net/igb: free consumed Tx buffers on demand
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <errno.h>
40 #include <stdint.h>
41 #include <stdarg.h>
42 #include <inttypes.h>
43
44 #include <rte_interrupts.h>
45 #include <rte_byteorder.h>
46 #include <rte_common.h>
47 #include <rte_log.h>
48 #include <rte_debug.h>
49 #include <rte_pci.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_atomic.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_mempool.h>
60 #include <rte_malloc.h>
61 #include <rte_mbuf.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_prefetch.h>
65 #include <rte_udp.h>
66 #include <rte_tcp.h>
67 #include <rte_sctp.h>
68 #include <rte_net.h>
69 #include <rte_string_fns.h>
70
71 #include "e1000_logs.h"
72 #include "base/e1000_api.h"
73 #include "e1000_ethdev.h"
74
75 #ifdef RTE_LIBRTE_IEEE1588
76 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
77 #else
78 #define IGB_TX_IEEE1588_TMST 0
79 #endif
80 /* Bit Mask to indicate what bits required for building TX context */
81 #define IGB_TX_OFFLOAD_MASK (                    \
82                 PKT_TX_VLAN_PKT |                \
83                 PKT_TX_IP_CKSUM |                \
84                 PKT_TX_L4_MASK |                 \
85                 PKT_TX_TCP_SEG |                 \
86                 IGB_TX_IEEE1588_TMST)
87
88 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
89                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
90
91 /**
92  * Structure associated with each descriptor of the RX ring of a RX queue.
93  */
94 struct igb_rx_entry {
95         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
96 };
97
98 /**
99  * Structure associated with each descriptor of the TX ring of a TX queue.
100  */
101 struct igb_tx_entry {
102         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
103         uint16_t next_id; /**< Index of next descriptor in ring. */
104         uint16_t last_id; /**< Index of last scattered descriptor. */
105 };
106
107 /**
108  * Structure associated with each RX queue.
109  */
110 struct igb_rx_queue {
111         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
112         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
113         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
114         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
115         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
116         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
117         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
118         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
119         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
120         uint16_t            rx_tail;    /**< current value of RDT register. */
121         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
122         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
123         uint16_t            queue_id;   /**< RX queue index. */
124         uint16_t            reg_idx;    /**< RX queue register index. */
125         uint8_t             port_id;    /**< Device port identifier. */
126         uint8_t             pthresh;    /**< Prefetch threshold register. */
127         uint8_t             hthresh;    /**< Host threshold register. */
128         uint8_t             wthresh;    /**< Write-back threshold register. */
129         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
130         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
131 };
132
133 /**
134  * Hardware context number
135  */
136 enum igb_advctx_num {
137         IGB_CTX_0    = 0, /**< CTX0    */
138         IGB_CTX_1    = 1, /**< CTX1    */
139         IGB_CTX_NUM  = 2, /**< CTX_NUM */
140 };
141
142 /** Offload features */
143 union igb_tx_offload {
144         uint64_t data;
145         struct {
146                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
147                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
148                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
149                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
150                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
151
152                 /* uint64_t unused:8; */
153         };
154 };
155
156 /*
157  * Compare mask for igb_tx_offload.data,
158  * should be in sync with igb_tx_offload layout.
159  * */
160 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
161 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
162 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
163 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
164 /** Mac + IP + TCP + Mss mask. */
165 #define TX_TSO_CMP_MASK \
166         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
167
168 /**
169  * Strucutre to check if new context need be built
170  */
171 struct igb_advctx_info {
172         uint64_t flags;           /**< ol_flags related to context build. */
173         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
174         union igb_tx_offload tx_offload;
175         /** compare mask for tx offload. */
176         union igb_tx_offload tx_offload_mask;
177 };
178
179 /**
180  * Structure associated with each TX queue.
181  */
182 struct igb_tx_queue {
183         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
184         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
185         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
186         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
187         uint32_t               txd_type;      /**< Device-specific TXD type */
188         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
189         uint16_t               tx_tail; /**< Current value of TDT register. */
190         uint16_t               tx_head;
191         /**< Index of first used TX descriptor. */
192         uint16_t               queue_id; /**< TX queue index. */
193         uint16_t               reg_idx;  /**< TX queue register index. */
194         uint8_t                port_id;  /**< Device port identifier. */
195         uint8_t                pthresh;  /**< Prefetch threshold register. */
196         uint8_t                hthresh;  /**< Host threshold register. */
197         uint8_t                wthresh;  /**< Write-back threshold register. */
198         uint32_t               ctx_curr;
199         /**< Current used hardware descriptor. */
200         uint32_t               ctx_start;
201         /**< Start context position for transmit queue. */
202         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
203         /**< Hardware context history.*/
204 };
205
206 #if 1
207 #define RTE_PMD_USE_PREFETCH
208 #endif
209
210 #ifdef RTE_PMD_USE_PREFETCH
211 #define rte_igb_prefetch(p)     rte_prefetch0(p)
212 #else
213 #define rte_igb_prefetch(p)     do {} while(0)
214 #endif
215
216 #ifdef RTE_PMD_PACKET_PREFETCH
217 #define rte_packet_prefetch(p) rte_prefetch1(p)
218 #else
219 #define rte_packet_prefetch(p)  do {} while(0)
220 #endif
221
222 /*
223  * Macro for VMDq feature for 1 GbE NIC.
224  */
225 #define E1000_VMOLR_SIZE                        (8)
226 #define IGB_TSO_MAX_HDRLEN                      (512)
227 #define IGB_TSO_MAX_MSS                         (9216)
228
229 /*********************************************************************
230  *
231  *  TX function
232  *
233  **********************************************************************/
234
235 /*
236  *There're some limitations in hardware for TCP segmentation offload. We
237  *should check whether the parameters are valid.
238  */
239 static inline uint64_t
240 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
241 {
242         if (!(ol_req & PKT_TX_TCP_SEG))
243                 return ol_req;
244         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
245                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
246                 ol_req &= ~PKT_TX_TCP_SEG;
247                 ol_req |= PKT_TX_TCP_CKSUM;
248         }
249         return ol_req;
250 }
251
252 /*
253  * Advanced context descriptor are almost same between igb/ixgbe
254  * This is a separate function, looking for optimization opportunity here
255  * Rework required to go with the pre-defined values.
256  */
257
258 static inline void
259 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
260                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
261                 uint64_t ol_flags, union igb_tx_offload tx_offload)
262 {
263         uint32_t type_tucmd_mlhl;
264         uint32_t mss_l4len_idx;
265         uint32_t ctx_idx, ctx_curr;
266         uint32_t vlan_macip_lens;
267         union igb_tx_offload tx_offload_mask;
268
269         ctx_curr = txq->ctx_curr;
270         ctx_idx = ctx_curr + txq->ctx_start;
271
272         tx_offload_mask.data = 0;
273         type_tucmd_mlhl = 0;
274
275         /* Specify which HW CTX to upload. */
276         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
277
278         if (ol_flags & PKT_TX_VLAN_PKT)
279                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
280
281         /* check if TCP segmentation required for this packet */
282         if (ol_flags & PKT_TX_TCP_SEG) {
283                 /* implies IP cksum in IPv4 */
284                 if (ol_flags & PKT_TX_IP_CKSUM)
285                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
286                                 E1000_ADVTXD_TUCMD_L4T_TCP |
287                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
288                 else
289                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
290                                 E1000_ADVTXD_TUCMD_L4T_TCP |
291                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
292
293                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
294                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
295                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
296         } else { /* no TSO, check if hardware checksum is needed */
297                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
298                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
299
300                 if (ol_flags & PKT_TX_IP_CKSUM)
301                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
302
303                 switch (ol_flags & PKT_TX_L4_MASK) {
304                 case PKT_TX_UDP_CKSUM:
305                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
306                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
307                         mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
308                         break;
309                 case PKT_TX_TCP_CKSUM:
310                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
311                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
312                         mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
313                         break;
314                 case PKT_TX_SCTP_CKSUM:
315                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
316                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
317                         mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
318                         break;
319                 default:
320                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
321                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
322                         break;
323                 }
324         }
325
326         txq->ctx_cache[ctx_curr].flags = ol_flags;
327         txq->ctx_cache[ctx_curr].tx_offload.data =
328                 tx_offload_mask.data & tx_offload.data;
329         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
330
331         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
332         vlan_macip_lens = (uint32_t)tx_offload.data;
333         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
334         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
335         ctx_txd->seqnum_seed = 0;
336 }
337
338 /*
339  * Check which hardware context can be used. Use the existing match
340  * or create a new context descriptor.
341  */
342 static inline uint32_t
343 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
344                 union igb_tx_offload tx_offload)
345 {
346         /* If match with the current context */
347         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
348                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
349                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
350                         return txq->ctx_curr;
351         }
352
353         /* If match with the second context */
354         txq->ctx_curr ^= 1;
355         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
356                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
357                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
358                         return txq->ctx_curr;
359         }
360
361         /* Mismatch, use the previous context */
362         return IGB_CTX_NUM;
363 }
364
365 static inline uint32_t
366 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
367 {
368         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
369         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
370         uint32_t tmp;
371
372         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
373         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
374         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
375         return tmp;
376 }
377
378 static inline uint32_t
379 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
380 {
381         uint32_t cmdtype;
382         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
383         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
384         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
385         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
386         return cmdtype;
387 }
388
389 uint16_t
390 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
391                uint16_t nb_pkts)
392 {
393         struct igb_tx_queue *txq;
394         struct igb_tx_entry *sw_ring;
395         struct igb_tx_entry *txe, *txn;
396         volatile union e1000_adv_tx_desc *txr;
397         volatile union e1000_adv_tx_desc *txd;
398         struct rte_mbuf     *tx_pkt;
399         struct rte_mbuf     *m_seg;
400         uint64_t buf_dma_addr;
401         uint32_t olinfo_status;
402         uint32_t cmd_type_len;
403         uint32_t pkt_len;
404         uint16_t slen;
405         uint64_t ol_flags;
406         uint16_t tx_end;
407         uint16_t tx_id;
408         uint16_t tx_last;
409         uint16_t nb_tx;
410         uint64_t tx_ol_req;
411         uint32_t new_ctx = 0;
412         uint32_t ctx = 0;
413         union igb_tx_offload tx_offload = {0};
414
415         txq = tx_queue;
416         sw_ring = txq->sw_ring;
417         txr     = txq->tx_ring;
418         tx_id   = txq->tx_tail;
419         txe = &sw_ring[tx_id];
420
421         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
422                 tx_pkt = *tx_pkts++;
423                 pkt_len = tx_pkt->pkt_len;
424
425                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
426
427                 /*
428                  * The number of descriptors that must be allocated for a
429                  * packet is the number of segments of that packet, plus 1
430                  * Context Descriptor for the VLAN Tag Identifier, if any.
431                  * Determine the last TX descriptor to allocate in the TX ring
432                  * for the packet, starting from the current position (tx_id)
433                  * in the ring.
434                  */
435                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
436
437                 ol_flags = tx_pkt->ol_flags;
438                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
439
440                 /* If a Context Descriptor need be built . */
441                 if (tx_ol_req) {
442                         tx_offload.l2_len = tx_pkt->l2_len;
443                         tx_offload.l3_len = tx_pkt->l3_len;
444                         tx_offload.l4_len = tx_pkt->l4_len;
445                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
446                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
447                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
448
449                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
450                         /* Only allocate context descriptor if required*/
451                         new_ctx = (ctx == IGB_CTX_NUM);
452                         ctx = txq->ctx_curr + txq->ctx_start;
453                         tx_last = (uint16_t) (tx_last + new_ctx);
454                 }
455                 if (tx_last >= txq->nb_tx_desc)
456                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
457
458                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
459                            " tx_first=%u tx_last=%u",
460                            (unsigned) txq->port_id,
461                            (unsigned) txq->queue_id,
462                            (unsigned) pkt_len,
463                            (unsigned) tx_id,
464                            (unsigned) tx_last);
465
466                 /*
467                  * Check if there are enough free descriptors in the TX ring
468                  * to transmit the next packet.
469                  * This operation is based on the two following rules:
470                  *
471                  *   1- Only check that the last needed TX descriptor can be
472                  *      allocated (by construction, if that descriptor is free,
473                  *      all intermediate ones are also free).
474                  *
475                  *      For this purpose, the index of the last TX descriptor
476                  *      used for a packet (the "last descriptor" of a packet)
477                  *      is recorded in the TX entries (the last one included)
478                  *      that are associated with all TX descriptors allocated
479                  *      for that packet.
480                  *
481                  *   2- Avoid to allocate the last free TX descriptor of the
482                  *      ring, in order to never set the TDT register with the
483                  *      same value stored in parallel by the NIC in the TDH
484                  *      register, which makes the TX engine of the NIC enter
485                  *      in a deadlock situation.
486                  *
487                  *      By extension, avoid to allocate a free descriptor that
488                  *      belongs to the last set of free descriptors allocated
489                  *      to the same packet previously transmitted.
490                  */
491
492                 /*
493                  * The "last descriptor" of the previously sent packet, if any,
494                  * which used the last descriptor to allocate.
495                  */
496                 tx_end = sw_ring[tx_last].last_id;
497
498                 /*
499                  * The next descriptor following that "last descriptor" in the
500                  * ring.
501                  */
502                 tx_end = sw_ring[tx_end].next_id;
503
504                 /*
505                  * The "last descriptor" associated with that next descriptor.
506                  */
507                 tx_end = sw_ring[tx_end].last_id;
508
509                 /*
510                  * Check that this descriptor is free.
511                  */
512                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
513                         if (nb_tx == 0)
514                                 return 0;
515                         goto end_of_tx;
516                 }
517
518                 /*
519                  * Set common flags of all TX Data Descriptors.
520                  *
521                  * The following bits must be set in all Data Descriptors:
522                  *   - E1000_ADVTXD_DTYP_DATA
523                  *   - E1000_ADVTXD_DCMD_DEXT
524                  *
525                  * The following bits must be set in the first Data Descriptor
526                  * and are ignored in the other ones:
527                  *   - E1000_ADVTXD_DCMD_IFCS
528                  *   - E1000_ADVTXD_MAC_1588
529                  *   - E1000_ADVTXD_DCMD_VLE
530                  *
531                  * The following bits must only be set in the last Data
532                  * Descriptor:
533                  *   - E1000_TXD_CMD_EOP
534                  *
535                  * The following bits can be set in any Data Descriptor, but
536                  * are only set in the last Data Descriptor:
537                  *   - E1000_TXD_CMD_RS
538                  */
539                 cmd_type_len = txq->txd_type |
540                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
541                 if (tx_ol_req & PKT_TX_TCP_SEG)
542                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
543                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
544 #if defined(RTE_LIBRTE_IEEE1588)
545                 if (ol_flags & PKT_TX_IEEE1588_TMST)
546                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
547 #endif
548                 if (tx_ol_req) {
549                         /* Setup TX Advanced context descriptor if required */
550                         if (new_ctx) {
551                                 volatile struct e1000_adv_tx_context_desc *
552                                     ctx_txd;
553
554                                 ctx_txd = (volatile struct
555                                     e1000_adv_tx_context_desc *)
556                                     &txr[tx_id];
557
558                                 txn = &sw_ring[txe->next_id];
559                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
560
561                                 if (txe->mbuf != NULL) {
562                                         rte_pktmbuf_free_seg(txe->mbuf);
563                                         txe->mbuf = NULL;
564                                 }
565
566                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
567
568                                 txe->last_id = tx_last;
569                                 tx_id = txe->next_id;
570                                 txe = txn;
571                         }
572
573                         /* Setup the TX Advanced Data Descriptor */
574                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
575                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
576                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
577                 }
578
579                 m_seg = tx_pkt;
580                 do {
581                         txn = &sw_ring[txe->next_id];
582                         txd = &txr[tx_id];
583
584                         if (txe->mbuf != NULL)
585                                 rte_pktmbuf_free_seg(txe->mbuf);
586                         txe->mbuf = m_seg;
587
588                         /*
589                          * Set up transmit descriptor.
590                          */
591                         slen = (uint16_t) m_seg->data_len;
592                         buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
593                         txd->read.buffer_addr =
594                                 rte_cpu_to_le_64(buf_dma_addr);
595                         txd->read.cmd_type_len =
596                                 rte_cpu_to_le_32(cmd_type_len | slen);
597                         txd->read.olinfo_status =
598                                 rte_cpu_to_le_32(olinfo_status);
599                         txe->last_id = tx_last;
600                         tx_id = txe->next_id;
601                         txe = txn;
602                         m_seg = m_seg->next;
603                 } while (m_seg != NULL);
604
605                 /*
606                  * The last packet data descriptor needs End Of Packet (EOP)
607                  * and Report Status (RS).
608                  */
609                 txd->read.cmd_type_len |=
610                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
611         }
612  end_of_tx:
613         rte_wmb();
614
615         /*
616          * Set the Transmit Descriptor Tail (TDT).
617          */
618         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
619         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
620                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
621                    (unsigned) tx_id, (unsigned) nb_tx);
622         txq->tx_tail = tx_id;
623
624         return nb_tx;
625 }
626
627 /*********************************************************************
628  *
629  *  TX prep functions
630  *
631  **********************************************************************/
632 uint16_t
633 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
634                 uint16_t nb_pkts)
635 {
636         int i, ret;
637         struct rte_mbuf *m;
638
639         for (i = 0; i < nb_pkts; i++) {
640                 m = tx_pkts[i];
641
642                 /* Check some limitations for TSO in hardware */
643                 if (m->ol_flags & PKT_TX_TCP_SEG)
644                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
645                                         (m->l2_len + m->l3_len + m->l4_len >
646                                         IGB_TSO_MAX_HDRLEN)) {
647                                 rte_errno = -EINVAL;
648                                 return i;
649                         }
650
651                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
652                         rte_errno = -ENOTSUP;
653                         return i;
654                 }
655
656 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
657                 ret = rte_validate_tx_offload(m);
658                 if (ret != 0) {
659                         rte_errno = ret;
660                         return i;
661                 }
662 #endif
663                 ret = rte_net_intel_cksum_prepare(m);
664                 if (ret != 0) {
665                         rte_errno = ret;
666                         return i;
667                 }
668         }
669
670         return i;
671 }
672
673 /*********************************************************************
674  *
675  *  RX functions
676  *
677  **********************************************************************/
678 #define IGB_PACKET_TYPE_IPV4              0X01
679 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
680 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
681 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
682 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
683 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
684 #define IGB_PACKET_TYPE_IPV6              0X04
685 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
686 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
687 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
688 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
689 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
690 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
691 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
692 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
693 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
694 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
695 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
696 #define IGB_PACKET_TYPE_MAX               0X80
697 #define IGB_PACKET_TYPE_MASK              0X7F
698 #define IGB_PACKET_TYPE_SHIFT             0X04
699 static inline uint32_t
700 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
701 {
702         static const uint32_t
703                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
704                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
705                         RTE_PTYPE_L3_IPV4,
706                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV4_EXT,
708                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV6,
710                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
711                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
712                         RTE_PTYPE_INNER_L3_IPV6,
713                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6_EXT,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6_EXT,
718                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
720                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
722                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
723                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
724                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
725                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
727                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
728                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
729                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
730                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
731                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
732                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
733                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
734                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
735                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
736                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
737                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
738                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
739                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
740                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
741                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
742                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
743                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
744                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
745                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
746         };
747         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
748                 return RTE_PTYPE_UNKNOWN;
749
750         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
751
752         return ptype_table[pkt_info];
753 }
754
755 static inline uint64_t
756 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
757 {
758         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
759
760 #if defined(RTE_LIBRTE_IEEE1588)
761         static uint32_t ip_pkt_etqf_map[8] = {
762                 0, 0, 0, PKT_RX_IEEE1588_PTP,
763                 0, 0, 0, 0,
764         };
765
766         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
767         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
768
769         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
770         if (hw->mac.type == e1000_i210)
771                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
772         else
773                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
774 #else
775         RTE_SET_USED(rxq);
776 #endif
777
778         return pkt_flags;
779 }
780
781 static inline uint64_t
782 rx_desc_status_to_pkt_flags(uint32_t rx_status)
783 {
784         uint64_t pkt_flags;
785
786         /* Check if VLAN present */
787         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
788                 PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED : 0);
789
790 #if defined(RTE_LIBRTE_IEEE1588)
791         if (rx_status & E1000_RXD_STAT_TMST)
792                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
793 #endif
794         return pkt_flags;
795 }
796
797 static inline uint64_t
798 rx_desc_error_to_pkt_flags(uint32_t rx_status)
799 {
800         /*
801          * Bit 30: IPE, IPv4 checksum error
802          * Bit 29: L4I, L4I integrity error
803          */
804
805         static uint64_t error_to_pkt_flags_map[4] = {
806                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
807                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
808                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
809                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
810         };
811         return error_to_pkt_flags_map[(rx_status >>
812                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
813 }
814
815 uint16_t
816 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
817                uint16_t nb_pkts)
818 {
819         struct igb_rx_queue *rxq;
820         volatile union e1000_adv_rx_desc *rx_ring;
821         volatile union e1000_adv_rx_desc *rxdp;
822         struct igb_rx_entry *sw_ring;
823         struct igb_rx_entry *rxe;
824         struct rte_mbuf *rxm;
825         struct rte_mbuf *nmb;
826         union e1000_adv_rx_desc rxd;
827         uint64_t dma_addr;
828         uint32_t staterr;
829         uint32_t hlen_type_rss;
830         uint16_t pkt_len;
831         uint16_t rx_id;
832         uint16_t nb_rx;
833         uint16_t nb_hold;
834         uint64_t pkt_flags;
835
836         nb_rx = 0;
837         nb_hold = 0;
838         rxq = rx_queue;
839         rx_id = rxq->rx_tail;
840         rx_ring = rxq->rx_ring;
841         sw_ring = rxq->sw_ring;
842         while (nb_rx < nb_pkts) {
843                 /*
844                  * The order of operations here is important as the DD status
845                  * bit must not be read after any other descriptor fields.
846                  * rx_ring and rxdp are pointing to volatile data so the order
847                  * of accesses cannot be reordered by the compiler. If they were
848                  * not volatile, they could be reordered which could lead to
849                  * using invalid descriptor fields when read from rxd.
850                  */
851                 rxdp = &rx_ring[rx_id];
852                 staterr = rxdp->wb.upper.status_error;
853                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
854                         break;
855                 rxd = *rxdp;
856
857                 /*
858                  * End of packet.
859                  *
860                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
861                  * likely to be invalid and to be dropped by the various
862                  * validation checks performed by the network stack.
863                  *
864                  * Allocate a new mbuf to replenish the RX ring descriptor.
865                  * If the allocation fails:
866                  *    - arrange for that RX descriptor to be the first one
867                  *      being parsed the next time the receive function is
868                  *      invoked [on the same queue].
869                  *
870                  *    - Stop parsing the RX ring and return immediately.
871                  *
872                  * This policy do not drop the packet received in the RX
873                  * descriptor for which the allocation of a new mbuf failed.
874                  * Thus, it allows that packet to be later retrieved if
875                  * mbuf have been freed in the mean time.
876                  * As a side effect, holding RX descriptors instead of
877                  * systematically giving them back to the NIC may lead to
878                  * RX ring exhaustion situations.
879                  * However, the NIC can gracefully prevent such situations
880                  * to happen by sending specific "back-pressure" flow control
881                  * frames to its peer(s).
882                  */
883                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
884                            "staterr=0x%x pkt_len=%u",
885                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
886                            (unsigned) rx_id, (unsigned) staterr,
887                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
888
889                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
890                 if (nmb == NULL) {
891                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
892                                    "queue_id=%u", (unsigned) rxq->port_id,
893                                    (unsigned) rxq->queue_id);
894                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
895                         break;
896                 }
897
898                 nb_hold++;
899                 rxe = &sw_ring[rx_id];
900                 rx_id++;
901                 if (rx_id == rxq->nb_rx_desc)
902                         rx_id = 0;
903
904                 /* Prefetch next mbuf while processing current one. */
905                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
906
907                 /*
908                  * When next RX descriptor is on a cache-line boundary,
909                  * prefetch the next 4 RX descriptors and the next 8 pointers
910                  * to mbufs.
911                  */
912                 if ((rx_id & 0x3) == 0) {
913                         rte_igb_prefetch(&rx_ring[rx_id]);
914                         rte_igb_prefetch(&sw_ring[rx_id]);
915                 }
916
917                 rxm = rxe->mbuf;
918                 rxe->mbuf = nmb;
919                 dma_addr =
920                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
921                 rxdp->read.hdr_addr = 0;
922                 rxdp->read.pkt_addr = dma_addr;
923
924                 /*
925                  * Initialize the returned mbuf.
926                  * 1) setup generic mbuf fields:
927                  *    - number of segments,
928                  *    - next segment,
929                  *    - packet length,
930                  *    - RX port identifier.
931                  * 2) integrate hardware offload data, if any:
932                  *    - RSS flag & hash,
933                  *    - IP checksum flag,
934                  *    - VLAN TCI, if any,
935                  *    - error flags.
936                  */
937                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
938                                       rxq->crc_len);
939                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
940                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
941                 rxm->nb_segs = 1;
942                 rxm->next = NULL;
943                 rxm->pkt_len = pkt_len;
944                 rxm->data_len = pkt_len;
945                 rxm->port = rxq->port_id;
946
947                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
948                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
949                 /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
950                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
951
952                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
953                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
954                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
955                 rxm->ol_flags = pkt_flags;
956                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
957                                                 lo_dword.hs_rss.pkt_info);
958
959                 /*
960                  * Store the mbuf address into the next entry of the array
961                  * of returned packets.
962                  */
963                 rx_pkts[nb_rx++] = rxm;
964         }
965         rxq->rx_tail = rx_id;
966
967         /*
968          * If the number of free RX descriptors is greater than the RX free
969          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
970          * register.
971          * Update the RDT with the value of the last processed RX descriptor
972          * minus 1, to guarantee that the RDT register is never equal to the
973          * RDH register, which creates a "full" ring situtation from the
974          * hardware point of view...
975          */
976         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
977         if (nb_hold > rxq->rx_free_thresh) {
978                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
979                            "nb_hold=%u nb_rx=%u",
980                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
981                            (unsigned) rx_id, (unsigned) nb_hold,
982                            (unsigned) nb_rx);
983                 rx_id = (uint16_t) ((rx_id == 0) ?
984                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
985                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
986                 nb_hold = 0;
987         }
988         rxq->nb_rx_hold = nb_hold;
989         return nb_rx;
990 }
991
992 uint16_t
993 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
994                          uint16_t nb_pkts)
995 {
996         struct igb_rx_queue *rxq;
997         volatile union e1000_adv_rx_desc *rx_ring;
998         volatile union e1000_adv_rx_desc *rxdp;
999         struct igb_rx_entry *sw_ring;
1000         struct igb_rx_entry *rxe;
1001         struct rte_mbuf *first_seg;
1002         struct rte_mbuf *last_seg;
1003         struct rte_mbuf *rxm;
1004         struct rte_mbuf *nmb;
1005         union e1000_adv_rx_desc rxd;
1006         uint64_t dma; /* Physical address of mbuf data buffer */
1007         uint32_t staterr;
1008         uint32_t hlen_type_rss;
1009         uint16_t rx_id;
1010         uint16_t nb_rx;
1011         uint16_t nb_hold;
1012         uint16_t data_len;
1013         uint64_t pkt_flags;
1014
1015         nb_rx = 0;
1016         nb_hold = 0;
1017         rxq = rx_queue;
1018         rx_id = rxq->rx_tail;
1019         rx_ring = rxq->rx_ring;
1020         sw_ring = rxq->sw_ring;
1021
1022         /*
1023          * Retrieve RX context of current packet, if any.
1024          */
1025         first_seg = rxq->pkt_first_seg;
1026         last_seg = rxq->pkt_last_seg;
1027
1028         while (nb_rx < nb_pkts) {
1029         next_desc:
1030                 /*
1031                  * The order of operations here is important as the DD status
1032                  * bit must not be read after any other descriptor fields.
1033                  * rx_ring and rxdp are pointing to volatile data so the order
1034                  * of accesses cannot be reordered by the compiler. If they were
1035                  * not volatile, they could be reordered which could lead to
1036                  * using invalid descriptor fields when read from rxd.
1037                  */
1038                 rxdp = &rx_ring[rx_id];
1039                 staterr = rxdp->wb.upper.status_error;
1040                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1041                         break;
1042                 rxd = *rxdp;
1043
1044                 /*
1045                  * Descriptor done.
1046                  *
1047                  * Allocate a new mbuf to replenish the RX ring descriptor.
1048                  * If the allocation fails:
1049                  *    - arrange for that RX descriptor to be the first one
1050                  *      being parsed the next time the receive function is
1051                  *      invoked [on the same queue].
1052                  *
1053                  *    - Stop parsing the RX ring and return immediately.
1054                  *
1055                  * This policy does not drop the packet received in the RX
1056                  * descriptor for which the allocation of a new mbuf failed.
1057                  * Thus, it allows that packet to be later retrieved if
1058                  * mbuf have been freed in the mean time.
1059                  * As a side effect, holding RX descriptors instead of
1060                  * systematically giving them back to the NIC may lead to
1061                  * RX ring exhaustion situations.
1062                  * However, the NIC can gracefully prevent such situations
1063                  * to happen by sending specific "back-pressure" flow control
1064                  * frames to its peer(s).
1065                  */
1066                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1067                            "staterr=0x%x data_len=%u",
1068                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1069                            (unsigned) rx_id, (unsigned) staterr,
1070                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1071
1072                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1073                 if (nmb == NULL) {
1074                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1075                                    "queue_id=%u", (unsigned) rxq->port_id,
1076                                    (unsigned) rxq->queue_id);
1077                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1078                         break;
1079                 }
1080
1081                 nb_hold++;
1082                 rxe = &sw_ring[rx_id];
1083                 rx_id++;
1084                 if (rx_id == rxq->nb_rx_desc)
1085                         rx_id = 0;
1086
1087                 /* Prefetch next mbuf while processing current one. */
1088                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1089
1090                 /*
1091                  * When next RX descriptor is on a cache-line boundary,
1092                  * prefetch the next 4 RX descriptors and the next 8 pointers
1093                  * to mbufs.
1094                  */
1095                 if ((rx_id & 0x3) == 0) {
1096                         rte_igb_prefetch(&rx_ring[rx_id]);
1097                         rte_igb_prefetch(&sw_ring[rx_id]);
1098                 }
1099
1100                 /*
1101                  * Update RX descriptor with the physical address of the new
1102                  * data buffer of the new allocated mbuf.
1103                  */
1104                 rxm = rxe->mbuf;
1105                 rxe->mbuf = nmb;
1106                 dma = rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
1107                 rxdp->read.pkt_addr = dma;
1108                 rxdp->read.hdr_addr = 0;
1109
1110                 /*
1111                  * Set data length & data buffer address of mbuf.
1112                  */
1113                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1114                 rxm->data_len = data_len;
1115                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1116
1117                 /*
1118                  * If this is the first buffer of the received packet,
1119                  * set the pointer to the first mbuf of the packet and
1120                  * initialize its context.
1121                  * Otherwise, update the total length and the number of segments
1122                  * of the current scattered packet, and update the pointer to
1123                  * the last mbuf of the current packet.
1124                  */
1125                 if (first_seg == NULL) {
1126                         first_seg = rxm;
1127                         first_seg->pkt_len = data_len;
1128                         first_seg->nb_segs = 1;
1129                 } else {
1130                         first_seg->pkt_len += data_len;
1131                         first_seg->nb_segs++;
1132                         last_seg->next = rxm;
1133                 }
1134
1135                 /*
1136                  * If this is not the last buffer of the received packet,
1137                  * update the pointer to the last mbuf of the current scattered
1138                  * packet and continue to parse the RX ring.
1139                  */
1140                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1141                         last_seg = rxm;
1142                         goto next_desc;
1143                 }
1144
1145                 /*
1146                  * This is the last buffer of the received packet.
1147                  * If the CRC is not stripped by the hardware:
1148                  *   - Subtract the CRC length from the total packet length.
1149                  *   - If the last buffer only contains the whole CRC or a part
1150                  *     of it, free the mbuf associated to the last buffer.
1151                  *     If part of the CRC is also contained in the previous
1152                  *     mbuf, subtract the length of that CRC part from the
1153                  *     data length of the previous mbuf.
1154                  */
1155                 rxm->next = NULL;
1156                 if (unlikely(rxq->crc_len > 0)) {
1157                         first_seg->pkt_len -= ETHER_CRC_LEN;
1158                         if (data_len <= ETHER_CRC_LEN) {
1159                                 rte_pktmbuf_free_seg(rxm);
1160                                 first_seg->nb_segs--;
1161                                 last_seg->data_len = (uint16_t)
1162                                         (last_seg->data_len -
1163                                          (ETHER_CRC_LEN - data_len));
1164                                 last_seg->next = NULL;
1165                         } else
1166                                 rxm->data_len =
1167                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1168                 }
1169
1170                 /*
1171                  * Initialize the first mbuf of the returned packet:
1172                  *    - RX port identifier,
1173                  *    - hardware offload data, if any:
1174                  *      - RSS flag & hash,
1175                  *      - IP checksum flag,
1176                  *      - VLAN TCI, if any,
1177                  *      - error flags.
1178                  */
1179                 first_seg->port = rxq->port_id;
1180                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1181
1182                 /*
1183                  * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
1184                  * set in the pkt_flags field.
1185                  */
1186                 first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1187                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1188                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1189                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1190                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1191                 first_seg->ol_flags = pkt_flags;
1192                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1193                                         lower.lo_dword.hs_rss.pkt_info);
1194
1195                 /* Prefetch data of first segment, if configured to do so. */
1196                 rte_packet_prefetch((char *)first_seg->buf_addr +
1197                         first_seg->data_off);
1198
1199                 /*
1200                  * Store the mbuf address into the next entry of the array
1201                  * of returned packets.
1202                  */
1203                 rx_pkts[nb_rx++] = first_seg;
1204
1205                 /*
1206                  * Setup receipt context for a new packet.
1207                  */
1208                 first_seg = NULL;
1209         }
1210
1211         /*
1212          * Record index of the next RX descriptor to probe.
1213          */
1214         rxq->rx_tail = rx_id;
1215
1216         /*
1217          * Save receive context.
1218          */
1219         rxq->pkt_first_seg = first_seg;
1220         rxq->pkt_last_seg = last_seg;
1221
1222         /*
1223          * If the number of free RX descriptors is greater than the RX free
1224          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1225          * register.
1226          * Update the RDT with the value of the last processed RX descriptor
1227          * minus 1, to guarantee that the RDT register is never equal to the
1228          * RDH register, which creates a "full" ring situtation from the
1229          * hardware point of view...
1230          */
1231         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1232         if (nb_hold > rxq->rx_free_thresh) {
1233                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1234                            "nb_hold=%u nb_rx=%u",
1235                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1236                            (unsigned) rx_id, (unsigned) nb_hold,
1237                            (unsigned) nb_rx);
1238                 rx_id = (uint16_t) ((rx_id == 0) ?
1239                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1240                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1241                 nb_hold = 0;
1242         }
1243         rxq->nb_rx_hold = nb_hold;
1244         return nb_rx;
1245 }
1246
1247 /*
1248  * Maximum number of Ring Descriptors.
1249  *
1250  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1251  * desscriptors should meet the following condition:
1252  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1253  */
1254
1255 static void
1256 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1257 {
1258         unsigned i;
1259
1260         if (txq->sw_ring != NULL) {
1261                 for (i = 0; i < txq->nb_tx_desc; i++) {
1262                         if (txq->sw_ring[i].mbuf != NULL) {
1263                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1264                                 txq->sw_ring[i].mbuf = NULL;
1265                         }
1266                 }
1267         }
1268 }
1269
1270 static void
1271 igb_tx_queue_release(struct igb_tx_queue *txq)
1272 {
1273         if (txq != NULL) {
1274                 igb_tx_queue_release_mbufs(txq);
1275                 rte_free(txq->sw_ring);
1276                 rte_free(txq);
1277         }
1278 }
1279
1280 void
1281 eth_igb_tx_queue_release(void *txq)
1282 {
1283         igb_tx_queue_release(txq);
1284 }
1285
1286 static int
1287 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1288 {
1289         struct igb_tx_entry *sw_ring;
1290         volatile union e1000_adv_tx_desc *txr;
1291         uint16_t tx_first; /* First segment analyzed. */
1292         uint16_t tx_id;    /* Current segment being processed. */
1293         uint16_t tx_last;  /* Last segment in the current packet. */
1294         uint16_t tx_next;  /* First segment of the next packet. */
1295         int count;
1296
1297         if (txq != NULL) {
1298                 count = 0;
1299                 sw_ring = txq->sw_ring;
1300                 txr = txq->tx_ring;
1301
1302                 /*
1303                  * tx_tail is the last sent packet on the sw_ring. Goto the end
1304                  * of that packet (the last segment in the packet chain) and
1305                  * then the next segment will be the start of the oldest segment
1306                  * in the sw_ring. This is the first packet that will be
1307                  * attempted to be freed.
1308                  */
1309
1310                 /* Get last segment in most recently added packet. */
1311                 tx_first = sw_ring[txq->tx_tail].last_id;
1312
1313                 /* Get the next segment, which is the oldest segment in ring. */
1314                 tx_first = sw_ring[tx_first].next_id;
1315
1316                 /* Set the current index to the first. */
1317                 tx_id = tx_first;
1318
1319                 /*
1320                  * Loop through each packet. For each packet, verify that an
1321                  * mbuf exists and that the last segment is free. If so, free
1322                  * it and move on.
1323                  */
1324                 while (1) {
1325                         tx_last = sw_ring[tx_id].last_id;
1326
1327                         if (sw_ring[tx_last].mbuf) {
1328                                 if (txr[tx_last].wb.status &
1329                                                 E1000_TXD_STAT_DD) {
1330                                         /*
1331                                          * Increment the number of packets
1332                                          * freed.
1333                                          */
1334                                         count++;
1335
1336                                         /* Get the start of the next packet. */
1337                                         tx_next = sw_ring[tx_last].next_id;
1338
1339                                         /*
1340                                          * Loop through all segments in a
1341                                          * packet.
1342                                          */
1343                                         do {
1344                                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
1345                                                 sw_ring[tx_id].mbuf = NULL;
1346                                                 sw_ring[tx_id].last_id = tx_id;
1347
1348                                                 /* Move to next segemnt. */
1349                                                 tx_id = sw_ring[tx_id].next_id;
1350
1351                                         } while (tx_id != tx_next);
1352
1353                                         if (unlikely(count == (int)free_cnt))
1354                                                 break;
1355                                 } else
1356                                         /*
1357                                          * mbuf still in use, nothing left to
1358                                          * free.
1359                                          */
1360                                         break;
1361                         } else {
1362                                 /*
1363                                  * There are multiple reasons to be here:
1364                                  * 1) All the packets on the ring have been
1365                                  *    freed - tx_id is equal to tx_first
1366                                  *    and some packets have been freed.
1367                                  *    - Done, exit
1368                                  * 2) Interfaces has not sent a rings worth of
1369                                  *    packets yet, so the segment after tail is
1370                                  *    still empty. Or a previous call to this
1371                                  *    function freed some of the segments but
1372                                  *    not all so there is a hole in the list.
1373                                  *    Hopefully this is a rare case.
1374                                  *    - Walk the list and find the next mbuf. If
1375                                  *      there isn't one, then done.
1376                                  */
1377                                 if (likely((tx_id == tx_first) && (count != 0)))
1378                                         break;
1379
1380                                 /*
1381                                  * Walk the list and find the next mbuf, if any.
1382                                  */
1383                                 do {
1384                                         /* Move to next segemnt. */
1385                                         tx_id = sw_ring[tx_id].next_id;
1386
1387                                         if (sw_ring[tx_id].mbuf)
1388                                                 break;
1389
1390                                 } while (tx_id != tx_first);
1391
1392                                 /*
1393                                  * Determine why previous loop bailed. If there
1394                                  * is not an mbuf, done.
1395                                  */
1396                                 if (sw_ring[tx_id].mbuf == NULL)
1397                                         break;
1398                         }
1399                 }
1400         } else
1401                 count = -ENODEV;
1402
1403         return count;
1404 }
1405
1406 int
1407 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1408 {
1409         return igb_tx_done_cleanup(txq, free_cnt);
1410 }
1411
1412 static void
1413 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1414 {
1415         txq->tx_head = 0;
1416         txq->tx_tail = 0;
1417         txq->ctx_curr = 0;
1418         memset((void*)&txq->ctx_cache, 0,
1419                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1420 }
1421
1422 static void
1423 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1424 {
1425         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1426         struct igb_tx_entry *txe = txq->sw_ring;
1427         uint16_t i, prev;
1428         struct e1000_hw *hw;
1429
1430         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1431         /* Zero out HW ring memory */
1432         for (i = 0; i < txq->nb_tx_desc; i++) {
1433                 txq->tx_ring[i] = zeroed_desc;
1434         }
1435
1436         /* Initialize ring entries */
1437         prev = (uint16_t)(txq->nb_tx_desc - 1);
1438         for (i = 0; i < txq->nb_tx_desc; i++) {
1439                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1440
1441                 txd->wb.status = E1000_TXD_STAT_DD;
1442                 txe[i].mbuf = NULL;
1443                 txe[i].last_id = i;
1444                 txe[prev].next_id = i;
1445                 prev = i;
1446         }
1447
1448         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1449         /* 82575 specific, each tx queue will use 2 hw contexts */
1450         if (hw->mac.type == e1000_82575)
1451                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1452
1453         igb_reset_tx_queue_stat(txq);
1454 }
1455
1456 int
1457 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1458                          uint16_t queue_idx,
1459                          uint16_t nb_desc,
1460                          unsigned int socket_id,
1461                          const struct rte_eth_txconf *tx_conf)
1462 {
1463         const struct rte_memzone *tz;
1464         struct igb_tx_queue *txq;
1465         struct e1000_hw     *hw;
1466         uint32_t size;
1467
1468         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1469
1470         /*
1471          * Validate number of transmit descriptors.
1472          * It must not exceed hardware maximum, and must be multiple
1473          * of E1000_ALIGN.
1474          */
1475         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1476                         (nb_desc > E1000_MAX_RING_DESC) ||
1477                         (nb_desc < E1000_MIN_RING_DESC)) {
1478                 return -EINVAL;
1479         }
1480
1481         /*
1482          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1483          * driver.
1484          */
1485         if (tx_conf->tx_free_thresh != 0)
1486                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1487                              "used for the 1G driver.");
1488         if (tx_conf->tx_rs_thresh != 0)
1489                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1490                              "used for the 1G driver.");
1491         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1492                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1493                              "consider setting the TX WTHRESH value to 4, 8, "
1494                              "or 16.");
1495
1496         /* Free memory prior to re-allocation if needed */
1497         if (dev->data->tx_queues[queue_idx] != NULL) {
1498                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1499                 dev->data->tx_queues[queue_idx] = NULL;
1500         }
1501
1502         /* First allocate the tx queue data structure */
1503         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1504                                                         RTE_CACHE_LINE_SIZE);
1505         if (txq == NULL)
1506                 return -ENOMEM;
1507
1508         /*
1509          * Allocate TX ring hardware descriptors. A memzone large enough to
1510          * handle the maximum ring size is allocated in order to allow for
1511          * resizing in later calls to the queue setup function.
1512          */
1513         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1514         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1515                                       E1000_ALIGN, socket_id);
1516         if (tz == NULL) {
1517                 igb_tx_queue_release(txq);
1518                 return -ENOMEM;
1519         }
1520
1521         txq->nb_tx_desc = nb_desc;
1522         txq->pthresh = tx_conf->tx_thresh.pthresh;
1523         txq->hthresh = tx_conf->tx_thresh.hthresh;
1524         txq->wthresh = tx_conf->tx_thresh.wthresh;
1525         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1526                 txq->wthresh = 1;
1527         txq->queue_id = queue_idx;
1528         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1529                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1530         txq->port_id = dev->data->port_id;
1531
1532         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1533         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
1534
1535         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1536         /* Allocate software ring */
1537         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1538                                    sizeof(struct igb_tx_entry) * nb_desc,
1539                                    RTE_CACHE_LINE_SIZE);
1540         if (txq->sw_ring == NULL) {
1541                 igb_tx_queue_release(txq);
1542                 return -ENOMEM;
1543         }
1544         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1545                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1546
1547         igb_reset_tx_queue(txq, dev);
1548         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1549         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1550         dev->data->tx_queues[queue_idx] = txq;
1551
1552         return 0;
1553 }
1554
1555 static void
1556 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1557 {
1558         unsigned i;
1559
1560         if (rxq->sw_ring != NULL) {
1561                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1562                         if (rxq->sw_ring[i].mbuf != NULL) {
1563                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1564                                 rxq->sw_ring[i].mbuf = NULL;
1565                         }
1566                 }
1567         }
1568 }
1569
1570 static void
1571 igb_rx_queue_release(struct igb_rx_queue *rxq)
1572 {
1573         if (rxq != NULL) {
1574                 igb_rx_queue_release_mbufs(rxq);
1575                 rte_free(rxq->sw_ring);
1576                 rte_free(rxq);
1577         }
1578 }
1579
1580 void
1581 eth_igb_rx_queue_release(void *rxq)
1582 {
1583         igb_rx_queue_release(rxq);
1584 }
1585
1586 static void
1587 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1588 {
1589         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1590         unsigned i;
1591
1592         /* Zero out HW ring memory */
1593         for (i = 0; i < rxq->nb_rx_desc; i++) {
1594                 rxq->rx_ring[i] = zeroed_desc;
1595         }
1596
1597         rxq->rx_tail = 0;
1598         rxq->pkt_first_seg = NULL;
1599         rxq->pkt_last_seg = NULL;
1600 }
1601
1602 int
1603 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1604                          uint16_t queue_idx,
1605                          uint16_t nb_desc,
1606                          unsigned int socket_id,
1607                          const struct rte_eth_rxconf *rx_conf,
1608                          struct rte_mempool *mp)
1609 {
1610         const struct rte_memzone *rz;
1611         struct igb_rx_queue *rxq;
1612         struct e1000_hw     *hw;
1613         unsigned int size;
1614
1615         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1616
1617         /*
1618          * Validate number of receive descriptors.
1619          * It must not exceed hardware maximum, and must be multiple
1620          * of E1000_ALIGN.
1621          */
1622         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1623                         (nb_desc > E1000_MAX_RING_DESC) ||
1624                         (nb_desc < E1000_MIN_RING_DESC)) {
1625                 return -EINVAL;
1626         }
1627
1628         /* Free memory prior to re-allocation if needed */
1629         if (dev->data->rx_queues[queue_idx] != NULL) {
1630                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1631                 dev->data->rx_queues[queue_idx] = NULL;
1632         }
1633
1634         /* First allocate the RX queue data structure. */
1635         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1636                           RTE_CACHE_LINE_SIZE);
1637         if (rxq == NULL)
1638                 return -ENOMEM;
1639         rxq->mb_pool = mp;
1640         rxq->nb_rx_desc = nb_desc;
1641         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1642         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1643         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1644         if (rxq->wthresh > 0 &&
1645             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1646                 rxq->wthresh = 1;
1647         rxq->drop_en = rx_conf->rx_drop_en;
1648         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1649         rxq->queue_id = queue_idx;
1650         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1651                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1652         rxq->port_id = dev->data->port_id;
1653         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
1654                                   ETHER_CRC_LEN);
1655
1656         /*
1657          *  Allocate RX ring hardware descriptors. A memzone large enough to
1658          *  handle the maximum ring size is allocated in order to allow for
1659          *  resizing in later calls to the queue setup function.
1660          */
1661         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1662         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1663                                       E1000_ALIGN, socket_id);
1664         if (rz == NULL) {
1665                 igb_rx_queue_release(rxq);
1666                 return -ENOMEM;
1667         }
1668         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1669         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1670         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1671         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1672
1673         /* Allocate software ring. */
1674         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1675                                    sizeof(struct igb_rx_entry) * nb_desc,
1676                                    RTE_CACHE_LINE_SIZE);
1677         if (rxq->sw_ring == NULL) {
1678                 igb_rx_queue_release(rxq);
1679                 return -ENOMEM;
1680         }
1681         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1682                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1683
1684         dev->data->rx_queues[queue_idx] = rxq;
1685         igb_reset_rx_queue(rxq);
1686
1687         return 0;
1688 }
1689
1690 uint32_t
1691 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1692 {
1693 #define IGB_RXQ_SCAN_INTERVAL 4
1694         volatile union e1000_adv_rx_desc *rxdp;
1695         struct igb_rx_queue *rxq;
1696         uint32_t desc = 0;
1697
1698         rxq = dev->data->rx_queues[rx_queue_id];
1699         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1700
1701         while ((desc < rxq->nb_rx_desc) &&
1702                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1703                 desc += IGB_RXQ_SCAN_INTERVAL;
1704                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1705                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1706                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1707                                 desc - rxq->nb_rx_desc]);
1708         }
1709
1710         return desc;
1711 }
1712
1713 int
1714 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1715 {
1716         volatile union e1000_adv_rx_desc *rxdp;
1717         struct igb_rx_queue *rxq = rx_queue;
1718         uint32_t desc;
1719
1720         if (unlikely(offset >= rxq->nb_rx_desc))
1721                 return 0;
1722         desc = rxq->rx_tail + offset;
1723         if (desc >= rxq->nb_rx_desc)
1724                 desc -= rxq->nb_rx_desc;
1725
1726         rxdp = &rxq->rx_ring[desc];
1727         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1728 }
1729
1730 void
1731 igb_dev_clear_queues(struct rte_eth_dev *dev)
1732 {
1733         uint16_t i;
1734         struct igb_tx_queue *txq;
1735         struct igb_rx_queue *rxq;
1736
1737         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1738                 txq = dev->data->tx_queues[i];
1739                 if (txq != NULL) {
1740                         igb_tx_queue_release_mbufs(txq);
1741                         igb_reset_tx_queue(txq, dev);
1742                 }
1743         }
1744
1745         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1746                 rxq = dev->data->rx_queues[i];
1747                 if (rxq != NULL) {
1748                         igb_rx_queue_release_mbufs(rxq);
1749                         igb_reset_rx_queue(rxq);
1750                 }
1751         }
1752 }
1753
1754 void
1755 igb_dev_free_queues(struct rte_eth_dev *dev)
1756 {
1757         uint16_t i;
1758
1759         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1760                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1761                 dev->data->rx_queues[i] = NULL;
1762         }
1763         dev->data->nb_rx_queues = 0;
1764
1765         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1766                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1767                 dev->data->tx_queues[i] = NULL;
1768         }
1769         dev->data->nb_tx_queues = 0;
1770 }
1771
1772 /**
1773  * Receive Side Scaling (RSS).
1774  * See section 7.1.1.7 in the following document:
1775  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1776  *
1777  * Principles:
1778  * The source and destination IP addresses of the IP header and the source and
1779  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1780  * against a configurable random key to compute a 32-bit RSS hash result.
1781  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1782  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1783  * RSS output index which is used as the RX queue index where to store the
1784  * received packets.
1785  * The following output is supplied in the RX write-back descriptor:
1786  *     - 32-bit result of the Microsoft RSS hash function,
1787  *     - 4-bit RSS type field.
1788  */
1789
1790 /*
1791  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1792  * Used as the default key.
1793  */
1794 static uint8_t rss_intel_key[40] = {
1795         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1796         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1797         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1798         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1799         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1800 };
1801
1802 static void
1803 igb_rss_disable(struct rte_eth_dev *dev)
1804 {
1805         struct e1000_hw *hw;
1806         uint32_t mrqc;
1807
1808         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1809         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1810         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1811         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1812 }
1813
1814 static void
1815 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1816 {
1817         uint8_t  *hash_key;
1818         uint32_t rss_key;
1819         uint32_t mrqc;
1820         uint64_t rss_hf;
1821         uint16_t i;
1822
1823         hash_key = rss_conf->rss_key;
1824         if (hash_key != NULL) {
1825                 /* Fill in RSS hash key */
1826                 for (i = 0; i < 10; i++) {
1827                         rss_key  = hash_key[(i * 4)];
1828                         rss_key |= hash_key[(i * 4) + 1] << 8;
1829                         rss_key |= hash_key[(i * 4) + 2] << 16;
1830                         rss_key |= hash_key[(i * 4) + 3] << 24;
1831                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1832                 }
1833         }
1834
1835         /* Set configured hashing protocols in MRQC register */
1836         rss_hf = rss_conf->rss_hf;
1837         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1838         if (rss_hf & ETH_RSS_IPV4)
1839                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1840         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1841                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1842         if (rss_hf & ETH_RSS_IPV6)
1843                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1844         if (rss_hf & ETH_RSS_IPV6_EX)
1845                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1846         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1847                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1848         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1849                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1850         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1851                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1852         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1853                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1854         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1855                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1856         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1857 }
1858
1859 int
1860 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1861                         struct rte_eth_rss_conf *rss_conf)
1862 {
1863         struct e1000_hw *hw;
1864         uint32_t mrqc;
1865         uint64_t rss_hf;
1866
1867         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1868
1869         /*
1870          * Before changing anything, first check that the update RSS operation
1871          * does not attempt to disable RSS, if RSS was enabled at
1872          * initialization time, or does not attempt to enable RSS, if RSS was
1873          * disabled at initialization time.
1874          */
1875         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1876         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1877         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1878                 if (rss_hf != 0) /* Enable RSS */
1879                         return -(EINVAL);
1880                 return 0; /* Nothing to do */
1881         }
1882         /* RSS enabled */
1883         if (rss_hf == 0) /* Disable RSS */
1884                 return -(EINVAL);
1885         igb_hw_rss_hash_set(hw, rss_conf);
1886         return 0;
1887 }
1888
1889 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
1890                               struct rte_eth_rss_conf *rss_conf)
1891 {
1892         struct e1000_hw *hw;
1893         uint8_t *hash_key;
1894         uint32_t rss_key;
1895         uint32_t mrqc;
1896         uint64_t rss_hf;
1897         uint16_t i;
1898
1899         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1900         hash_key = rss_conf->rss_key;
1901         if (hash_key != NULL) {
1902                 /* Return RSS hash key */
1903                 for (i = 0; i < 10; i++) {
1904                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
1905                         hash_key[(i * 4)] = rss_key & 0x000000FF;
1906                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
1907                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
1908                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
1909                 }
1910         }
1911
1912         /* Get RSS functions configured in MRQC register */
1913         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1914         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
1915                 rss_conf->rss_hf = 0;
1916                 return 0;
1917         }
1918         rss_hf = 0;
1919         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
1920                 rss_hf |= ETH_RSS_IPV4;
1921         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
1922                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1923         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
1924                 rss_hf |= ETH_RSS_IPV6;
1925         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
1926                 rss_hf |= ETH_RSS_IPV6_EX;
1927         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
1928                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1929         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
1930                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
1931         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
1932                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1933         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
1934                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1935         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
1936                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
1937         rss_conf->rss_hf = rss_hf;
1938         return 0;
1939 }
1940
1941 static void
1942 igb_rss_configure(struct rte_eth_dev *dev)
1943 {
1944         struct rte_eth_rss_conf rss_conf;
1945         struct e1000_hw *hw;
1946         uint32_t shift;
1947         uint16_t i;
1948
1949         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1950
1951         /* Fill in redirection table. */
1952         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
1953         for (i = 0; i < 128; i++) {
1954                 union e1000_reta {
1955                         uint32_t dword;
1956                         uint8_t  bytes[4];
1957                 } reta;
1958                 uint8_t q_idx;
1959
1960                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
1961                                    i % dev->data->nb_rx_queues : 0);
1962                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
1963                 if ((i & 3) == 3)
1964                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
1965         }
1966
1967         /*
1968          * Configure the RSS key and the RSS protocols used to compute
1969          * the RSS hash of input packets.
1970          */
1971         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
1972         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
1973                 igb_rss_disable(dev);
1974                 return;
1975         }
1976         if (rss_conf.rss_key == NULL)
1977                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
1978         igb_hw_rss_hash_set(hw, &rss_conf);
1979 }
1980
1981 /*
1982  * Check if the mac type support VMDq or not.
1983  * Return 1 if it supports, otherwise, return 0.
1984  */
1985 static int
1986 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
1987 {
1988         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1989
1990         switch (hw->mac.type) {
1991         case e1000_82576:
1992         case e1000_82580:
1993         case e1000_i350:
1994                 return 1;
1995         case e1000_82540:
1996         case e1000_82541:
1997         case e1000_82542:
1998         case e1000_82543:
1999         case e1000_82544:
2000         case e1000_82545:
2001         case e1000_82546:
2002         case e1000_82547:
2003         case e1000_82571:
2004         case e1000_82572:
2005         case e1000_82573:
2006         case e1000_82574:
2007         case e1000_82583:
2008         case e1000_i210:
2009         case e1000_i211:
2010         default:
2011                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2012                 return 0;
2013         }
2014 }
2015
2016 static int
2017 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2018 {
2019         struct rte_eth_vmdq_rx_conf *cfg;
2020         struct e1000_hw *hw;
2021         uint32_t mrqc, vt_ctl, vmolr, rctl;
2022         int i;
2023
2024         PMD_INIT_FUNC_TRACE();
2025
2026         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2027         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2028
2029         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2030         if (igb_is_vmdq_supported(dev) == 0)
2031                 return -1;
2032
2033         igb_rss_disable(dev);
2034
2035         /* RCTL: eanble VLAN filter */
2036         rctl = E1000_READ_REG(hw, E1000_RCTL);
2037         rctl |= E1000_RCTL_VFE;
2038         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2039
2040         /* MRQC: enable vmdq */
2041         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2042         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2043         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2044
2045         /* VTCTL:  pool selection according to VLAN tag */
2046         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2047         if (cfg->enable_default_pool)
2048                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2049         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2050         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2051
2052         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2053                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2054                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2055                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2056                         E1000_VMOLR_MPME);
2057
2058                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2059                         vmolr |= E1000_VMOLR_AUPE;
2060                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2061                         vmolr |= E1000_VMOLR_ROMPE;
2062                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2063                         vmolr |= E1000_VMOLR_ROPE;
2064                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2065                         vmolr |= E1000_VMOLR_BAM;
2066                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2067                         vmolr |= E1000_VMOLR_MPME;
2068
2069                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2070         }
2071
2072         /*
2073          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2074          * Both 82576 and 82580 support it
2075          */
2076         if (hw->mac.type != e1000_i350) {
2077                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2078                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2079                         vmolr |= E1000_VMOLR_STRVLAN;
2080                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2081                 }
2082         }
2083
2084         /* VFTA - enable all vlan filters */
2085         for (i = 0; i < IGB_VFTA_SIZE; i++)
2086                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2087
2088         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2089         if (hw->mac.type != e1000_82580)
2090                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2091
2092         /*
2093          * RAH/RAL - allow pools to read specific mac addresses
2094          * In this case, all pools should be able to read from mac addr 0
2095          */
2096         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2097         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2098
2099         /* VLVF: set up filters for vlan tags as configured */
2100         for (i = 0; i < cfg->nb_pool_maps; i++) {
2101                 /* set vlan id in VF register and set the valid bit */
2102                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2103                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2104                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2105                         E1000_VLVF_POOLSEL_MASK)));
2106         }
2107
2108         E1000_WRITE_FLUSH(hw);
2109
2110         return 0;
2111 }
2112
2113
2114 /*********************************************************************
2115  *
2116  *  Enable receive unit.
2117  *
2118  **********************************************************************/
2119
2120 static int
2121 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2122 {
2123         struct igb_rx_entry *rxe = rxq->sw_ring;
2124         uint64_t dma_addr;
2125         unsigned i;
2126
2127         /* Initialize software ring entries. */
2128         for (i = 0; i < rxq->nb_rx_desc; i++) {
2129                 volatile union e1000_adv_rx_desc *rxd;
2130                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2131
2132                 if (mbuf == NULL) {
2133                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2134                                      "queue_id=%hu", rxq->queue_id);
2135                         return -ENOMEM;
2136                 }
2137                 dma_addr =
2138                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
2139                 rxd = &rxq->rx_ring[i];
2140                 rxd->read.hdr_addr = 0;
2141                 rxd->read.pkt_addr = dma_addr;
2142                 rxe[i].mbuf = mbuf;
2143         }
2144
2145         return 0;
2146 }
2147
2148 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2149 static int
2150 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2151 {
2152         struct e1000_hw *hw =
2153                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2154         uint32_t mrqc;
2155
2156         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2157                 /*
2158                  * SRIOV active scheme
2159                  * FIXME if support RSS together with VMDq & SRIOV
2160                  */
2161                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2162                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2163                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2164                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2165         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2166                 /*
2167                  * SRIOV inactive scheme
2168                  */
2169                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2170                         case ETH_MQ_RX_RSS:
2171                                 igb_rss_configure(dev);
2172                                 break;
2173                         case ETH_MQ_RX_VMDQ_ONLY:
2174                                 /*Configure general VMDQ only RX parameters*/
2175                                 igb_vmdq_rx_hw_configure(dev);
2176                                 break;
2177                         case ETH_MQ_RX_NONE:
2178                                 /* if mq_mode is none, disable rss mode.*/
2179                         default:
2180                                 igb_rss_disable(dev);
2181                                 break;
2182                 }
2183         }
2184
2185         return 0;
2186 }
2187
2188 int
2189 eth_igb_rx_init(struct rte_eth_dev *dev)
2190 {
2191         struct e1000_hw     *hw;
2192         struct igb_rx_queue *rxq;
2193         uint32_t rctl;
2194         uint32_t rxcsum;
2195         uint32_t srrctl;
2196         uint16_t buf_size;
2197         uint16_t rctl_bsize;
2198         uint16_t i;
2199         int ret;
2200
2201         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2202         srrctl = 0;
2203
2204         /*
2205          * Make sure receives are disabled while setting
2206          * up the descriptor ring.
2207          */
2208         rctl = E1000_READ_REG(hw, E1000_RCTL);
2209         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2210
2211         /*
2212          * Configure support of jumbo frames, if any.
2213          */
2214         if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
2215                 rctl |= E1000_RCTL_LPE;
2216
2217                 /*
2218                  * Set maximum packet length by default, and might be updated
2219                  * together with enabling/disabling dual VLAN.
2220                  */
2221                 E1000_WRITE_REG(hw, E1000_RLPML,
2222                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2223                                                 VLAN_TAG_SIZE);
2224         } else
2225                 rctl &= ~E1000_RCTL_LPE;
2226
2227         /* Configure and enable each RX queue. */
2228         rctl_bsize = 0;
2229         dev->rx_pkt_burst = eth_igb_recv_pkts;
2230         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2231                 uint64_t bus_addr;
2232                 uint32_t rxdctl;
2233
2234                 rxq = dev->data->rx_queues[i];
2235
2236                 /* Allocate buffers for descriptor rings and set up queue */
2237                 ret = igb_alloc_rx_queue_mbufs(rxq);
2238                 if (ret)
2239                         return ret;
2240
2241                 /*
2242                  * Reset crc_len in case it was changed after queue setup by a
2243                  *  call to configure
2244                  */
2245                 rxq->crc_len =
2246                         (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
2247                                                         0 : ETHER_CRC_LEN);
2248
2249                 bus_addr = rxq->rx_ring_phys_addr;
2250                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2251                                 rxq->nb_rx_desc *
2252                                 sizeof(union e1000_adv_rx_desc));
2253                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2254                                 (uint32_t)(bus_addr >> 32));
2255                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2256
2257                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2258
2259                 /*
2260                  * Configure RX buffer size.
2261                  */
2262                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2263                         RTE_PKTMBUF_HEADROOM);
2264                 if (buf_size >= 1024) {
2265                         /*
2266                          * Configure the BSIZEPACKET field of the SRRCTL
2267                          * register of the queue.
2268                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2269                          * If this field is equal to 0b, then RCTL.BSIZE
2270                          * determines the RX packet buffer size.
2271                          */
2272                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2273                                    E1000_SRRCTL_BSIZEPKT_MASK);
2274                         buf_size = (uint16_t) ((srrctl &
2275                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2276                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2277
2278                         /* It adds dual VLAN length for supporting dual VLAN */
2279                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2280                                                 2 * VLAN_TAG_SIZE) > buf_size){
2281                                 if (!dev->data->scattered_rx)
2282                                         PMD_INIT_LOG(DEBUG,
2283                                                      "forcing scatter mode");
2284                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2285                                 dev->data->scattered_rx = 1;
2286                         }
2287                 } else {
2288                         /*
2289                          * Use BSIZE field of the device RCTL register.
2290                          */
2291                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2292                                 rctl_bsize = buf_size;
2293                         if (!dev->data->scattered_rx)
2294                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2295                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2296                         dev->data->scattered_rx = 1;
2297                 }
2298
2299                 /* Set if packets are dropped when no descriptors available */
2300                 if (rxq->drop_en)
2301                         srrctl |= E1000_SRRCTL_DROP_EN;
2302
2303                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2304
2305                 /* Enable this RX queue. */
2306                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2307                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2308                 rxdctl &= 0xFFF00000;
2309                 rxdctl |= (rxq->pthresh & 0x1F);
2310                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2311                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2312                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2313         }
2314
2315         if (dev->data->dev_conf.rxmode.enable_scatter) {
2316                 if (!dev->data->scattered_rx)
2317                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2318                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2319                 dev->data->scattered_rx = 1;
2320         }
2321
2322         /*
2323          * Setup BSIZE field of RCTL register, if needed.
2324          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2325          * register, since the code above configures the SRRCTL register of
2326          * the RX queue in such a case.
2327          * All configurable sizes are:
2328          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2329          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2330          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2331          *  2048: rctl |= E1000_RCTL_SZ_2048;
2332          *  1024: rctl |= E1000_RCTL_SZ_1024;
2333          *   512: rctl |= E1000_RCTL_SZ_512;
2334          *   256: rctl |= E1000_RCTL_SZ_256;
2335          */
2336         if (rctl_bsize > 0) {
2337                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2338                         rctl |= E1000_RCTL_SZ_512;
2339                 else /* 256 <= buf_size < 512 - use 256 */
2340                         rctl |= E1000_RCTL_SZ_256;
2341         }
2342
2343         /*
2344          * Configure RSS if device configured with multiple RX queues.
2345          */
2346         igb_dev_mq_rx_configure(dev);
2347
2348         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2349         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2350
2351         /*
2352          * Setup the Checksum Register.
2353          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2354          */
2355         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2356         rxcsum |= E1000_RXCSUM_PCSD;
2357
2358         /* Enable both L3/L4 rx checksum offload */
2359         if (dev->data->dev_conf.rxmode.hw_ip_checksum)
2360                 rxcsum |= (E1000_RXCSUM_IPOFL  | E1000_RXCSUM_TUOFL);
2361         else
2362                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2363         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2364
2365         /* Setup the Receive Control Register. */
2366         if (dev->data->dev_conf.rxmode.hw_strip_crc) {
2367                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2368
2369                 /* set STRCRC bit in all queues */
2370                 if (hw->mac.type == e1000_i350 ||
2371                     hw->mac.type == e1000_i210 ||
2372                     hw->mac.type == e1000_i211 ||
2373                     hw->mac.type == e1000_i354) {
2374                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2375                                 rxq = dev->data->rx_queues[i];
2376                                 uint32_t dvmolr = E1000_READ_REG(hw,
2377                                         E1000_DVMOLR(rxq->reg_idx));
2378                                 dvmolr |= E1000_DVMOLR_STRCRC;
2379                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2380                         }
2381                 }
2382         } else {
2383                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2384
2385                 /* clear STRCRC bit in all queues */
2386                 if (hw->mac.type == e1000_i350 ||
2387                     hw->mac.type == e1000_i210 ||
2388                     hw->mac.type == e1000_i211 ||
2389                     hw->mac.type == e1000_i354) {
2390                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2391                                 rxq = dev->data->rx_queues[i];
2392                                 uint32_t dvmolr = E1000_READ_REG(hw,
2393                                         E1000_DVMOLR(rxq->reg_idx));
2394                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2395                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2396                         }
2397                 }
2398         }
2399
2400         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2401         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2402                 E1000_RCTL_RDMTS_HALF |
2403                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2404
2405         /* Make sure VLAN Filters are off. */
2406         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2407                 rctl &= ~E1000_RCTL_VFE;
2408         /* Don't store bad packets. */
2409         rctl &= ~E1000_RCTL_SBP;
2410
2411         /* Enable Receives. */
2412         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2413
2414         /*
2415          * Setup the HW Rx Head and Tail Descriptor Pointers.
2416          * This needs to be done after enable.
2417          */
2418         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2419                 rxq = dev->data->rx_queues[i];
2420                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2421                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2422         }
2423
2424         return 0;
2425 }
2426
2427 /*********************************************************************
2428  *
2429  *  Enable transmit unit.
2430  *
2431  **********************************************************************/
2432 void
2433 eth_igb_tx_init(struct rte_eth_dev *dev)
2434 {
2435         struct e1000_hw     *hw;
2436         struct igb_tx_queue *txq;
2437         uint32_t tctl;
2438         uint32_t txdctl;
2439         uint16_t i;
2440
2441         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2442
2443         /* Setup the Base and Length of the Tx Descriptor Rings. */
2444         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2445                 uint64_t bus_addr;
2446                 txq = dev->data->tx_queues[i];
2447                 bus_addr = txq->tx_ring_phys_addr;
2448
2449                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2450                                 txq->nb_tx_desc *
2451                                 sizeof(union e1000_adv_tx_desc));
2452                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2453                                 (uint32_t)(bus_addr >> 32));
2454                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2455
2456                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2457                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2458                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2459
2460                 /* Setup Transmit threshold registers. */
2461                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2462                 txdctl |= txq->pthresh & 0x1F;
2463                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2464                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2465                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2466                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2467         }
2468
2469         /* Program the Transmit Control Register. */
2470         tctl = E1000_READ_REG(hw, E1000_TCTL);
2471         tctl &= ~E1000_TCTL_CT;
2472         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2473                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2474
2475         e1000_config_collision_dist(hw);
2476
2477         /* This write will effectively turn on the transmit unit. */
2478         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2479 }
2480
2481 /*********************************************************************
2482  *
2483  *  Enable VF receive unit.
2484  *
2485  **********************************************************************/
2486 int
2487 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2488 {
2489         struct e1000_hw     *hw;
2490         struct igb_rx_queue *rxq;
2491         uint32_t srrctl;
2492         uint16_t buf_size;
2493         uint16_t rctl_bsize;
2494         uint16_t i;
2495         int ret;
2496
2497         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2498
2499         /* setup MTU */
2500         e1000_rlpml_set_vf(hw,
2501                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2502                 VLAN_TAG_SIZE));
2503
2504         /* Configure and enable each RX queue. */
2505         rctl_bsize = 0;
2506         dev->rx_pkt_burst = eth_igb_recv_pkts;
2507         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2508                 uint64_t bus_addr;
2509                 uint32_t rxdctl;
2510
2511                 rxq = dev->data->rx_queues[i];
2512
2513                 /* Allocate buffers for descriptor rings and set up queue */
2514                 ret = igb_alloc_rx_queue_mbufs(rxq);
2515                 if (ret)
2516                         return ret;
2517
2518                 bus_addr = rxq->rx_ring_phys_addr;
2519                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2520                                 rxq->nb_rx_desc *
2521                                 sizeof(union e1000_adv_rx_desc));
2522                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2523                                 (uint32_t)(bus_addr >> 32));
2524                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2525
2526                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2527
2528                 /*
2529                  * Configure RX buffer size.
2530                  */
2531                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2532                         RTE_PKTMBUF_HEADROOM);
2533                 if (buf_size >= 1024) {
2534                         /*
2535                          * Configure the BSIZEPACKET field of the SRRCTL
2536                          * register of the queue.
2537                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2538                          * If this field is equal to 0b, then RCTL.BSIZE
2539                          * determines the RX packet buffer size.
2540                          */
2541                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2542                                    E1000_SRRCTL_BSIZEPKT_MASK);
2543                         buf_size = (uint16_t) ((srrctl &
2544                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2545                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2546
2547                         /* It adds dual VLAN length for supporting dual VLAN */
2548                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2549                                                 2 * VLAN_TAG_SIZE) > buf_size){
2550                                 if (!dev->data->scattered_rx)
2551                                         PMD_INIT_LOG(DEBUG,
2552                                                      "forcing scatter mode");
2553                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2554                                 dev->data->scattered_rx = 1;
2555                         }
2556                 } else {
2557                         /*
2558                          * Use BSIZE field of the device RCTL register.
2559                          */
2560                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2561                                 rctl_bsize = buf_size;
2562                         if (!dev->data->scattered_rx)
2563                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2564                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2565                         dev->data->scattered_rx = 1;
2566                 }
2567
2568                 /* Set if packets are dropped when no descriptors available */
2569                 if (rxq->drop_en)
2570                         srrctl |= E1000_SRRCTL_DROP_EN;
2571
2572                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2573
2574                 /* Enable this RX queue. */
2575                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2576                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2577                 rxdctl &= 0xFFF00000;
2578                 rxdctl |= (rxq->pthresh & 0x1F);
2579                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2580                 if (hw->mac.type == e1000_vfadapt) {
2581                         /*
2582                          * Workaround of 82576 VF Erratum
2583                          * force set WTHRESH to 1
2584                          * to avoid Write-Back not triggered sometimes
2585                          */
2586                         rxdctl |= 0x10000;
2587                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2588                 }
2589                 else
2590                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2591                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2592         }
2593
2594         if (dev->data->dev_conf.rxmode.enable_scatter) {
2595                 if (!dev->data->scattered_rx)
2596                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2597                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2598                 dev->data->scattered_rx = 1;
2599         }
2600
2601         /*
2602          * Setup the HW Rx Head and Tail Descriptor Pointers.
2603          * This needs to be done after enable.
2604          */
2605         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2606                 rxq = dev->data->rx_queues[i];
2607                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2608                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2609         }
2610
2611         return 0;
2612 }
2613
2614 /*********************************************************************
2615  *
2616  *  Enable VF transmit unit.
2617  *
2618  **********************************************************************/
2619 void
2620 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2621 {
2622         struct e1000_hw     *hw;
2623         struct igb_tx_queue *txq;
2624         uint32_t txdctl;
2625         uint16_t i;
2626
2627         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2628
2629         /* Setup the Base and Length of the Tx Descriptor Rings. */
2630         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2631                 uint64_t bus_addr;
2632
2633                 txq = dev->data->tx_queues[i];
2634                 bus_addr = txq->tx_ring_phys_addr;
2635                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2636                                 txq->nb_tx_desc *
2637                                 sizeof(union e1000_adv_tx_desc));
2638                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2639                                 (uint32_t)(bus_addr >> 32));
2640                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2641
2642                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2643                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2644                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2645
2646                 /* Setup Transmit threshold registers. */
2647                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2648                 txdctl |= txq->pthresh & 0x1F;
2649                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2650                 if (hw->mac.type == e1000_82576) {
2651                         /*
2652                          * Workaround of 82576 VF Erratum
2653                          * force set WTHRESH to 1
2654                          * to avoid Write-Back not triggered sometimes
2655                          */
2656                         txdctl |= 0x10000;
2657                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2658                 }
2659                 else
2660                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2661                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2662                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2663         }
2664
2665 }
2666
2667 void
2668 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2669         struct rte_eth_rxq_info *qinfo)
2670 {
2671         struct igb_rx_queue *rxq;
2672
2673         rxq = dev->data->rx_queues[queue_id];
2674
2675         qinfo->mp = rxq->mb_pool;
2676         qinfo->scattered_rx = dev->data->scattered_rx;
2677         qinfo->nb_desc = rxq->nb_rx_desc;
2678
2679         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2680         qinfo->conf.rx_drop_en = rxq->drop_en;
2681 }
2682
2683 void
2684 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2685         struct rte_eth_txq_info *qinfo)
2686 {
2687         struct igb_tx_queue *txq;
2688
2689         txq = dev->data->tx_queues[queue_id];
2690
2691         qinfo->nb_desc = txq->nb_tx_desc;
2692
2693         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2694         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2695         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2696 }