igb: replace some offload flags with packet type
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <errno.h>
40 #include <stdint.h>
41 #include <stdarg.h>
42 #include <inttypes.h>
43
44 #include <rte_interrupts.h>
45 #include <rte_byteorder.h>
46 #include <rte_common.h>
47 #include <rte_log.h>
48 #include <rte_debug.h>
49 #include <rte_pci.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_memzone.h>
53 #include <rte_launch.h>
54 #include <rte_eal.h>
55 #include <rte_per_lcore.h>
56 #include <rte_lcore.h>
57 #include <rte_atomic.h>
58 #include <rte_branch_prediction.h>
59 #include <rte_ring.h>
60 #include <rte_mempool.h>
61 #include <rte_malloc.h>
62 #include <rte_mbuf.h>
63 #include <rte_ether.h>
64 #include <rte_ethdev.h>
65 #include <rte_prefetch.h>
66 #include <rte_udp.h>
67 #include <rte_tcp.h>
68 #include <rte_sctp.h>
69 #include <rte_string_fns.h>
70
71 #include "e1000_logs.h"
72 #include "base/e1000_api.h"
73 #include "e1000_ethdev.h"
74
75 /* Bit Mask to indicate what bits required for building TX context */
76 #define IGB_TX_OFFLOAD_MASK (                    \
77                 PKT_TX_VLAN_PKT |                \
78                 PKT_TX_IP_CKSUM |                \
79                 PKT_TX_L4_MASK)
80
81 static inline struct rte_mbuf *
82 rte_rxmbuf_alloc(struct rte_mempool *mp)
83 {
84         struct rte_mbuf *m;
85
86         m = __rte_mbuf_raw_alloc(mp);
87         __rte_mbuf_sanity_check_raw(m, 0);
88         return (m);
89 }
90
91 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
92         (uint64_t) ((mb)->buf_physaddr + (mb)->data_off)
93
94 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
95         (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
96
97 /**
98  * Structure associated with each descriptor of the RX ring of a RX queue.
99  */
100 struct igb_rx_entry {
101         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
102 };
103
104 /**
105  * Structure associated with each descriptor of the TX ring of a TX queue.
106  */
107 struct igb_tx_entry {
108         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
109         uint16_t next_id; /**< Index of next descriptor in ring. */
110         uint16_t last_id; /**< Index of last scattered descriptor. */
111 };
112
113 /**
114  * Structure associated with each RX queue.
115  */
116 struct igb_rx_queue {
117         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
118         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
119         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
120         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
121         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
122         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
123         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
124         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
125         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
126         uint16_t            rx_tail;    /**< current value of RDT register. */
127         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
128         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
129         uint16_t            queue_id;   /**< RX queue index. */
130         uint16_t            reg_idx;    /**< RX queue register index. */
131         uint8_t             port_id;    /**< Device port identifier. */
132         uint8_t             pthresh;    /**< Prefetch threshold register. */
133         uint8_t             hthresh;    /**< Host threshold register. */
134         uint8_t             wthresh;    /**< Write-back threshold register. */
135         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
136         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
137 };
138
139 /**
140  * Hardware context number
141  */
142 enum igb_advctx_num {
143         IGB_CTX_0    = 0, /**< CTX0    */
144         IGB_CTX_1    = 1, /**< CTX1    */
145         IGB_CTX_NUM  = 2, /**< CTX_NUM */
146 };
147
148 /** Offload features */
149 union igb_vlan_macip {
150         uint32_t data;
151         struct {
152                 uint16_t l2_l3_len; /**< 7bit L2 and 9b L3 lengths combined */
153                 uint16_t vlan_tci;
154                 /**< VLAN Tag Control Identifier (CPU order). */
155         } f;
156 };
157
158 /*
159  * Compare mask for vlan_macip_len.data,
160  * should be in sync with igb_vlan_macip.f layout.
161  * */
162 #define TX_VLAN_CMP_MASK        0xFFFF0000  /**< VLAN length - 16-bits. */
163 #define TX_MAC_LEN_CMP_MASK     0x0000FE00  /**< MAC length - 7-bits. */
164 #define TX_IP_LEN_CMP_MASK      0x000001FF  /**< IP  length - 9-bits. */
165 /** MAC+IP  length. */
166 #define TX_MACIP_LEN_CMP_MASK   (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
167
168 /**
169  * Strucutre to check if new context need be built
170  */
171 struct igb_advctx_info {
172         uint64_t flags;           /**< ol_flags related to context build. */
173         uint32_t cmp_mask;        /**< compare mask for vlan_macip_lens */
174         union igb_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */
175 };
176
177 /**
178  * Structure associated with each TX queue.
179  */
180 struct igb_tx_queue {
181         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
182         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
183         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
184         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
185         uint32_t               txd_type;      /**< Device-specific TXD type */
186         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
187         uint16_t               tx_tail; /**< Current value of TDT register. */
188         uint16_t               tx_head;
189         /**< Index of first used TX descriptor. */
190         uint16_t               queue_id; /**< TX queue index. */
191         uint16_t               reg_idx;  /**< TX queue register index. */
192         uint8_t                port_id;  /**< Device port identifier. */
193         uint8_t                pthresh;  /**< Prefetch threshold register. */
194         uint8_t                hthresh;  /**< Host threshold register. */
195         uint8_t                wthresh;  /**< Write-back threshold register. */
196         uint32_t               ctx_curr;
197         /**< Current used hardware descriptor. */
198         uint32_t               ctx_start;
199         /**< Start context position for transmit queue. */
200         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
201         /**< Hardware context history.*/
202 };
203
204 #if 1
205 #define RTE_PMD_USE_PREFETCH
206 #endif
207
208 #ifdef RTE_PMD_USE_PREFETCH
209 #define rte_igb_prefetch(p)     rte_prefetch0(p)
210 #else
211 #define rte_igb_prefetch(p)     do {} while(0)
212 #endif
213
214 #ifdef RTE_PMD_PACKET_PREFETCH
215 #define rte_packet_prefetch(p) rte_prefetch1(p)
216 #else
217 #define rte_packet_prefetch(p)  do {} while(0)
218 #endif
219
220 /*
221  * Macro for VMDq feature for 1 GbE NIC.
222  */
223 #define E1000_VMOLR_SIZE                        (8)
224
225 /*********************************************************************
226  *
227  *  TX function
228  *
229  **********************************************************************/
230
231 /*
232  * Advanced context descriptor are almost same between igb/ixgbe
233  * This is a separate function, looking for optimization opportunity here
234  * Rework required to go with the pre-defined values.
235  */
236
237 static inline void
238 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
239                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
240                 uint64_t ol_flags, uint32_t vlan_macip_lens)
241 {
242         uint32_t type_tucmd_mlhl;
243         uint32_t mss_l4len_idx;
244         uint32_t ctx_idx, ctx_curr;
245         uint32_t cmp_mask;
246
247         ctx_curr = txq->ctx_curr;
248         ctx_idx = ctx_curr + txq->ctx_start;
249
250         cmp_mask = 0;
251         type_tucmd_mlhl = 0;
252
253         if (ol_flags & PKT_TX_VLAN_PKT) {
254                 cmp_mask |= TX_VLAN_CMP_MASK;
255         }
256
257         if (ol_flags & PKT_TX_IP_CKSUM) {
258                 type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
259                 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
260         }
261
262         /* Specify which HW CTX to upload. */
263         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
264         switch (ol_flags & PKT_TX_L4_MASK) {
265         case PKT_TX_UDP_CKSUM:
266                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
267                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
268                 mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
269                 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
270                 break;
271         case PKT_TX_TCP_CKSUM:
272                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
273                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
274                 mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
275                 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
276                 break;
277         case PKT_TX_SCTP_CKSUM:
278                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
279                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
280                 mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
281                 cmp_mask |= TX_MACIP_LEN_CMP_MASK;
282                 break;
283         default:
284                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
285                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
286                 break;
287         }
288
289         txq->ctx_cache[ctx_curr].flags           = ol_flags;
290         txq->ctx_cache[ctx_curr].cmp_mask        = cmp_mask;
291         txq->ctx_cache[ctx_curr].vlan_macip_lens.data =
292                 vlan_macip_lens & cmp_mask;
293
294         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
295         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
296         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
297         ctx_txd->seqnum_seed     = 0;
298 }
299
300 /*
301  * Check which hardware context can be used. Use the existing match
302  * or create a new context descriptor.
303  */
304 static inline uint32_t
305 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
306                 uint32_t vlan_macip_lens)
307 {
308         /* If match with the current context */
309         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
310                 (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
311                 (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
312                         return txq->ctx_curr;
313         }
314
315         /* If match with the second context */
316         txq->ctx_curr ^= 1;
317         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
318                 (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data ==
319                 (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) {
320                         return txq->ctx_curr;
321         }
322
323         /* Mismatch, use the previous context */
324         return (IGB_CTX_NUM);
325 }
326
327 static inline uint32_t
328 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
329 {
330         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
331         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
332         uint32_t tmp;
333
334         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
335         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
336         return tmp;
337 }
338
339 static inline uint32_t
340 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
341 {
342         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
343         return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
344 }
345
346 uint16_t
347 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
348                uint16_t nb_pkts)
349 {
350         struct igb_tx_queue *txq;
351         struct igb_tx_entry *sw_ring;
352         struct igb_tx_entry *txe, *txn;
353         volatile union e1000_adv_tx_desc *txr;
354         volatile union e1000_adv_tx_desc *txd;
355         struct rte_mbuf     *tx_pkt;
356         struct rte_mbuf     *m_seg;
357         union igb_vlan_macip vlan_macip_lens;
358         union {
359                 uint16_t u16;
360                 struct {
361                         uint16_t l3_len:9;
362                         uint16_t l2_len:7;
363                 };
364         } l2_l3_len;
365         uint64_t buf_dma_addr;
366         uint32_t olinfo_status;
367         uint32_t cmd_type_len;
368         uint32_t pkt_len;
369         uint16_t slen;
370         uint64_t ol_flags;
371         uint16_t tx_end;
372         uint16_t tx_id;
373         uint16_t tx_last;
374         uint16_t nb_tx;
375         uint64_t tx_ol_req;
376         uint32_t new_ctx = 0;
377         uint32_t ctx = 0;
378
379         txq = tx_queue;
380         sw_ring = txq->sw_ring;
381         txr     = txq->tx_ring;
382         tx_id   = txq->tx_tail;
383         txe = &sw_ring[tx_id];
384
385         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
386                 tx_pkt = *tx_pkts++;
387                 pkt_len = tx_pkt->pkt_len;
388
389                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
390
391                 /*
392                  * The number of descriptors that must be allocated for a
393                  * packet is the number of segments of that packet, plus 1
394                  * Context Descriptor for the VLAN Tag Identifier, if any.
395                  * Determine the last TX descriptor to allocate in the TX ring
396                  * for the packet, starting from the current position (tx_id)
397                  * in the ring.
398                  */
399                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
400
401                 ol_flags = tx_pkt->ol_flags;
402                 l2_l3_len.l2_len = tx_pkt->l2_len;
403                 l2_l3_len.l3_len = tx_pkt->l3_len;
404                 vlan_macip_lens.f.vlan_tci = tx_pkt->vlan_tci;
405                 vlan_macip_lens.f.l2_l3_len = l2_l3_len.u16;
406                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
407
408                 /* If a Context Descriptor need be built . */
409                 if (tx_ol_req) {
410                         ctx = what_advctx_update(txq, tx_ol_req,
411                                 vlan_macip_lens.data);
412                         /* Only allocate context descriptor if required*/
413                         new_ctx = (ctx == IGB_CTX_NUM);
414                         ctx = txq->ctx_curr;
415                         tx_last = (uint16_t) (tx_last + new_ctx);
416                 }
417                 if (tx_last >= txq->nb_tx_desc)
418                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
419
420                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
421                            " tx_first=%u tx_last=%u",
422                            (unsigned) txq->port_id,
423                            (unsigned) txq->queue_id,
424                            (unsigned) pkt_len,
425                            (unsigned) tx_id,
426                            (unsigned) tx_last);
427
428                 /*
429                  * Check if there are enough free descriptors in the TX ring
430                  * to transmit the next packet.
431                  * This operation is based on the two following rules:
432                  *
433                  *   1- Only check that the last needed TX descriptor can be
434                  *      allocated (by construction, if that descriptor is free,
435                  *      all intermediate ones are also free).
436                  *
437                  *      For this purpose, the index of the last TX descriptor
438                  *      used for a packet (the "last descriptor" of a packet)
439                  *      is recorded in the TX entries (the last one included)
440                  *      that are associated with all TX descriptors allocated
441                  *      for that packet.
442                  *
443                  *   2- Avoid to allocate the last free TX descriptor of the
444                  *      ring, in order to never set the TDT register with the
445                  *      same value stored in parallel by the NIC in the TDH
446                  *      register, which makes the TX engine of the NIC enter
447                  *      in a deadlock situation.
448                  *
449                  *      By extension, avoid to allocate a free descriptor that
450                  *      belongs to the last set of free descriptors allocated
451                  *      to the same packet previously transmitted.
452                  */
453
454                 /*
455                  * The "last descriptor" of the previously sent packet, if any,
456                  * which used the last descriptor to allocate.
457                  */
458                 tx_end = sw_ring[tx_last].last_id;
459
460                 /*
461                  * The next descriptor following that "last descriptor" in the
462                  * ring.
463                  */
464                 tx_end = sw_ring[tx_end].next_id;
465
466                 /*
467                  * The "last descriptor" associated with that next descriptor.
468                  */
469                 tx_end = sw_ring[tx_end].last_id;
470
471                 /*
472                  * Check that this descriptor is free.
473                  */
474                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
475                         if (nb_tx == 0)
476                                 return (0);
477                         goto end_of_tx;
478                 }
479
480                 /*
481                  * Set common flags of all TX Data Descriptors.
482                  *
483                  * The following bits must be set in all Data Descriptors:
484                  *   - E1000_ADVTXD_DTYP_DATA
485                  *   - E1000_ADVTXD_DCMD_DEXT
486                  *
487                  * The following bits must be set in the first Data Descriptor
488                  * and are ignored in the other ones:
489                  *   - E1000_ADVTXD_DCMD_IFCS
490                  *   - E1000_ADVTXD_MAC_1588
491                  *   - E1000_ADVTXD_DCMD_VLE
492                  *
493                  * The following bits must only be set in the last Data
494                  * Descriptor:
495                  *   - E1000_TXD_CMD_EOP
496                  *
497                  * The following bits can be set in any Data Descriptor, but
498                  * are only set in the last Data Descriptor:
499                  *   - E1000_TXD_CMD_RS
500                  */
501                 cmd_type_len = txq->txd_type |
502                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
503                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
504 #if defined(RTE_LIBRTE_IEEE1588)
505                 if (ol_flags & PKT_TX_IEEE1588_TMST)
506                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
507 #endif
508                 if (tx_ol_req) {
509                         /* Setup TX Advanced context descriptor if required */
510                         if (new_ctx) {
511                                 volatile struct e1000_adv_tx_context_desc *
512                                     ctx_txd;
513
514                                 ctx_txd = (volatile struct
515                                     e1000_adv_tx_context_desc *)
516                                     &txr[tx_id];
517
518                                 txn = &sw_ring[txe->next_id];
519                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
520
521                                 if (txe->mbuf != NULL) {
522                                         rte_pktmbuf_free_seg(txe->mbuf);
523                                         txe->mbuf = NULL;
524                                 }
525
526                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
527                                     vlan_macip_lens.data);
528
529                                 txe->last_id = tx_last;
530                                 tx_id = txe->next_id;
531                                 txe = txn;
532                         }
533
534                         /* Setup the TX Advanced Data Descriptor */
535                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(ol_flags);
536                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
537                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
538                 }
539
540                 m_seg = tx_pkt;
541                 do {
542                         txn = &sw_ring[txe->next_id];
543                         txd = &txr[tx_id];
544
545                         if (txe->mbuf != NULL)
546                                 rte_pktmbuf_free_seg(txe->mbuf);
547                         txe->mbuf = m_seg;
548
549                         /*
550                          * Set up transmit descriptor.
551                          */
552                         slen = (uint16_t) m_seg->data_len;
553                         buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
554                         txd->read.buffer_addr =
555                                 rte_cpu_to_le_64(buf_dma_addr);
556                         txd->read.cmd_type_len =
557                                 rte_cpu_to_le_32(cmd_type_len | slen);
558                         txd->read.olinfo_status =
559                                 rte_cpu_to_le_32(olinfo_status);
560                         txe->last_id = tx_last;
561                         tx_id = txe->next_id;
562                         txe = txn;
563                         m_seg = m_seg->next;
564                 } while (m_seg != NULL);
565
566                 /*
567                  * The last packet data descriptor needs End Of Packet (EOP)
568                  * and Report Status (RS).
569                  */
570                 txd->read.cmd_type_len |=
571                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
572         }
573  end_of_tx:
574         rte_wmb();
575
576         /*
577          * Set the Transmit Descriptor Tail (TDT).
578          */
579         E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id);
580         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
581                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
582                    (unsigned) tx_id, (unsigned) nb_tx);
583         txq->tx_tail = tx_id;
584
585         return (nb_tx);
586 }
587
588 /*********************************************************************
589  *
590  *  RX functions
591  *
592  **********************************************************************/
593 #ifdef RTE_NEXT_ABI
594 #define IGB_PACKET_TYPE_IPV4              0X01
595 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
596 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
597 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
598 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
599 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
600 #define IGB_PACKET_TYPE_IPV6              0X04
601 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
602 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
603 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
604 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
605 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
606 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
607 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
608 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
609 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
610 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
611 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
612 #define IGB_PACKET_TYPE_MAX               0X80
613 #define IGB_PACKET_TYPE_MASK              0X7F
614 #define IGB_PACKET_TYPE_SHIFT             0X04
615 static inline uint32_t
616 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
617 {
618         static const uint32_t
619                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
620                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
621                         RTE_PTYPE_L3_IPV4,
622                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
623                         RTE_PTYPE_L3_IPV4_EXT,
624                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
625                         RTE_PTYPE_L3_IPV6,
626                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
627                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
628                         RTE_PTYPE_INNER_L3_IPV6,
629                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
630                         RTE_PTYPE_L3_IPV6_EXT,
631                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
632                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
633                         RTE_PTYPE_INNER_L3_IPV6_EXT,
634                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
635                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
636                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
637                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
638                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
639                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
640                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
641                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
642                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
643                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
644                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
645                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
646                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
647                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
648                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
649                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
650                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
651                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
652                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
653                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
654                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
655                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
656                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
657                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
658                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
659                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
660                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
661                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
662         };
663         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
664                 return RTE_PTYPE_UNKNOWN;
665
666         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
667
668         return ptype_table[pkt_info];
669 }
670
671 static inline uint64_t
672 rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
673 {
674         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
675
676 #if defined(RTE_LIBRTE_IEEE1588)
677         static uint32_t ip_pkt_etqf_map[8] = {
678                 0, 0, 0, PKT_RX_IEEE1588_PTP,
679                 0, 0, 0, 0,
680         };
681
682         pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
683 #endif
684
685         return pkt_flags;
686 }
687 #else /* RTE_NEXT_ABI */
688 static inline uint64_t
689 rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs)
690 {
691         uint64_t pkt_flags;
692
693         static uint64_t ip_pkt_types_map[16] = {
694                 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT,
695                 PKT_RX_IPV6_HDR, 0, 0, 0,
696                 PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
697                 PKT_RX_IPV6_HDR_EXT, 0, 0, 0,
698         };
699
700 #if defined(RTE_LIBRTE_IEEE1588)
701         static uint32_t ip_pkt_etqf_map[8] = {
702                 0, 0, 0, PKT_RX_IEEE1588_PTP,
703                 0, 0, 0, 0,
704         };
705
706         pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ?
707                                 ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] :
708                                 ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
709 #else
710         pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 :
711                                 ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F];
712 #endif
713         return pkt_flags | (((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH);
714 }
715 #endif /* RTE_NEXT_ABI */
716
717 static inline uint64_t
718 rx_desc_status_to_pkt_flags(uint32_t rx_status)
719 {
720         uint64_t pkt_flags;
721
722         /* Check if VLAN present */
723         pkt_flags = (rx_status & E1000_RXD_STAT_VP) ?  PKT_RX_VLAN_PKT : 0;
724
725 #if defined(RTE_LIBRTE_IEEE1588)
726         if (rx_status & E1000_RXD_STAT_TMST)
727                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
728 #endif
729         return pkt_flags;
730 }
731
732 static inline uint64_t
733 rx_desc_error_to_pkt_flags(uint32_t rx_status)
734 {
735         /*
736          * Bit 30: IPE, IPv4 checksum error
737          * Bit 29: L4I, L4I integrity error
738          */
739
740         static uint64_t error_to_pkt_flags_map[4] = {
741                 0,  PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD,
742                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
743         };
744         return error_to_pkt_flags_map[(rx_status >>
745                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
746 }
747
748 uint16_t
749 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
750                uint16_t nb_pkts)
751 {
752         struct igb_rx_queue *rxq;
753         volatile union e1000_adv_rx_desc *rx_ring;
754         volatile union e1000_adv_rx_desc *rxdp;
755         struct igb_rx_entry *sw_ring;
756         struct igb_rx_entry *rxe;
757         struct rte_mbuf *rxm;
758         struct rte_mbuf *nmb;
759         union e1000_adv_rx_desc rxd;
760         uint64_t dma_addr;
761         uint32_t staterr;
762         uint32_t hlen_type_rss;
763         uint16_t pkt_len;
764         uint16_t rx_id;
765         uint16_t nb_rx;
766         uint16_t nb_hold;
767         uint64_t pkt_flags;
768
769         nb_rx = 0;
770         nb_hold = 0;
771         rxq = rx_queue;
772         rx_id = rxq->rx_tail;
773         rx_ring = rxq->rx_ring;
774         sw_ring = rxq->sw_ring;
775         while (nb_rx < nb_pkts) {
776                 /*
777                  * The order of operations here is important as the DD status
778                  * bit must not be read after any other descriptor fields.
779                  * rx_ring and rxdp are pointing to volatile data so the order
780                  * of accesses cannot be reordered by the compiler. If they were
781                  * not volatile, they could be reordered which could lead to
782                  * using invalid descriptor fields when read from rxd.
783                  */
784                 rxdp = &rx_ring[rx_id];
785                 staterr = rxdp->wb.upper.status_error;
786                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
787                         break;
788                 rxd = *rxdp;
789
790                 /*
791                  * End of packet.
792                  *
793                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
794                  * likely to be invalid and to be dropped by the various
795                  * validation checks performed by the network stack.
796                  *
797                  * Allocate a new mbuf to replenish the RX ring descriptor.
798                  * If the allocation fails:
799                  *    - arrange for that RX descriptor to be the first one
800                  *      being parsed the next time the receive function is
801                  *      invoked [on the same queue].
802                  *
803                  *    - Stop parsing the RX ring and return immediately.
804                  *
805                  * This policy do not drop the packet received in the RX
806                  * descriptor for which the allocation of a new mbuf failed.
807                  * Thus, it allows that packet to be later retrieved if
808                  * mbuf have been freed in the mean time.
809                  * As a side effect, holding RX descriptors instead of
810                  * systematically giving them back to the NIC may lead to
811                  * RX ring exhaustion situations.
812                  * However, the NIC can gracefully prevent such situations
813                  * to happen by sending specific "back-pressure" flow control
814                  * frames to its peer(s).
815                  */
816                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
817                            "staterr=0x%x pkt_len=%u",
818                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
819                            (unsigned) rx_id, (unsigned) staterr,
820                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
821
822                 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
823                 if (nmb == NULL) {
824                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
825                                    "queue_id=%u", (unsigned) rxq->port_id,
826                                    (unsigned) rxq->queue_id);
827                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
828                         break;
829                 }
830
831                 nb_hold++;
832                 rxe = &sw_ring[rx_id];
833                 rx_id++;
834                 if (rx_id == rxq->nb_rx_desc)
835                         rx_id = 0;
836
837                 /* Prefetch next mbuf while processing current one. */
838                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
839
840                 /*
841                  * When next RX descriptor is on a cache-line boundary,
842                  * prefetch the next 4 RX descriptors and the next 8 pointers
843                  * to mbufs.
844                  */
845                 if ((rx_id & 0x3) == 0) {
846                         rte_igb_prefetch(&rx_ring[rx_id]);
847                         rte_igb_prefetch(&sw_ring[rx_id]);
848                 }
849
850                 rxm = rxe->mbuf;
851                 rxe->mbuf = nmb;
852                 dma_addr =
853                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
854                 rxdp->read.hdr_addr = dma_addr;
855                 rxdp->read.pkt_addr = dma_addr;
856
857                 /*
858                  * Initialize the returned mbuf.
859                  * 1) setup generic mbuf fields:
860                  *    - number of segments,
861                  *    - next segment,
862                  *    - packet length,
863                  *    - RX port identifier.
864                  * 2) integrate hardware offload data, if any:
865                  *    - RSS flag & hash,
866                  *    - IP checksum flag,
867                  *    - VLAN TCI, if any,
868                  *    - error flags.
869                  */
870                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
871                                       rxq->crc_len);
872                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
873                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
874                 rxm->nb_segs = 1;
875                 rxm->next = NULL;
876                 rxm->pkt_len = pkt_len;
877                 rxm->data_len = pkt_len;
878                 rxm->port = rxq->port_id;
879
880                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
881                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
882                 /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
883                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
884
885                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
886                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
887                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
888                 rxm->ol_flags = pkt_flags;
889 #ifdef RTE_NEXT_ABI
890                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
891                                                 lo_dword.hs_rss.pkt_info);
892 #endif
893
894                 /*
895                  * Store the mbuf address into the next entry of the array
896                  * of returned packets.
897                  */
898                 rx_pkts[nb_rx++] = rxm;
899         }
900         rxq->rx_tail = rx_id;
901
902         /*
903          * If the number of free RX descriptors is greater than the RX free
904          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
905          * register.
906          * Update the RDT with the value of the last processed RX descriptor
907          * minus 1, to guarantee that the RDT register is never equal to the
908          * RDH register, which creates a "full" ring situtation from the
909          * hardware point of view...
910          */
911         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
912         if (nb_hold > rxq->rx_free_thresh) {
913                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
914                            "nb_hold=%u nb_rx=%u",
915                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
916                            (unsigned) rx_id, (unsigned) nb_hold,
917                            (unsigned) nb_rx);
918                 rx_id = (uint16_t) ((rx_id == 0) ?
919                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
920                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
921                 nb_hold = 0;
922         }
923         rxq->nb_rx_hold = nb_hold;
924         return (nb_rx);
925 }
926
927 uint16_t
928 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
929                          uint16_t nb_pkts)
930 {
931         struct igb_rx_queue *rxq;
932         volatile union e1000_adv_rx_desc *rx_ring;
933         volatile union e1000_adv_rx_desc *rxdp;
934         struct igb_rx_entry *sw_ring;
935         struct igb_rx_entry *rxe;
936         struct rte_mbuf *first_seg;
937         struct rte_mbuf *last_seg;
938         struct rte_mbuf *rxm;
939         struct rte_mbuf *nmb;
940         union e1000_adv_rx_desc rxd;
941         uint64_t dma; /* Physical address of mbuf data buffer */
942         uint32_t staterr;
943         uint32_t hlen_type_rss;
944         uint16_t rx_id;
945         uint16_t nb_rx;
946         uint16_t nb_hold;
947         uint16_t data_len;
948         uint64_t pkt_flags;
949
950         nb_rx = 0;
951         nb_hold = 0;
952         rxq = rx_queue;
953         rx_id = rxq->rx_tail;
954         rx_ring = rxq->rx_ring;
955         sw_ring = rxq->sw_ring;
956
957         /*
958          * Retrieve RX context of current packet, if any.
959          */
960         first_seg = rxq->pkt_first_seg;
961         last_seg = rxq->pkt_last_seg;
962
963         while (nb_rx < nb_pkts) {
964         next_desc:
965                 /*
966                  * The order of operations here is important as the DD status
967                  * bit must not be read after any other descriptor fields.
968                  * rx_ring and rxdp are pointing to volatile data so the order
969                  * of accesses cannot be reordered by the compiler. If they were
970                  * not volatile, they could be reordered which could lead to
971                  * using invalid descriptor fields when read from rxd.
972                  */
973                 rxdp = &rx_ring[rx_id];
974                 staterr = rxdp->wb.upper.status_error;
975                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
976                         break;
977                 rxd = *rxdp;
978
979                 /*
980                  * Descriptor done.
981                  *
982                  * Allocate a new mbuf to replenish the RX ring descriptor.
983                  * If the allocation fails:
984                  *    - arrange for that RX descriptor to be the first one
985                  *      being parsed the next time the receive function is
986                  *      invoked [on the same queue].
987                  *
988                  *    - Stop parsing the RX ring and return immediately.
989                  *
990                  * This policy does not drop the packet received in the RX
991                  * descriptor for which the allocation of a new mbuf failed.
992                  * Thus, it allows that packet to be later retrieved if
993                  * mbuf have been freed in the mean time.
994                  * As a side effect, holding RX descriptors instead of
995                  * systematically giving them back to the NIC may lead to
996                  * RX ring exhaustion situations.
997                  * However, the NIC can gracefully prevent such situations
998                  * to happen by sending specific "back-pressure" flow control
999                  * frames to its peer(s).
1000                  */
1001                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1002                            "staterr=0x%x data_len=%u",
1003                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1004                            (unsigned) rx_id, (unsigned) staterr,
1005                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1006
1007                 nmb = rte_rxmbuf_alloc(rxq->mb_pool);
1008                 if (nmb == NULL) {
1009                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1010                                    "queue_id=%u", (unsigned) rxq->port_id,
1011                                    (unsigned) rxq->queue_id);
1012                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1013                         break;
1014                 }
1015
1016                 nb_hold++;
1017                 rxe = &sw_ring[rx_id];
1018                 rx_id++;
1019                 if (rx_id == rxq->nb_rx_desc)
1020                         rx_id = 0;
1021
1022                 /* Prefetch next mbuf while processing current one. */
1023                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1024
1025                 /*
1026                  * When next RX descriptor is on a cache-line boundary,
1027                  * prefetch the next 4 RX descriptors and the next 8 pointers
1028                  * to mbufs.
1029                  */
1030                 if ((rx_id & 0x3) == 0) {
1031                         rte_igb_prefetch(&rx_ring[rx_id]);
1032                         rte_igb_prefetch(&sw_ring[rx_id]);
1033                 }
1034
1035                 /*
1036                  * Update RX descriptor with the physical address of the new
1037                  * data buffer of the new allocated mbuf.
1038                  */
1039                 rxm = rxe->mbuf;
1040                 rxe->mbuf = nmb;
1041                 dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1042                 rxdp->read.pkt_addr = dma;
1043                 rxdp->read.hdr_addr = dma;
1044
1045                 /*
1046                  * Set data length & data buffer address of mbuf.
1047                  */
1048                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1049                 rxm->data_len = data_len;
1050                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1051
1052                 /*
1053                  * If this is the first buffer of the received packet,
1054                  * set the pointer to the first mbuf of the packet and
1055                  * initialize its context.
1056                  * Otherwise, update the total length and the number of segments
1057                  * of the current scattered packet, and update the pointer to
1058                  * the last mbuf of the current packet.
1059                  */
1060                 if (first_seg == NULL) {
1061                         first_seg = rxm;
1062                         first_seg->pkt_len = data_len;
1063                         first_seg->nb_segs = 1;
1064                 } else {
1065                         first_seg->pkt_len += data_len;
1066                         first_seg->nb_segs++;
1067                         last_seg->next = rxm;
1068                 }
1069
1070                 /*
1071                  * If this is not the last buffer of the received packet,
1072                  * update the pointer to the last mbuf of the current scattered
1073                  * packet and continue to parse the RX ring.
1074                  */
1075                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1076                         last_seg = rxm;
1077                         goto next_desc;
1078                 }
1079
1080                 /*
1081                  * This is the last buffer of the received packet.
1082                  * If the CRC is not stripped by the hardware:
1083                  *   - Subtract the CRC length from the total packet length.
1084                  *   - If the last buffer only contains the whole CRC or a part
1085                  *     of it, free the mbuf associated to the last buffer.
1086                  *     If part of the CRC is also contained in the previous
1087                  *     mbuf, subtract the length of that CRC part from the
1088                  *     data length of the previous mbuf.
1089                  */
1090                 rxm->next = NULL;
1091                 if (unlikely(rxq->crc_len > 0)) {
1092                         first_seg->pkt_len -= ETHER_CRC_LEN;
1093                         if (data_len <= ETHER_CRC_LEN) {
1094                                 rte_pktmbuf_free_seg(rxm);
1095                                 first_seg->nb_segs--;
1096                                 last_seg->data_len = (uint16_t)
1097                                         (last_seg->data_len -
1098                                          (ETHER_CRC_LEN - data_len));
1099                                 last_seg->next = NULL;
1100                         } else
1101                                 rxm->data_len =
1102                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1103                 }
1104
1105                 /*
1106                  * Initialize the first mbuf of the returned packet:
1107                  *    - RX port identifier,
1108                  *    - hardware offload data, if any:
1109                  *      - RSS flag & hash,
1110                  *      - IP checksum flag,
1111                  *      - VLAN TCI, if any,
1112                  *      - error flags.
1113                  */
1114                 first_seg->port = rxq->port_id;
1115                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1116
1117                 /*
1118                  * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
1119                  * set in the pkt_flags field.
1120                  */
1121                 first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1122                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1123                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss);
1124                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1125                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1126                 first_seg->ol_flags = pkt_flags;
1127 #ifdef RTE_NEXT_ABI
1128                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1129                                         lower.lo_dword.hs_rss.pkt_info);
1130 #endif
1131
1132                 /* Prefetch data of first segment, if configured to do so. */
1133                 rte_packet_prefetch((char *)first_seg->buf_addr +
1134                         first_seg->data_off);
1135
1136                 /*
1137                  * Store the mbuf address into the next entry of the array
1138                  * of returned packets.
1139                  */
1140                 rx_pkts[nb_rx++] = first_seg;
1141
1142                 /*
1143                  * Setup receipt context for a new packet.
1144                  */
1145                 first_seg = NULL;
1146         }
1147
1148         /*
1149          * Record index of the next RX descriptor to probe.
1150          */
1151         rxq->rx_tail = rx_id;
1152
1153         /*
1154          * Save receive context.
1155          */
1156         rxq->pkt_first_seg = first_seg;
1157         rxq->pkt_last_seg = last_seg;
1158
1159         /*
1160          * If the number of free RX descriptors is greater than the RX free
1161          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1162          * register.
1163          * Update the RDT with the value of the last processed RX descriptor
1164          * minus 1, to guarantee that the RDT register is never equal to the
1165          * RDH register, which creates a "full" ring situtation from the
1166          * hardware point of view...
1167          */
1168         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1169         if (nb_hold > rxq->rx_free_thresh) {
1170                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1171                            "nb_hold=%u nb_rx=%u",
1172                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1173                            (unsigned) rx_id, (unsigned) nb_hold,
1174                            (unsigned) nb_rx);
1175                 rx_id = (uint16_t) ((rx_id == 0) ?
1176                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1177                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1178                 nb_hold = 0;
1179         }
1180         rxq->nb_rx_hold = nb_hold;
1181         return (nb_rx);
1182 }
1183
1184 /*
1185  * Rings setup and release.
1186  *
1187  * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
1188  * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary.
1189  * This will also optimize cache line size effect.
1190  * H/W supports up to cache line size 128.
1191  */
1192 #define IGB_ALIGN 128
1193
1194 /*
1195  * Maximum number of Ring Descriptors.
1196  *
1197  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1198  * desscriptors should meet the following condition:
1199  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1200  */
1201 #define IGB_MIN_RING_DESC 32
1202 #define IGB_MAX_RING_DESC 4096
1203
1204 static const struct rte_memzone *
1205 ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
1206                       uint16_t queue_id, uint32_t ring_size, int socket_id)
1207 {
1208         char z_name[RTE_MEMZONE_NAMESIZE];
1209         const struct rte_memzone *mz;
1210
1211         snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
1212                         dev->driver->pci_drv.name, ring_name,
1213                                 dev->data->port_id, queue_id);
1214         mz = rte_memzone_lookup(z_name);
1215         if (mz)
1216                 return mz;
1217
1218 #ifdef RTE_LIBRTE_XEN_DOM0
1219         return rte_memzone_reserve_bounded(z_name, ring_size,
1220                         socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M);
1221 #else
1222         return rte_memzone_reserve_aligned(z_name, ring_size,
1223                         socket_id, 0, IGB_ALIGN);
1224 #endif
1225 }
1226
1227 static void
1228 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1229 {
1230         unsigned i;
1231
1232         if (txq->sw_ring != NULL) {
1233                 for (i = 0; i < txq->nb_tx_desc; i++) {
1234                         if (txq->sw_ring[i].mbuf != NULL) {
1235                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1236                                 txq->sw_ring[i].mbuf = NULL;
1237                         }
1238                 }
1239         }
1240 }
1241
1242 static void
1243 igb_tx_queue_release(struct igb_tx_queue *txq)
1244 {
1245         if (txq != NULL) {
1246                 igb_tx_queue_release_mbufs(txq);
1247                 rte_free(txq->sw_ring);
1248                 rte_free(txq);
1249         }
1250 }
1251
1252 void
1253 eth_igb_tx_queue_release(void *txq)
1254 {
1255         igb_tx_queue_release(txq);
1256 }
1257
1258 static void
1259 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1260 {
1261         txq->tx_head = 0;
1262         txq->tx_tail = 0;
1263         txq->ctx_curr = 0;
1264         memset((void*)&txq->ctx_cache, 0,
1265                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1266 }
1267
1268 static void
1269 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1270 {
1271         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1272         struct igb_tx_entry *txe = txq->sw_ring;
1273         uint16_t i, prev;
1274         struct e1000_hw *hw;
1275
1276         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1277         /* Zero out HW ring memory */
1278         for (i = 0; i < txq->nb_tx_desc; i++) {
1279                 txq->tx_ring[i] = zeroed_desc;
1280         }
1281
1282         /* Initialize ring entries */
1283         prev = (uint16_t)(txq->nb_tx_desc - 1);
1284         for (i = 0; i < txq->nb_tx_desc; i++) {
1285                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1286
1287                 txd->wb.status = E1000_TXD_STAT_DD;
1288                 txe[i].mbuf = NULL;
1289                 txe[i].last_id = i;
1290                 txe[prev].next_id = i;
1291                 prev = i;
1292         }
1293
1294         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1295         /* 82575 specific, each tx queue will use 2 hw contexts */
1296         if (hw->mac.type == e1000_82575)
1297                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1298
1299         igb_reset_tx_queue_stat(txq);
1300 }
1301
1302 int
1303 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1304                          uint16_t queue_idx,
1305                          uint16_t nb_desc,
1306                          unsigned int socket_id,
1307                          const struct rte_eth_txconf *tx_conf)
1308 {
1309         const struct rte_memzone *tz;
1310         struct igb_tx_queue *txq;
1311         struct e1000_hw     *hw;
1312         uint32_t size;
1313
1314         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1315
1316         /*
1317          * Validate number of transmit descriptors.
1318          * It must not exceed hardware maximum, and must be multiple
1319          * of IGB_ALIGN.
1320          */
1321         if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 ||
1322             (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
1323                 return -EINVAL;
1324         }
1325
1326         /*
1327          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1328          * driver.
1329          */
1330         if (tx_conf->tx_free_thresh != 0)
1331                 PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not "
1332                              "used for the 1G driver.");
1333         if (tx_conf->tx_rs_thresh != 0)
1334                 PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not "
1335                              "used for the 1G driver.");
1336         if (tx_conf->tx_thresh.wthresh == 0)
1337                 PMD_INIT_LOG(WARNING, "To improve 1G driver performance, "
1338                              "consider setting the TX WTHRESH value to 4, 8, "
1339                              "or 16.");
1340
1341         /* Free memory prior to re-allocation if needed */
1342         if (dev->data->tx_queues[queue_idx] != NULL) {
1343                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1344                 dev->data->tx_queues[queue_idx] = NULL;
1345         }
1346
1347         /* First allocate the tx queue data structure */
1348         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1349                                                         RTE_CACHE_LINE_SIZE);
1350         if (txq == NULL)
1351                 return (-ENOMEM);
1352
1353         /*
1354          * Allocate TX ring hardware descriptors. A memzone large enough to
1355          * handle the maximum ring size is allocated in order to allow for
1356          * resizing in later calls to the queue setup function.
1357          */
1358         size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC;
1359         tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx,
1360                                         size, socket_id);
1361         if (tz == NULL) {
1362                 igb_tx_queue_release(txq);
1363                 return (-ENOMEM);
1364         }
1365
1366         txq->nb_tx_desc = nb_desc;
1367         txq->pthresh = tx_conf->tx_thresh.pthresh;
1368         txq->hthresh = tx_conf->tx_thresh.hthresh;
1369         txq->wthresh = tx_conf->tx_thresh.wthresh;
1370         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1371                 txq->wthresh = 1;
1372         txq->queue_id = queue_idx;
1373         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1374                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1375         txq->port_id = dev->data->port_id;
1376
1377         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1378 #ifndef RTE_LIBRTE_XEN_DOM0
1379         txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr;
1380 #else
1381         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
1382 #endif
1383          txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1384         /* Allocate software ring */
1385         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1386                                    sizeof(struct igb_tx_entry) * nb_desc,
1387                                    RTE_CACHE_LINE_SIZE);
1388         if (txq->sw_ring == NULL) {
1389                 igb_tx_queue_release(txq);
1390                 return (-ENOMEM);
1391         }
1392         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1393                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1394
1395         igb_reset_tx_queue(txq, dev);
1396         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1397         dev->data->tx_queues[queue_idx] = txq;
1398
1399         return (0);
1400 }
1401
1402 static void
1403 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1404 {
1405         unsigned i;
1406
1407         if (rxq->sw_ring != NULL) {
1408                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1409                         if (rxq->sw_ring[i].mbuf != NULL) {
1410                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1411                                 rxq->sw_ring[i].mbuf = NULL;
1412                         }
1413                 }
1414         }
1415 }
1416
1417 static void
1418 igb_rx_queue_release(struct igb_rx_queue *rxq)
1419 {
1420         if (rxq != NULL) {
1421                 igb_rx_queue_release_mbufs(rxq);
1422                 rte_free(rxq->sw_ring);
1423                 rte_free(rxq);
1424         }
1425 }
1426
1427 void
1428 eth_igb_rx_queue_release(void *rxq)
1429 {
1430         igb_rx_queue_release(rxq);
1431 }
1432
1433 static void
1434 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1435 {
1436         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1437         unsigned i;
1438
1439         /* Zero out HW ring memory */
1440         for (i = 0; i < rxq->nb_rx_desc; i++) {
1441                 rxq->rx_ring[i] = zeroed_desc;
1442         }
1443
1444         rxq->rx_tail = 0;
1445         rxq->pkt_first_seg = NULL;
1446         rxq->pkt_last_seg = NULL;
1447 }
1448
1449 int
1450 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1451                          uint16_t queue_idx,
1452                          uint16_t nb_desc,
1453                          unsigned int socket_id,
1454                          const struct rte_eth_rxconf *rx_conf,
1455                          struct rte_mempool *mp)
1456 {
1457         const struct rte_memzone *rz;
1458         struct igb_rx_queue *rxq;
1459         struct e1000_hw     *hw;
1460         unsigned int size;
1461
1462         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1463
1464         /*
1465          * Validate number of receive descriptors.
1466          * It must not exceed hardware maximum, and must be multiple
1467          * of IGB_ALIGN.
1468          */
1469         if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 ||
1470             (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) {
1471                 return (-EINVAL);
1472         }
1473
1474         /* Free memory prior to re-allocation if needed */
1475         if (dev->data->rx_queues[queue_idx] != NULL) {
1476                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1477                 dev->data->rx_queues[queue_idx] = NULL;
1478         }
1479
1480         /* First allocate the RX queue data structure. */
1481         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1482                           RTE_CACHE_LINE_SIZE);
1483         if (rxq == NULL)
1484                 return (-ENOMEM);
1485         rxq->mb_pool = mp;
1486         rxq->nb_rx_desc = nb_desc;
1487         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1488         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1489         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1490         if (rxq->wthresh > 0 && hw->mac.type == e1000_82576)
1491                 rxq->wthresh = 1;
1492         rxq->drop_en = rx_conf->rx_drop_en;
1493         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1494         rxq->queue_id = queue_idx;
1495         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1496                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1497         rxq->port_id = dev->data->port_id;
1498         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
1499                                   ETHER_CRC_LEN);
1500
1501         /*
1502          *  Allocate RX ring hardware descriptors. A memzone large enough to
1503          *  handle the maximum ring size is allocated in order to allow for
1504          *  resizing in later calls to the queue setup function.
1505          */
1506         size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC;
1507         rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id);
1508         if (rz == NULL) {
1509                 igb_rx_queue_release(rxq);
1510                 return (-ENOMEM);
1511         }
1512         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1513         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1514 #ifndef RTE_LIBRTE_XEN_DOM0
1515         rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr;
1516 #else
1517         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1518 #endif
1519         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1520
1521         /* Allocate software ring. */
1522         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1523                                    sizeof(struct igb_rx_entry) * nb_desc,
1524                                    RTE_CACHE_LINE_SIZE);
1525         if (rxq->sw_ring == NULL) {
1526                 igb_rx_queue_release(rxq);
1527                 return (-ENOMEM);
1528         }
1529         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1530                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1531
1532         dev->data->rx_queues[queue_idx] = rxq;
1533         igb_reset_rx_queue(rxq);
1534
1535         return 0;
1536 }
1537
1538 uint32_t
1539 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1540 {
1541 #define IGB_RXQ_SCAN_INTERVAL 4
1542         volatile union e1000_adv_rx_desc *rxdp;
1543         struct igb_rx_queue *rxq;
1544         uint32_t desc = 0;
1545
1546         if (rx_queue_id >= dev->data->nb_rx_queues) {
1547                 PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id);
1548                 return 0;
1549         }
1550
1551         rxq = dev->data->rx_queues[rx_queue_id];
1552         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1553
1554         while ((desc < rxq->nb_rx_desc) &&
1555                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1556                 desc += IGB_RXQ_SCAN_INTERVAL;
1557                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1558                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1559                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1560                                 desc - rxq->nb_rx_desc]);
1561         }
1562
1563         return 0;
1564 }
1565
1566 int
1567 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1568 {
1569         volatile union e1000_adv_rx_desc *rxdp;
1570         struct igb_rx_queue *rxq = rx_queue;
1571         uint32_t desc;
1572
1573         if (unlikely(offset >= rxq->nb_rx_desc))
1574                 return 0;
1575         desc = rxq->rx_tail + offset;
1576         if (desc >= rxq->nb_rx_desc)
1577                 desc -= rxq->nb_rx_desc;
1578
1579         rxdp = &rxq->rx_ring[desc];
1580         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1581 }
1582
1583 void
1584 igb_dev_clear_queues(struct rte_eth_dev *dev)
1585 {
1586         uint16_t i;
1587         struct igb_tx_queue *txq;
1588         struct igb_rx_queue *rxq;
1589
1590         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1591                 txq = dev->data->tx_queues[i];
1592                 if (txq != NULL) {
1593                         igb_tx_queue_release_mbufs(txq);
1594                         igb_reset_tx_queue(txq, dev);
1595                 }
1596         }
1597
1598         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1599                 rxq = dev->data->rx_queues[i];
1600                 if (rxq != NULL) {
1601                         igb_rx_queue_release_mbufs(rxq);
1602                         igb_reset_rx_queue(rxq);
1603                 }
1604         }
1605 }
1606
1607 /**
1608  * Receive Side Scaling (RSS).
1609  * See section 7.1.1.7 in the following document:
1610  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1611  *
1612  * Principles:
1613  * The source and destination IP addresses of the IP header and the source and
1614  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1615  * against a configurable random key to compute a 32-bit RSS hash result.
1616  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1617  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1618  * RSS output index which is used as the RX queue index where to store the
1619  * received packets.
1620  * The following output is supplied in the RX write-back descriptor:
1621  *     - 32-bit result of the Microsoft RSS hash function,
1622  *     - 4-bit RSS type field.
1623  */
1624
1625 /*
1626  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1627  * Used as the default key.
1628  */
1629 static uint8_t rss_intel_key[40] = {
1630         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1631         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1632         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1633         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1634         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1635 };
1636
1637 static void
1638 igb_rss_disable(struct rte_eth_dev *dev)
1639 {
1640         struct e1000_hw *hw;
1641         uint32_t mrqc;
1642
1643         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1645         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1646         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1647 }
1648
1649 static void
1650 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1651 {
1652         uint8_t  *hash_key;
1653         uint32_t rss_key;
1654         uint32_t mrqc;
1655         uint64_t rss_hf;
1656         uint16_t i;
1657
1658         hash_key = rss_conf->rss_key;
1659         if (hash_key != NULL) {
1660                 /* Fill in RSS hash key */
1661                 for (i = 0; i < 10; i++) {
1662                         rss_key  = hash_key[(i * 4)];
1663                         rss_key |= hash_key[(i * 4) + 1] << 8;
1664                         rss_key |= hash_key[(i * 4) + 2] << 16;
1665                         rss_key |= hash_key[(i * 4) + 3] << 24;
1666                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1667                 }
1668         }
1669
1670         /* Set configured hashing protocols in MRQC register */
1671         rss_hf = rss_conf->rss_hf;
1672         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1673         if (rss_hf & ETH_RSS_IPV4)
1674                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1675         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1676                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1677         if (rss_hf & ETH_RSS_IPV6)
1678                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1679         if (rss_hf & ETH_RSS_IPV6_EX)
1680                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1681         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1682                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1683         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1684                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1685         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1686                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1687         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1688                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1689         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1690                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1691         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1692 }
1693
1694 int
1695 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1696                         struct rte_eth_rss_conf *rss_conf)
1697 {
1698         struct e1000_hw *hw;
1699         uint32_t mrqc;
1700         uint64_t rss_hf;
1701
1702         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1703
1704         /*
1705          * Before changing anything, first check that the update RSS operation
1706          * does not attempt to disable RSS, if RSS was enabled at
1707          * initialization time, or does not attempt to enable RSS, if RSS was
1708          * disabled at initialization time.
1709          */
1710         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1711         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1712         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1713                 if (rss_hf != 0) /* Enable RSS */
1714                         return -(EINVAL);
1715                 return 0; /* Nothing to do */
1716         }
1717         /* RSS enabled */
1718         if (rss_hf == 0) /* Disable RSS */
1719                 return -(EINVAL);
1720         igb_hw_rss_hash_set(hw, rss_conf);
1721         return 0;
1722 }
1723
1724 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
1725                               struct rte_eth_rss_conf *rss_conf)
1726 {
1727         struct e1000_hw *hw;
1728         uint8_t *hash_key;
1729         uint32_t rss_key;
1730         uint32_t mrqc;
1731         uint64_t rss_hf;
1732         uint16_t i;
1733
1734         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1735         hash_key = rss_conf->rss_key;
1736         if (hash_key != NULL) {
1737                 /* Return RSS hash key */
1738                 for (i = 0; i < 10; i++) {
1739                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
1740                         hash_key[(i * 4)] = rss_key & 0x000000FF;
1741                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
1742                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
1743                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
1744                 }
1745         }
1746
1747         /* Get RSS functions configured in MRQC register */
1748         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1749         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
1750                 rss_conf->rss_hf = 0;
1751                 return 0;
1752         }
1753         rss_hf = 0;
1754         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
1755                 rss_hf |= ETH_RSS_IPV4;
1756         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
1757                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
1758         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
1759                 rss_hf |= ETH_RSS_IPV6;
1760         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
1761                 rss_hf |= ETH_RSS_IPV6_EX;
1762         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
1763                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
1764         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
1765                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
1766         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
1767                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
1768         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
1769                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
1770         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
1771                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
1772         rss_conf->rss_hf = rss_hf;
1773         return 0;
1774 }
1775
1776 static void
1777 igb_rss_configure(struct rte_eth_dev *dev)
1778 {
1779         struct rte_eth_rss_conf rss_conf;
1780         struct e1000_hw *hw;
1781         uint32_t shift;
1782         uint16_t i;
1783
1784         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1785
1786         /* Fill in redirection table. */
1787         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
1788         for (i = 0; i < 128; i++) {
1789                 union e1000_reta {
1790                         uint32_t dword;
1791                         uint8_t  bytes[4];
1792                 } reta;
1793                 uint8_t q_idx;
1794
1795                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
1796                                    i % dev->data->nb_rx_queues : 0);
1797                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
1798                 if ((i & 3) == 3)
1799                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
1800         }
1801
1802         /*
1803          * Configure the RSS key and the RSS protocols used to compute
1804          * the RSS hash of input packets.
1805          */
1806         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
1807         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
1808                 igb_rss_disable(dev);
1809                 return;
1810         }
1811         if (rss_conf.rss_key == NULL)
1812                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
1813         igb_hw_rss_hash_set(hw, &rss_conf);
1814 }
1815
1816 /*
1817  * Check if the mac type support VMDq or not.
1818  * Return 1 if it supports, otherwise, return 0.
1819  */
1820 static int
1821 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
1822 {
1823         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1824
1825         switch (hw->mac.type) {
1826         case e1000_82576:
1827         case e1000_82580:
1828         case e1000_i350:
1829                 return 1;
1830         case e1000_82540:
1831         case e1000_82541:
1832         case e1000_82542:
1833         case e1000_82543:
1834         case e1000_82544:
1835         case e1000_82545:
1836         case e1000_82546:
1837         case e1000_82547:
1838         case e1000_82571:
1839         case e1000_82572:
1840         case e1000_82573:
1841         case e1000_82574:
1842         case e1000_82583:
1843         case e1000_i210:
1844         case e1000_i211:
1845         default:
1846                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
1847                 return 0;
1848         }
1849 }
1850
1851 static int
1852 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
1853 {
1854         struct rte_eth_vmdq_rx_conf *cfg;
1855         struct e1000_hw *hw;
1856         uint32_t mrqc, vt_ctl, vmolr, rctl;
1857         int i;
1858
1859         PMD_INIT_FUNC_TRACE();
1860
1861         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1862         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
1863
1864         /* Check if mac type can support VMDq, return value of 0 means NOT support */
1865         if (igb_is_vmdq_supported(dev) == 0)
1866                 return -1;
1867
1868         igb_rss_disable(dev);
1869
1870         /* RCTL: eanble VLAN filter */
1871         rctl = E1000_READ_REG(hw, E1000_RCTL);
1872         rctl |= E1000_RCTL_VFE;
1873         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1874
1875         /* MRQC: enable vmdq */
1876         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1877         mrqc |= E1000_MRQC_ENABLE_VMDQ;
1878         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1879
1880         /* VTCTL:  pool selection according to VLAN tag */
1881         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
1882         if (cfg->enable_default_pool)
1883                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1884         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
1885         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
1886
1887         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
1888                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
1889                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
1890                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
1891                         E1000_VMOLR_MPME);
1892
1893                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
1894                         vmolr |= E1000_VMOLR_AUPE;
1895                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
1896                         vmolr |= E1000_VMOLR_ROMPE;
1897                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
1898                         vmolr |= E1000_VMOLR_ROPE;
1899                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
1900                         vmolr |= E1000_VMOLR_BAM;
1901                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
1902                         vmolr |= E1000_VMOLR_MPME;
1903
1904                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
1905         }
1906
1907         /*
1908          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
1909          * Both 82576 and 82580 support it
1910          */
1911         if (hw->mac.type != e1000_i350) {
1912                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
1913                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
1914                         vmolr |= E1000_VMOLR_STRVLAN;
1915                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
1916                 }
1917         }
1918
1919         /* VFTA - enable all vlan filters */
1920         for (i = 0; i < IGB_VFTA_SIZE; i++)
1921                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
1922
1923         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
1924         if (hw->mac.type != e1000_82580)
1925                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
1926
1927         /*
1928          * RAH/RAL - allow pools to read specific mac addresses
1929          * In this case, all pools should be able to read from mac addr 0
1930          */
1931         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
1932         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
1933
1934         /* VLVF: set up filters for vlan tags as configured */
1935         for (i = 0; i < cfg->nb_pool_maps; i++) {
1936                 /* set vlan id in VF register and set the valid bit */
1937                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
1938                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
1939                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
1940                         E1000_VLVF_POOLSEL_MASK)));
1941         }
1942
1943         E1000_WRITE_FLUSH(hw);
1944
1945         return 0;
1946 }
1947
1948
1949 /*********************************************************************
1950  *
1951  *  Enable receive unit.
1952  *
1953  **********************************************************************/
1954
1955 static int
1956 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
1957 {
1958         struct igb_rx_entry *rxe = rxq->sw_ring;
1959         uint64_t dma_addr;
1960         unsigned i;
1961
1962         /* Initialize software ring entries. */
1963         for (i = 0; i < rxq->nb_rx_desc; i++) {
1964                 volatile union e1000_adv_rx_desc *rxd;
1965                 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool);
1966
1967                 if (mbuf == NULL) {
1968                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
1969                                      "queue_id=%hu", rxq->queue_id);
1970                         return (-ENOMEM);
1971                 }
1972                 dma_addr =
1973                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
1974                 rxd = &rxq->rx_ring[i];
1975                 rxd->read.hdr_addr = dma_addr;
1976                 rxd->read.pkt_addr = dma_addr;
1977                 rxe[i].mbuf = mbuf;
1978         }
1979
1980         return 0;
1981 }
1982
1983 #define E1000_MRQC_DEF_Q_SHIFT               (3)
1984 static int
1985 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
1986 {
1987         struct e1000_hw *hw =
1988                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1989         uint32_t mrqc;
1990
1991         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
1992                 /*
1993                  * SRIOV active scheme
1994                  * FIXME if support RSS together with VMDq & SRIOV
1995                  */
1996                 mrqc = E1000_MRQC_ENABLE_VMDQ;
1997                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
1998                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
1999                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2000         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2001                 /*
2002                  * SRIOV inactive scheme
2003                  */
2004                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2005                         case ETH_MQ_RX_RSS:
2006                                 igb_rss_configure(dev);
2007                                 break;
2008                         case ETH_MQ_RX_VMDQ_ONLY:
2009                                 /*Configure general VMDQ only RX parameters*/
2010                                 igb_vmdq_rx_hw_configure(dev);
2011                                 break;
2012                         case ETH_MQ_RX_NONE:
2013                                 /* if mq_mode is none, disable rss mode.*/
2014                         default:
2015                                 igb_rss_disable(dev);
2016                                 break;
2017                 }
2018         }
2019
2020         return 0;
2021 }
2022
2023 int
2024 eth_igb_rx_init(struct rte_eth_dev *dev)
2025 {
2026         struct e1000_hw     *hw;
2027         struct igb_rx_queue *rxq;
2028         uint32_t rctl;
2029         uint32_t rxcsum;
2030         uint32_t srrctl;
2031         uint16_t buf_size;
2032         uint16_t rctl_bsize;
2033         uint16_t i;
2034         int ret;
2035
2036         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2037         srrctl = 0;
2038
2039         /*
2040          * Make sure receives are disabled while setting
2041          * up the descriptor ring.
2042          */
2043         rctl = E1000_READ_REG(hw, E1000_RCTL);
2044         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2045
2046         /*
2047          * Configure support of jumbo frames, if any.
2048          */
2049         if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
2050                 rctl |= E1000_RCTL_LPE;
2051
2052                 /*
2053                  * Set maximum packet length by default, and might be updated
2054                  * together with enabling/disabling dual VLAN.
2055                  */
2056                 E1000_WRITE_REG(hw, E1000_RLPML,
2057                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2058                                                 VLAN_TAG_SIZE);
2059         } else
2060                 rctl &= ~E1000_RCTL_LPE;
2061
2062         /* Configure and enable each RX queue. */
2063         rctl_bsize = 0;
2064         dev->rx_pkt_burst = eth_igb_recv_pkts;
2065         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2066                 uint64_t bus_addr;
2067                 uint32_t rxdctl;
2068
2069                 rxq = dev->data->rx_queues[i];
2070
2071                 /* Allocate buffers for descriptor rings and set up queue */
2072                 ret = igb_alloc_rx_queue_mbufs(rxq);
2073                 if (ret)
2074                         return ret;
2075
2076                 /*
2077                  * Reset crc_len in case it was changed after queue setup by a
2078                  *  call to configure
2079                  */
2080                 rxq->crc_len =
2081                         (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
2082                                                         0 : ETHER_CRC_LEN);
2083
2084                 bus_addr = rxq->rx_ring_phys_addr;
2085                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2086                                 rxq->nb_rx_desc *
2087                                 sizeof(union e1000_adv_rx_desc));
2088                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2089                                 (uint32_t)(bus_addr >> 32));
2090                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2091
2092                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2093
2094                 /*
2095                  * Configure RX buffer size.
2096                  */
2097                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2098                         RTE_PKTMBUF_HEADROOM);
2099                 if (buf_size >= 1024) {
2100                         /*
2101                          * Configure the BSIZEPACKET field of the SRRCTL
2102                          * register of the queue.
2103                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2104                          * If this field is equal to 0b, then RCTL.BSIZE
2105                          * determines the RX packet buffer size.
2106                          */
2107                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2108                                    E1000_SRRCTL_BSIZEPKT_MASK);
2109                         buf_size = (uint16_t) ((srrctl &
2110                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2111                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2112
2113                         /* It adds dual VLAN length for supporting dual VLAN */
2114                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2115                                                 2 * VLAN_TAG_SIZE) > buf_size){
2116                                 if (!dev->data->scattered_rx)
2117                                         PMD_INIT_LOG(DEBUG,
2118                                                      "forcing scatter mode");
2119                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2120                                 dev->data->scattered_rx = 1;
2121                         }
2122                 } else {
2123                         /*
2124                          * Use BSIZE field of the device RCTL register.
2125                          */
2126                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2127                                 rctl_bsize = buf_size;
2128                         if (!dev->data->scattered_rx)
2129                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2130                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2131                         dev->data->scattered_rx = 1;
2132                 }
2133
2134                 /* Set if packets are dropped when no descriptors available */
2135                 if (rxq->drop_en)
2136                         srrctl |= E1000_SRRCTL_DROP_EN;
2137
2138                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2139
2140                 /* Enable this RX queue. */
2141                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2142                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2143                 rxdctl &= 0xFFF00000;
2144                 rxdctl |= (rxq->pthresh & 0x1F);
2145                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2146                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2147                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2148         }
2149
2150         if (dev->data->dev_conf.rxmode.enable_scatter) {
2151                 if (!dev->data->scattered_rx)
2152                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2153                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2154                 dev->data->scattered_rx = 1;
2155         }
2156
2157         /*
2158          * Setup BSIZE field of RCTL register, if needed.
2159          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2160          * register, since the code above configures the SRRCTL register of
2161          * the RX queue in such a case.
2162          * All configurable sizes are:
2163          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2164          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2165          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2166          *  2048: rctl |= E1000_RCTL_SZ_2048;
2167          *  1024: rctl |= E1000_RCTL_SZ_1024;
2168          *   512: rctl |= E1000_RCTL_SZ_512;
2169          *   256: rctl |= E1000_RCTL_SZ_256;
2170          */
2171         if (rctl_bsize > 0) {
2172                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2173                         rctl |= E1000_RCTL_SZ_512;
2174                 else /* 256 <= buf_size < 512 - use 256 */
2175                         rctl |= E1000_RCTL_SZ_256;
2176         }
2177
2178         /*
2179          * Configure RSS if device configured with multiple RX queues.
2180          */
2181         igb_dev_mq_rx_configure(dev);
2182
2183         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2184         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2185
2186         /*
2187          * Setup the Checksum Register.
2188          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2189          */
2190         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2191         rxcsum |= E1000_RXCSUM_PCSD;
2192
2193         /* Enable both L3/L4 rx checksum offload */
2194         if (dev->data->dev_conf.rxmode.hw_ip_checksum)
2195                 rxcsum |= (E1000_RXCSUM_IPOFL  | E1000_RXCSUM_TUOFL);
2196         else
2197                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2198         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2199
2200         /* Setup the Receive Control Register. */
2201         if (dev->data->dev_conf.rxmode.hw_strip_crc) {
2202                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2203
2204                 /* set STRCRC bit in all queues */
2205                 if (hw->mac.type == e1000_i350 ||
2206                     hw->mac.type == e1000_i210 ||
2207                     hw->mac.type == e1000_i211 ||
2208                     hw->mac.type == e1000_i354) {
2209                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2210                                 rxq = dev->data->rx_queues[i];
2211                                 uint32_t dvmolr = E1000_READ_REG(hw,
2212                                         E1000_DVMOLR(rxq->reg_idx));
2213                                 dvmolr |= E1000_DVMOLR_STRCRC;
2214                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2215                         }
2216                 }
2217         } else {
2218                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2219
2220                 /* clear STRCRC bit in all queues */
2221                 if (hw->mac.type == e1000_i350 ||
2222                     hw->mac.type == e1000_i210 ||
2223                     hw->mac.type == e1000_i211 ||
2224                     hw->mac.type == e1000_i354) {
2225                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2226                                 rxq = dev->data->rx_queues[i];
2227                                 uint32_t dvmolr = E1000_READ_REG(hw,
2228                                         E1000_DVMOLR(rxq->reg_idx));
2229                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2230                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2231                         }
2232                 }
2233         }
2234
2235         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2236         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2237                 E1000_RCTL_RDMTS_HALF |
2238                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2239
2240         /* Make sure VLAN Filters are off. */
2241         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2242                 rctl &= ~E1000_RCTL_VFE;
2243         /* Don't store bad packets. */
2244         rctl &= ~E1000_RCTL_SBP;
2245
2246         /* Enable Receives. */
2247         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2248
2249         /*
2250          * Setup the HW Rx Head and Tail Descriptor Pointers.
2251          * This needs to be done after enable.
2252          */
2253         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2254                 rxq = dev->data->rx_queues[i];
2255                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2256                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2257         }
2258
2259         return 0;
2260 }
2261
2262 /*********************************************************************
2263  *
2264  *  Enable transmit unit.
2265  *
2266  **********************************************************************/
2267 void
2268 eth_igb_tx_init(struct rte_eth_dev *dev)
2269 {
2270         struct e1000_hw     *hw;
2271         struct igb_tx_queue *txq;
2272         uint32_t tctl;
2273         uint32_t txdctl;
2274         uint16_t i;
2275
2276         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2277
2278         /* Setup the Base and Length of the Tx Descriptor Rings. */
2279         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2280                 uint64_t bus_addr;
2281                 txq = dev->data->tx_queues[i];
2282                 bus_addr = txq->tx_ring_phys_addr;
2283
2284                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2285                                 txq->nb_tx_desc *
2286                                 sizeof(union e1000_adv_tx_desc));
2287                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2288                                 (uint32_t)(bus_addr >> 32));
2289                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2290
2291                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2292                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2293                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2294
2295                 /* Setup Transmit threshold registers. */
2296                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2297                 txdctl |= txq->pthresh & 0x1F;
2298                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2299                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2300                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2301                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2302         }
2303
2304         /* Program the Transmit Control Register. */
2305         tctl = E1000_READ_REG(hw, E1000_TCTL);
2306         tctl &= ~E1000_TCTL_CT;
2307         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2308                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2309
2310         e1000_config_collision_dist(hw);
2311
2312         /* This write will effectively turn on the transmit unit. */
2313         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2314 }
2315
2316 /*********************************************************************
2317  *
2318  *  Enable VF receive unit.
2319  *
2320  **********************************************************************/
2321 int
2322 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2323 {
2324         struct e1000_hw     *hw;
2325         struct igb_rx_queue *rxq;
2326         uint32_t srrctl;
2327         uint16_t buf_size;
2328         uint16_t rctl_bsize;
2329         uint16_t i;
2330         int ret;
2331
2332         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2333
2334         /* setup MTU */
2335         e1000_rlpml_set_vf(hw,
2336                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2337                 VLAN_TAG_SIZE));
2338
2339         /* Configure and enable each RX queue. */
2340         rctl_bsize = 0;
2341         dev->rx_pkt_burst = eth_igb_recv_pkts;
2342         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2343                 uint64_t bus_addr;
2344                 uint32_t rxdctl;
2345
2346                 rxq = dev->data->rx_queues[i];
2347
2348                 /* Allocate buffers for descriptor rings and set up queue */
2349                 ret = igb_alloc_rx_queue_mbufs(rxq);
2350                 if (ret)
2351                         return ret;
2352
2353                 bus_addr = rxq->rx_ring_phys_addr;
2354                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2355                                 rxq->nb_rx_desc *
2356                                 sizeof(union e1000_adv_rx_desc));
2357                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2358                                 (uint32_t)(bus_addr >> 32));
2359                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2360
2361                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2362
2363                 /*
2364                  * Configure RX buffer size.
2365                  */
2366                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2367                         RTE_PKTMBUF_HEADROOM);
2368                 if (buf_size >= 1024) {
2369                         /*
2370                          * Configure the BSIZEPACKET field of the SRRCTL
2371                          * register of the queue.
2372                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2373                          * If this field is equal to 0b, then RCTL.BSIZE
2374                          * determines the RX packet buffer size.
2375                          */
2376                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2377                                    E1000_SRRCTL_BSIZEPKT_MASK);
2378                         buf_size = (uint16_t) ((srrctl &
2379                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2380                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2381
2382                         /* It adds dual VLAN length for supporting dual VLAN */
2383                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2384                                                 2 * VLAN_TAG_SIZE) > buf_size){
2385                                 if (!dev->data->scattered_rx)
2386                                         PMD_INIT_LOG(DEBUG,
2387                                                      "forcing scatter mode");
2388                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2389                                 dev->data->scattered_rx = 1;
2390                         }
2391                 } else {
2392                         /*
2393                          * Use BSIZE field of the device RCTL register.
2394                          */
2395                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2396                                 rctl_bsize = buf_size;
2397                         if (!dev->data->scattered_rx)
2398                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2399                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2400                         dev->data->scattered_rx = 1;
2401                 }
2402
2403                 /* Set if packets are dropped when no descriptors available */
2404                 if (rxq->drop_en)
2405                         srrctl |= E1000_SRRCTL_DROP_EN;
2406
2407                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2408
2409                 /* Enable this RX queue. */
2410                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2411                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2412                 rxdctl &= 0xFFF00000;
2413                 rxdctl |= (rxq->pthresh & 0x1F);
2414                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2415                 if (hw->mac.type == e1000_vfadapt) {
2416                         /*
2417                          * Workaround of 82576 VF Erratum
2418                          * force set WTHRESH to 1
2419                          * to avoid Write-Back not triggered sometimes
2420                          */
2421                         rxdctl |= 0x10000;
2422                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2423                 }
2424                 else
2425                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2426                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2427         }
2428
2429         if (dev->data->dev_conf.rxmode.enable_scatter) {
2430                 if (!dev->data->scattered_rx)
2431                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2432                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2433                 dev->data->scattered_rx = 1;
2434         }
2435
2436         /*
2437          * Setup the HW Rx Head and Tail Descriptor Pointers.
2438          * This needs to be done after enable.
2439          */
2440         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2441                 rxq = dev->data->rx_queues[i];
2442                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2443                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2444         }
2445
2446         return 0;
2447 }
2448
2449 /*********************************************************************
2450  *
2451  *  Enable VF transmit unit.
2452  *
2453  **********************************************************************/
2454 void
2455 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2456 {
2457         struct e1000_hw     *hw;
2458         struct igb_tx_queue *txq;
2459         uint32_t txdctl;
2460         uint16_t i;
2461
2462         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2463
2464         /* Setup the Base and Length of the Tx Descriptor Rings. */
2465         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2466                 uint64_t bus_addr;
2467
2468                 txq = dev->data->tx_queues[i];
2469                 bus_addr = txq->tx_ring_phys_addr;
2470                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2471                                 txq->nb_tx_desc *
2472                                 sizeof(union e1000_adv_tx_desc));
2473                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2474                                 (uint32_t)(bus_addr >> 32));
2475                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2476
2477                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2478                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2479                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2480
2481                 /* Setup Transmit threshold registers. */
2482                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2483                 txdctl |= txq->pthresh & 0x1F;
2484                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2485                 if (hw->mac.type == e1000_82576) {
2486                         /*
2487                          * Workaround of 82576 VF Erratum
2488                          * force set WTHRESH to 1
2489                          * to avoid Write-Back not triggered sometimes
2490                          */
2491                         txdctl |= 0x10000;
2492                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2493                 }
2494                 else
2495                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2496                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2497                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2498         }
2499
2500 }