net: add rte prefix to IP defines
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /*-
2 * BSD LICENSE
3 *
4 * Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * * Neither the name of copyright holder nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <rte_string_fns.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_ethdev_pci.h>
38 #include <rte_tcp.h>
39 #include <rte_atomic.h>
40 #include <rte_dev.h>
41 #include <rte_errno.h>
42 #include <rte_version.h>
43 #include <rte_eal_memconfig.h>
44 #include <rte_net.h>
45
46 #include "ena_ethdev.h"
47 #include "ena_logs.h"
48 #include "ena_platform.h"
49 #include "ena_com.h"
50 #include "ena_eth_com.h"
51
52 #include <ena_common_defs.h>
53 #include <ena_regs_defs.h>
54 #include <ena_admin_defs.h>
55 #include <ena_eth_io_defs.h>
56
57 #define DRV_MODULE_VER_MAJOR    2
58 #define DRV_MODULE_VER_MINOR    0
59 #define DRV_MODULE_VER_SUBMINOR 0
60
61 #define ENA_IO_TXQ_IDX(q)       (2 * (q))
62 #define ENA_IO_RXQ_IDX(q)       (2 * (q) + 1)
63 /*reverse version of ENA_IO_RXQ_IDX*/
64 #define ENA_IO_RXQ_IDX_REV(q)   ((q - 1) / 2)
65
66 /* While processing submitted and completed descriptors (rx and tx path
67  * respectively) in a loop it is desired to:
68  *  - perform batch submissions while populating sumbissmion queue
69  *  - avoid blocking transmission of other packets during cleanup phase
70  * Hence the utilization ratio of 1/8 of a queue size.
71  */
72 #define ENA_RING_DESCS_RATIO(ring_size) (ring_size / 8)
73
74 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
75 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
76
77 #define GET_L4_HDR_LEN(mbuf)                                    \
78         ((rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *,       \
79                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
80
81 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
82 #define ENA_RX_RSS_TABLE_SIZE   (1 << ENA_RX_RSS_TABLE_LOG_SIZE)
83 #define ENA_HASH_KEY_SIZE       40
84 #define ETH_GSTRING_LEN 32
85
86 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
87
88 #define ENA_MIN_RING_DESC       128
89
90 enum ethtool_stringset {
91         ETH_SS_TEST             = 0,
92         ETH_SS_STATS,
93 };
94
95 struct ena_stats {
96         char name[ETH_GSTRING_LEN];
97         int stat_offset;
98 };
99
100 #define ENA_STAT_ENTRY(stat, stat_type) { \
101         .name = #stat, \
102         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
103 }
104
105 #define ENA_STAT_RX_ENTRY(stat) \
106         ENA_STAT_ENTRY(stat, rx)
107
108 #define ENA_STAT_TX_ENTRY(stat) \
109         ENA_STAT_ENTRY(stat, tx)
110
111 #define ENA_STAT_GLOBAL_ENTRY(stat) \
112         ENA_STAT_ENTRY(stat, dev)
113
114 #define ENA_MAX_RING_SIZE_RX 8192
115 #define ENA_MAX_RING_SIZE_TX 1024
116
117 /*
118  * Each rte_memzone should have unique name.
119  * To satisfy it, count number of allocation and add it to name.
120  */
121 uint32_t ena_alloc_cnt;
122
123 static const struct ena_stats ena_stats_global_strings[] = {
124         ENA_STAT_GLOBAL_ENTRY(wd_expired),
125         ENA_STAT_GLOBAL_ENTRY(dev_start),
126         ENA_STAT_GLOBAL_ENTRY(dev_stop),
127 };
128
129 static const struct ena_stats ena_stats_tx_strings[] = {
130         ENA_STAT_TX_ENTRY(cnt),
131         ENA_STAT_TX_ENTRY(bytes),
132         ENA_STAT_TX_ENTRY(prepare_ctx_err),
133         ENA_STAT_TX_ENTRY(linearize),
134         ENA_STAT_TX_ENTRY(linearize_failed),
135         ENA_STAT_TX_ENTRY(tx_poll),
136         ENA_STAT_TX_ENTRY(doorbells),
137         ENA_STAT_TX_ENTRY(bad_req_id),
138         ENA_STAT_TX_ENTRY(available_desc),
139 };
140
141 static const struct ena_stats ena_stats_rx_strings[] = {
142         ENA_STAT_RX_ENTRY(cnt),
143         ENA_STAT_RX_ENTRY(bytes),
144         ENA_STAT_RX_ENTRY(refill_partial),
145         ENA_STAT_RX_ENTRY(bad_csum),
146         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
147         ENA_STAT_RX_ENTRY(bad_desc_num),
148         ENA_STAT_RX_ENTRY(bad_req_id),
149 };
150
151 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
152 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
153 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
154
155 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
156                         DEV_TX_OFFLOAD_UDP_CKSUM |\
157                         DEV_TX_OFFLOAD_IPV4_CKSUM |\
158                         DEV_TX_OFFLOAD_TCP_TSO)
159 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
160                        PKT_TX_IP_CKSUM |\
161                        PKT_TX_TCP_SEG)
162
163 /** Vendor ID used by Amazon devices */
164 #define PCI_VENDOR_ID_AMAZON 0x1D0F
165 /** Amazon devices */
166 #define PCI_DEVICE_ID_ENA_VF    0xEC20
167 #define PCI_DEVICE_ID_ENA_LLQ_VF        0xEC21
168
169 #define ENA_TX_OFFLOAD_MASK     (\
170         PKT_TX_L4_MASK |         \
171         PKT_TX_IPV6 |            \
172         PKT_TX_IPV4 |            \
173         PKT_TX_IP_CKSUM |        \
174         PKT_TX_TCP_SEG)
175
176 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
177         (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
178
179 int ena_logtype_init;
180 int ena_logtype_driver;
181
182 static const struct rte_pci_id pci_id_ena_map[] = {
183         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
184         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
185         { .device_id = 0 },
186 };
187
188 static struct ena_aenq_handlers aenq_handlers;
189
190 static int ena_device_init(struct ena_com_dev *ena_dev,
191                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
192                            bool *wd_state);
193 static int ena_dev_configure(struct rte_eth_dev *dev);
194 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
195                                   uint16_t nb_pkts);
196 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
197                 uint16_t nb_pkts);
198 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
199                               uint16_t nb_desc, unsigned int socket_id,
200                               const struct rte_eth_txconf *tx_conf);
201 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
202                               uint16_t nb_desc, unsigned int socket_id,
203                               const struct rte_eth_rxconf *rx_conf,
204                               struct rte_mempool *mp);
205 static uint16_t eth_ena_recv_pkts(void *rx_queue,
206                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
207 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
208 static void ena_init_rings(struct ena_adapter *adapter);
209 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
210 static int ena_start(struct rte_eth_dev *dev);
211 static void ena_stop(struct rte_eth_dev *dev);
212 static void ena_close(struct rte_eth_dev *dev);
213 static int ena_dev_reset(struct rte_eth_dev *dev);
214 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
215 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
216 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
217 static void ena_rx_queue_release(void *queue);
218 static void ena_tx_queue_release(void *queue);
219 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
220 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
221 static int ena_link_update(struct rte_eth_dev *dev,
222                            int wait_to_complete);
223 static int ena_create_io_queue(struct ena_ring *ring);
224 static void ena_queue_stop(struct ena_ring *ring);
225 static void ena_queue_stop_all(struct rte_eth_dev *dev,
226                               enum ena_ring_type ring_type);
227 static int ena_queue_start(struct ena_ring *ring);
228 static int ena_queue_start_all(struct rte_eth_dev *dev,
229                                enum ena_ring_type ring_type);
230 static void ena_stats_restart(struct rte_eth_dev *dev);
231 static void ena_infos_get(struct rte_eth_dev *dev,
232                           struct rte_eth_dev_info *dev_info);
233 static int ena_rss_reta_update(struct rte_eth_dev *dev,
234                                struct rte_eth_rss_reta_entry64 *reta_conf,
235                                uint16_t reta_size);
236 static int ena_rss_reta_query(struct rte_eth_dev *dev,
237                               struct rte_eth_rss_reta_entry64 *reta_conf,
238                               uint16_t reta_size);
239 static void ena_interrupt_handler_rte(void *cb_arg);
240 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
241 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
242 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
243 static int ena_xstats_get_names(struct rte_eth_dev *dev,
244                                 struct rte_eth_xstat_name *xstats_names,
245                                 unsigned int n);
246 static int ena_xstats_get(struct rte_eth_dev *dev,
247                           struct rte_eth_xstat *stats,
248                           unsigned int n);
249 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
250                                 const uint64_t *ids,
251                                 uint64_t *values,
252                                 unsigned int n);
253
254 static const struct eth_dev_ops ena_dev_ops = {
255         .dev_configure        = ena_dev_configure,
256         .dev_infos_get        = ena_infos_get,
257         .rx_queue_setup       = ena_rx_queue_setup,
258         .tx_queue_setup       = ena_tx_queue_setup,
259         .dev_start            = ena_start,
260         .dev_stop             = ena_stop,
261         .link_update          = ena_link_update,
262         .stats_get            = ena_stats_get,
263         .xstats_get_names     = ena_xstats_get_names,
264         .xstats_get           = ena_xstats_get,
265         .xstats_get_by_id     = ena_xstats_get_by_id,
266         .mtu_set              = ena_mtu_set,
267         .rx_queue_release     = ena_rx_queue_release,
268         .tx_queue_release     = ena_tx_queue_release,
269         .dev_close            = ena_close,
270         .dev_reset            = ena_dev_reset,
271         .reta_update          = ena_rss_reta_update,
272         .reta_query           = ena_rss_reta_query,
273 };
274
275 #define NUMA_NO_NODE    SOCKET_ID_ANY
276
277 static inline int ena_cpu_to_node(int cpu)
278 {
279         struct rte_config *config = rte_eal_get_configuration();
280         struct rte_fbarray *arr = &config->mem_config->memzones;
281         const struct rte_memzone *mz;
282
283         if (unlikely(cpu >= RTE_MAX_MEMZONE))
284                 return NUMA_NO_NODE;
285
286         mz = rte_fbarray_get(arr, cpu);
287
288         return mz->socket_id;
289 }
290
291 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
292                                        struct ena_com_rx_ctx *ena_rx_ctx)
293 {
294         uint64_t ol_flags = 0;
295         uint32_t packet_type = 0;
296
297         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
298                 packet_type |= RTE_PTYPE_L4_TCP;
299         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
300                 packet_type |= RTE_PTYPE_L4_UDP;
301
302         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
303                 packet_type |= RTE_PTYPE_L3_IPV4;
304         else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
305                 packet_type |= RTE_PTYPE_L3_IPV6;
306
307         if (unlikely(ena_rx_ctx->l4_csum_err))
308                 ol_flags |= PKT_RX_L4_CKSUM_BAD;
309         if (unlikely(ena_rx_ctx->l3_csum_err))
310                 ol_flags |= PKT_RX_IP_CKSUM_BAD;
311
312         mbuf->ol_flags = ol_flags;
313         mbuf->packet_type = packet_type;
314 }
315
316 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
317                                        struct ena_com_tx_ctx *ena_tx_ctx,
318                                        uint64_t queue_offloads)
319 {
320         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
321
322         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
323             (queue_offloads & QUEUE_OFFLOADS)) {
324                 /* check if TSO is required */
325                 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
326                     (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
327                         ena_tx_ctx->tso_enable = true;
328
329                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
330                 }
331
332                 /* check if L3 checksum is needed */
333                 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
334                     (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
335                         ena_tx_ctx->l3_csum_enable = true;
336
337                 if (mbuf->ol_flags & PKT_TX_IPV6) {
338                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
339                 } else {
340                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
341
342                         /* set don't fragment (DF) flag */
343                         if (mbuf->packet_type &
344                                 (RTE_PTYPE_L4_NONFRAG
345                                  | RTE_PTYPE_INNER_L4_NONFRAG))
346                                 ena_tx_ctx->df = true;
347                 }
348
349                 /* check if L4 checksum is needed */
350                 if ((mbuf->ol_flags & PKT_TX_TCP_CKSUM) &&
351                     (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
352                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
353                         ena_tx_ctx->l4_csum_enable = true;
354                 } else if ((mbuf->ol_flags & PKT_TX_UDP_CKSUM) &&
355                            (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
356                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
357                         ena_tx_ctx->l4_csum_enable = true;
358                 } else {
359                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
360                         ena_tx_ctx->l4_csum_enable = false;
361                 }
362
363                 ena_meta->mss = mbuf->tso_segsz;
364                 ena_meta->l3_hdr_len = mbuf->l3_len;
365                 ena_meta->l3_hdr_offset = mbuf->l2_len;
366
367                 ena_tx_ctx->meta_valid = true;
368         } else {
369                 ena_tx_ctx->meta_valid = false;
370         }
371 }
372
373 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
374 {
375         if (likely(req_id < rx_ring->ring_size))
376                 return 0;
377
378         RTE_LOG(ERR, PMD, "Invalid rx req_id: %hu\n", req_id);
379
380         rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
381         rx_ring->adapter->trigger_reset = true;
382         ++rx_ring->rx_stats.bad_req_id;
383
384         return -EFAULT;
385 }
386
387 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
388 {
389         struct ena_tx_buffer *tx_info = NULL;
390
391         if (likely(req_id < tx_ring->ring_size)) {
392                 tx_info = &tx_ring->tx_buffer_info[req_id];
393                 if (likely(tx_info->mbuf))
394                         return 0;
395         }
396
397         if (tx_info)
398                 RTE_LOG(ERR, PMD, "tx_info doesn't have valid mbuf\n");
399         else
400                 RTE_LOG(ERR, PMD, "Invalid req_id: %hu\n", req_id);
401
402         /* Trigger device reset */
403         ++tx_ring->tx_stats.bad_req_id;
404         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
405         tx_ring->adapter->trigger_reset = true;
406         return -EFAULT;
407 }
408
409 static void ena_config_host_info(struct ena_com_dev *ena_dev)
410 {
411         struct ena_admin_host_info *host_info;
412         int rc;
413
414         /* Allocate only the host info */
415         rc = ena_com_allocate_host_info(ena_dev);
416         if (rc) {
417                 RTE_LOG(ERR, PMD, "Cannot allocate host info\n");
418                 return;
419         }
420
421         host_info = ena_dev->host_attr.host_info;
422
423         host_info->os_type = ENA_ADMIN_OS_DPDK;
424         host_info->kernel_ver = RTE_VERSION;
425         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
426                 sizeof(host_info->kernel_ver_str));
427         host_info->os_dist = RTE_VERSION;
428         strlcpy((char *)host_info->os_dist_str, rte_version(),
429                 sizeof(host_info->os_dist_str));
430         host_info->driver_version =
431                 (DRV_MODULE_VER_MAJOR) |
432                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
433                 (DRV_MODULE_VER_SUBMINOR <<
434                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
435         host_info->num_cpus = rte_lcore_count();
436
437         rc = ena_com_set_host_attributes(ena_dev);
438         if (rc) {
439                 if (rc == -ENA_COM_UNSUPPORTED)
440                         RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
441                 else
442                         RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
443
444                 goto err;
445         }
446
447         return;
448
449 err:
450         ena_com_delete_host_info(ena_dev);
451 }
452
453 /* This function calculates the number of xstats based on the current config */
454 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
455 {
456         return ENA_STATS_ARRAY_GLOBAL +
457                 (dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
458                 (dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
459 }
460
461 static void ena_config_debug_area(struct ena_adapter *adapter)
462 {
463         u32 debug_area_size;
464         int rc, ss_count;
465
466         ss_count = ena_xstats_calc_num(adapter->rte_dev);
467
468         /* allocate 32 bytes for each string and 64bit for the value */
469         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
470
471         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
472         if (rc) {
473                 RTE_LOG(ERR, PMD, "Cannot allocate debug area\n");
474                 return;
475         }
476
477         rc = ena_com_set_host_attributes(&adapter->ena_dev);
478         if (rc) {
479                 if (rc == -ENA_COM_UNSUPPORTED)
480                         RTE_LOG(WARNING, PMD, "Cannot set host attributes\n");
481                 else
482                         RTE_LOG(ERR, PMD, "Cannot set host attributes\n");
483
484                 goto err;
485         }
486
487         return;
488 err:
489         ena_com_delete_debug_area(&adapter->ena_dev);
490 }
491
492 static void ena_close(struct rte_eth_dev *dev)
493 {
494         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
495         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
496         struct ena_adapter *adapter =
497                 (struct ena_adapter *)(dev->data->dev_private);
498
499         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
500                 ena_stop(dev);
501         adapter->state = ENA_ADAPTER_STATE_CLOSED;
502
503         ena_rx_queue_release_all(dev);
504         ena_tx_queue_release_all(dev);
505
506         rte_free(adapter->drv_stats);
507         adapter->drv_stats = NULL;
508
509         rte_intr_disable(intr_handle);
510         rte_intr_callback_unregister(intr_handle,
511                                      ena_interrupt_handler_rte,
512                                      adapter);
513
514         /*
515          * MAC is not allocated dynamically. Setting NULL should prevent from
516          * release of the resource in the rte_eth_dev_release_port().
517          */
518         dev->data->mac_addrs = NULL;
519 }
520
521 static int
522 ena_dev_reset(struct rte_eth_dev *dev)
523 {
524         int rc = 0;
525
526         ena_destroy_device(dev);
527         rc = eth_ena_dev_init(dev);
528         if (rc)
529                 PMD_INIT_LOG(CRIT, "Cannot initialize device");
530
531         return rc;
532 }
533
534 static int ena_rss_reta_update(struct rte_eth_dev *dev,
535                                struct rte_eth_rss_reta_entry64 *reta_conf,
536                                uint16_t reta_size)
537 {
538         struct ena_adapter *adapter =
539                 (struct ena_adapter *)(dev->data->dev_private);
540         struct ena_com_dev *ena_dev = &adapter->ena_dev;
541         int rc, i;
542         u16 entry_value;
543         int conf_idx;
544         int idx;
545
546         if ((reta_size == 0) || (reta_conf == NULL))
547                 return -EINVAL;
548
549         if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
550                 RTE_LOG(WARNING, PMD,
551                         "indirection table %d is bigger than supported (%d)\n",
552                         reta_size, ENA_RX_RSS_TABLE_SIZE);
553                 return -EINVAL;
554         }
555
556         for (i = 0 ; i < reta_size ; i++) {
557                 /* each reta_conf is for 64 entries.
558                  * to support 128 we use 2 conf of 64
559                  */
560                 conf_idx = i / RTE_RETA_GROUP_SIZE;
561                 idx = i % RTE_RETA_GROUP_SIZE;
562                 if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
563                         entry_value =
564                                 ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
565
566                         rc = ena_com_indirect_table_fill_entry(ena_dev,
567                                                                i,
568                                                                entry_value);
569                         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
570                                 RTE_LOG(ERR, PMD,
571                                         "Cannot fill indirect table\n");
572                                 return rc;
573                         }
574                 }
575         }
576
577         rc = ena_com_indirect_table_set(ena_dev);
578         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
579                 RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
580                 return rc;
581         }
582
583         RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries  for port %d\n",
584                 __func__, reta_size, adapter->rte_dev->data->port_id);
585
586         return 0;
587 }
588
589 /* Query redirection table. */
590 static int ena_rss_reta_query(struct rte_eth_dev *dev,
591                               struct rte_eth_rss_reta_entry64 *reta_conf,
592                               uint16_t reta_size)
593 {
594         struct ena_adapter *adapter =
595                 (struct ena_adapter *)(dev->data->dev_private);
596         struct ena_com_dev *ena_dev = &adapter->ena_dev;
597         int rc;
598         int i;
599         u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
600         int reta_conf_idx;
601         int reta_idx;
602
603         if (reta_size == 0 || reta_conf == NULL ||
604             (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
605                 return -EINVAL;
606
607         rc = ena_com_indirect_table_get(ena_dev, indirect_table);
608         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
609                 RTE_LOG(ERR, PMD, "cannot get indirect table\n");
610                 return -ENOTSUP;
611         }
612
613         for (i = 0 ; i < reta_size ; i++) {
614                 reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
615                 reta_idx = i % RTE_RETA_GROUP_SIZE;
616                 if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
617                         reta_conf[reta_conf_idx].reta[reta_idx] =
618                                 ENA_IO_RXQ_IDX_REV(indirect_table[i]);
619         }
620
621         return 0;
622 }
623
624 static int ena_rss_init_default(struct ena_adapter *adapter)
625 {
626         struct ena_com_dev *ena_dev = &adapter->ena_dev;
627         uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
628         int rc, i;
629         u32 val;
630
631         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
632         if (unlikely(rc)) {
633                 RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
634                 goto err_rss_init;
635         }
636
637         for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
638                 val = i % nb_rx_queues;
639                 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
640                                                        ENA_IO_RXQ_IDX(val));
641                 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
642                         RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
643                         goto err_fill_indir;
644                 }
645         }
646
647         rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
648                                         ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
649         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
650                 RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
651                 goto err_fill_indir;
652         }
653
654         rc = ena_com_set_default_hash_ctrl(ena_dev);
655         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
656                 RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
657                 goto err_fill_indir;
658         }
659
660         rc = ena_com_indirect_table_set(ena_dev);
661         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
662                 RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
663                 goto err_fill_indir;
664         }
665         RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
666                 adapter->rte_dev->data->port_id);
667
668         return 0;
669
670 err_fill_indir:
671         ena_com_rss_destroy(ena_dev);
672 err_rss_init:
673
674         return rc;
675 }
676
677 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
678 {
679         struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
680         int nb_queues = dev->data->nb_rx_queues;
681         int i;
682
683         for (i = 0; i < nb_queues; i++)
684                 ena_rx_queue_release(queues[i]);
685 }
686
687 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
688 {
689         struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
690         int nb_queues = dev->data->nb_tx_queues;
691         int i;
692
693         for (i = 0; i < nb_queues; i++)
694                 ena_tx_queue_release(queues[i]);
695 }
696
697 static void ena_rx_queue_release(void *queue)
698 {
699         struct ena_ring *ring = (struct ena_ring *)queue;
700
701         /* Free ring resources */
702         if (ring->rx_buffer_info)
703                 rte_free(ring->rx_buffer_info);
704         ring->rx_buffer_info = NULL;
705
706         if (ring->rx_refill_buffer)
707                 rte_free(ring->rx_refill_buffer);
708         ring->rx_refill_buffer = NULL;
709
710         if (ring->empty_rx_reqs)
711                 rte_free(ring->empty_rx_reqs);
712         ring->empty_rx_reqs = NULL;
713
714         ring->configured = 0;
715
716         RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
717                 ring->port_id, ring->id);
718 }
719
720 static void ena_tx_queue_release(void *queue)
721 {
722         struct ena_ring *ring = (struct ena_ring *)queue;
723
724         /* Free ring resources */
725         if (ring->push_buf_intermediate_buf)
726                 rte_free(ring->push_buf_intermediate_buf);
727
728         if (ring->tx_buffer_info)
729                 rte_free(ring->tx_buffer_info);
730
731         if (ring->empty_tx_reqs)
732                 rte_free(ring->empty_tx_reqs);
733
734         ring->empty_tx_reqs = NULL;
735         ring->tx_buffer_info = NULL;
736         ring->push_buf_intermediate_buf = NULL;
737
738         ring->configured = 0;
739
740         RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
741                 ring->port_id, ring->id);
742 }
743
744 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
745 {
746         unsigned int i;
747
748         for (i = 0; i < ring->ring_size; ++i)
749                 if (ring->rx_buffer_info[i]) {
750                         rte_mbuf_raw_free(ring->rx_buffer_info[i]);
751                         ring->rx_buffer_info[i] = NULL;
752                 }
753 }
754
755 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
756 {
757         unsigned int i;
758
759         for (i = 0; i < ring->ring_size; ++i) {
760                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
761
762                 if (tx_buf->mbuf)
763                         rte_pktmbuf_free(tx_buf->mbuf);
764         }
765 }
766
767 static int ena_link_update(struct rte_eth_dev *dev,
768                            __rte_unused int wait_to_complete)
769 {
770         struct rte_eth_link *link = &dev->data->dev_link;
771         struct ena_adapter *adapter;
772
773         adapter = (struct ena_adapter *)(dev->data->dev_private);
774
775         link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
776         link->link_speed = ETH_SPEED_NUM_NONE;
777         link->link_duplex = ETH_LINK_FULL_DUPLEX;
778
779         return 0;
780 }
781
782 static int ena_queue_start_all(struct rte_eth_dev *dev,
783                                enum ena_ring_type ring_type)
784 {
785         struct ena_adapter *adapter =
786                 (struct ena_adapter *)(dev->data->dev_private);
787         struct ena_ring *queues = NULL;
788         int nb_queues;
789         int i = 0;
790         int rc = 0;
791
792         if (ring_type == ENA_RING_TYPE_RX) {
793                 queues = adapter->rx_ring;
794                 nb_queues = dev->data->nb_rx_queues;
795         } else {
796                 queues = adapter->tx_ring;
797                 nb_queues = dev->data->nb_tx_queues;
798         }
799         for (i = 0; i < nb_queues; i++) {
800                 if (queues[i].configured) {
801                         if (ring_type == ENA_RING_TYPE_RX) {
802                                 ena_assert_msg(
803                                         dev->data->rx_queues[i] == &queues[i],
804                                         "Inconsistent state of rx queues\n");
805                         } else {
806                                 ena_assert_msg(
807                                         dev->data->tx_queues[i] == &queues[i],
808                                         "Inconsistent state of tx queues\n");
809                         }
810
811                         rc = ena_queue_start(&queues[i]);
812
813                         if (rc) {
814                                 PMD_INIT_LOG(ERR,
815                                              "failed to start queue %d type(%d)",
816                                              i, ring_type);
817                                 goto err;
818                         }
819                 }
820         }
821
822         return 0;
823
824 err:
825         while (i--)
826                 if (queues[i].configured)
827                         ena_queue_stop(&queues[i]);
828
829         return rc;
830 }
831
832 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
833 {
834         uint32_t max_frame_len = adapter->max_mtu;
835
836         if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
837             DEV_RX_OFFLOAD_JUMBO_FRAME)
838                 max_frame_len =
839                         adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
840
841         return max_frame_len;
842 }
843
844 static int ena_check_valid_conf(struct ena_adapter *adapter)
845 {
846         uint32_t max_frame_len = ena_get_mtu_conf(adapter);
847
848         if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
849                 PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
850                                   "max mtu: %d, min mtu: %d",
851                              max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
852                 return ENA_COM_UNSUPPORTED;
853         }
854
855         return 0;
856 }
857
858 static int
859 ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
860 {
861         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
862         struct ena_com_dev *ena_dev = ctx->ena_dev;
863         uint32_t tx_queue_size = ENA_MAX_RING_SIZE_TX;
864         uint32_t rx_queue_size = ENA_MAX_RING_SIZE_RX;
865
866         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
867                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
868                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
869                 rx_queue_size = RTE_MIN(rx_queue_size,
870                         max_queue_ext->max_rx_cq_depth);
871                 rx_queue_size = RTE_MIN(rx_queue_size,
872                         max_queue_ext->max_rx_sq_depth);
873                 tx_queue_size = RTE_MIN(tx_queue_size,
874                         max_queue_ext->max_tx_cq_depth);
875
876                 if (ena_dev->tx_mem_queue_type ==
877                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
878                         tx_queue_size = RTE_MIN(tx_queue_size,
879                                 llq->max_llq_depth);
880                 } else {
881                         tx_queue_size = RTE_MIN(tx_queue_size,
882                                 max_queue_ext->max_tx_sq_depth);
883                 }
884
885                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
886                         max_queue_ext->max_per_packet_rx_descs);
887                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
888                         max_queue_ext->max_per_packet_tx_descs);
889         } else {
890                 struct ena_admin_queue_feature_desc *max_queues =
891                         &ctx->get_feat_ctx->max_queues;
892                 rx_queue_size = RTE_MIN(rx_queue_size,
893                         max_queues->max_cq_depth);
894                 rx_queue_size = RTE_MIN(rx_queue_size,
895                         max_queues->max_sq_depth);
896                 tx_queue_size = RTE_MIN(tx_queue_size,
897                         max_queues->max_cq_depth);
898
899                 if (ena_dev->tx_mem_queue_type ==
900                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
901                         tx_queue_size = RTE_MIN(tx_queue_size,
902                                 llq->max_llq_depth);
903                 } else {
904                         tx_queue_size = RTE_MIN(tx_queue_size,
905                                 max_queues->max_sq_depth);
906                 }
907
908                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
909                         max_queues->max_packet_tx_descs);
910                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
911                         max_queues->max_packet_rx_descs);
912         }
913
914         /* Round down to the nearest power of 2 */
915         rx_queue_size = rte_align32prevpow2(rx_queue_size);
916         tx_queue_size = rte_align32prevpow2(tx_queue_size);
917
918         if (unlikely(rx_queue_size == 0 || tx_queue_size == 0)) {
919                 PMD_INIT_LOG(ERR, "Invalid queue size");
920                 return -EFAULT;
921         }
922
923         ctx->rx_queue_size = rx_queue_size;
924         ctx->tx_queue_size = tx_queue_size;
925
926         return 0;
927 }
928
929 static void ena_stats_restart(struct rte_eth_dev *dev)
930 {
931         struct ena_adapter *adapter =
932                 (struct ena_adapter *)(dev->data->dev_private);
933
934         rte_atomic64_init(&adapter->drv_stats->ierrors);
935         rte_atomic64_init(&adapter->drv_stats->oerrors);
936         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
937         rte_atomic64_init(&adapter->drv_stats->rx_drops);
938 }
939
940 static int ena_stats_get(struct rte_eth_dev *dev,
941                           struct rte_eth_stats *stats)
942 {
943         struct ena_admin_basic_stats ena_stats;
944         struct ena_adapter *adapter =
945                 (struct ena_adapter *)(dev->data->dev_private);
946         struct ena_com_dev *ena_dev = &adapter->ena_dev;
947         int rc;
948         int i;
949         int max_rings_stats;
950
951         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
952                 return -ENOTSUP;
953
954         memset(&ena_stats, 0, sizeof(ena_stats));
955         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
956         if (unlikely(rc)) {
957                 RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA\n");
958                 return rc;
959         }
960
961         /* Set of basic statistics from ENA */
962         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
963                                           ena_stats.rx_pkts_low);
964         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
965                                           ena_stats.tx_pkts_low);
966         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
967                                         ena_stats.rx_bytes_low);
968         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
969                                         ena_stats.tx_bytes_low);
970
971         /* Driver related stats */
972         stats->imissed = rte_atomic64_read(&adapter->drv_stats->rx_drops);
973         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
974         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
975         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
976
977         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
978                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
979         for (i = 0; i < max_rings_stats; ++i) {
980                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
981
982                 stats->q_ibytes[i] = rx_stats->bytes;
983                 stats->q_ipackets[i] = rx_stats->cnt;
984                 stats->q_errors[i] = rx_stats->bad_desc_num +
985                         rx_stats->bad_req_id;
986         }
987
988         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
989                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
990         for (i = 0; i < max_rings_stats; ++i) {
991                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
992
993                 stats->q_obytes[i] = tx_stats->bytes;
994                 stats->q_opackets[i] = tx_stats->cnt;
995         }
996
997         return 0;
998 }
999
1000 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1001 {
1002         struct ena_adapter *adapter;
1003         struct ena_com_dev *ena_dev;
1004         int rc = 0;
1005
1006         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1007         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1008         adapter = (struct ena_adapter *)(dev->data->dev_private);
1009
1010         ena_dev = &adapter->ena_dev;
1011         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1012
1013         if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1014                 RTE_LOG(ERR, PMD,
1015                         "Invalid MTU setting. new_mtu: %d "
1016                         "max mtu: %d min mtu: %d\n",
1017                         mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1018                 return -EINVAL;
1019         }
1020
1021         rc = ena_com_set_dev_mtu(ena_dev, mtu);
1022         if (rc)
1023                 RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
1024         else
1025                 RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
1026
1027         return rc;
1028 }
1029
1030 static int ena_start(struct rte_eth_dev *dev)
1031 {
1032         struct ena_adapter *adapter =
1033                 (struct ena_adapter *)(dev->data->dev_private);
1034         uint64_t ticks;
1035         int rc = 0;
1036
1037         rc = ena_check_valid_conf(adapter);
1038         if (rc)
1039                 return rc;
1040
1041         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1042         if (rc)
1043                 return rc;
1044
1045         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1046         if (rc)
1047                 goto err_start_tx;
1048
1049         if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1050             ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1051                 rc = ena_rss_init_default(adapter);
1052                 if (rc)
1053                         goto err_rss_init;
1054         }
1055
1056         ena_stats_restart(dev);
1057
1058         adapter->timestamp_wd = rte_get_timer_cycles();
1059         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1060
1061         ticks = rte_get_timer_hz();
1062         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1063                         ena_timer_wd_callback, adapter);
1064
1065         ++adapter->dev_stats.dev_start;
1066         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1067
1068         return 0;
1069
1070 err_rss_init:
1071         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1072 err_start_tx:
1073         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1074         return rc;
1075 }
1076
1077 static void ena_stop(struct rte_eth_dev *dev)
1078 {
1079         struct ena_adapter *adapter =
1080                 (struct ena_adapter *)(dev->data->dev_private);
1081         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1082         int rc;
1083
1084         rte_timer_stop_sync(&adapter->timer_wd);
1085         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1086         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1087
1088         if (adapter->trigger_reset) {
1089                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1090                 if (rc)
1091                         RTE_LOG(ERR, PMD, "Device reset failed rc=%d\n", rc);
1092         }
1093
1094         ++adapter->dev_stats.dev_stop;
1095         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1096 }
1097
1098 static int ena_create_io_queue(struct ena_ring *ring)
1099 {
1100         struct ena_adapter *adapter;
1101         struct ena_com_dev *ena_dev;
1102         struct ena_com_create_io_ctx ctx =
1103                 /* policy set to _HOST just to satisfy icc compiler */
1104                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1105                   0, 0, 0, 0, 0 };
1106         uint16_t ena_qid;
1107         unsigned int i;
1108         int rc;
1109
1110         adapter = ring->adapter;
1111         ena_dev = &adapter->ena_dev;
1112
1113         if (ring->type == ENA_RING_TYPE_TX) {
1114                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1115                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1116                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1117                 ctx.queue_size = adapter->tx_ring_size;
1118                 for (i = 0; i < ring->ring_size; i++)
1119                         ring->empty_tx_reqs[i] = i;
1120         } else {
1121                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1122                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1123                 ctx.queue_size = adapter->rx_ring_size;
1124                 for (i = 0; i < ring->ring_size; i++)
1125                         ring->empty_rx_reqs[i] = i;
1126         }
1127         ctx.qid = ena_qid;
1128         ctx.msix_vector = -1; /* interrupts not used */
1129         ctx.numa_node = ena_cpu_to_node(ring->id);
1130
1131         rc = ena_com_create_io_queue(ena_dev, &ctx);
1132         if (rc) {
1133                 RTE_LOG(ERR, PMD,
1134                         "failed to create io queue #%d (qid:%d) rc: %d\n",
1135                         ring->id, ena_qid, rc);
1136                 return rc;
1137         }
1138
1139         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1140                                      &ring->ena_com_io_sq,
1141                                      &ring->ena_com_io_cq);
1142         if (rc) {
1143                 RTE_LOG(ERR, PMD,
1144                         "Failed to get io queue handlers. queue num %d rc: %d\n",
1145                         ring->id, rc);
1146                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1147                 return rc;
1148         }
1149
1150         if (ring->type == ENA_RING_TYPE_TX)
1151                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1152
1153         return 0;
1154 }
1155
1156 static void ena_queue_stop(struct ena_ring *ring)
1157 {
1158         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1159
1160         if (ring->type == ENA_RING_TYPE_RX) {
1161                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1162                 ena_rx_queue_release_bufs(ring);
1163         } else {
1164                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1165                 ena_tx_queue_release_bufs(ring);
1166         }
1167 }
1168
1169 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1170                               enum ena_ring_type ring_type)
1171 {
1172         struct ena_adapter *adapter =
1173                 (struct ena_adapter *)(dev->data->dev_private);
1174         struct ena_ring *queues = NULL;
1175         uint16_t nb_queues, i;
1176
1177         if (ring_type == ENA_RING_TYPE_RX) {
1178                 queues = adapter->rx_ring;
1179                 nb_queues = dev->data->nb_rx_queues;
1180         } else {
1181                 queues = adapter->tx_ring;
1182                 nb_queues = dev->data->nb_tx_queues;
1183         }
1184
1185         for (i = 0; i < nb_queues; ++i)
1186                 if (queues[i].configured)
1187                         ena_queue_stop(&queues[i]);
1188 }
1189
1190 static int ena_queue_start(struct ena_ring *ring)
1191 {
1192         int rc, bufs_num;
1193
1194         ena_assert_msg(ring->configured == 1,
1195                        "Trying to start unconfigured queue\n");
1196
1197         rc = ena_create_io_queue(ring);
1198         if (rc) {
1199                 PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1200                 return rc;
1201         }
1202
1203         ring->next_to_clean = 0;
1204         ring->next_to_use = 0;
1205
1206         if (ring->type == ENA_RING_TYPE_TX) {
1207                 ring->tx_stats.available_desc =
1208                         ena_com_free_desc(ring->ena_com_io_sq);
1209                 return 0;
1210         }
1211
1212         bufs_num = ring->ring_size - 1;
1213         rc = ena_populate_rx_queue(ring, bufs_num);
1214         if (rc != bufs_num) {
1215                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1216                                          ENA_IO_RXQ_IDX(ring->id));
1217                 PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1218                 return ENA_COM_FAULT;
1219         }
1220
1221         return 0;
1222 }
1223
1224 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1225                               uint16_t queue_idx,
1226                               uint16_t nb_desc,
1227                               __rte_unused unsigned int socket_id,
1228                               const struct rte_eth_txconf *tx_conf)
1229 {
1230         struct ena_ring *txq = NULL;
1231         struct ena_adapter *adapter =
1232                 (struct ena_adapter *)(dev->data->dev_private);
1233         unsigned int i;
1234
1235         txq = &adapter->tx_ring[queue_idx];
1236
1237         if (txq->configured) {
1238                 RTE_LOG(CRIT, PMD,
1239                         "API violation. Queue %d is already configured\n",
1240                         queue_idx);
1241                 return ENA_COM_FAULT;
1242         }
1243
1244         if (!rte_is_power_of_2(nb_desc)) {
1245                 RTE_LOG(ERR, PMD,
1246                         "Unsupported size of TX queue: %d is not a power of 2.\n",
1247                         nb_desc);
1248                 return -EINVAL;
1249         }
1250
1251         if (nb_desc > adapter->tx_ring_size) {
1252                 RTE_LOG(ERR, PMD,
1253                         "Unsupported size of TX queue (max size: %d)\n",
1254                         adapter->tx_ring_size);
1255                 return -EINVAL;
1256         }
1257
1258         if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1259                 nb_desc = adapter->tx_ring_size;
1260
1261         txq->port_id = dev->data->port_id;
1262         txq->next_to_clean = 0;
1263         txq->next_to_use = 0;
1264         txq->ring_size = nb_desc;
1265
1266         txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1267                                           sizeof(struct ena_tx_buffer) *
1268                                           txq->ring_size,
1269                                           RTE_CACHE_LINE_SIZE);
1270         if (!txq->tx_buffer_info) {
1271                 RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
1272                 return -ENOMEM;
1273         }
1274
1275         txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1276                                          sizeof(u16) * txq->ring_size,
1277                                          RTE_CACHE_LINE_SIZE);
1278         if (!txq->empty_tx_reqs) {
1279                 RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
1280                 rte_free(txq->tx_buffer_info);
1281                 return -ENOMEM;
1282         }
1283
1284         txq->push_buf_intermediate_buf =
1285                 rte_zmalloc("txq->push_buf_intermediate_buf",
1286                             txq->tx_max_header_size,
1287                             RTE_CACHE_LINE_SIZE);
1288         if (!txq->push_buf_intermediate_buf) {
1289                 RTE_LOG(ERR, PMD, "failed to alloc push buff for LLQ\n");
1290                 rte_free(txq->tx_buffer_info);
1291                 rte_free(txq->empty_tx_reqs);
1292                 return -ENOMEM;
1293         }
1294
1295         for (i = 0; i < txq->ring_size; i++)
1296                 txq->empty_tx_reqs[i] = i;
1297
1298         if (tx_conf != NULL) {
1299                 txq->offloads =
1300                         tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1301         }
1302         /* Store pointer to this queue in upper layer */
1303         txq->configured = 1;
1304         dev->data->tx_queues[queue_idx] = txq;
1305
1306         return 0;
1307 }
1308
1309 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1310                               uint16_t queue_idx,
1311                               uint16_t nb_desc,
1312                               __rte_unused unsigned int socket_id,
1313                               __rte_unused const struct rte_eth_rxconf *rx_conf,
1314                               struct rte_mempool *mp)
1315 {
1316         struct ena_adapter *adapter =
1317                 (struct ena_adapter *)(dev->data->dev_private);
1318         struct ena_ring *rxq = NULL;
1319         int i;
1320
1321         rxq = &adapter->rx_ring[queue_idx];
1322         if (rxq->configured) {
1323                 RTE_LOG(CRIT, PMD,
1324                         "API violation. Queue %d is already configured\n",
1325                         queue_idx);
1326                 return ENA_COM_FAULT;
1327         }
1328
1329         if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1330                 nb_desc = adapter->rx_ring_size;
1331
1332         if (!rte_is_power_of_2(nb_desc)) {
1333                 RTE_LOG(ERR, PMD,
1334                         "Unsupported size of RX queue: %d is not a power of 2.\n",
1335                         nb_desc);
1336                 return -EINVAL;
1337         }
1338
1339         if (nb_desc > adapter->rx_ring_size) {
1340                 RTE_LOG(ERR, PMD,
1341                         "Unsupported size of RX queue (max size: %d)\n",
1342                         adapter->rx_ring_size);
1343                 return -EINVAL;
1344         }
1345
1346         rxq->port_id = dev->data->port_id;
1347         rxq->next_to_clean = 0;
1348         rxq->next_to_use = 0;
1349         rxq->ring_size = nb_desc;
1350         rxq->mb_pool = mp;
1351
1352         rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1353                                           sizeof(struct rte_mbuf *) * nb_desc,
1354                                           RTE_CACHE_LINE_SIZE);
1355         if (!rxq->rx_buffer_info) {
1356                 RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
1357                 return -ENOMEM;
1358         }
1359
1360         rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1361                                             sizeof(struct rte_mbuf *) * nb_desc,
1362                                             RTE_CACHE_LINE_SIZE);
1363
1364         if (!rxq->rx_refill_buffer) {
1365                 RTE_LOG(ERR, PMD, "failed to alloc mem for rx refill buffer\n");
1366                 rte_free(rxq->rx_buffer_info);
1367                 rxq->rx_buffer_info = NULL;
1368                 return -ENOMEM;
1369         }
1370
1371         rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1372                                          sizeof(uint16_t) * nb_desc,
1373                                          RTE_CACHE_LINE_SIZE);
1374         if (!rxq->empty_rx_reqs) {
1375                 RTE_LOG(ERR, PMD, "failed to alloc mem for empty rx reqs\n");
1376                 rte_free(rxq->rx_buffer_info);
1377                 rxq->rx_buffer_info = NULL;
1378                 rte_free(rxq->rx_refill_buffer);
1379                 rxq->rx_refill_buffer = NULL;
1380                 return -ENOMEM;
1381         }
1382
1383         for (i = 0; i < nb_desc; i++)
1384                 rxq->empty_rx_reqs[i] = i;
1385
1386         /* Store pointer to this queue in upper layer */
1387         rxq->configured = 1;
1388         dev->data->rx_queues[queue_idx] = rxq;
1389
1390         return 0;
1391 }
1392
1393 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1394 {
1395         unsigned int i;
1396         int rc;
1397         uint16_t ring_size = rxq->ring_size;
1398         uint16_t ring_mask = ring_size - 1;
1399         uint16_t next_to_use = rxq->next_to_use;
1400         uint16_t in_use, req_id;
1401         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1402
1403         if (unlikely(!count))
1404                 return 0;
1405
1406         in_use = rxq->next_to_use - rxq->next_to_clean;
1407         ena_assert_msg(((in_use + count) < ring_size), "bad ring state\n");
1408
1409         /* get resources for incoming packets */
1410         rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1411         if (unlikely(rc < 0)) {
1412                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1413                 ++rxq->rx_stats.mbuf_alloc_fail;
1414                 PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1415                 return 0;
1416         }
1417
1418         for (i = 0; i < count; i++) {
1419                 uint16_t next_to_use_masked = next_to_use & ring_mask;
1420                 struct rte_mbuf *mbuf = mbufs[i];
1421                 struct ena_com_buf ebuf;
1422
1423                 if (likely((i + 4) < count))
1424                         rte_prefetch0(mbufs[i + 4]);
1425
1426                 req_id = rxq->empty_rx_reqs[next_to_use_masked];
1427                 rc = validate_rx_req_id(rxq, req_id);
1428                 if (unlikely(rc < 0))
1429                         break;
1430                 rxq->rx_buffer_info[req_id] = mbuf;
1431
1432                 /* prepare physical address for DMA transaction */
1433                 ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1434                 ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1435                 /* pass resource to device */
1436                 rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
1437                                                 &ebuf, req_id);
1438                 if (unlikely(rc)) {
1439                         RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
1440                         rxq->rx_buffer_info[req_id] = NULL;
1441                         break;
1442                 }
1443                 next_to_use++;
1444         }
1445
1446         if (unlikely(i < count)) {
1447                 RTE_LOG(WARNING, PMD, "refilled rx qid %d with only %d "
1448                         "buffers (from %d)\n", rxq->id, i, count);
1449                 rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1450                                      count - i);
1451                 ++rxq->rx_stats.refill_partial;
1452         }
1453
1454         /* When we submitted free recources to device... */
1455         if (likely(i > 0)) {
1456                 /* ...let HW know that it can fill buffers with data
1457                  *
1458                  * Add memory barrier to make sure the desc were written before
1459                  * issue a doorbell
1460                  */
1461                 rte_wmb();
1462                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1463
1464                 rxq->next_to_use = next_to_use;
1465         }
1466
1467         return i;
1468 }
1469
1470 static int ena_device_init(struct ena_com_dev *ena_dev,
1471                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1472                            bool *wd_state)
1473 {
1474         uint32_t aenq_groups;
1475         int rc;
1476         bool readless_supported;
1477
1478         /* Initialize mmio registers */
1479         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1480         if (rc) {
1481                 RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
1482                 return rc;
1483         }
1484
1485         /* The PCIe configuration space revision id indicate if mmio reg
1486          * read is disabled.
1487          */
1488         readless_supported =
1489                 !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1490                                & ENA_MMIO_DISABLE_REG_READ);
1491         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1492
1493         /* reset device */
1494         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1495         if (rc) {
1496                 RTE_LOG(ERR, PMD, "cannot reset device\n");
1497                 goto err_mmio_read_less;
1498         }
1499
1500         /* check FW version */
1501         rc = ena_com_validate_version(ena_dev);
1502         if (rc) {
1503                 RTE_LOG(ERR, PMD, "device version is too low\n");
1504                 goto err_mmio_read_less;
1505         }
1506
1507         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1508
1509         /* ENA device administration layer init */
1510         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1511         if (rc) {
1512                 RTE_LOG(ERR, PMD,
1513                         "cannot initialize ena admin queue with device\n");
1514                 goto err_mmio_read_less;
1515         }
1516
1517         /* To enable the msix interrupts the driver needs to know the number
1518          * of queues. So the driver uses polling mode to retrieve this
1519          * information.
1520          */
1521         ena_com_set_admin_polling_mode(ena_dev, true);
1522
1523         ena_config_host_info(ena_dev);
1524
1525         /* Get Device Attributes and features */
1526         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1527         if (rc) {
1528                 RTE_LOG(ERR, PMD,
1529                         "cannot get attribute for ena device rc= %d\n", rc);
1530                 goto err_admin_init;
1531         }
1532
1533         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1534                       BIT(ENA_ADMIN_NOTIFICATION) |
1535                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1536                       BIT(ENA_ADMIN_FATAL_ERROR) |
1537                       BIT(ENA_ADMIN_WARNING);
1538
1539         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1540         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1541         if (rc) {
1542                 RTE_LOG(ERR, PMD, "Cannot configure aenq groups rc: %d\n", rc);
1543                 goto err_admin_init;
1544         }
1545
1546         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1547
1548         return 0;
1549
1550 err_admin_init:
1551         ena_com_admin_destroy(ena_dev);
1552
1553 err_mmio_read_less:
1554         ena_com_mmio_reg_read_request_destroy(ena_dev);
1555
1556         return rc;
1557 }
1558
1559 static void ena_interrupt_handler_rte(void *cb_arg)
1560 {
1561         struct ena_adapter *adapter = (struct ena_adapter *)cb_arg;
1562         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1563
1564         ena_com_admin_q_comp_intr_handler(ena_dev);
1565         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1566                 ena_com_aenq_intr_handler(ena_dev, adapter);
1567 }
1568
1569 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1570 {
1571         if (!adapter->wd_state)
1572                 return;
1573
1574         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1575                 return;
1576
1577         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1578             adapter->keep_alive_timeout)) {
1579                 RTE_LOG(ERR, PMD, "Keep alive timeout\n");
1580                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1581                 adapter->trigger_reset = true;
1582                 ++adapter->dev_stats.wd_expired;
1583         }
1584 }
1585
1586 /* Check if admin queue is enabled */
1587 static void check_for_admin_com_state(struct ena_adapter *adapter)
1588 {
1589         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1590                 RTE_LOG(ERR, PMD, "ENA admin queue is not in running state!\n");
1591                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1592                 adapter->trigger_reset = true;
1593         }
1594 }
1595
1596 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1597                                   void *arg)
1598 {
1599         struct ena_adapter *adapter = (struct ena_adapter *)arg;
1600         struct rte_eth_dev *dev = adapter->rte_dev;
1601
1602         check_for_missing_keep_alive(adapter);
1603         check_for_admin_com_state(adapter);
1604
1605         if (unlikely(adapter->trigger_reset)) {
1606                 RTE_LOG(ERR, PMD, "Trigger reset is on\n");
1607                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1608                         NULL);
1609         }
1610 }
1611
1612 static inline void
1613 set_default_llq_configurations(struct ena_llq_configurations *llq_config)
1614 {
1615         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1616         llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1617         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1618         llq_config->llq_num_decs_before_header =
1619                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1620         llq_config->llq_ring_entry_size_value = 128;
1621 }
1622
1623 static int
1624 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1625                                 struct ena_com_dev *ena_dev,
1626                                 struct ena_admin_feature_llq_desc *llq,
1627                                 struct ena_llq_configurations *llq_default_configurations)
1628 {
1629         int rc;
1630         u32 llq_feature_mask;
1631
1632         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1633         if (!(ena_dev->supported_features & llq_feature_mask)) {
1634                 RTE_LOG(INFO, PMD,
1635                         "LLQ is not supported. Fallback to host mode policy.\n");
1636                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1637                 return 0;
1638         }
1639
1640         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1641         if (unlikely(rc)) {
1642                 PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1643                         "Fallback to host mode policy.");
1644                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1645                 return 0;
1646         }
1647
1648         /* Nothing to config, exit */
1649         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1650                 return 0;
1651
1652         if (!adapter->dev_mem_base) {
1653                 RTE_LOG(ERR, PMD, "Unable to access LLQ bar resource. "
1654                         "Fallback to host mode policy.\n.");
1655                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1656                 return 0;
1657         }
1658
1659         ena_dev->mem_bar = adapter->dev_mem_base;
1660
1661         return 0;
1662 }
1663
1664 static int ena_calc_io_queue_num(struct ena_com_dev *ena_dev,
1665                                  struct ena_com_dev_get_features_ctx *get_feat_ctx)
1666 {
1667         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
1668
1669         /* Regular queues capabilities */
1670         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1671                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1672                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1673                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1674                                     max_queue_ext->max_rx_cq_num);
1675                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1676                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1677         } else {
1678                 struct ena_admin_queue_feature_desc *max_queues =
1679                         &get_feat_ctx->max_queues;
1680                 io_tx_sq_num = max_queues->max_sq_num;
1681                 io_tx_cq_num = max_queues->max_cq_num;
1682                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1683         }
1684
1685         /* In case of LLQ use the llq number in the get feature cmd */
1686         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1687                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1688
1689         io_queue_num = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1690         io_queue_num = RTE_MIN(io_queue_num, io_tx_sq_num);
1691         io_queue_num = RTE_MIN(io_queue_num, io_tx_cq_num);
1692
1693         if (unlikely(io_queue_num == 0)) {
1694                 RTE_LOG(ERR, PMD, "Number of IO queues should not be 0\n");
1695                 return -EFAULT;
1696         }
1697
1698         return io_queue_num;
1699 }
1700
1701 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1702 {
1703         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1704         struct rte_pci_device *pci_dev;
1705         struct rte_intr_handle *intr_handle;
1706         struct ena_adapter *adapter =
1707                 (struct ena_adapter *)(eth_dev->data->dev_private);
1708         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1709         struct ena_com_dev_get_features_ctx get_feat_ctx;
1710         struct ena_llq_configurations llq_config;
1711         const char *queue_type_str;
1712         int rc;
1713
1714         static int adapters_found;
1715         bool wd_state;
1716
1717         eth_dev->dev_ops = &ena_dev_ops;
1718         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1719         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1720         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1721
1722         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1723                 return 0;
1724
1725         memset(adapter, 0, sizeof(struct ena_adapter));
1726         ena_dev = &adapter->ena_dev;
1727
1728         adapter->rte_eth_dev_data = eth_dev->data;
1729         adapter->rte_dev = eth_dev;
1730
1731         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1732         adapter->pdev = pci_dev;
1733
1734         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1735                      pci_dev->addr.domain,
1736                      pci_dev->addr.bus,
1737                      pci_dev->addr.devid,
1738                      pci_dev->addr.function);
1739
1740         intr_handle = &pci_dev->intr_handle;
1741
1742         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1743         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1744
1745         if (!adapter->regs) {
1746                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1747                              ENA_REGS_BAR);
1748                 return -ENXIO;
1749         }
1750
1751         ena_dev->reg_bar = adapter->regs;
1752         ena_dev->dmadev = adapter->pdev;
1753
1754         adapter->id_number = adapters_found;
1755
1756         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1757                  adapter->id_number);
1758
1759         /* device specific initialization routine */
1760         rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1761         if (rc) {
1762                 PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1763                 goto err;
1764         }
1765         adapter->wd_state = wd_state;
1766
1767         set_default_llq_configurations(&llq_config);
1768         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1769                                              &get_feat_ctx.llq, &llq_config);
1770         if (unlikely(rc)) {
1771                 PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1772                 return rc;
1773         }
1774
1775         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1776                 queue_type_str = "Regular";
1777         else
1778                 queue_type_str = "Low latency";
1779         RTE_LOG(INFO, PMD, "Placement policy: %s\n", queue_type_str);
1780
1781         calc_queue_ctx.ena_dev = ena_dev;
1782         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1783         adapter->num_queues = ena_calc_io_queue_num(ena_dev,
1784                                                     &get_feat_ctx);
1785
1786         rc = ena_calc_queue_size(&calc_queue_ctx);
1787         if (unlikely((rc != 0) || (adapter->num_queues <= 0))) {
1788                 rc = -EFAULT;
1789                 goto err_device_destroy;
1790         }
1791
1792         adapter->tx_ring_size = calc_queue_ctx.tx_queue_size;
1793         adapter->rx_ring_size = calc_queue_ctx.rx_queue_size;
1794
1795         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1796         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1797
1798         /* prepare ring structures */
1799         ena_init_rings(adapter);
1800
1801         ena_config_debug_area(adapter);
1802
1803         /* Set max MTU for this device */
1804         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1805
1806         /* set device support for offloads */
1807         adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1808                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1809         adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1810                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1811         adapter->offloads.rx_csum_supported =
1812                 (get_feat_ctx.offload.rx_supported &
1813                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1814
1815         /* Copy MAC address and point DPDK to it */
1816         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1817         rte_ether_addr_copy((struct rte_ether_addr *)
1818                         get_feat_ctx.dev_attr.mac_addr,
1819                         (struct rte_ether_addr *)adapter->mac_addr);
1820
1821         /*
1822          * Pass the information to the rte_eth_dev_close() that it should also
1823          * release the private port resources.
1824          */
1825         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1826
1827         adapter->drv_stats = rte_zmalloc("adapter stats",
1828                                          sizeof(*adapter->drv_stats),
1829                                          RTE_CACHE_LINE_SIZE);
1830         if (!adapter->drv_stats) {
1831                 RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
1832                 rc = -ENOMEM;
1833                 goto err_delete_debug_area;
1834         }
1835
1836         rte_intr_callback_register(intr_handle,
1837                                    ena_interrupt_handler_rte,
1838                                    adapter);
1839         rte_intr_enable(intr_handle);
1840         ena_com_set_admin_polling_mode(ena_dev, false);
1841         ena_com_admin_aenq_enable(ena_dev);
1842
1843         if (adapters_found == 0)
1844                 rte_timer_subsystem_init();
1845         rte_timer_init(&adapter->timer_wd);
1846
1847         adapters_found++;
1848         adapter->state = ENA_ADAPTER_STATE_INIT;
1849
1850         return 0;
1851
1852 err_delete_debug_area:
1853         ena_com_delete_debug_area(ena_dev);
1854
1855 err_device_destroy:
1856         ena_com_delete_host_info(ena_dev);
1857         ena_com_admin_destroy(ena_dev);
1858
1859 err:
1860         return rc;
1861 }
1862
1863 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1864 {
1865         struct ena_adapter *adapter =
1866                 (struct ena_adapter *)(eth_dev->data->dev_private);
1867         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1868
1869         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1870                 return;
1871
1872         ena_com_set_admin_running_state(ena_dev, false);
1873
1874         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1875                 ena_close(eth_dev);
1876
1877         ena_com_delete_debug_area(ena_dev);
1878         ena_com_delete_host_info(ena_dev);
1879
1880         ena_com_abort_admin_commands(ena_dev);
1881         ena_com_wait_for_abort_completion(ena_dev);
1882         ena_com_admin_destroy(ena_dev);
1883         ena_com_mmio_reg_read_request_destroy(ena_dev);
1884
1885         adapter->state = ENA_ADAPTER_STATE_FREE;
1886 }
1887
1888 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1889 {
1890         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1891                 return 0;
1892
1893         ena_destroy_device(eth_dev);
1894
1895         eth_dev->dev_ops = NULL;
1896         eth_dev->rx_pkt_burst = NULL;
1897         eth_dev->tx_pkt_burst = NULL;
1898         eth_dev->tx_pkt_prepare = NULL;
1899
1900         return 0;
1901 }
1902
1903 static int ena_dev_configure(struct rte_eth_dev *dev)
1904 {
1905         struct ena_adapter *adapter =
1906                 (struct ena_adapter *)(dev->data->dev_private);
1907
1908         adapter->state = ENA_ADAPTER_STATE_CONFIG;
1909
1910         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1911         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1912         return 0;
1913 }
1914
1915 static void ena_init_rings(struct ena_adapter *adapter)
1916 {
1917         int i;
1918
1919         for (i = 0; i < adapter->num_queues; i++) {
1920                 struct ena_ring *ring = &adapter->tx_ring[i];
1921
1922                 ring->configured = 0;
1923                 ring->type = ENA_RING_TYPE_TX;
1924                 ring->adapter = adapter;
1925                 ring->id = i;
1926                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1927                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1928                 ring->sgl_size = adapter->max_tx_sgl_size;
1929         }
1930
1931         for (i = 0; i < adapter->num_queues; i++) {
1932                 struct ena_ring *ring = &adapter->rx_ring[i];
1933
1934                 ring->configured = 0;
1935                 ring->type = ENA_RING_TYPE_RX;
1936                 ring->adapter = adapter;
1937                 ring->id = i;
1938                 ring->sgl_size = adapter->max_rx_sgl_size;
1939         }
1940 }
1941
1942 static void ena_infos_get(struct rte_eth_dev *dev,
1943                           struct rte_eth_dev_info *dev_info)
1944 {
1945         struct ena_adapter *adapter;
1946         struct ena_com_dev *ena_dev;
1947         uint64_t rx_feat = 0, tx_feat = 0;
1948
1949         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1950         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1951         adapter = (struct ena_adapter *)(dev->data->dev_private);
1952
1953         ena_dev = &adapter->ena_dev;
1954         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1955
1956         dev_info->speed_capa =
1957                         ETH_LINK_SPEED_1G   |
1958                         ETH_LINK_SPEED_2_5G |
1959                         ETH_LINK_SPEED_5G   |
1960                         ETH_LINK_SPEED_10G  |
1961                         ETH_LINK_SPEED_25G  |
1962                         ETH_LINK_SPEED_40G  |
1963                         ETH_LINK_SPEED_50G  |
1964                         ETH_LINK_SPEED_100G;
1965
1966         /* Set Tx & Rx features available for device */
1967         if (adapter->offloads.tso4_supported)
1968                 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
1969
1970         if (adapter->offloads.tx_csum_supported)
1971                 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1972                         DEV_TX_OFFLOAD_UDP_CKSUM |
1973                         DEV_TX_OFFLOAD_TCP_CKSUM;
1974
1975         if (adapter->offloads.rx_csum_supported)
1976                 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1977                         DEV_RX_OFFLOAD_UDP_CKSUM  |
1978                         DEV_RX_OFFLOAD_TCP_CKSUM;
1979
1980         rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1981
1982         /* Inform framework about available features */
1983         dev_info->rx_offload_capa = rx_feat;
1984         dev_info->rx_queue_offload_capa = rx_feat;
1985         dev_info->tx_offload_capa = tx_feat;
1986         dev_info->tx_queue_offload_capa = tx_feat;
1987
1988         dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
1989                                            ETH_RSS_UDP;
1990
1991         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1992         dev_info->max_rx_pktlen  = adapter->max_mtu;
1993         dev_info->max_mac_addrs = 1;
1994
1995         dev_info->max_rx_queues = adapter->num_queues;
1996         dev_info->max_tx_queues = adapter->num_queues;
1997         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1998
1999         adapter->tx_supported_offloads = tx_feat;
2000         adapter->rx_supported_offloads = rx_feat;
2001
2002         dev_info->rx_desc_lim.nb_max = adapter->rx_ring_size;
2003         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2004         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2005                                         adapter->max_rx_sgl_size);
2006         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2007                                         adapter->max_rx_sgl_size);
2008
2009         dev_info->tx_desc_lim.nb_max = adapter->tx_ring_size;
2010         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2011         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2012                                         adapter->max_tx_sgl_size);
2013         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2014                                         adapter->max_tx_sgl_size);
2015 }
2016
2017 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2018                                   uint16_t nb_pkts)
2019 {
2020         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2021         unsigned int ring_size = rx_ring->ring_size;
2022         unsigned int ring_mask = ring_size - 1;
2023         uint16_t next_to_clean = rx_ring->next_to_clean;
2024         uint16_t desc_in_use = 0;
2025         uint16_t req_id;
2026         unsigned int recv_idx = 0;
2027         struct rte_mbuf *mbuf = NULL;
2028         struct rte_mbuf *mbuf_head = NULL;
2029         struct rte_mbuf *mbuf_prev = NULL;
2030         struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
2031         unsigned int completed;
2032
2033         struct ena_com_rx_ctx ena_rx_ctx;
2034         int rc = 0;
2035
2036         /* Check adapter state */
2037         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2038                 RTE_LOG(ALERT, PMD,
2039                         "Trying to receive pkts while device is NOT running\n");
2040                 return 0;
2041         }
2042
2043         desc_in_use = rx_ring->next_to_use - next_to_clean;
2044         if (unlikely(nb_pkts > desc_in_use))
2045                 nb_pkts = desc_in_use;
2046
2047         for (completed = 0; completed < nb_pkts; completed++) {
2048                 int segments = 0;
2049
2050                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2051                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2052                 ena_rx_ctx.descs = 0;
2053                 /* receive packet context */
2054                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2055                                     rx_ring->ena_com_io_sq,
2056                                     &ena_rx_ctx);
2057                 if (unlikely(rc)) {
2058                         RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
2059                         rx_ring->adapter->reset_reason =
2060                                 ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2061                         rx_ring->adapter->trigger_reset = true;
2062                         ++rx_ring->rx_stats.bad_desc_num;
2063                         return 0;
2064                 }
2065
2066                 if (unlikely(ena_rx_ctx.descs == 0))
2067                         break;
2068
2069                 while (segments < ena_rx_ctx.descs) {
2070                         req_id = ena_rx_ctx.ena_bufs[segments].req_id;
2071                         rc = validate_rx_req_id(rx_ring, req_id);
2072                         if (unlikely(rc)) {
2073                                 if (segments != 0)
2074                                         rte_mbuf_raw_free(mbuf_head);
2075                                 break;
2076                         }
2077
2078                         mbuf = rx_buff_info[req_id];
2079                         rx_buff_info[req_id] = NULL;
2080                         mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
2081                         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2082                         mbuf->refcnt = 1;
2083                         mbuf->next = NULL;
2084                         if (unlikely(segments == 0)) {
2085                                 mbuf->nb_segs = ena_rx_ctx.descs;
2086                                 mbuf->port = rx_ring->port_id;
2087                                 mbuf->pkt_len = 0;
2088                                 mbuf_head = mbuf;
2089                         } else {
2090                                 /* for multi-segment pkts create mbuf chain */
2091                                 mbuf_prev->next = mbuf;
2092                         }
2093                         mbuf_head->pkt_len += mbuf->data_len;
2094
2095                         mbuf_prev = mbuf;
2096                         rx_ring->empty_rx_reqs[next_to_clean & ring_mask] =
2097                                 req_id;
2098                         segments++;
2099                         next_to_clean++;
2100                 }
2101                 if (unlikely(rc))
2102                         break;
2103
2104                 /* fill mbuf attributes if any */
2105                 ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
2106
2107                 if (unlikely(mbuf_head->ol_flags &
2108                         (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD)))
2109                         ++rx_ring->rx_stats.bad_csum;
2110
2111                 mbuf_head->hash.rss = ena_rx_ctx.hash;
2112
2113                 /* pass to DPDK application head mbuf */
2114                 rx_pkts[recv_idx] = mbuf_head;
2115                 recv_idx++;
2116                 rx_ring->rx_stats.bytes += mbuf_head->pkt_len;
2117         }
2118
2119         rx_ring->rx_stats.cnt += recv_idx;
2120         rx_ring->next_to_clean = next_to_clean;
2121
2122         desc_in_use = desc_in_use - completed + 1;
2123         /* Burst refill to save doorbells, memory barriers, const interval */
2124         if (ring_size - desc_in_use > ENA_RING_DESCS_RATIO(ring_size)) {
2125                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2126                 ena_populate_rx_queue(rx_ring, ring_size - desc_in_use);
2127         }
2128
2129         return recv_idx;
2130 }
2131
2132 static uint16_t
2133 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2134                 uint16_t nb_pkts)
2135 {
2136         int32_t ret;
2137         uint32_t i;
2138         struct rte_mbuf *m;
2139         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2140         struct rte_ipv4_hdr *ip_hdr;
2141         uint64_t ol_flags;
2142         uint16_t frag_field;
2143
2144         for (i = 0; i != nb_pkts; i++) {
2145                 m = tx_pkts[i];
2146                 ol_flags = m->ol_flags;
2147
2148                 if (!(ol_flags & PKT_TX_IPV4))
2149                         continue;
2150
2151                 /* If there was not L2 header length specified, assume it is
2152                  * length of the ethernet header.
2153                  */
2154                 if (unlikely(m->l2_len == 0))
2155                         m->l2_len = sizeof(struct rte_ether_hdr);
2156
2157                 ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2158                                                  m->l2_len);
2159                 frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2160
2161                 if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2162                         m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2163
2164                         /* If IPv4 header has DF flag enabled and TSO support is
2165                          * disabled, partial chcecksum should not be calculated.
2166                          */
2167                         if (!tx_ring->adapter->offloads.tso4_supported)
2168                                 continue;
2169                 }
2170
2171                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2172                                 (ol_flags & PKT_TX_L4_MASK) ==
2173                                 PKT_TX_SCTP_CKSUM) {
2174                         rte_errno = ENOTSUP;
2175                         return i;
2176                 }
2177
2178 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2179                 ret = rte_validate_tx_offload(m);
2180                 if (ret != 0) {
2181                         rte_errno = -ret;
2182                         return i;
2183                 }
2184 #endif
2185
2186                 /* In case we are supposed to TSO and have DF not set (DF=0)
2187                  * hardware must be provided with partial checksum, otherwise
2188                  * it will take care of necessary calculations.
2189                  */
2190
2191                 ret = rte_net_intel_cksum_flags_prepare(m,
2192                         ol_flags & ~PKT_TX_TCP_SEG);
2193                 if (ret != 0) {
2194                         rte_errno = -ret;
2195                         return i;
2196                 }
2197         }
2198
2199         return i;
2200 }
2201
2202 static void ena_update_hints(struct ena_adapter *adapter,
2203                              struct ena_admin_ena_hw_hints *hints)
2204 {
2205         if (hints->admin_completion_tx_timeout)
2206                 adapter->ena_dev.admin_queue.completion_timeout =
2207                         hints->admin_completion_tx_timeout * 1000;
2208
2209         if (hints->mmio_read_timeout)
2210                 /* convert to usec */
2211                 adapter->ena_dev.mmio_read.reg_read_to =
2212                         hints->mmio_read_timeout * 1000;
2213
2214         if (hints->driver_watchdog_timeout) {
2215                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2216                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2217                 else
2218                         // Convert msecs to ticks
2219                         adapter->keep_alive_timeout =
2220                                 (hints->driver_watchdog_timeout *
2221                                 rte_get_timer_hz()) / 1000;
2222         }
2223 }
2224
2225 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2226                                         struct rte_mbuf *mbuf)
2227 {
2228         struct ena_com_dev *ena_dev;
2229         int num_segments, header_len, rc;
2230
2231         ena_dev = &tx_ring->adapter->ena_dev;
2232         num_segments = mbuf->nb_segs;
2233         header_len = mbuf->data_len;
2234
2235         if (likely(num_segments < tx_ring->sgl_size))
2236                 return 0;
2237
2238         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2239             (num_segments == tx_ring->sgl_size) &&
2240             (header_len < tx_ring->tx_max_header_size))
2241                 return 0;
2242
2243         ++tx_ring->tx_stats.linearize;
2244         rc = rte_pktmbuf_linearize(mbuf);
2245         if (unlikely(rc)) {
2246                 RTE_LOG(WARNING, PMD, "Mbuf linearize failed\n");
2247                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2248                 ++tx_ring->tx_stats.linearize_failed;
2249                 return rc;
2250         }
2251
2252         return rc;
2253 }
2254
2255 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2256                                   uint16_t nb_pkts)
2257 {
2258         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2259         uint16_t next_to_use = tx_ring->next_to_use;
2260         uint16_t next_to_clean = tx_ring->next_to_clean;
2261         struct rte_mbuf *mbuf;
2262         uint16_t seg_len;
2263         unsigned int ring_size = tx_ring->ring_size;
2264         unsigned int ring_mask = ring_size - 1;
2265         struct ena_com_tx_ctx ena_tx_ctx;
2266         struct ena_tx_buffer *tx_info;
2267         struct ena_com_buf *ebuf;
2268         uint16_t rc, req_id, total_tx_descs = 0;
2269         uint16_t sent_idx = 0, empty_tx_reqs;
2270         uint16_t push_len = 0;
2271         uint16_t delta = 0;
2272         int nb_hw_desc;
2273         uint32_t total_length;
2274
2275         /* Check adapter state */
2276         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2277                 RTE_LOG(ALERT, PMD,
2278                         "Trying to xmit pkts while device is NOT running\n");
2279                 return 0;
2280         }
2281
2282         empty_tx_reqs = ring_size - (next_to_use - next_to_clean);
2283         if (nb_pkts > empty_tx_reqs)
2284                 nb_pkts = empty_tx_reqs;
2285
2286         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2287                 mbuf = tx_pkts[sent_idx];
2288                 total_length = 0;
2289
2290                 rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2291                 if (unlikely(rc))
2292                         break;
2293
2294                 req_id = tx_ring->empty_tx_reqs[next_to_use & ring_mask];
2295                 tx_info = &tx_ring->tx_buffer_info[req_id];
2296                 tx_info->mbuf = mbuf;
2297                 tx_info->num_of_bufs = 0;
2298                 ebuf = tx_info->bufs;
2299
2300                 /* Prepare TX context */
2301                 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2302                 memset(&ena_tx_ctx.ena_meta, 0x0,
2303                        sizeof(struct ena_com_tx_meta));
2304                 ena_tx_ctx.ena_bufs = ebuf;
2305                 ena_tx_ctx.req_id = req_id;
2306
2307                 delta = 0;
2308                 seg_len = mbuf->data_len;
2309
2310                 if (tx_ring->tx_mem_queue_type ==
2311                                 ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2312                         push_len = RTE_MIN(mbuf->pkt_len,
2313                                            tx_ring->tx_max_header_size);
2314                         ena_tx_ctx.header_len = push_len;
2315
2316                         if (likely(push_len <= seg_len)) {
2317                                 /* If the push header is in the single segment,
2318                                  * then just point it to the 1st mbuf data.
2319                                  */
2320                                 ena_tx_ctx.push_header =
2321                                         rte_pktmbuf_mtod(mbuf, uint8_t *);
2322                         } else {
2323                                 /* If the push header lays in the several
2324                                  * segments, copy it to the intermediate buffer.
2325                                  */
2326                                 rte_pktmbuf_read(mbuf, 0, push_len,
2327                                         tx_ring->push_buf_intermediate_buf);
2328                                 ena_tx_ctx.push_header =
2329                                         tx_ring->push_buf_intermediate_buf;
2330                                 delta = push_len - seg_len;
2331                         }
2332                 } /* there's no else as we take advantage of memset zeroing */
2333
2334                 /* Set TX offloads flags, if applicable */
2335                 ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads);
2336
2337                 if (unlikely(mbuf->ol_flags &
2338                              (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD)))
2339                         rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2340
2341                 rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
2342
2343                 /* Process first segment taking into
2344                  * consideration pushed header
2345                  */
2346                 if (seg_len > push_len) {
2347                         ebuf->paddr = mbuf->buf_iova +
2348                                       mbuf->data_off +
2349                                       push_len;
2350                         ebuf->len = seg_len - push_len;
2351                         ebuf++;
2352                         tx_info->num_of_bufs++;
2353                 }
2354                 total_length += mbuf->data_len;
2355
2356                 while ((mbuf = mbuf->next) != NULL) {
2357                         seg_len = mbuf->data_len;
2358
2359                         /* Skip mbufs if whole data is pushed as a header */
2360                         if (unlikely(delta > seg_len)) {
2361                                 delta -= seg_len;
2362                                 continue;
2363                         }
2364
2365                         ebuf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2366                         ebuf->len = seg_len - delta;
2367                         total_length += ebuf->len;
2368                         ebuf++;
2369                         tx_info->num_of_bufs++;
2370
2371                         delta = 0;
2372                 }
2373
2374                 ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2375
2376                 if (ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2377                                                &ena_tx_ctx)) {
2378                         RTE_LOG(DEBUG, PMD, "llq tx max burst size of queue %d"
2379                                 " achieved, writing doorbell to send burst\n",
2380                                 tx_ring->id);
2381                         rte_wmb();
2382                         ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2383                 }
2384
2385                 /* prepare the packet's descriptors to dma engine */
2386                 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
2387                                         &ena_tx_ctx, &nb_hw_desc);
2388                 if (unlikely(rc)) {
2389                         ++tx_ring->tx_stats.prepare_ctx_err;
2390                         break;
2391                 }
2392                 tx_info->tx_descs = nb_hw_desc;
2393
2394                 next_to_use++;
2395                 tx_ring->tx_stats.cnt += tx_info->num_of_bufs;
2396                 tx_ring->tx_stats.bytes += total_length;
2397         }
2398         tx_ring->tx_stats.available_desc =
2399                 ena_com_free_desc(tx_ring->ena_com_io_sq);
2400
2401         /* If there are ready packets to be xmitted... */
2402         if (sent_idx > 0) {
2403                 /* ...let HW do its best :-) */
2404                 rte_wmb();
2405                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2406                 tx_ring->tx_stats.doorbells++;
2407                 tx_ring->next_to_use = next_to_use;
2408         }
2409
2410         /* Clear complete packets  */
2411         while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
2412                 rc = validate_tx_req_id(tx_ring, req_id);
2413                 if (rc)
2414                         break;
2415
2416                 /* Get Tx info & store how many descs were processed  */
2417                 tx_info = &tx_ring->tx_buffer_info[req_id];
2418                 total_tx_descs += tx_info->tx_descs;
2419
2420                 /* Free whole mbuf chain  */
2421                 mbuf = tx_info->mbuf;
2422                 rte_pktmbuf_free(mbuf);
2423                 tx_info->mbuf = NULL;
2424
2425                 /* Put back descriptor to the ring for reuse */
2426                 tx_ring->empty_tx_reqs[next_to_clean & ring_mask] = req_id;
2427                 next_to_clean++;
2428
2429                 /* If too many descs to clean, leave it for another run */
2430                 if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
2431                         break;
2432         }
2433         tx_ring->tx_stats.available_desc =
2434                 ena_com_free_desc(tx_ring->ena_com_io_sq);
2435
2436         if (total_tx_descs > 0) {
2437                 /* acknowledge completion of sent packets */
2438                 tx_ring->next_to_clean = next_to_clean;
2439                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2440                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2441         }
2442
2443         tx_ring->tx_stats.tx_poll++;
2444
2445         return sent_idx;
2446 }
2447
2448 /**
2449  * DPDK callback to retrieve names of extended device statistics
2450  *
2451  * @param dev
2452  *   Pointer to Ethernet device structure.
2453  * @param[out] xstats_names
2454  *   Buffer to insert names into.
2455  * @param n
2456  *   Number of names.
2457  *
2458  * @return
2459  *   Number of xstats names.
2460  */
2461 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2462                                 struct rte_eth_xstat_name *xstats_names,
2463                                 unsigned int n)
2464 {
2465         unsigned int xstats_count = ena_xstats_calc_num(dev);
2466         unsigned int stat, i, count = 0;
2467
2468         if (n < xstats_count || !xstats_names)
2469                 return xstats_count;
2470
2471         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2472                 strcpy(xstats_names[count].name,
2473                         ena_stats_global_strings[stat].name);
2474
2475         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2476                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2477                         snprintf(xstats_names[count].name,
2478                                 sizeof(xstats_names[count].name),
2479                                 "rx_q%d_%s", i,
2480                                 ena_stats_rx_strings[stat].name);
2481
2482         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2483                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2484                         snprintf(xstats_names[count].name,
2485                                 sizeof(xstats_names[count].name),
2486                                 "tx_q%d_%s", i,
2487                                 ena_stats_tx_strings[stat].name);
2488
2489         return xstats_count;
2490 }
2491
2492 /**
2493  * DPDK callback to get extended device statistics.
2494  *
2495  * @param dev
2496  *   Pointer to Ethernet device structure.
2497  * @param[out] stats
2498  *   Stats table output buffer.
2499  * @param n
2500  *   The size of the stats table.
2501  *
2502  * @return
2503  *   Number of xstats on success, negative on failure.
2504  */
2505 static int ena_xstats_get(struct rte_eth_dev *dev,
2506                           struct rte_eth_xstat *xstats,
2507                           unsigned int n)
2508 {
2509         struct ena_adapter *adapter =
2510                         (struct ena_adapter *)(dev->data->dev_private);
2511         unsigned int xstats_count = ena_xstats_calc_num(dev);
2512         unsigned int stat, i, count = 0;
2513         int stat_offset;
2514         void *stats_begin;
2515
2516         if (n < xstats_count)
2517                 return xstats_count;
2518
2519         if (!xstats)
2520                 return 0;
2521
2522         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2523                 stat_offset = ena_stats_rx_strings[stat].stat_offset;
2524                 stats_begin = &adapter->dev_stats;
2525
2526                 xstats[count].id = count;
2527                 xstats[count].value = *((uint64_t *)
2528                         ((char *)stats_begin + stat_offset));
2529         }
2530
2531         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2532                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2533                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2534                         stats_begin = &adapter->rx_ring[i].rx_stats;
2535
2536                         xstats[count].id = count;
2537                         xstats[count].value = *((uint64_t *)
2538                                 ((char *)stats_begin + stat_offset));
2539                 }
2540         }
2541
2542         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2543                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2544                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2545                         stats_begin = &adapter->tx_ring[i].rx_stats;
2546
2547                         xstats[count].id = count;
2548                         xstats[count].value = *((uint64_t *)
2549                                 ((char *)stats_begin + stat_offset));
2550                 }
2551         }
2552
2553         return count;
2554 }
2555
2556 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2557                                 const uint64_t *ids,
2558                                 uint64_t *values,
2559                                 unsigned int n)
2560 {
2561         struct ena_adapter *adapter =
2562                 (struct ena_adapter *)(dev->data->dev_private);
2563         uint64_t id;
2564         uint64_t rx_entries, tx_entries;
2565         unsigned int i;
2566         int qid;
2567         int valid = 0;
2568         for (i = 0; i < n; ++i) {
2569                 id = ids[i];
2570                 /* Check if id belongs to global statistics */
2571                 if (id < ENA_STATS_ARRAY_GLOBAL) {
2572                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
2573                         ++valid;
2574                         continue;
2575                 }
2576
2577                 /* Check if id belongs to rx queue statistics */
2578                 id -= ENA_STATS_ARRAY_GLOBAL;
2579                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2580                 if (id < rx_entries) {
2581                         qid = id % dev->data->nb_rx_queues;
2582                         id /= dev->data->nb_rx_queues;
2583                         values[i] = *((uint64_t *)
2584                                 &adapter->rx_ring[qid].rx_stats + id);
2585                         ++valid;
2586                         continue;
2587                 }
2588                                 /* Check if id belongs to rx queue statistics */
2589                 id -= rx_entries;
2590                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2591                 if (id < tx_entries) {
2592                         qid = id % dev->data->nb_tx_queues;
2593                         id /= dev->data->nb_tx_queues;
2594                         values[i] = *((uint64_t *)
2595                                 &adapter->tx_ring[qid].tx_stats + id);
2596                         ++valid;
2597                         continue;
2598                 }
2599         }
2600
2601         return valid;
2602 }
2603
2604 /*********************************************************************
2605  *  PMD configuration
2606  *********************************************************************/
2607 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2608         struct rte_pci_device *pci_dev)
2609 {
2610         return rte_eth_dev_pci_generic_probe(pci_dev,
2611                 sizeof(struct ena_adapter), eth_ena_dev_init);
2612 }
2613
2614 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2615 {
2616         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2617 }
2618
2619 static struct rte_pci_driver rte_ena_pmd = {
2620         .id_table = pci_id_ena_map,
2621         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2622                      RTE_PCI_DRV_WC_ACTIVATE,
2623         .probe = eth_ena_pci_probe,
2624         .remove = eth_ena_pci_remove,
2625 };
2626
2627 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2628 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2629 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2630
2631 RTE_INIT(ena_init_log)
2632 {
2633         ena_logtype_init = rte_log_register("pmd.net.ena.init");
2634         if (ena_logtype_init >= 0)
2635                 rte_log_set_level(ena_logtype_init, RTE_LOG_NOTICE);
2636         ena_logtype_driver = rte_log_register("pmd.net.ena.driver");
2637         if (ena_logtype_driver >= 0)
2638                 rte_log_set_level(ena_logtype_driver, RTE_LOG_NOTICE);
2639 }
2640
2641 /******************************************************************************
2642  ******************************** AENQ Handlers *******************************
2643  *****************************************************************************/
2644 static void ena_update_on_link_change(void *adapter_data,
2645                                       struct ena_admin_aenq_entry *aenq_e)
2646 {
2647         struct rte_eth_dev *eth_dev;
2648         struct ena_adapter *adapter;
2649         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2650         uint32_t status;
2651
2652         adapter = (struct ena_adapter *)adapter_data;
2653         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2654         eth_dev = adapter->rte_dev;
2655
2656         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2657         adapter->link_status = status;
2658
2659         ena_link_update(eth_dev, 0);
2660         _rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2661 }
2662
2663 static void ena_notification(void *data,
2664                              struct ena_admin_aenq_entry *aenq_e)
2665 {
2666         struct ena_adapter *adapter = (struct ena_adapter *)data;
2667         struct ena_admin_ena_hw_hints *hints;
2668
2669         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2670                 RTE_LOG(WARNING, PMD, "Invalid group(%x) expected %x\n",
2671                         aenq_e->aenq_common_desc.group,
2672                         ENA_ADMIN_NOTIFICATION);
2673
2674         switch (aenq_e->aenq_common_desc.syndrom) {
2675         case ENA_ADMIN_UPDATE_HINTS:
2676                 hints = (struct ena_admin_ena_hw_hints *)
2677                         (&aenq_e->inline_data_w4);
2678                 ena_update_hints(adapter, hints);
2679                 break;
2680         default:
2681                 RTE_LOG(ERR, PMD, "Invalid aenq notification link state %d\n",
2682                         aenq_e->aenq_common_desc.syndrom);
2683         }
2684 }
2685
2686 static void ena_keep_alive(void *adapter_data,
2687                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
2688 {
2689         struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
2690         struct ena_admin_aenq_keep_alive_desc *desc;
2691         uint64_t rx_drops;
2692
2693         adapter->timestamp_wd = rte_get_timer_cycles();
2694
2695         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2696         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2697         rte_atomic64_set(&adapter->drv_stats->rx_drops, rx_drops);
2698 }
2699
2700 /**
2701  * This handler will called for unknown event group or unimplemented handlers
2702  **/
2703 static void unimplemented_aenq_handler(__rte_unused void *data,
2704                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
2705 {
2706         RTE_LOG(ERR, PMD, "Unknown event was received or event with "
2707                           "unimplemented handler\n");
2708 }
2709
2710 static struct ena_aenq_handlers aenq_handlers = {
2711         .handlers = {
2712                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2713                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
2714                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2715         },
2716         .unimplemented_handler = unimplemented_aenq_handler
2717 };