len = data_len;
1073                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1074
1075                 /*
1076                  * If this is the first buffer of the received packet,
1077                  * set the pointer to the first mbuf of the packet and
1078                  * initialize its context.
1079                  * Otherwise, update the total length and the number of segments
1080                  * of the current scattered packet, and update the pointer to
1081                  * the last mbuf of the current packet.
1082                  */
1083                 if (first_seg == NULL) {
1084                         first_seg = rxm;
1085                         first_seg->pkt_len = data_len;
1086                         first_seg->nb_segs = 1;
1087                 } else {
1088                         first_seg->pkt_len += data_len;
1089                         first_seg->nb_segs++;
1090                         last_seg->next = rxm;
1091                 }
1092
1093                 /*
1094                  * If this is not the last buffer of the received packet,
1095                  * update the pointer to the last mbuf of the current scattered
1096                  * packet and continue to parse the RX ring.
1097                  */
1098                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1099                         last_seg = rxm;
1100                         goto next_desc;
1101                 }
1102
1103                 /*
1104                  * This is the last buffer of the received packet.
1105                  * If the CRC is not stripped by the hardware:
1106                  *   - Subtract the CRC length from the total packet length.
1107                  *   - If the last buffer only contains the whole CRC or a part
1108                  *     of it, free the mbuf associated to the last buffer.
1109                  *     If part of the CRC is also contained in the previous
1110                  *     mbuf, subtract the length of that CRC part from the
1111                  *     data length of the previous mbuf.
1112                  */
1113                 rxm->next = NULL;
1114                 if (unlikely(rxq->crc_len > 0)) {
1115                         first_seg->pkt_len -= ETHER_CRC_LEN;
1116                         if (data_len <= ETHER_CRC_LEN) {
1117                                 rte_pktmbuf_free_seg(rxm);
1118                                 first_seg->nb_segs--;
1119                                 last_seg->data_len = (uint16_t)
1120                                         (last_seg->data_len -
1121                                          (ETHER_CRC_LEN - data_len));
1122                                 last_seg->next = NULL;
1123                         } else
1124                                 rxm->data_len =
1125                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1126                 }
1127
1128                 /*
1129                  * Initialize the first mbuf of the returned packet:
1130                  *    - RX port identifier,
1131                  *    - hardware offload data, if any:
1132                  *      - RSS flag & hash,
1133                  *      - IP checksum flag,
1134                  *      - VLAN TCI, if any,
1135                  *      - error flags.
1136                  */
1137                 first_seg->port = rxq->port_id;
1138                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1139
1140                 /*
1141                  * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
1142                  * set in the pkt_flags field.
1143                  */
1144                 first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1145                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1146                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1147                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1148                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1149                 first_seg->ol_flags = pkt_flags;
1150                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1151                                         lower.lo_dword.hs_rss.pkt_info);
1152
1153                 /* Prefetch data of first segment, if configured to do so. */
1154                 rte_packet_prefetch((char *)first_seg->buf_addr +
1155                         first_seg->data_off);
1156
1157                 /*
1158                  * Store the mbuf address into the next entry of the array
1159                  * of returned packets.
1160                  */
1161                 rx_pkts[nb_rx++] = first_seg;
1162
1163                 /*
1164                  * Setup receipt context for a new packet.
1165                  */
1166                 first_seg = NULL;
1167         }
1168
1169         /*
1170          * Record index of the next RX descriptor to probe.
1171          */
1172         rxq->rx_tail = rx_id;
1173
1174         /*
1175          * Save receive context.
1176          */
1177         rxq->pkt_first_seg = first_seg;
1178         rxq->pkt_last_seg = last_seg;
1179
1180         /*
1181          * If the number of free RX descriptors is greater than the RX free
1182          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1183          * register.
1184          * Update the RDT with the value of the last processed RX descriptor
1185          * minus 1, to guarantee that the RDT register is never equal to the
1186          * RDH register, which creates a "full" ring situtation from the
1187          * hardware point of view...
1188          */
1189         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1190         if (nb_hold > rxq->rx_free_thresh) {
1191                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1192                            "nb_hold=%u nb_rx=%u",
1193                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1194                            (unsigned) rx_id, (unsigned) nb_hold,
1195                            (unsigned) nb_rx);
1196                 rx_id = (uint16_t) ((rx_id == 0) ?
1197                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1198                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1199                 nb_hold = 0;
1200         }
1201         rxq->nb_rx_hold = nb_hold;
1202         return (nb_rx);
1203 }
1204
1205 /*
1206  * Rings setup and release.
1207  *
1208  * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
1209  * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
1210  * This will also optimize cache line size effect.
1211  * H/W supports up to cache line size 128.
1212  */
1213 #define IGB_ALIGN 128
1214
1215 /*
1216  * Maximum number of Ring Descriptors.
1217  *
1218  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1219  * desscriptors should meet the following condition:
1220  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1221  */
1222 #define IGB_MIN_RING_DESC 32
1223 #define IGB_MAX_RING_DESC 4096
1224
1225 static const struct rte_memzone *
1226 ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
1227                       uint16_t queue_id, uint32_t ring_size, int socket_id)
1228 {
1229         char z_name[RTE_MEMZONE_NAMESIZE];
1230         const struct rte_memzone *mz;
1231
1232         snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1233                         dev->driver->pci_drv.name, ring_name,
1234                                 dev->data->port_id, queue_id);
1235         mz = rte_memzone_lookup(z_name);
1236         if (mz)
1237                 return mz;
1238
1239 #ifdef RTE_LIBRTE_XEN_DOM0
1240         return rte_memzone_reserve_bounded(z_name, ring_size,
1241                         socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
1242 #else
1243         return rte_memzone_reserve_aligned(z_name, ring_size,
1244                         socket_id, 0, IGB_ALIGN);
1245 #endif
1246 }
1247
1248 static void
1249 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1250 {
1251         unsigned i;
1252
1253         if (txq->sw_ring != NULL) {
1254                 for (i = 0; i < txq->nb_tx_desc; i++) {
1255                         if (txq->sw_ring[i].mbuf != NULL) {
1256                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1257                                 txq->sw_ring[i].mbuf = NULL;
1258                         }
1259                 }
1260         }
1261 }
1262
1263 static void
1264 igb_tx_queue_release(struct igb_tx_queue *txq)
1265 {
1266         if (txq != NULL) {
1267                 igb_tx_queue_release_mbufs(txq);
1268                 rte_free(txq->sw_ring);
1269                 rte_free(txq);
1270         }
1271 }
1272
1273 void
1274 eth_igb_tx_queue_release(void *txq)
1275 {
1276         igb_tx_queue_release(txq);
1277 }
1278
1279 static void
1280 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1281 {
1282         txq->tx_head = 0;
1283         txq->tx_tail = 0;
1284         txq->ctx_curr = 0;
1285         memset((void*)&txq->ctx_cache, 0,
1286                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1287 }
1288
1289 static void
1290 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1291 {
1292         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1293         struct igb_tx_entry *txe = txq->sw_ring;
1294         uint16_t i, prev;
1295         struct e1000_hw *hw;
1296
1297         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1298         /* Zero out HW ring memory */
1299         for (i = 0; i < txq->nb_tx_desc; i++) {
1300                 txq->tx_ring[i] = zeroed_desc;
1301         }
1302
1303         /* Initialize ring entries */
1304         prev = (uint16_t)(txq->nb_tx_desc - 1);
1305         for (i = 0; i < txq->nb_tx_desc; i++) {
1306                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1307
1308                 txd->wb.status = E1000_TXD_STAT_DD;
1309                 txe[i].mbuf = NULL;
1310                 txe[i].last_id = i;
1311                 txe[prev].next_id = i;
1312                 prev = i;
1313         }
1314
1315         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1316         /* 82575 specific, each tx queue will use 2 hw contexts */
1317         if (hw->mac.type == e1000_82575)
1318                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1319
1320         igb_reset_tx_queue_stat(txq);
1321 }
1322
1323 int
1324 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1325                          uint16_t queue_idx,
1326                          uint16_t nb_desc,
1327                          unsigned int socket_id,
1328                          const struct rte_eth_txconf *tx_conf)
1329 {
1330         const struct rte_memzone *tz;
1331         struct igb_tx_queue *txq;
1332         struct e1000_hw     *hw;
1333         uint32_t size;
1334
1335         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1336
1337         /*
1338          * Validate number of transmit descriptors.
1339          * It must not exceed hardware maximum, and must be multiple
1340          * of IGB_ALIGN.
1341          */
1342         if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
1343             (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
1344                 return -EINVAL;
1345         }
1346
1347         /*
1348          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1349          * driver.
1350          */
1351         if (tx_conf->tx_free_thresh != 0)
1352                 PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
1353                              "used for the 1G driver.");
1354         if (tx_conf->tx_rs_thresh != 0)
1355                 PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
1356                              "used for the 1G driver.");
1357         if (tx_conf->tx_thresh.wthresh == 0)
1358                 PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
1359                              "consider setting the TX WTHRESH value to 4, 8, "
1360                              "or 16.");
1361
1362         /* Free memory prior to re-allocation if needed */
1363         if (dev->data->tx_queues[queue_idx] != NULL) {
1364                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1365                 dev->data->tx_queues[queue_idx] = NULL;
1366         }
1367
1368         /* First allocate the tx queue data structure */
1369         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1370                                                         RTE_CACHE_LINE_SIZE);
1371         if (txq == NULL)
1372                 return (-ENOMEM);
1373
1374         /*
1375          * Allocate TX ring hardware descriptors. A memzone large enough to
1376          * handle the maximum ring size is allocated in order to allow for
1377          * resizing in later calls to the queue setup function.
1378          */
1379         size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
1380         tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
1381                                         size, socket_id);
1382         if (tz == NULL) {
1383                 igb_tx_queue_release(txq);
1384                 return (-ENOMEM);
1385         }
1386
1387         txq->nb_tx_desc = nb_desc;
1388         txq->pthresh = tx_conf->tx_thresh.pthresh;
1389         txq->hthresh = tx_conf->tx_thresh.hthresh;
1390         txq->wthresh = tx_conf->tx_thresh.wthresh;
1391         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1392                 txq->wthresh = 1;
1393         txq->queue_id = queue_idx;
1394         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1395                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1396         txq->port_id = dev->data->port_id;
1397
1398         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1399 #ifndef RTE_LIBRTE_XEN_DOM0
1400         txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
1401 #else
1402         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
1403 #endif
1404          txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1405         /* Allocate software ring */
1406         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1407                                    sizeof(struct igb_tx_entry) * nb_desc,
1408                                    RTE_CACHE_LINE_SIZE);
1409         if (txq->sw_ring == NULL) {
1410                 igb_tx_queue_release(txq);
1411                 return (-ENOMEM);
1412         }
1413         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1414                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1415
1416         igb_reset_tx_queue(txq, dev);
1417         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1418         dev->data->tx_queues[queue_idx] = txq;
1419
1420         return (0);
1421 }
1422
1423 static void
1424 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1425 {
1426         unsigned i;
1427
1428         if (rxq->sw_ring != NULL) {
1429                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1430                         if (rxq->sw_ring[i].mbuf != NULL) {
1431                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1432                                 rxq->sw_ring[i].mbuf = NULL;
1433                         }
1434                 }
1435         }
1436 }
1437
1438 static void
1439 igb_rx_queue_release(struct igb_rx_queue *rxq)
1440 {
1441         if (rxq != NULL) {
1442                 igb_rx_queue_release_mbufs(rxq);
1443                 rte_free(rxq->sw_ring);
1444                 rte_free(rxq);
1445         }
1446 }
1447
1448 void
1449 eth_igb_rx_queue_release(void *rxq)
1450 {
1451         igb_rx_queue_release(rxq);
1452 }
1453
1454 static void
1455 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1456 {
1457         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1458         unsigned i;
1459
1460         /* Zero out HW ring memory */
1461         for (i = 0; i < rxq->nb_rx_desc; i++) {
1462                 rxq->rx_ring[i] = zeroed_desc;
1463         }
1464
1465         rxq->rx_tail = 0;
1466         rxq->pkt_first_seg = NULL;
1467         rxq->pkt_last_seg = NULL;
1468 }
1469
1470 int
1471 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1472                          uint16_t queue_idx,
1473                          uint16_t nb_desc,
1474                          unsigned int socket_id,
1475                          const struct rte_eth_rxconf *rx_conf,
1476                          struct rte_mempool *mp)
1477 {
1478         const struct rte_memzone *rz;
1479         struct igb_rx_queue *rxq;
1480         struct e1000_hw     *hw;
1481         unsigned int size;
1482
1483         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1484
1485         /*
1486          * Validate number of receive descriptors.
1487          * It must not exceed hardware maximum, and must be multiple
1488          * of IGB_ALIGN.
1489          */
1490         if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
1491             (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
1492                 return (-EINVAL);
1493         }
1494
1495         /* Free memory prior to re-allocation if needed */
1496         if (dev->data->rx_queues[queue_idx] != NULL) {
1497                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1498                 dev->data->rx_queues[queue_idx] = NULL;
1499         }
1500
1501         /* First allocate the RX queue data structure. */
1502         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1503                           RTE_CACHE_LINE_SIZE);
1504         if (rxq == NULL)
1505                 return (-ENOMEM);
1506         rxq->mb_pool = mp;
1507         rxq->nb_rx_desc = nb_desc;
1508         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1509         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1510         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1511         if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
1512                 rxq->wthresh = 1;
1513         rxq->drop_en = rx_conf->rx_drop_en;
1514         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1515         rxq->queue_id = queue_idx;
1516         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1517                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1518         rxq->port_id = dev->data->port_id;
1519         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
1520                                   ETHER_CRC_LEN);
1521
1522         /*
1523          *  Allocate RX ring hardware descriptors. A memzone large enough to
1524          *  handle the maximum ring size is allocated in order to allow for
1525          *  resizing in later calls to the queue setup function.
1526          */
1527         size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
1528         rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
1529         if (rz == NULL) {
1530                 igb_rx_queue_release(rxq);
1531                 return (-ENOMEM);
1532         }
1533         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1534         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1535 #ifndef RTE_LIBRTE_XEN_DOM0
1536         rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
1537 #else
1538         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1539 #endif
1540         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1541
1542         /* Allocate software ring. */
1543         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1544                                    sizeof(struct igb_rx_entry) * nb_desc,
1545                                    RTE_CACHE_LINE_SIZE);
1546         if (rxq->sw_ring == NULL) {
1547                 igb_rx_queue_release(rxq);
1548                 return (-ENOMEM);
1549         }
1550         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1551                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1552
1553         dev->data->rx_queues[queue_idx] = rxq;
1554         igb_reset_rx_queue(rxq);
1555
1556         return 0;
1557 }
1558
1559 uint32_t
1560 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1561 {
1562 #define IGB_RXQ_SCAN_INTERVAL 4
1563         volatile union e1000_adv_rx_desc *rxdp;
1564         struct igb_rx_queue *rxq;
1565         uint32_t desc = 0;
1566
1567         if (rx_queue_id >= dev->data->nb_rx_queues) {
1568                 PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
1569                 return 0;
1570         }
1571
1572         rxq = dev->data->rx_queues[rx_queue_id];
1573         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1574
1575         while ((desc < rxq->nb_rx_desc) &&
1576                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1577                 desc += IGB_RXQ_SCAN_INTERVAL;
1578                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1579                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1580                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1581                                 desc - rxq->nb_rx_desc]);
1582         }
1583
1584         return 0;
1585 }
1586
1587 int
1588 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1589 {
1590         volatile union e1000_adv_rx_desc *rxdp;
1591         struct igb_rx_queue *rxq = rx_queue;
1592         uint32_t desc;
1593
1594         if (unlikely(offset >= rxq->nb_rx_desc))
1595                 return 0;
1596         desc = rxq->rx_tail + offset;
1597         if (desc >= rxq->nb_rx_desc)
1598                 desc -= rxq->nb_rx_desc;
1599
1600         rxdp = &rxq->rx_ring[desc];
1601         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1602 }
1603
1604 void
1605 igb_dev_clear_queues(struct rte_eth_dev *dev)
1606 {
1607         uint16_t i;
1608         struct igb_tx_queue *txq;
1609         struct igb_rx_queue *rxq;
1610
1611         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1612                 txq = dev->data->tx_queues[i];
1613                 if (txq != NULL) {
1614                         igb_tx_queue_release_mbufs(txq);
1615                         igb_reset_tx_queue(txq, dev);
1616                 }
1617         }
1618
1619         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1620                 rxq = dev->data->rx_queues[i];
1621                 if (rxq != NULL) {
1622                         igb_rx_queue_release_mbufs(rxq);
1623                         igb_reset_rx_queue(rxq);
1624                 }
1625         }
1626 }
1627
1628 void
1629 igb_dev_free_queues(struct rte_eth_dev *dev)
1630 {
1631         uint16_t i;
1632
1633         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1634                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1635                 dev->data->rx_queues[i] = NULL;
1636         }
1637         dev->data->nb_rx_queues = 0;
1638
1639         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1640                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1641                 dev->data->tx_queues[i] = NULL;
1642         }
1643         dev->data->nb_tx_queues = 0;
1644 }
1645
1646 /**
1647  * Receive Side Scaling (RSS).
1648  * See section 7.1.1.7 in the following document:
1649  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1650  *
1651  * Principles:
1652  * The source and destination IP addresses of the IP header and the source and
1653  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1654  * against a configurable random key to compute a 32-bit RSS hash result.
1655  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1656  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1657  * RSS output index which is used as the RX queue index where to store the
1658  * received packets.
1659  * The following output is supplied in the RX write-back descriptor:
1660  *     - 32-bit result of the Microsoft RSS hash function,
1661  *     - 4-bit RSS type field.
1662  */
1663
1664 /*
1665  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1666  * Used as the default key.
1667  */
1668 static uint8_t rss_intel_key[40] = {
1669         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1670         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1671         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1672         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1673         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1674 };
1675
1676 static void
1677 igb_rss_disable(struct rte_eth_dev *dev)
1678 {
1679         struct e1000_hw *hw;
1680         uint32_t mrqc;
1681
1682         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1683         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1684         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1685         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1686 }
1687
1688 static void
1689 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1690 {
1691         uint8_t  *hash_key;
1692         uint32_t rss_key;
1693         uint32_t mrqc;
1694         uint64_t rss_hf;
1695         uint16_t i;
1696
1697         hash_key = rss_conf->rss_key;
1698         if (hash_key != NULL) {
1699                 /* Fill in RSS hash key */
1700                 for (i = 0; i < 10; i++) {
1701                         rss_key  = hash_key[(i * 4)];
1702                         rss_key |= hash_key[(i * 4) + 1] << 8;
1703                         rss_key |= hash_key[(i * 4) + 2] << 16;
1704                         rss_key |= hash_key[(i * 4) + 3] << 24;
1705                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1706                 }
1707         }
1708
1709         /* Set configured hashing protocols in MRQC register */
1710         rss_hf = rss_conf->rss_hf;
1711         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1712         if (rss_hf & ETH_RSS_IPV4)
1713                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1714         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1715                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1716         if (rss_hf & ETH_RSS_IPV6)
1717                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1718         if (rss_hf & ETH_RSS_IPV6_EX)
1719                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1720         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1721                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1722         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1723                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1724         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1725                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1726         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1727                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1728         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1729                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1730         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1731 }
1732
1733 int
1734 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1735                         struct rte_eth_rss_conf *rss_conf)
1736 {
1737         struct e1000_hw *hw;
1738         uint32_t mrqc;
1739         uint64_t rss_hf;
1740
1741         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1742
1743         /*
1744          * Before changing anything, first check that the update RSS operation
1745          * does not attempt to disable RSS, if RSS was enabled at
1746          * initialization time, or does not attempt to enable RSS, if RSS was
1747          * disabled at initialization time.
1748          */
1749         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1750         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1751         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1752                 if (rss_hf != 0) /* Enable RSS */
1753                         return -(EINVAL);
1754                 return 0; /* Nothing to do */
1755         }
1756         /* RSS enabled */
1757         if (rss_hf == 0) /* Disable RSS */
1758                 return -(EINVAL);
1759         igb_hw_rss_hash_set(hw, rss_conf);
1760         return 0;
1761 }
1762
1763 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
1764                               struct rte_eth_rss_conf *rss_conf)
1765 {
1766         struct e1000_hw *hw;
1767         uint8_t *hash_key;
1768         uint32_t rss_key;
1769         uint32_t mrqc;
1770         uint64_t rss_hf;
1771         uint16_t i;
1772
1773         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1774         hash_key = rss_conf->rss_key;
1775         if (hash_key != NULL) {
1776                 /* Return RSS hash key */
1777                 for (i = 0; i < 10; i++) {
1778                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
1779                         hash_key[(i * 4)] = rss_key & 0x000000FF;
1780                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
1781                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
1782                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
1783                 }
1784         }
1785
1786         /* Get RSS functions configured in MRQC register */
1787         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1788         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
1789                 rss_conf->rss_hf = 0;
1790                 return 0;
1791         }
1792         rss_hf = 0;
1793         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
1794                 rss_hf |= ETH_RSS_IPV4;
1795         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
1796                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1797         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
1798                 rss_hf |= ETH_RSS_IPV6;
1799         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
1800                 rss_hf |= ETH_RSS_IPV6_EX;
1801         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
1802                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1803         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
1804                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
1805         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
1806                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1807         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
1808                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1809         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
1810                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
1811         rss_conf->rss_hf = rss_hf;
1812         return 0;
1813 }
1814
1815 static void
1816 igb_rss_configure(struct rte_eth_dev *dev)
1817 {
1818         struct rte_eth_rss_conf rss_conf;
1819         struct e1000_hw *hw;
1820         uint32_t shift;
1821         uint16_t i;
1822
1823         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1824
1825         /* Fill in redirection table. */
1826         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
1827         for (i = 0; i < 128; i++) {
1828                 union e1000_reta {
1829                         uint32_t dword;
1830                         uint8_t  bytes[4];
1831                 } reta;
1832                 uint8_t q_idx;
1833
1834                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
1835                                    i % dev->data->nb_rx_queues : 0);
1836                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
1837                 if ((i & 3) == 3)
1838                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
1839         }
1840
1841         /*
1842          * Configure the RSS key and the RSS protocols used to compute
1843          * the RSS hash of input packets.
1844          */
1845         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
1846         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
1847                 igb_rss_disable(dev);
1848                 return;
1849         }
1850         if (rss_conf.rss_key == NULL)
1851                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
1852         igb_hw_rss_hash_set(hw, &rss_conf);
1853 }
1854
1855 /*
1856  * Check if the mac type support VMDq or not.
1857  * Return 1 if it supports, otherwise, return 0.
1858  */
1859 static int
1860 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
1861 {
1862         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1863
1864         switch (hw->mac.type) {
1865         case e1000_82576:
1866         case e1000_82580:
1867         case e1000_i350:
1868                 return 1;
1869         case e1000_82540:
1870         case e1000_82541:
1871         case e1000_82542:
1872         case e1000_82543:
1873         case e1000_82544:
1874         case e1000_82545:
1875         case e1000_82546:
1876         case e1000_82547:
1877         case e1000_82571:
1878         case e1000_82572:
1879         case e1000_82573:
1880         case e1000_82574:
1881         case e1000_82583:
1882         case e1000_i210:
1883         case e1000_i211:
1884         default:
1885                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
1886                 return 0;
1887         }
1888 }
1889
1890 static int
1891 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
1892 {
1893         struct rte_eth_vmdq_rx_conf *cfg;
1894         struct e1000_hw *hw;
1895         uint32_t mrqc, vt_ctl, vmolr, rctl;
1896         int i;
1897
1898         PMD_INIT_FUNC_TRACE();
1899
1900         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1901         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
1902
1903         /* Check if mac type can support VMDq, return value of 0 means NOT support */
1904         if (igb_is_vmdq_supported(dev) == 0)
1905                 return -1;
1906
1907         igb_rss_disable(dev);
1908
1909         /* RCTL: eanble VLAN filter */
1910         rctl = E1000_READ_REG(hw, E1000_RCTL);
1911         rctl |= E1000_RCTL_VFE;
1912         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1913
1914         /* MRQC: enable vmdq */
1915         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1916         mrqc |= E1000_MRQC_ENABLE_VMDQ;
1917         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1918
1919         /* VTCTL:  pool selection according to VLAN tag */
1920         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
1921         if (cfg->enable_default_pool)
1922                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1923         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
1924         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
1925
1926         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
1927                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
1928                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
1929                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
1930                         E1000_VMOLR_MPME);
1931
1932                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
1933                         vmolr |= E1000_VMOLR_AUPE;
1934                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
1935                         vmolr |= E1000_VMOLR_ROMPE;
1936                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
1937                         vmolr |= E1000_VMOLR_ROPE;
1938                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
1939                         vmolr |= E1000_VMOLR_BAM;
1940                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
1941                         vmolr |= E1000_VMOLR_MPME;
1942
1943                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
1944         }
1945
1946         /*
1947          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
1948          * Both 82576 and 82580 support it
1949          */
1950         if (hw->mac.type != e1000_i350) {
1951                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
1952                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
1953                         vmolr |= E1000_VMOLR_STRVLAN;
1954                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
1955                 }
1956         }
1957
1958         /* VFTA - enable all vlan filters */
1959         for (i = 0; i < IGB_VFTA_SIZE; i++)
1960                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
1961
1962         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
1963         if (hw->mac.type != e1000_82580)
1964                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
1965
1966         /*
1967          * RAH/RAL - allow pools to read specific mac addresses
1968          * In this case, all pools should be able to read from mac addr 0
1969          */
1970         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
1971         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
1972
1973         /* VLVF: set up filters for vlan tags as configured */
1974         for (i = 0; i < cfg->nb_pool_maps; i++) {
1975                 /* set vlan id in VF register and set the valid bit */
1976                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
1977                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
1978                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
1979                         E1000_VLVF_POOLSEL_MASK)));
1980         }
1981
1982         E1000_WRITE_FLUSH(hw);
1983
1984         return 0;
1985 }
1986
1987
1988 /*********************************************************************
1989  *
1990  *  Enable receive unit.
1991  *
1992  **********************************************************************/
1993
1994 static int
1995 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
1996 {
1997         struct igb_rx_entry *rxe = rxq->sw_ring;
1998         uint64_t dma_addr;
1999         unsigned i;
2000
2001         /* Initialize software ring entries. */
2002         for (i = 0; i < rxq->nb_rx_desc; i++) {
2003                 volatile union e1000_adv_rx_desc *rxd;
2004                 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
2005
2006                 if (mbuf == NULL) {
2007                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2008                                      "queue_id=%hu", rxq->queue_id);
2009                         return (-ENOMEM);
2010                 }
2011                 dma_addr =
2012                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
2013                 rxd = &rxq->rx_ring[i];
2014                 rxd->read.hdr_addr = 0;
2015                 rxd->read.pkt_addr = dma_addr;
2016                 rxe[i].mbuf = mbuf;
2017         }
2018
2019         return 0;
2020 }
2021
2022 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2023 static int
2024 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2025 {
2026         struct e1000_hw *hw =
2027                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2028         uint32_t mrqc;
2029
2030         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2031                 /*
2032                  * SRIOV active scheme
2033                  * FIXME if support RSS together with VMDq & SRIOV
2034                  */
2035                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2036                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2037                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2038                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2039         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2040                 /*
2041                  * SRIOV inactive scheme
2042                  */
2043                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2044                         case ETH_MQ_RX_RSS:
2045                                 igb_rss_configure(dev);
2046                                 break;
2047                         case ETH_MQ_RX_VMDQ_ONLY:
2048                                 /*Configure general VMDQ only RX parameters*/
2049                                 igb_vmdq_rx_hw_configure(dev);
2050                                 break;
2051                         case ETH_MQ_RX_NONE:
2052                                 /* if mq_mode is none, disable rss mode.*/
2053                         default:
2054                                 igb_rss_disable(dev);
2055                                 break;
2056                 }
2057         }
2058
2059         return 0;
2060 }
2061
2062 int
2063 eth_igb_rx_init(struct rte_eth_dev *dev)
2064 {
2065         struct e1000_hw     *hw;
2066         struct igb_rx_queue *rxq;
2067         uint32_t rctl;
2068         uint32_t rxcsum;
2069         uint32_t srrctl;
2070         uint16_t buf_size;
2071         uint16_t rctl_bsize;
2072         uint16_t i;
2073         int ret;
2074
2075         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2076         srrctl = 0;
2077
2078         /*
2079          * Make sure receives are disabled while setting
2080          * up the descriptor ring.
2081          */
2082         rctl = E1000_READ_REG(hw, E1000_RCTL);
2083         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2084
2085         /*
2086          * Configure support of jumbo frames, if any.
2087          */
2088         if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
2089                 rctl |= E1000_RCTL_LPE;
2090
2091                 /*
2092                  * Set maximum packet length by default, and might be updated
2093                  * together with enabling/disabling dual VLAN.
2094                  */
2095                 E1000_WRITE_REG(hw, E1000_RLPML,
2096                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2097                                                 VLAN_TAG_SIZE);
2098         } else
2099                 rctl &= ~E1000_RCTL_LPE;
2100
2101         /* Configure and enable each RX queue. */
2102         rctl_bsize = 0;
2103         dev->rx_pkt_burst = eth_igb_recv_pkts;
2104         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2105                 uint64_t bus_addr;
2106                 uint32_t rxdctl;
2107
2108                 rxq = dev->data->rx_queues[i];
2109
2110                 /* Allocate buffers for descriptor rings and set up queue */
2111                 ret = igb_alloc_rx_queue_mbufs(rxq);
2112                 if (ret)
2113                         return ret;
2114
2115                 /*
2116                  * Reset crc_len in case it was changed after queue setup by a
2117                  *  call to configure
2118                  */
2119                 rxq->crc_len =
2120                         (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
2121                                                         0 : ETHER_CRC_LEN);
2122
2123                 bus_addr = rxq->rx_ring_phys_addr;
2124                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2125                                 rxq->nb_rx_desc *
2126                                 sizeof(union e1000_adv_rx_desc));
2127                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2128                                 (uint32_t)(bus_addr >> 32));
2129                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2130
2131                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2132
2133                 /*
2134                  * Configure RX buffer size.
2135                  */
2136                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2137                         RTE_PKTMBUF_HEADROOM);
2138                 if (buf_size >= 1024) {
2139                         /*
2140                          * Configure the BSIZEPACKET field of the SRRCTL
2141                          * register of the queue.
2142                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2143                          * If this field is equal to 0b, then RCTL.BSIZE
2144                          * determines the RX packet buffer size.
2145                          */
2146                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2147                                    E1000_SRRCTL_BSIZEPKT_MASK);
2148                         buf_size = (uint16_t) ((srrctl &
2149                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2150                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2151
2152                         /* It adds dual VLAN length for supporting dual VLAN */
2153                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2154                                                 2 * VLAN_TAG_SIZE) > buf_size){
2155                                 if (!dev->data->scattered_rx)
2156                                         PMD_INIT_LOG(DEBUG,
2157                                                      "forcing scatter mode");
2158                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2159                                 dev->data->scattered_rx = 1;
2160                         }
2161                 } else {
2162                         /*
2163                          * Use BSIZE field of the device RCTL register.
2164                          */
2165                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2166                                 rctl_bsize = buf_size;
2167                         if (!dev->data->scattered_rx)
2168                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2169                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2170                         dev->data->scattered_rx = 1;
2171                 }
2172
2173                 /* Set if packets are dropped when no descriptors available */
2174                 if (rxq->drop_en)
2175                         srrctl |= E1000_SRRCTL_DROP_EN;
2176
2177                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2178
2179                 /* Enable this RX queue. */
2180                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2181                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2182                 rxdctl &= 0xFFF00000;
2183                 rxdctl |= (rxq->pthresh & 0x1F);
2184                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2185                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2186                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2187         }
2188
2189         if (dev->data->dev_conf.rxmode.enable_scatter) {
2190                 if (!dev->data->scattered_rx)
2191                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2192                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2193                 dev->data->scattered_rx = 1;
2194         }
2195
2196         /*
2197          * Setup BSIZE field of RCTL register, if needed.
2198          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2199          * register, since the code above configures the SRRCTL register of
2200          * the RX queue in such a case.
2201          * All configurable sizes are:
2202          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2203          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2204          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2205          *  2048: rctl |= E1000_RCTL_SZ_2048;
2206          *  1024: rctl |= E1000_RCTL_SZ_1024;
2207          *   512: rctl |= E1000_RCTL_SZ_512;
2208          *   256: rctl |= E1000_RCTL_SZ_256;
2209          */
2210         if (rctl_bsize > 0) {
2211                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2212                         rctl |= E1000_RCTL_SZ_512;
2213                 else /* 256 <= buf_size < 512 - use 256 */
2214                         rctl |= E1000_RCTL_SZ_256;
2215         }
2216
2217         /*
2218          * Configure RSS if device configured with multiple RX queues.
2219          */
2220         igb_dev_mq_rx_configure(dev);
2221
2222         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2223         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2224
2225         /*
2226          * Setup the Checksum Register.
2227          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2228          */
2229         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2230         rxcsum |= E1000_RXCSUM_PCSD;
2231
2232         /* Enable both L3/L4 rx checksum offload */
2233         if (dev->data->dev_conf.rxmode.hw_ip_checksum)
2234                 rxcsum |= (E1000_RXCSUM_IPOFL  | E1000_RXCSUM_TUOFL);
2235         else
2236                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2237         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2238
2239         /* Setup the Receive Control Register. */
2240         if (dev->data->dev_conf.rxmode.hw_strip_crc) {
2241                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2242
2243                 /* set STRCRC bit in all queues */
2244                 if (hw->mac.type == e1000_i350 ||
2245                     hw->mac.type == e1000_i210 ||
2246                     hw->mac.type == e1000_i211 ||
2247                     hw->mac.type == e1000_i354) {
2248                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2249                                 rxq = dev->data->rx_queues[i];
2250                                 uint32_t dvmolr = E1000_READ_REG(hw,
2251                                         E1000_DVMOLR(rxq->reg_idx));
2252                                 dvmolr |= E1000_DVMOLR_STRCRC;
2253                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2254                         }
2255                 }
2256         } else {
2257                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2258
2259                 /* clear STRCRC bit in all queues */
2260                 if (hw->mac.type == e1000_i350 ||
2261                     hw->mac.type == e1000_i210 ||
2262                     hw->mac.type == e1000_i211 ||
2263                     hw->mac.type == e1000_i354) {
2264                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2265                                 rxq = dev->data->rx_queues[i];
2266                                 uint32_t dvmolr = E1000_READ_REG(hw,
2267                                         E1000_DVMOLR(rxq->reg_idx));
2268                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2269                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2270                         }
2271                 }
2272         }
2273
2274         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2275         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2276                 E1000_RCTL_RDMTS_HALF |
2277                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2278
2279         /* Make sure VLAN Filters are off. */
2280         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2281                 rctl &= ~E1000_RCTL_VFE;
2282         /* Don't store bad packets. */
2283         rctl &= ~E1000_RCTL_SBP;
2284
2285         /* Enable Receives. */
2286         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2287
2288         /*
2289          * Setup the HW Rx Head and Tail Descriptor Pointers.
2290          * This needs to be done after enable.
2291          */
2292         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2293                 rxq = dev->data->rx_queues[i];
2294                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2295                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2296         }
2297
2298         return 0;
2299 }
2300
2301 /*********************************************************************
2302  *
2303  *  Enable transmit unit.
2304  *
2305  **********************************************************************/
2306 void
2307 eth_igb_tx_init(struct rte_eth_dev *dev)
2308 {
2309         struct e1000_hw     *hw;
2310         struct igb_tx_queue *txq;
2311         uint32_t tctl;
2312         uint32_t txdctl;
2313         uint16_t i;
2314
2315         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2316
2317         /* Setup the Base and Length of the Tx Descriptor Rings. */
2318         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2319                 uint64_t bus_addr;
2320                 txq = dev->data->tx_queues[i];
2321                 bus_addr = txq->tx_ring_phys_addr;
2322
2323                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2324                                 txq->nb_tx_desc *
2325                                 sizeof(union e1000_adv_tx_desc));
2326                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2327                                 (uint32_t)(bus_addr >> 32));
2328                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2329
2330                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2331                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2332                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2333
2334                 /* Setup Transmit threshold registers. */
2335                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2336                 txdctl |= txq->pthresh & 0x1F;
2337                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2338                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2339                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2340                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2341         }
2342
2343         /* Program the Transmit Control Register. */
2344         tctl = E1000_READ_REG(hw, E1000_TCTL);
2345         tctl &= ~E1000_TCTL_CT;
2346         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2347                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2348
2349         e1000_config_collision_dist(hw);
2350
2351         /* This write will effectively turn on the transmit unit. */
2352         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2353 }
2354
2355 /*********************************************************************
2356  *
2357  *  Enable VF receive unit.
2358  *
2359  **********************************************************************/
2360 int
2361 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2362 {
2363         struct e1000_hw     *hw;
2364         struct igb_rx_queue *rxq;
2365         uint32_t srrctl;
2366         uint16_t buf_size;
2367         uint16_t rctl_bsize;
2368         uint16_t i;
2369         int ret;
2370
2371         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2372
2373         /* setup MTU */
2374         e1000_rlpml_set_vf(hw,
2375                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2376                 VLAN_TAG_SIZE));
2377
2378         /* Configure and enable each RX queue. */
2379         rctl_bsize = 0;
2380         dev->rx_pkt_burst = eth_igb_recv_pkts;
2381         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2382                 uint64_t bus_addr;
2383                 uint32_t rxdctl;
2384
2385                 rxq = dev->data->rx_queues[i];
2386
2387                 /* Allocate buffers for descriptor rings and set up queue */
2388                 ret = igb_alloc_rx_queue_mbufs(rxq);
2389                 if (ret)
2390                         return ret;
2391
2392                 bus_addr = rxq->rx_ring_phys_addr;
2393                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2394                                 rxq->nb_rx_desc *
2395                                 sizeof(union e1000_adv_rx_desc));
2396                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2397                                 (uint32_t)(bus_addr >> 32));
2398                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2399
2400                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2401
2402                 /*
2403                  * Configure RX buffer size.
2404                  */
2405                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2406                         RTE_PKTMBUF_HEADROOM);
2407                 if (buf_size >= 1024) {
2408                         /*
2409                          * Configure the BSIZEPACKET field of the SRRCTL
2410                          * register of the queue.
2411                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2412                          * If this field is equal to 0b, then RCTL.BSIZE
2413                          * determines the RX packet buffer size.
2414                          */
2415                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2416                                    E1000_SRRCTL_BSIZEPKT_MASK);
2417                         buf_size = (uint16_t) ((srrctl &
2418                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2419                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2420
2421                         /* It adds dual VLAN length for supporting dual VLAN */
2422                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2423                                                 2 * VLAN_TAG_SIZE) > buf_size){
2424                                 if (!dev->data->scattered_rx)
2425                                         PMD_INIT_LOG(DEBUG,
2426                                                      "forcing scatter mode");
2427                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2428                                 dev->data->scattered_rx = 1;
2429                         }
2430                 } else {
2431                         /*
2432                          * Use BSIZE field of the device RCTL register.
2433                          */
2434                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2435                                 rctl_bsize = buf_size;
2436                         if (!dev->data->scattered_rx)
2437                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2438                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2439                         dev->data->scattered_rx = 1;
2440                 }
2441
2442                 /* Set if packets are dropped when no descriptors available */
2443                 if (rxq->drop_en)
2444                         srrctl |= E1000_SRRCTL_DROP_EN;
2445
2446                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2447
2448                 /* Enable this RX queue. */
2449                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2450                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2451                 rxdctl &= 0xFFF00000;
2452                 rxdctl |= (rxq->pthresh & 0x1F);
2453                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2454                 if (hw->mac.type == e1000_vfadapt) {
2455                         /*
2456                          * Workaround of 82576 VF Erratum
2457                          * force set WTHRESH to 1
2458                          * to avoid Write-Back not triggered sometimes
2459                          */
2460                         rxdctl |= 0x10000;
2461                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2462                 }
2463                 else
2464                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2465                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2466         }
2467
2468         if (dev->data->dev_conf.rxmode.enable_scatter) {
2469                 if (!dev->data->scattered_rx)
2470                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2471                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2472                 dev->data->scattered_rx = 1;
2473         }
2474
2475         /*
2476          * Setup the HW Rx Head and Tail Descriptor Pointers.
2477          * This needs to be done after enable.
2478          */
2479         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2480                 rxq = dev->data->rx_queues[i];
2481                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2482                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2483         }
2484
2485         return 0;
2486 }
2487
2488 /*********************************************************************
2489  *
2490  *  Enable VF transmit unit.
2491  *
2492  **********************************************************************/
2493 void
2494 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2495 {
2496         struct e1000_hw     *hw;
2497         struct igb_tx_queue *txq;
2498         uint32_t txdctl;
2499         uint16_t i;
2500
2501         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2502
2503         /* Setup the Base and Length of the Tx Descriptor Rings. */
2504         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2505                 uint64_t bus_addr;
2506
2507                 txq = dev->data->tx_queues[i];
2508                 bus_addr = txq->tx_ring_phys_addr;
2509                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2510                                 txq->nb_tx_desc *
2511                                 sizeof(union e1000_adv_tx_desc));
2512                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2513                                 (uint32_t)(bus_addr >> 32));
2514                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2515
2516                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2517                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2518                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2519
2520                 /* Setup Transmit threshold registers. */
2521                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2522                 txdctl |= txq->pthresh & 0x1F;
2523                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2524                 if (hw->mac.type == e1000_82576) {
2525                         /*
2526                          * Workaround of 82576 VF Erratum
2527                          * force set WTHRESH to 1
2528                          * to avoid Write-Back not triggered sometimes
2529                          */
2530                         txdctl |= 0x10000;
2531                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2532                 }
2533                 else
2534                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2535                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2536                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2537         }
2538
2539 }