mbuf: add namespace to offload flags
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 enum ethtool_stringset {
42         ETH_SS_TEST             = 0,
43         ETH_SS_STATS,
44 };
45
46 struct ena_stats {
47         char name[ETH_GSTRING_LEN];
48         int stat_offset;
49 };
50
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52         .name = #stat, \
53         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55
56 #define ENA_STAT_RX_ENTRY(stat) \
57         ENA_STAT_ENTRY(stat, rx)
58
59 #define ENA_STAT_TX_ENTRY(stat) \
60         ENA_STAT_ENTRY(stat, tx)
61
62 #define ENA_STAT_ENI_ENTRY(stat) \
63         ENA_STAT_ENTRY(stat, eni)
64
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66         ENA_STAT_ENTRY(stat, dev)
67
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76
77 static const struct ena_stats ena_stats_global_strings[] = {
78         ENA_STAT_GLOBAL_ENTRY(wd_expired),
79         ENA_STAT_GLOBAL_ENTRY(dev_start),
80         ENA_STAT_GLOBAL_ENTRY(dev_stop),
81         ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83
84 static const struct ena_stats ena_stats_eni_strings[] = {
85         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91
92 static const struct ena_stats ena_stats_tx_strings[] = {
93         ENA_STAT_TX_ENTRY(cnt),
94         ENA_STAT_TX_ENTRY(bytes),
95         ENA_STAT_TX_ENTRY(prepare_ctx_err),
96         ENA_STAT_TX_ENTRY(linearize),
97         ENA_STAT_TX_ENTRY(linearize_failed),
98         ENA_STAT_TX_ENTRY(tx_poll),
99         ENA_STAT_TX_ENTRY(doorbells),
100         ENA_STAT_TX_ENTRY(bad_req_id),
101         ENA_STAT_TX_ENTRY(available_desc),
102         ENA_STAT_TX_ENTRY(missed_tx),
103 };
104
105 static const struct ena_stats ena_stats_rx_strings[] = {
106         ENA_STAT_RX_ENTRY(cnt),
107         ENA_STAT_RX_ENTRY(bytes),
108         ENA_STAT_RX_ENTRY(refill_partial),
109         ENA_STAT_RX_ENTRY(bad_csum),
110         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111         ENA_STAT_RX_ENTRY(bad_desc_num),
112         ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114
115 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
119
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
125                        RTE_MBUF_F_TX_IP_CKSUM |\
126                        RTE_MBUF_F_TX_TCP_SEG)
127
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF            0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
133
134 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
135         RTE_MBUF_F_TX_IPV6 |            \
136         RTE_MBUF_F_TX_IPV4 |            \
137         RTE_MBUF_F_TX_IP_CKSUM |        \
138         RTE_MBUF_F_TX_TCP_SEG)
139
140 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
141         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM                0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM                0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM                0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO                    0x0020
156
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH                 0x0040
159
160 static const struct rte_pci_id pci_id_ena_map[] = {
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163         { .device_id = 0 },
164 };
165
166 static struct ena_aenq_handlers aenq_handlers;
167
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169                            struct rte_pci_device *pdev,
170                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
171                            bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174         struct ena_tx_buffer *tx_info,
175         struct rte_mbuf *mbuf,
176         void **push_header,
177         uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                                   uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183                 uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185                               uint16_t nb_desc, unsigned int socket_id,
186                               const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188                               uint16_t nb_desc, unsigned int socket_id,
189                               const struct rte_eth_rxconf *rx_conf,
190                               struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193                                     struct ena_com_rx_buf_info *ena_bufs,
194                                     uint32_t descs,
195                                     uint16_t *next_to_clean,
196                                     uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200                                   struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203                            bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217                            int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221                               enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224                                enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231                          struct rte_eth_dev_info *dev_info);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237                                 struct rte_eth_xstat_name *xstats_names,
238                                 unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240                           struct rte_eth_xstat *stats,
241                           unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243                                 const uint64_t *ids,
244                                 uint64_t *values,
245                                 unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247                                    const char *value,
248                                    void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250                              struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
253 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
254                                     uint16_t queue_id);
255 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
256                                      uint16_t queue_id);
257
258 static const struct eth_dev_ops ena_dev_ops = {
259         .dev_configure        = ena_dev_configure,
260         .dev_infos_get        = ena_infos_get,
261         .rx_queue_setup       = ena_rx_queue_setup,
262         .tx_queue_setup       = ena_tx_queue_setup,
263         .dev_start            = ena_start,
264         .dev_stop             = ena_stop,
265         .link_update          = ena_link_update,
266         .stats_get            = ena_stats_get,
267         .xstats_get_names     = ena_xstats_get_names,
268         .xstats_get           = ena_xstats_get,
269         .xstats_get_by_id     = ena_xstats_get_by_id,
270         .mtu_set              = ena_mtu_set,
271         .rx_queue_release     = ena_rx_queue_release,
272         .tx_queue_release     = ena_tx_queue_release,
273         .dev_close            = ena_close,
274         .dev_reset            = ena_dev_reset,
275         .reta_update          = ena_rss_reta_update,
276         .reta_query           = ena_rss_reta_query,
277         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
278         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
279         .rss_hash_update      = ena_rss_hash_update,
280         .rss_hash_conf_get    = ena_rss_hash_conf_get,
281 };
282
283 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
284                                        struct ena_com_rx_ctx *ena_rx_ctx,
285                                        bool fill_hash)
286 {
287         uint64_t ol_flags = 0;
288         uint32_t packet_type = 0;
289
290         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
291                 packet_type |= RTE_PTYPE_L4_TCP;
292         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
293                 packet_type |= RTE_PTYPE_L4_UDP;
294
295         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
296                 packet_type |= RTE_PTYPE_L3_IPV4;
297                 if (unlikely(ena_rx_ctx->l3_csum_err))
298                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
299                 else
300                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
301         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
302                 packet_type |= RTE_PTYPE_L3_IPV6;
303         }
304
305         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
306                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
307         else
308                 if (unlikely(ena_rx_ctx->l4_csum_err))
309                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310                 else
311                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
312
313         if (fill_hash &&
314             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
315                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
316                 mbuf->hash.rss = ena_rx_ctx->hash;
317         }
318
319         mbuf->ol_flags = ol_flags;
320         mbuf->packet_type = packet_type;
321 }
322
323 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
324                                        struct ena_com_tx_ctx *ena_tx_ctx,
325                                        uint64_t queue_offloads,
326                                        bool disable_meta_caching)
327 {
328         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
329
330         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
331             (queue_offloads & QUEUE_OFFLOADS)) {
332                 /* check if TSO is required */
333                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
334                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
335                         ena_tx_ctx->tso_enable = true;
336
337                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
338                 }
339
340                 /* check if L3 checksum is needed */
341                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
342                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
343                         ena_tx_ctx->l3_csum_enable = true;
344
345                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
346                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
347                 } else {
348                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
349
350                         /* set don't fragment (DF) flag */
351                         if (mbuf->packet_type &
352                                 (RTE_PTYPE_L4_NONFRAG
353                                  | RTE_PTYPE_INNER_L4_NONFRAG))
354                                 ena_tx_ctx->df = true;
355                 }
356
357                 /* check if L4 checksum is needed */
358                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
359                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
360                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
361                         ena_tx_ctx->l4_csum_enable = true;
362                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
363                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
364                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
365                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
366                         ena_tx_ctx->l4_csum_enable = true;
367                 } else {
368                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
369                         ena_tx_ctx->l4_csum_enable = false;
370                 }
371
372                 ena_meta->mss = mbuf->tso_segsz;
373                 ena_meta->l3_hdr_len = mbuf->l3_len;
374                 ena_meta->l3_hdr_offset = mbuf->l2_len;
375
376                 ena_tx_ctx->meta_valid = true;
377         } else if (disable_meta_caching) {
378                 memset(ena_meta, 0, sizeof(*ena_meta));
379                 ena_tx_ctx->meta_valid = true;
380         } else {
381                 ena_tx_ctx->meta_valid = false;
382         }
383 }
384
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387         struct ena_tx_buffer *tx_info = NULL;
388
389         if (likely(req_id < tx_ring->ring_size)) {
390                 tx_info = &tx_ring->tx_buffer_info[req_id];
391                 if (likely(tx_info->mbuf))
392                         return 0;
393         }
394
395         if (tx_info)
396                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397         else
398                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399
400         /* Trigger device reset */
401         ++tx_ring->tx_stats.bad_req_id;
402         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403         tx_ring->adapter->trigger_reset = true;
404         return -EFAULT;
405 }
406
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409         struct ena_admin_host_info *host_info;
410         int rc;
411
412         /* Allocate only the host info */
413         rc = ena_com_allocate_host_info(ena_dev);
414         if (rc) {
415                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416                 return;
417         }
418
419         host_info = ena_dev->host_attr.host_info;
420
421         host_info->os_type = ENA_ADMIN_OS_DPDK;
422         host_info->kernel_ver = RTE_VERSION;
423         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424                 sizeof(host_info->kernel_ver_str));
425         host_info->os_dist = RTE_VERSION;
426         strlcpy((char *)host_info->os_dist_str, rte_version(),
427                 sizeof(host_info->os_dist_str));
428         host_info->driver_version =
429                 (DRV_MODULE_VER_MAJOR) |
430                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431                 (DRV_MODULE_VER_SUBMINOR <<
432                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433         host_info->num_cpus = rte_lcore_count();
434
435         host_info->driver_supported_features =
436                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
437                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
438
439         rc = ena_com_set_host_attributes(ena_dev);
440         if (rc) {
441                 if (rc == -ENA_COM_UNSUPPORTED)
442                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
443                 else
444                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
445
446                 goto err;
447         }
448
449         return;
450
451 err:
452         ena_com_delete_host_info(ena_dev);
453 }
454
455 /* This function calculates the number of xstats based on the current config */
456 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
457 {
458         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
459                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
460                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
461 }
462
463 static void ena_config_debug_area(struct ena_adapter *adapter)
464 {
465         u32 debug_area_size;
466         int rc, ss_count;
467
468         ss_count = ena_xstats_calc_num(adapter->edev_data);
469
470         /* allocate 32 bytes for each string and 64bit for the value */
471         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
472
473         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
474         if (rc) {
475                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
476                 return;
477         }
478
479         rc = ena_com_set_host_attributes(&adapter->ena_dev);
480         if (rc) {
481                 if (rc == -ENA_COM_UNSUPPORTED)
482                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
483                 else
484                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
485
486                 goto err;
487         }
488
489         return;
490 err:
491         ena_com_delete_debug_area(&adapter->ena_dev);
492 }
493
494 static int ena_close(struct rte_eth_dev *dev)
495 {
496         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
497         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
498         struct ena_adapter *adapter = dev->data->dev_private;
499         int ret = 0;
500
501         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
502                 return 0;
503
504         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
505                 ret = ena_stop(dev);
506         adapter->state = ENA_ADAPTER_STATE_CLOSED;
507
508         ena_rx_queue_release_all(dev);
509         ena_tx_queue_release_all(dev);
510
511         rte_free(adapter->drv_stats);
512         adapter->drv_stats = NULL;
513
514         rte_intr_disable(intr_handle);
515         rte_intr_callback_unregister(intr_handle,
516                                      ena_interrupt_handler_rte,
517                                      dev);
518
519         /*
520          * MAC is not allocated dynamically. Setting NULL should prevent from
521          * release of the resource in the rte_eth_dev_release_port().
522          */
523         dev->data->mac_addrs = NULL;
524
525         return ret;
526 }
527
528 static int
529 ena_dev_reset(struct rte_eth_dev *dev)
530 {
531         int rc = 0;
532
533         /* Cannot release memory in secondary process */
534         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
535                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
536                 return -EPERM;
537         }
538
539         ena_destroy_device(dev);
540         rc = eth_ena_dev_init(dev);
541         if (rc)
542                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
543
544         return rc;
545 }
546
547 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
548 {
549         int nb_queues = dev->data->nb_rx_queues;
550         int i;
551
552         for (i = 0; i < nb_queues; i++)
553                 ena_rx_queue_release(dev, i);
554 }
555
556 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
557 {
558         int nb_queues = dev->data->nb_tx_queues;
559         int i;
560
561         for (i = 0; i < nb_queues; i++)
562                 ena_tx_queue_release(dev, i);
563 }
564
565 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
566 {
567         struct ena_ring *ring = dev->data->rx_queues[qid];
568
569         /* Free ring resources */
570         if (ring->rx_buffer_info)
571                 rte_free(ring->rx_buffer_info);
572         ring->rx_buffer_info = NULL;
573
574         if (ring->rx_refill_buffer)
575                 rte_free(ring->rx_refill_buffer);
576         ring->rx_refill_buffer = NULL;
577
578         if (ring->empty_rx_reqs)
579                 rte_free(ring->empty_rx_reqs);
580         ring->empty_rx_reqs = NULL;
581
582         ring->configured = 0;
583
584         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
585                 ring->port_id, ring->id);
586 }
587
588 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
589 {
590         struct ena_ring *ring = dev->data->tx_queues[qid];
591
592         /* Free ring resources */
593         if (ring->push_buf_intermediate_buf)
594                 rte_free(ring->push_buf_intermediate_buf);
595
596         if (ring->tx_buffer_info)
597                 rte_free(ring->tx_buffer_info);
598
599         if (ring->empty_tx_reqs)
600                 rte_free(ring->empty_tx_reqs);
601
602         ring->empty_tx_reqs = NULL;
603         ring->tx_buffer_info = NULL;
604         ring->push_buf_intermediate_buf = NULL;
605
606         ring->configured = 0;
607
608         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
609                 ring->port_id, ring->id);
610 }
611
612 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
613 {
614         unsigned int i;
615
616         for (i = 0; i < ring->ring_size; ++i) {
617                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
618                 if (rx_info->mbuf) {
619                         rte_mbuf_raw_free(rx_info->mbuf);
620                         rx_info->mbuf = NULL;
621                 }
622         }
623 }
624
625 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
626 {
627         unsigned int i;
628
629         for (i = 0; i < ring->ring_size; ++i) {
630                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
631
632                 if (tx_buf->mbuf) {
633                         rte_pktmbuf_free(tx_buf->mbuf);
634                         tx_buf->mbuf = NULL;
635                 }
636         }
637 }
638
639 static int ena_link_update(struct rte_eth_dev *dev,
640                            __rte_unused int wait_to_complete)
641 {
642         struct rte_eth_link *link = &dev->data->dev_link;
643         struct ena_adapter *adapter = dev->data->dev_private;
644
645         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
646         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
647         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
648
649         return 0;
650 }
651
652 static int ena_queue_start_all(struct rte_eth_dev *dev,
653                                enum ena_ring_type ring_type)
654 {
655         struct ena_adapter *adapter = dev->data->dev_private;
656         struct ena_ring *queues = NULL;
657         int nb_queues;
658         int i = 0;
659         int rc = 0;
660
661         if (ring_type == ENA_RING_TYPE_RX) {
662                 queues = adapter->rx_ring;
663                 nb_queues = dev->data->nb_rx_queues;
664         } else {
665                 queues = adapter->tx_ring;
666                 nb_queues = dev->data->nb_tx_queues;
667         }
668         for (i = 0; i < nb_queues; i++) {
669                 if (queues[i].configured) {
670                         if (ring_type == ENA_RING_TYPE_RX) {
671                                 ena_assert_msg(
672                                         dev->data->rx_queues[i] == &queues[i],
673                                         "Inconsistent state of Rx queues\n");
674                         } else {
675                                 ena_assert_msg(
676                                         dev->data->tx_queues[i] == &queues[i],
677                                         "Inconsistent state of Tx queues\n");
678                         }
679
680                         rc = ena_queue_start(dev, &queues[i]);
681
682                         if (rc) {
683                                 PMD_INIT_LOG(ERR,
684                                         "Failed to start queue[%d] of type(%d)\n",
685                                         i, ring_type);
686                                 goto err;
687                         }
688                 }
689         }
690
691         return 0;
692
693 err:
694         while (i--)
695                 if (queues[i].configured)
696                         ena_queue_stop(&queues[i]);
697
698         return rc;
699 }
700
701 static int ena_check_valid_conf(struct ena_adapter *adapter)
702 {
703         uint32_t mtu = adapter->edev_data->mtu;
704
705         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
706                 PMD_INIT_LOG(ERR,
707                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
708                         mtu, adapter->max_mtu, ENA_MIN_MTU);
709                 return ENA_COM_UNSUPPORTED;
710         }
711
712         return 0;
713 }
714
715 static int
716 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
717                        bool use_large_llq_hdr)
718 {
719         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
720         struct ena_com_dev *ena_dev = ctx->ena_dev;
721         uint32_t max_tx_queue_size;
722         uint32_t max_rx_queue_size;
723
724         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
725                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
726                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
727                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
728                         max_queue_ext->max_rx_sq_depth);
729                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
730
731                 if (ena_dev->tx_mem_queue_type ==
732                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
733                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
734                                 llq->max_llq_depth);
735                 } else {
736                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
737                                 max_queue_ext->max_tx_sq_depth);
738                 }
739
740                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
741                         max_queue_ext->max_per_packet_rx_descs);
742                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
743                         max_queue_ext->max_per_packet_tx_descs);
744         } else {
745                 struct ena_admin_queue_feature_desc *max_queues =
746                         &ctx->get_feat_ctx->max_queues;
747                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
748                         max_queues->max_sq_depth);
749                 max_tx_queue_size = max_queues->max_cq_depth;
750
751                 if (ena_dev->tx_mem_queue_type ==
752                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
753                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
754                                 llq->max_llq_depth);
755                 } else {
756                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
757                                 max_queues->max_sq_depth);
758                 }
759
760                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
761                         max_queues->max_packet_rx_descs);
762                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
763                         max_queues->max_packet_tx_descs);
764         }
765
766         /* Round down to the nearest power of 2 */
767         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
768         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
769
770         if (use_large_llq_hdr) {
771                 if ((llq->entry_size_ctrl_supported &
772                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
773                     (ena_dev->tx_mem_queue_type ==
774                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
775                         max_tx_queue_size /= 2;
776                         PMD_INIT_LOG(INFO,
777                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
778                                 max_tx_queue_size);
779                 } else {
780                         PMD_INIT_LOG(ERR,
781                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
782                 }
783         }
784
785         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
786                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
787                 return -EFAULT;
788         }
789
790         ctx->max_tx_queue_size = max_tx_queue_size;
791         ctx->max_rx_queue_size = max_rx_queue_size;
792
793         return 0;
794 }
795
796 static void ena_stats_restart(struct rte_eth_dev *dev)
797 {
798         struct ena_adapter *adapter = dev->data->dev_private;
799
800         rte_atomic64_init(&adapter->drv_stats->ierrors);
801         rte_atomic64_init(&adapter->drv_stats->oerrors);
802         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
803         adapter->drv_stats->rx_drops = 0;
804 }
805
806 static int ena_stats_get(struct rte_eth_dev *dev,
807                           struct rte_eth_stats *stats)
808 {
809         struct ena_admin_basic_stats ena_stats;
810         struct ena_adapter *adapter = dev->data->dev_private;
811         struct ena_com_dev *ena_dev = &adapter->ena_dev;
812         int rc;
813         int i;
814         int max_rings_stats;
815
816         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
817                 return -ENOTSUP;
818
819         memset(&ena_stats, 0, sizeof(ena_stats));
820
821         rte_spinlock_lock(&adapter->admin_lock);
822         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
823         rte_spinlock_unlock(&adapter->admin_lock);
824         if (unlikely(rc)) {
825                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
826                 return rc;
827         }
828
829         /* Set of basic statistics from ENA */
830         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
831                                           ena_stats.rx_pkts_low);
832         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
833                                           ena_stats.tx_pkts_low);
834         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
835                                         ena_stats.rx_bytes_low);
836         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
837                                         ena_stats.tx_bytes_low);
838
839         /* Driver related stats */
840         stats->imissed = adapter->drv_stats->rx_drops;
841         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
842         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
843         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
844
845         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
846                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
847         for (i = 0; i < max_rings_stats; ++i) {
848                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
849
850                 stats->q_ibytes[i] = rx_stats->bytes;
851                 stats->q_ipackets[i] = rx_stats->cnt;
852                 stats->q_errors[i] = rx_stats->bad_desc_num +
853                         rx_stats->bad_req_id;
854         }
855
856         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
857                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
858         for (i = 0; i < max_rings_stats; ++i) {
859                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
860
861                 stats->q_obytes[i] = tx_stats->bytes;
862                 stats->q_opackets[i] = tx_stats->cnt;
863         }
864
865         return 0;
866 }
867
868 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
869 {
870         struct ena_adapter *adapter;
871         struct ena_com_dev *ena_dev;
872         int rc = 0;
873
874         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
875         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
876         adapter = dev->data->dev_private;
877
878         ena_dev = &adapter->ena_dev;
879         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
880
881         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
882                 PMD_DRV_LOG(ERR,
883                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
884                         mtu, adapter->max_mtu, ENA_MIN_MTU);
885                 return -EINVAL;
886         }
887
888         rc = ena_com_set_dev_mtu(ena_dev, mtu);
889         if (rc)
890                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
891         else
892                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
893
894         return rc;
895 }
896
897 static int ena_start(struct rte_eth_dev *dev)
898 {
899         struct ena_adapter *adapter = dev->data->dev_private;
900         uint64_t ticks;
901         int rc = 0;
902
903         /* Cannot allocate memory in secondary process */
904         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
905                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
906                 return -EPERM;
907         }
908
909         rc = ena_check_valid_conf(adapter);
910         if (rc)
911                 return rc;
912
913         rc = ena_setup_rx_intr(dev);
914         if (rc)
915                 return rc;
916
917         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
918         if (rc)
919                 return rc;
920
921         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
922         if (rc)
923                 goto err_start_tx;
924
925         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
926                 rc = ena_rss_configure(adapter);
927                 if (rc)
928                         goto err_rss_init;
929         }
930
931         ena_stats_restart(dev);
932
933         adapter->timestamp_wd = rte_get_timer_cycles();
934         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
935
936         ticks = rte_get_timer_hz();
937         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
938                         ena_timer_wd_callback, dev);
939
940         ++adapter->dev_stats.dev_start;
941         adapter->state = ENA_ADAPTER_STATE_RUNNING;
942
943         return 0;
944
945 err_rss_init:
946         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
947 err_start_tx:
948         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
949         return rc;
950 }
951
952 static int ena_stop(struct rte_eth_dev *dev)
953 {
954         struct ena_adapter *adapter = dev->data->dev_private;
955         struct ena_com_dev *ena_dev = &adapter->ena_dev;
956         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
957         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
958         int rc;
959
960         /* Cannot free memory in secondary process */
961         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
962                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
963                 return -EPERM;
964         }
965
966         rte_timer_stop_sync(&adapter->timer_wd);
967         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
968         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
969
970         if (adapter->trigger_reset) {
971                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
972                 if (rc)
973                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
974         }
975
976         rte_intr_disable(intr_handle);
977
978         rte_intr_efd_disable(intr_handle);
979         if (intr_handle->intr_vec != NULL) {
980                 rte_free(intr_handle->intr_vec);
981                 intr_handle->intr_vec = NULL;
982         }
983
984         rte_intr_enable(intr_handle);
985
986         ++adapter->dev_stats.dev_stop;
987         adapter->state = ENA_ADAPTER_STATE_STOPPED;
988         dev->data->dev_started = 0;
989
990         return 0;
991 }
992
993 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
994 {
995         struct ena_adapter *adapter = ring->adapter;
996         struct ena_com_dev *ena_dev = &adapter->ena_dev;
997         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
998         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
999         struct ena_com_create_io_ctx ctx =
1000                 /* policy set to _HOST just to satisfy icc compiler */
1001                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1002                   0, 0, 0, 0, 0 };
1003         uint16_t ena_qid;
1004         unsigned int i;
1005         int rc;
1006
1007         ctx.msix_vector = -1;
1008         if (ring->type == ENA_RING_TYPE_TX) {
1009                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1010                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1011                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1012                 for (i = 0; i < ring->ring_size; i++)
1013                         ring->empty_tx_reqs[i] = i;
1014         } else {
1015                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1016                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1017                 if (rte_intr_dp_is_en(intr_handle))
1018                         ctx.msix_vector = intr_handle->intr_vec[ring->id];
1019                 for (i = 0; i < ring->ring_size; i++)
1020                         ring->empty_rx_reqs[i] = i;
1021         }
1022         ctx.queue_size = ring->ring_size;
1023         ctx.qid = ena_qid;
1024         ctx.numa_node = ring->numa_socket_id;
1025
1026         rc = ena_com_create_io_queue(ena_dev, &ctx);
1027         if (rc) {
1028                 PMD_DRV_LOG(ERR,
1029                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1030                         ring->id, ena_qid, rc);
1031                 return rc;
1032         }
1033
1034         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1035                                      &ring->ena_com_io_sq,
1036                                      &ring->ena_com_io_cq);
1037         if (rc) {
1038                 PMD_DRV_LOG(ERR,
1039                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1040                         ring->id, rc);
1041                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1042                 return rc;
1043         }
1044
1045         if (ring->type == ENA_RING_TYPE_TX)
1046                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1047
1048         /* Start with Rx interrupts being masked. */
1049         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1050                 ena_rx_queue_intr_disable(dev, ring->id);
1051
1052         return 0;
1053 }
1054
1055 static void ena_queue_stop(struct ena_ring *ring)
1056 {
1057         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1058
1059         if (ring->type == ENA_RING_TYPE_RX) {
1060                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1061                 ena_rx_queue_release_bufs(ring);
1062         } else {
1063                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1064                 ena_tx_queue_release_bufs(ring);
1065         }
1066 }
1067
1068 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1069                               enum ena_ring_type ring_type)
1070 {
1071         struct ena_adapter *adapter = dev->data->dev_private;
1072         struct ena_ring *queues = NULL;
1073         uint16_t nb_queues, i;
1074
1075         if (ring_type == ENA_RING_TYPE_RX) {
1076                 queues = adapter->rx_ring;
1077                 nb_queues = dev->data->nb_rx_queues;
1078         } else {
1079                 queues = adapter->tx_ring;
1080                 nb_queues = dev->data->nb_tx_queues;
1081         }
1082
1083         for (i = 0; i < nb_queues; ++i)
1084                 if (queues[i].configured)
1085                         ena_queue_stop(&queues[i]);
1086 }
1087
1088 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1089 {
1090         int rc, bufs_num;
1091
1092         ena_assert_msg(ring->configured == 1,
1093                        "Trying to start unconfigured queue\n");
1094
1095         rc = ena_create_io_queue(dev, ring);
1096         if (rc) {
1097                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1098                 return rc;
1099         }
1100
1101         ring->next_to_clean = 0;
1102         ring->next_to_use = 0;
1103
1104         if (ring->type == ENA_RING_TYPE_TX) {
1105                 ring->tx_stats.available_desc =
1106                         ena_com_free_q_entries(ring->ena_com_io_sq);
1107                 return 0;
1108         }
1109
1110         bufs_num = ring->ring_size - 1;
1111         rc = ena_populate_rx_queue(ring, bufs_num);
1112         if (rc != bufs_num) {
1113                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1114                                          ENA_IO_RXQ_IDX(ring->id));
1115                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1116                 return ENA_COM_FAULT;
1117         }
1118         /* Flush per-core RX buffers pools cache as they can be used on other
1119          * cores as well.
1120          */
1121         rte_mempool_cache_flush(NULL, ring->mb_pool);
1122
1123         return 0;
1124 }
1125
1126 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1127                               uint16_t queue_idx,
1128                               uint16_t nb_desc,
1129                               unsigned int socket_id,
1130                               const struct rte_eth_txconf *tx_conf)
1131 {
1132         struct ena_ring *txq = NULL;
1133         struct ena_adapter *adapter = dev->data->dev_private;
1134         unsigned int i;
1135         uint16_t dyn_thresh;
1136
1137         txq = &adapter->tx_ring[queue_idx];
1138
1139         if (txq->configured) {
1140                 PMD_DRV_LOG(CRIT,
1141                         "API violation. Queue[%d] is already configured\n",
1142                         queue_idx);
1143                 return ENA_COM_FAULT;
1144         }
1145
1146         if (!rte_is_power_of_2(nb_desc)) {
1147                 PMD_DRV_LOG(ERR,
1148                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1149                         nb_desc);
1150                 return -EINVAL;
1151         }
1152
1153         if (nb_desc > adapter->max_tx_ring_size) {
1154                 PMD_DRV_LOG(ERR,
1155                         "Unsupported size of Tx queue (max size: %d)\n",
1156                         adapter->max_tx_ring_size);
1157                 return -EINVAL;
1158         }
1159
1160         txq->port_id = dev->data->port_id;
1161         txq->next_to_clean = 0;
1162         txq->next_to_use = 0;
1163         txq->ring_size = nb_desc;
1164         txq->size_mask = nb_desc - 1;
1165         txq->numa_socket_id = socket_id;
1166         txq->pkts_without_db = false;
1167         txq->last_cleanup_ticks = 0;
1168
1169         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1170                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1171                 RTE_CACHE_LINE_SIZE,
1172                 socket_id);
1173         if (!txq->tx_buffer_info) {
1174                 PMD_DRV_LOG(ERR,
1175                         "Failed to allocate memory for Tx buffer info\n");
1176                 return -ENOMEM;
1177         }
1178
1179         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1180                 sizeof(uint16_t) * txq->ring_size,
1181                 RTE_CACHE_LINE_SIZE,
1182                 socket_id);
1183         if (!txq->empty_tx_reqs) {
1184                 PMD_DRV_LOG(ERR,
1185                         "Failed to allocate memory for empty Tx requests\n");
1186                 rte_free(txq->tx_buffer_info);
1187                 return -ENOMEM;
1188         }
1189
1190         txq->push_buf_intermediate_buf =
1191                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1192                         txq->tx_max_header_size,
1193                         RTE_CACHE_LINE_SIZE,
1194                         socket_id);
1195         if (!txq->push_buf_intermediate_buf) {
1196                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1197                 rte_free(txq->tx_buffer_info);
1198                 rte_free(txq->empty_tx_reqs);
1199                 return -ENOMEM;
1200         }
1201
1202         for (i = 0; i < txq->ring_size; i++)
1203                 txq->empty_tx_reqs[i] = i;
1204
1205         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1206
1207         /* Check if caller provided the Tx cleanup threshold value. */
1208         if (tx_conf->tx_free_thresh != 0) {
1209                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1210         } else {
1211                 dyn_thresh = txq->ring_size -
1212                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1213                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1214                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1215         }
1216
1217         txq->missing_tx_completion_threshold =
1218                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1219
1220         /* Store pointer to this queue in upper layer */
1221         txq->configured = 1;
1222         dev->data->tx_queues[queue_idx] = txq;
1223
1224         return 0;
1225 }
1226
1227 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1228                               uint16_t queue_idx,
1229                               uint16_t nb_desc,
1230                               unsigned int socket_id,
1231                               const struct rte_eth_rxconf *rx_conf,
1232                               struct rte_mempool *mp)
1233 {
1234         struct ena_adapter *adapter = dev->data->dev_private;
1235         struct ena_ring *rxq = NULL;
1236         size_t buffer_size;
1237         int i;
1238         uint16_t dyn_thresh;
1239
1240         rxq = &adapter->rx_ring[queue_idx];
1241         if (rxq->configured) {
1242                 PMD_DRV_LOG(CRIT,
1243                         "API violation. Queue[%d] is already configured\n",
1244                         queue_idx);
1245                 return ENA_COM_FAULT;
1246         }
1247
1248         if (!rte_is_power_of_2(nb_desc)) {
1249                 PMD_DRV_LOG(ERR,
1250                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1251                         nb_desc);
1252                 return -EINVAL;
1253         }
1254
1255         if (nb_desc > adapter->max_rx_ring_size) {
1256                 PMD_DRV_LOG(ERR,
1257                         "Unsupported size of Rx queue (max size: %d)\n",
1258                         adapter->max_rx_ring_size);
1259                 return -EINVAL;
1260         }
1261
1262         /* ENA isn't supporting buffers smaller than 1400 bytes */
1263         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1264         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1265                 PMD_DRV_LOG(ERR,
1266                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1267                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1268                 return -EINVAL;
1269         }
1270
1271         rxq->port_id = dev->data->port_id;
1272         rxq->next_to_clean = 0;
1273         rxq->next_to_use = 0;
1274         rxq->ring_size = nb_desc;
1275         rxq->size_mask = nb_desc - 1;
1276         rxq->numa_socket_id = socket_id;
1277         rxq->mb_pool = mp;
1278
1279         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1280                 sizeof(struct ena_rx_buffer) * nb_desc,
1281                 RTE_CACHE_LINE_SIZE,
1282                 socket_id);
1283         if (!rxq->rx_buffer_info) {
1284                 PMD_DRV_LOG(ERR,
1285                         "Failed to allocate memory for Rx buffer info\n");
1286                 return -ENOMEM;
1287         }
1288
1289         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1290                 sizeof(struct rte_mbuf *) * nb_desc,
1291                 RTE_CACHE_LINE_SIZE,
1292                 socket_id);
1293         if (!rxq->rx_refill_buffer) {
1294                 PMD_DRV_LOG(ERR,
1295                         "Failed to allocate memory for Rx refill buffer\n");
1296                 rte_free(rxq->rx_buffer_info);
1297                 rxq->rx_buffer_info = NULL;
1298                 return -ENOMEM;
1299         }
1300
1301         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1302                 sizeof(uint16_t) * nb_desc,
1303                 RTE_CACHE_LINE_SIZE,
1304                 socket_id);
1305         if (!rxq->empty_rx_reqs) {
1306                 PMD_DRV_LOG(ERR,
1307                         "Failed to allocate memory for empty Rx requests\n");
1308                 rte_free(rxq->rx_buffer_info);
1309                 rxq->rx_buffer_info = NULL;
1310                 rte_free(rxq->rx_refill_buffer);
1311                 rxq->rx_refill_buffer = NULL;
1312                 return -ENOMEM;
1313         }
1314
1315         for (i = 0; i < nb_desc; i++)
1316                 rxq->empty_rx_reqs[i] = i;
1317
1318         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1319
1320         if (rx_conf->rx_free_thresh != 0) {
1321                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1322         } else {
1323                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1324                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1325                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1326         }
1327
1328         /* Store pointer to this queue in upper layer */
1329         rxq->configured = 1;
1330         dev->data->rx_queues[queue_idx] = rxq;
1331
1332         return 0;
1333 }
1334
1335 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1336                                   struct rte_mbuf *mbuf, uint16_t id)
1337 {
1338         struct ena_com_buf ebuf;
1339         int rc;
1340
1341         /* prepare physical address for DMA transaction */
1342         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1343         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1344
1345         /* pass resource to device */
1346         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1347         if (unlikely(rc != 0))
1348                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1349
1350         return rc;
1351 }
1352
1353 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1354 {
1355         unsigned int i;
1356         int rc;
1357         uint16_t next_to_use = rxq->next_to_use;
1358         uint16_t req_id;
1359 #ifdef RTE_ETHDEV_DEBUG_RX
1360         uint16_t in_use;
1361 #endif
1362         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1363
1364         if (unlikely(!count))
1365                 return 0;
1366
1367 #ifdef RTE_ETHDEV_DEBUG_RX
1368         in_use = rxq->ring_size - 1 -
1369                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1370         if (unlikely((in_use + count) >= rxq->ring_size))
1371                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1372 #endif
1373
1374         /* get resources for incoming packets */
1375         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1376         if (unlikely(rc < 0)) {
1377                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1378                 ++rxq->rx_stats.mbuf_alloc_fail;
1379                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1380                 return 0;
1381         }
1382
1383         for (i = 0; i < count; i++) {
1384                 struct rte_mbuf *mbuf = mbufs[i];
1385                 struct ena_rx_buffer *rx_info;
1386
1387                 if (likely((i + 4) < count))
1388                         rte_prefetch0(mbufs[i + 4]);
1389
1390                 req_id = rxq->empty_rx_reqs[next_to_use];
1391                 rx_info = &rxq->rx_buffer_info[req_id];
1392
1393                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1394                 if (unlikely(rc != 0))
1395                         break;
1396
1397                 rx_info->mbuf = mbuf;
1398                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1399         }
1400
1401         if (unlikely(i < count)) {
1402                 PMD_RX_LOG(WARNING,
1403                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1404                         rxq->id, i, count);
1405                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1406                 ++rxq->rx_stats.refill_partial;
1407         }
1408
1409         /* When we submitted free recources to device... */
1410         if (likely(i > 0)) {
1411                 /* ...let HW know that it can fill buffers with data. */
1412                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1413
1414                 rxq->next_to_use = next_to_use;
1415         }
1416
1417         return i;
1418 }
1419
1420 static int ena_device_init(struct ena_com_dev *ena_dev,
1421                            struct rte_pci_device *pdev,
1422                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1423                            bool *wd_state)
1424 {
1425         uint32_t aenq_groups;
1426         int rc;
1427         bool readless_supported;
1428
1429         /* Initialize mmio registers */
1430         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1431         if (rc) {
1432                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1433                 return rc;
1434         }
1435
1436         /* The PCIe configuration space revision id indicate if mmio reg
1437          * read is disabled.
1438          */
1439         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1440         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1441
1442         /* reset device */
1443         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1444         if (rc) {
1445                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1446                 goto err_mmio_read_less;
1447         }
1448
1449         /* check FW version */
1450         rc = ena_com_validate_version(ena_dev);
1451         if (rc) {
1452                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1453                 goto err_mmio_read_less;
1454         }
1455
1456         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1457
1458         /* ENA device administration layer init */
1459         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1460         if (rc) {
1461                 PMD_DRV_LOG(ERR,
1462                         "Cannot initialize ENA admin queue\n");
1463                 goto err_mmio_read_less;
1464         }
1465
1466         /* To enable the msix interrupts the driver needs to know the number
1467          * of queues. So the driver uses polling mode to retrieve this
1468          * information.
1469          */
1470         ena_com_set_admin_polling_mode(ena_dev, true);
1471
1472         ena_config_host_info(ena_dev);
1473
1474         /* Get Device Attributes and features */
1475         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1476         if (rc) {
1477                 PMD_DRV_LOG(ERR,
1478                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1479                 goto err_admin_init;
1480         }
1481
1482         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1483                       BIT(ENA_ADMIN_NOTIFICATION) |
1484                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1485                       BIT(ENA_ADMIN_FATAL_ERROR) |
1486                       BIT(ENA_ADMIN_WARNING);
1487
1488         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1489         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1490         if (rc) {
1491                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1492                 goto err_admin_init;
1493         }
1494
1495         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1496
1497         return 0;
1498
1499 err_admin_init:
1500         ena_com_admin_destroy(ena_dev);
1501
1502 err_mmio_read_less:
1503         ena_com_mmio_reg_read_request_destroy(ena_dev);
1504
1505         return rc;
1506 }
1507
1508 static void ena_interrupt_handler_rte(void *cb_arg)
1509 {
1510         struct rte_eth_dev *dev = cb_arg;
1511         struct ena_adapter *adapter = dev->data->dev_private;
1512         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1513
1514         ena_com_admin_q_comp_intr_handler(ena_dev);
1515         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1516                 ena_com_aenq_intr_handler(ena_dev, dev);
1517 }
1518
1519 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1520 {
1521         if (!adapter->wd_state)
1522                 return;
1523
1524         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1525                 return;
1526
1527         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1528             adapter->keep_alive_timeout)) {
1529                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1530                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1531                 adapter->trigger_reset = true;
1532                 ++adapter->dev_stats.wd_expired;
1533         }
1534 }
1535
1536 /* Check if admin queue is enabled */
1537 static void check_for_admin_com_state(struct ena_adapter *adapter)
1538 {
1539         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1540                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1541                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1542                 adapter->trigger_reset = true;
1543         }
1544 }
1545
1546 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1547                                             struct ena_ring *tx_ring)
1548 {
1549         struct ena_tx_buffer *tx_buf;
1550         uint64_t timestamp;
1551         uint64_t completion_delay;
1552         uint32_t missed_tx = 0;
1553         unsigned int i;
1554         int rc = 0;
1555
1556         for (i = 0; i < tx_ring->ring_size; ++i) {
1557                 tx_buf = &tx_ring->tx_buffer_info[i];
1558                 timestamp = tx_buf->timestamp;
1559
1560                 if (timestamp == 0)
1561                         continue;
1562
1563                 completion_delay = rte_get_timer_cycles() - timestamp;
1564                 if (completion_delay > adapter->missing_tx_completion_to) {
1565                         if (unlikely(!tx_buf->print_once)) {
1566                                 PMD_TX_LOG(WARNING,
1567                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1568                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1569                                         tx_ring->id, i, completion_delay /
1570                                         rte_get_timer_hz() * 1000);
1571                                 tx_buf->print_once = true;
1572                         }
1573                         ++missed_tx;
1574                 }
1575         }
1576
1577         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1578                 PMD_DRV_LOG(ERR,
1579                         "The number of lost Tx completions is above the threshold (%d > %d). "
1580                         "Trigger the device reset.\n",
1581                         missed_tx,
1582                         tx_ring->missing_tx_completion_threshold);
1583                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1584                 adapter->trigger_reset = true;
1585                 rc = -EIO;
1586         }
1587
1588         tx_ring->tx_stats.missed_tx += missed_tx;
1589
1590         return rc;
1591 }
1592
1593 static void check_for_tx_completions(struct ena_adapter *adapter)
1594 {
1595         struct ena_ring *tx_ring;
1596         uint64_t tx_cleanup_delay;
1597         size_t qid;
1598         int budget;
1599         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1600
1601         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1602                 return;
1603
1604         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1605         budget = adapter->missing_tx_completion_budget;
1606
1607         qid = adapter->last_tx_comp_qid;
1608         while (budget-- > 0) {
1609                 tx_ring = &adapter->tx_ring[qid];
1610
1611                 /* Tx cleanup is called only by the burst function and can be
1612                  * called dynamically by the application. Also cleanup is
1613                  * limited by the threshold. To avoid false detection of the
1614                  * missing HW Tx completion, get the delay since last cleanup
1615                  * function was called.
1616                  */
1617                 tx_cleanup_delay = rte_get_timer_cycles() -
1618                         tx_ring->last_cleanup_ticks;
1619                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1620                         check_for_tx_completion_in_queue(adapter, tx_ring);
1621                 qid = (qid + 1) % nb_tx_queues;
1622         }
1623
1624         adapter->last_tx_comp_qid = qid;
1625 }
1626
1627 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1628                                   void *arg)
1629 {
1630         struct rte_eth_dev *dev = arg;
1631         struct ena_adapter *adapter = dev->data->dev_private;
1632
1633         check_for_missing_keep_alive(adapter);
1634         check_for_admin_com_state(adapter);
1635         check_for_tx_completions(adapter);
1636
1637         if (unlikely(adapter->trigger_reset)) {
1638                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1639                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1640                         NULL);
1641         }
1642 }
1643
1644 static inline void
1645 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1646                                struct ena_admin_feature_llq_desc *llq,
1647                                bool use_large_llq_hdr)
1648 {
1649         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1650         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1651         llq_config->llq_num_decs_before_header =
1652                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1653
1654         if (use_large_llq_hdr &&
1655             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1656                 llq_config->llq_ring_entry_size =
1657                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1658                 llq_config->llq_ring_entry_size_value = 256;
1659         } else {
1660                 llq_config->llq_ring_entry_size =
1661                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1662                 llq_config->llq_ring_entry_size_value = 128;
1663         }
1664 }
1665
1666 static int
1667 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1668                                 struct ena_com_dev *ena_dev,
1669                                 struct ena_admin_feature_llq_desc *llq,
1670                                 struct ena_llq_configurations *llq_default_configurations)
1671 {
1672         int rc;
1673         u32 llq_feature_mask;
1674
1675         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1676         if (!(ena_dev->supported_features & llq_feature_mask)) {
1677                 PMD_DRV_LOG(INFO,
1678                         "LLQ is not supported. Fallback to host mode policy.\n");
1679                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1680                 return 0;
1681         }
1682
1683         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1684         if (unlikely(rc)) {
1685                 PMD_INIT_LOG(WARNING,
1686                         "Failed to config dev mode. Fallback to host mode policy.\n");
1687                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1688                 return 0;
1689         }
1690
1691         /* Nothing to config, exit */
1692         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1693                 return 0;
1694
1695         if (!adapter->dev_mem_base) {
1696                 PMD_DRV_LOG(ERR,
1697                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1698                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1699                 return 0;
1700         }
1701
1702         ena_dev->mem_bar = adapter->dev_mem_base;
1703
1704         return 0;
1705 }
1706
1707 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1708         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1709 {
1710         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1711
1712         /* Regular queues capabilities */
1713         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1714                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1715                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1716                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1717                                     max_queue_ext->max_rx_cq_num);
1718                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1719                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1720         } else {
1721                 struct ena_admin_queue_feature_desc *max_queues =
1722                         &get_feat_ctx->max_queues;
1723                 io_tx_sq_num = max_queues->max_sq_num;
1724                 io_tx_cq_num = max_queues->max_cq_num;
1725                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1726         }
1727
1728         /* In case of LLQ use the llq number in the get feature cmd */
1729         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1730                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1731
1732         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1733         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1734         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1735
1736         if (unlikely(max_num_io_queues == 0)) {
1737                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1738                 return -EFAULT;
1739         }
1740
1741         return max_num_io_queues;
1742 }
1743
1744 static void
1745 ena_set_offloads(struct ena_offloads *offloads,
1746                  struct ena_admin_feature_offload_desc *offload_desc)
1747 {
1748         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1749                 offloads->tx_offloads |= ENA_IPV4_TSO;
1750
1751         /* Tx IPv4 checksum offloads */
1752         if (offload_desc->tx &
1753             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1754                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1755         if (offload_desc->tx &
1756             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1757                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1758         if (offload_desc->tx &
1759             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1760                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1761
1762         /* Tx IPv6 checksum offloads */
1763         if (offload_desc->tx &
1764             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1765                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1766         if (offload_desc->tx &
1767              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1768                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1769
1770         /* Rx IPv4 checksum offloads */
1771         if (offload_desc->rx_supported &
1772             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1773                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1774         if (offload_desc->rx_supported &
1775             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1776                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1777
1778         /* Rx IPv6 checksum offloads */
1779         if (offload_desc->rx_supported &
1780             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1781                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1782
1783         if (offload_desc->rx_supported &
1784             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1785                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
1786 }
1787
1788 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1789 {
1790         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1791         struct rte_pci_device *pci_dev;
1792         struct rte_intr_handle *intr_handle;
1793         struct ena_adapter *adapter = eth_dev->data->dev_private;
1794         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1795         struct ena_com_dev_get_features_ctx get_feat_ctx;
1796         struct ena_llq_configurations llq_config;
1797         const char *queue_type_str;
1798         uint32_t max_num_io_queues;
1799         int rc;
1800         static int adapters_found;
1801         bool disable_meta_caching;
1802         bool wd_state = false;
1803
1804         eth_dev->dev_ops = &ena_dev_ops;
1805         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1806         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1807         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1808
1809         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1810                 return 0;
1811
1812         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1813
1814         memset(adapter, 0, sizeof(struct ena_adapter));
1815         ena_dev = &adapter->ena_dev;
1816
1817         adapter->edev_data = eth_dev->data;
1818
1819         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1820
1821         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1822                      pci_dev->addr.domain,
1823                      pci_dev->addr.bus,
1824                      pci_dev->addr.devid,
1825                      pci_dev->addr.function);
1826
1827         intr_handle = &pci_dev->intr_handle;
1828
1829         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1830         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1831
1832         if (!adapter->regs) {
1833                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1834                              ENA_REGS_BAR);
1835                 return -ENXIO;
1836         }
1837
1838         ena_dev->reg_bar = adapter->regs;
1839         /* This is a dummy pointer for ena_com functions. */
1840         ena_dev->dmadev = adapter;
1841
1842         adapter->id_number = adapters_found;
1843
1844         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1845                  adapter->id_number);
1846
1847         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1848         if (rc != 0) {
1849                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1850                 goto err;
1851         }
1852
1853         /* device specific initialization routine */
1854         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1855         if (rc) {
1856                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1857                 goto err;
1858         }
1859         adapter->wd_state = wd_state;
1860
1861         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1862                 adapter->use_large_llq_hdr);
1863         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1864                                              &get_feat_ctx.llq, &llq_config);
1865         if (unlikely(rc)) {
1866                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1867                 return rc;
1868         }
1869
1870         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1871                 queue_type_str = "Regular";
1872         else
1873                 queue_type_str = "Low latency";
1874         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1875
1876         calc_queue_ctx.ena_dev = ena_dev;
1877         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1878
1879         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1880         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1881                 adapter->use_large_llq_hdr);
1882         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1883                 rc = -EFAULT;
1884                 goto err_device_destroy;
1885         }
1886
1887         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1888         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1889         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1890         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1891         adapter->max_num_io_queues = max_num_io_queues;
1892
1893         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1894                 disable_meta_caching =
1895                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1896                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1897         } else {
1898                 disable_meta_caching = false;
1899         }
1900
1901         /* prepare ring structures */
1902         ena_init_rings(adapter, disable_meta_caching);
1903
1904         ena_config_debug_area(adapter);
1905
1906         /* Set max MTU for this device */
1907         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1908
1909         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1910
1911         /* Copy MAC address and point DPDK to it */
1912         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1913         rte_ether_addr_copy((struct rte_ether_addr *)
1914                         get_feat_ctx.dev_attr.mac_addr,
1915                         (struct rte_ether_addr *)adapter->mac_addr);
1916
1917         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1918         if (unlikely(rc != 0)) {
1919                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1920                 goto err_delete_debug_area;
1921         }
1922
1923         adapter->drv_stats = rte_zmalloc("adapter stats",
1924                                          sizeof(*adapter->drv_stats),
1925                                          RTE_CACHE_LINE_SIZE);
1926         if (!adapter->drv_stats) {
1927                 PMD_DRV_LOG(ERR,
1928                         "Failed to allocate memory for adapter statistics\n");
1929                 rc = -ENOMEM;
1930                 goto err_rss_destroy;
1931         }
1932
1933         rte_spinlock_init(&adapter->admin_lock);
1934
1935         rte_intr_callback_register(intr_handle,
1936                                    ena_interrupt_handler_rte,
1937                                    eth_dev);
1938         rte_intr_enable(intr_handle);
1939         ena_com_set_admin_polling_mode(ena_dev, false);
1940         ena_com_admin_aenq_enable(ena_dev);
1941
1942         if (adapters_found == 0)
1943                 rte_timer_subsystem_init();
1944         rte_timer_init(&adapter->timer_wd);
1945
1946         adapters_found++;
1947         adapter->state = ENA_ADAPTER_STATE_INIT;
1948
1949         return 0;
1950
1951 err_rss_destroy:
1952         ena_com_rss_destroy(ena_dev);
1953 err_delete_debug_area:
1954         ena_com_delete_debug_area(ena_dev);
1955
1956 err_device_destroy:
1957         ena_com_delete_host_info(ena_dev);
1958         ena_com_admin_destroy(ena_dev);
1959
1960 err:
1961         return rc;
1962 }
1963
1964 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1965 {
1966         struct ena_adapter *adapter = eth_dev->data->dev_private;
1967         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1968
1969         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1970                 return;
1971
1972         ena_com_set_admin_running_state(ena_dev, false);
1973
1974         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1975                 ena_close(eth_dev);
1976
1977         ena_com_rss_destroy(ena_dev);
1978
1979         ena_com_delete_debug_area(ena_dev);
1980         ena_com_delete_host_info(ena_dev);
1981
1982         ena_com_abort_admin_commands(ena_dev);
1983         ena_com_wait_for_abort_completion(ena_dev);
1984         ena_com_admin_destroy(ena_dev);
1985         ena_com_mmio_reg_read_request_destroy(ena_dev);
1986
1987         adapter->state = ENA_ADAPTER_STATE_FREE;
1988 }
1989
1990 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1991 {
1992         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1993                 return 0;
1994
1995         ena_destroy_device(eth_dev);
1996
1997         return 0;
1998 }
1999
2000 static int ena_dev_configure(struct rte_eth_dev *dev)
2001 {
2002         struct ena_adapter *adapter = dev->data->dev_private;
2003
2004         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2005
2006         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2007                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2008         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2009
2010         /* Scattered Rx cannot be turned off in the HW, so this capability must
2011          * be forced.
2012          */
2013         dev->data->scattered_rx = 1;
2014
2015         adapter->last_tx_comp_qid = 0;
2016
2017         adapter->missing_tx_completion_budget =
2018                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2019
2020         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2021         /* To avoid detection of the spurious Tx completion timeout due to
2022          * application not calling the Tx cleanup function, set timeout for the
2023          * Tx queue which should be half of the missing completion timeout for a
2024          * safety. If there will be a lot of missing Tx completions in the
2025          * queue, they will be detected sooner or later.
2026          */
2027         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2028
2029         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2030         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2031
2032         return 0;
2033 }
2034
2035 static void ena_init_rings(struct ena_adapter *adapter,
2036                            bool disable_meta_caching)
2037 {
2038         size_t i;
2039
2040         for (i = 0; i < adapter->max_num_io_queues; i++) {
2041                 struct ena_ring *ring = &adapter->tx_ring[i];
2042
2043                 ring->configured = 0;
2044                 ring->type = ENA_RING_TYPE_TX;
2045                 ring->adapter = adapter;
2046                 ring->id = i;
2047                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2048                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2049                 ring->sgl_size = adapter->max_tx_sgl_size;
2050                 ring->disable_meta_caching = disable_meta_caching;
2051         }
2052
2053         for (i = 0; i < adapter->max_num_io_queues; i++) {
2054                 struct ena_ring *ring = &adapter->rx_ring[i];
2055
2056                 ring->configured = 0;
2057                 ring->type = ENA_RING_TYPE_RX;
2058                 ring->adapter = adapter;
2059                 ring->id = i;
2060                 ring->sgl_size = adapter->max_rx_sgl_size;
2061         }
2062 }
2063
2064 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2065 {
2066         uint64_t port_offloads = 0;
2067
2068         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2069                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2070
2071         if (adapter->offloads.rx_offloads &
2072             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2073                 port_offloads |=
2074                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2075
2076         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2077                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2078
2079         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2080
2081         return port_offloads;
2082 }
2083
2084 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2085 {
2086         uint64_t port_offloads = 0;
2087
2088         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2089                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2090
2091         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2092                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2093         if (adapter->offloads.tx_offloads &
2094             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2095              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2096                 port_offloads |=
2097                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2098
2099         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2100
2101         return port_offloads;
2102 }
2103
2104 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2105 {
2106         RTE_SET_USED(adapter);
2107
2108         return 0;
2109 }
2110
2111 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2112 {
2113         RTE_SET_USED(adapter);
2114
2115         return 0;
2116 }
2117
2118 static int ena_infos_get(struct rte_eth_dev *dev,
2119                           struct rte_eth_dev_info *dev_info)
2120 {
2121         struct ena_adapter *adapter;
2122         struct ena_com_dev *ena_dev;
2123
2124         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2125         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2126         adapter = dev->data->dev_private;
2127
2128         ena_dev = &adapter->ena_dev;
2129         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2130
2131         dev_info->speed_capa =
2132                         RTE_ETH_LINK_SPEED_1G   |
2133                         RTE_ETH_LINK_SPEED_2_5G |
2134                         RTE_ETH_LINK_SPEED_5G   |
2135                         RTE_ETH_LINK_SPEED_10G  |
2136                         RTE_ETH_LINK_SPEED_25G  |
2137                         RTE_ETH_LINK_SPEED_40G  |
2138                         RTE_ETH_LINK_SPEED_50G  |
2139                         RTE_ETH_LINK_SPEED_100G;
2140
2141         /* Inform framework about available features */
2142         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2143         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2144         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2145         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2146
2147         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2148         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2149
2150         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2151         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2152                 RTE_ETHER_CRC_LEN;
2153         dev_info->min_mtu = ENA_MIN_MTU;
2154         dev_info->max_mtu = adapter->max_mtu;
2155         dev_info->max_mac_addrs = 1;
2156
2157         dev_info->max_rx_queues = adapter->max_num_io_queues;
2158         dev_info->max_tx_queues = adapter->max_num_io_queues;
2159         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2160
2161         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2162         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2163         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2164                                         adapter->max_rx_sgl_size);
2165         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2166                                         adapter->max_rx_sgl_size);
2167
2168         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2169         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2170         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2171                                         adapter->max_tx_sgl_size);
2172         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2173                                         adapter->max_tx_sgl_size);
2174
2175         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2176         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2177
2178         return 0;
2179 }
2180
2181 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2182 {
2183         mbuf->data_len = len;
2184         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2185         mbuf->refcnt = 1;
2186         mbuf->next = NULL;
2187 }
2188
2189 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2190                                     struct ena_com_rx_buf_info *ena_bufs,
2191                                     uint32_t descs,
2192                                     uint16_t *next_to_clean,
2193                                     uint8_t offset)
2194 {
2195         struct rte_mbuf *mbuf;
2196         struct rte_mbuf *mbuf_head;
2197         struct ena_rx_buffer *rx_info;
2198         int rc;
2199         uint16_t ntc, len, req_id, buf = 0;
2200
2201         if (unlikely(descs == 0))
2202                 return NULL;
2203
2204         ntc = *next_to_clean;
2205
2206         len = ena_bufs[buf].len;
2207         req_id = ena_bufs[buf].req_id;
2208
2209         rx_info = &rx_ring->rx_buffer_info[req_id];
2210
2211         mbuf = rx_info->mbuf;
2212         RTE_ASSERT(mbuf != NULL);
2213
2214         ena_init_rx_mbuf(mbuf, len);
2215
2216         /* Fill the mbuf head with the data specific for 1st segment. */
2217         mbuf_head = mbuf;
2218         mbuf_head->nb_segs = descs;
2219         mbuf_head->port = rx_ring->port_id;
2220         mbuf_head->pkt_len = len;
2221         mbuf_head->data_off += offset;
2222
2223         rx_info->mbuf = NULL;
2224         rx_ring->empty_rx_reqs[ntc] = req_id;
2225         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2226
2227         while (--descs) {
2228                 ++buf;
2229                 len = ena_bufs[buf].len;
2230                 req_id = ena_bufs[buf].req_id;
2231
2232                 rx_info = &rx_ring->rx_buffer_info[req_id];
2233                 RTE_ASSERT(rx_info->mbuf != NULL);
2234
2235                 if (unlikely(len == 0)) {
2236                         /*
2237                          * Some devices can pass descriptor with the length 0.
2238                          * To avoid confusion, the PMD is simply putting the
2239                          * descriptor back, as it was never used. We'll avoid
2240                          * mbuf allocation that way.
2241                          */
2242                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2243                                 rx_info->mbuf, req_id);
2244                         if (unlikely(rc != 0)) {
2245                                 /* Free the mbuf in case of an error. */
2246                                 rte_mbuf_raw_free(rx_info->mbuf);
2247                         } else {
2248                                 /*
2249                                  * If there was no error, just exit the loop as
2250                                  * 0 length descriptor is always the last one.
2251                                  */
2252                                 break;
2253                         }
2254                 } else {
2255                         /* Create an mbuf chain. */
2256                         mbuf->next = rx_info->mbuf;
2257                         mbuf = mbuf->next;
2258
2259                         ena_init_rx_mbuf(mbuf, len);
2260                         mbuf_head->pkt_len += len;
2261                 }
2262
2263                 /*
2264                  * Mark the descriptor as depleted and perform necessary
2265                  * cleanup.
2266                  * This code will execute in two cases:
2267                  *  1. Descriptor len was greater than 0 - normal situation.
2268                  *  2. Descriptor len was 0 and we failed to add the descriptor
2269                  *     to the device. In that situation, we should try to add
2270                  *     the mbuf again in the populate routine and mark the
2271                  *     descriptor as used up by the device.
2272                  */
2273                 rx_info->mbuf = NULL;
2274                 rx_ring->empty_rx_reqs[ntc] = req_id;
2275                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2276         }
2277
2278         *next_to_clean = ntc;
2279
2280         return mbuf_head;
2281 }
2282
2283 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2284                                   uint16_t nb_pkts)
2285 {
2286         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2287         unsigned int free_queue_entries;
2288         uint16_t next_to_clean = rx_ring->next_to_clean;
2289         uint16_t descs_in_use;
2290         struct rte_mbuf *mbuf;
2291         uint16_t completed;
2292         struct ena_com_rx_ctx ena_rx_ctx;
2293         int i, rc = 0;
2294         bool fill_hash;
2295
2296 #ifdef RTE_ETHDEV_DEBUG_RX
2297         /* Check adapter state */
2298         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2299                 PMD_RX_LOG(ALERT,
2300                         "Trying to receive pkts while device is NOT running\n");
2301                 return 0;
2302         }
2303 #endif
2304
2305         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2306
2307         descs_in_use = rx_ring->ring_size -
2308                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2309         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2310
2311         for (completed = 0; completed < nb_pkts; completed++) {
2312                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2313                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2314                 ena_rx_ctx.descs = 0;
2315                 ena_rx_ctx.pkt_offset = 0;
2316                 /* receive packet context */
2317                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2318                                     rx_ring->ena_com_io_sq,
2319                                     &ena_rx_ctx);
2320                 if (unlikely(rc)) {
2321                         PMD_RX_LOG(ERR,
2322                                 "Failed to get the packet from the device, rc: %d\n",
2323                                 rc);
2324                         if (rc == ENA_COM_NO_SPACE) {
2325                                 ++rx_ring->rx_stats.bad_desc_num;
2326                                 rx_ring->adapter->reset_reason =
2327                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2328                         } else {
2329                                 ++rx_ring->rx_stats.bad_req_id;
2330                                 rx_ring->adapter->reset_reason =
2331                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2332                         }
2333                         rx_ring->adapter->trigger_reset = true;
2334                         return 0;
2335                 }
2336
2337                 mbuf = ena_rx_mbuf(rx_ring,
2338                         ena_rx_ctx.ena_bufs,
2339                         ena_rx_ctx.descs,
2340                         &next_to_clean,
2341                         ena_rx_ctx.pkt_offset);
2342                 if (unlikely(mbuf == NULL)) {
2343                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2344                                 rx_ring->empty_rx_reqs[next_to_clean] =
2345                                         rx_ring->ena_bufs[i].req_id;
2346                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2347                                         next_to_clean, rx_ring->size_mask);
2348                         }
2349                         break;
2350                 }
2351
2352                 /* fill mbuf attributes if any */
2353                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2354
2355                 if (unlikely(mbuf->ol_flags &
2356                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD))) {
2357                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2358                         ++rx_ring->rx_stats.bad_csum;
2359                 }
2360
2361                 rx_pkts[completed] = mbuf;
2362                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2363         }
2364
2365         rx_ring->rx_stats.cnt += completed;
2366         rx_ring->next_to_clean = next_to_clean;
2367
2368         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2369
2370         /* Burst refill to save doorbells, memory barriers, const interval */
2371         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2372                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2373                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2374         }
2375
2376         return completed;
2377 }
2378
2379 static uint16_t
2380 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2381                 uint16_t nb_pkts)
2382 {
2383         int32_t ret;
2384         uint32_t i;
2385         struct rte_mbuf *m;
2386         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2387         struct ena_adapter *adapter = tx_ring->adapter;
2388         struct rte_ipv4_hdr *ip_hdr;
2389         uint64_t ol_flags;
2390         uint64_t l4_csum_flag;
2391         uint64_t dev_offload_capa;
2392         uint16_t frag_field;
2393         bool need_pseudo_csum;
2394
2395         dev_offload_capa = adapter->offloads.tx_offloads;
2396         for (i = 0; i != nb_pkts; i++) {
2397                 m = tx_pkts[i];
2398                 ol_flags = m->ol_flags;
2399
2400                 /* Check if any offload flag was set */
2401                 if (ol_flags == 0)
2402                         continue;
2403
2404                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2405                 /* SCTP checksum offload is not supported by the ENA. */
2406                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2407                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2408                         PMD_TX_LOG(DEBUG,
2409                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2410                                 i, ol_flags);
2411                         rte_errno = ENOTSUP;
2412                         return i;
2413                 }
2414
2415 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2416                 /* Check if requested offload is also enabled for the queue */
2417                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2418                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2419                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2420                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2421                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2422                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2423                         PMD_TX_LOG(DEBUG,
2424                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2425                                 i, m->nb_segs, tx_ring->id);
2426                         rte_errno = EINVAL;
2427                         return i;
2428                 }
2429
2430                 /* The caller is obligated to set l2 and l3 len if any cksum
2431                  * offload is enabled.
2432                  */
2433                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2434                     (m->l2_len == 0 || m->l3_len == 0))) {
2435                         PMD_TX_LOG(DEBUG,
2436                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2437                                 i);
2438                         rte_errno = EINVAL;
2439                         return i;
2440                 }
2441                 ret = rte_validate_tx_offload(m);
2442                 if (ret != 0) {
2443                         rte_errno = -ret;
2444                         return i;
2445                 }
2446 #endif
2447
2448                 /* Verify HW support for requested offloads and determine if
2449                  * pseudo header checksum is needed.
2450                  */
2451                 need_pseudo_csum = false;
2452                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2453                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2454                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2455                                 rte_errno = ENOTSUP;
2456                                 return i;
2457                         }
2458
2459                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2460                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2461                                 rte_errno = ENOTSUP;
2462                                 return i;
2463                         }
2464
2465                         /* Check HW capabilities and if pseudo csum is needed
2466                          * for L4 offloads.
2467                          */
2468                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2469                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2470                                 if (dev_offload_capa &
2471                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2472                                         need_pseudo_csum = true;
2473                                 } else {
2474                                         rte_errno = ENOTSUP;
2475                                         return i;
2476                                 }
2477                         }
2478
2479                         /* Parse the DF flag */
2480                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2481                                 struct rte_ipv4_hdr *, m->l2_len);
2482                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2483                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2484                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2485                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2486                                 /* In case we are supposed to TSO and have DF
2487                                  * not set (DF=0) hardware must be provided with
2488                                  * partial checksum.
2489                                  */
2490                                 need_pseudo_csum = true;
2491                         }
2492                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2493                         /* There is no support for IPv6 TSO as for now. */
2494                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2495                                 rte_errno = ENOTSUP;
2496                                 return i;
2497                         }
2498
2499                         /* Check HW capabilities and if pseudo csum is needed */
2500                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2501                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2502                                 if (dev_offload_capa &
2503                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2504                                         need_pseudo_csum = true;
2505                                 } else {
2506                                         rte_errno = ENOTSUP;
2507                                         return i;
2508                                 }
2509                         }
2510                 }
2511
2512                 if (need_pseudo_csum) {
2513                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2514                         if (ret != 0) {
2515                                 rte_errno = -ret;
2516                                 return i;
2517                         }
2518                 }
2519         }
2520
2521         return i;
2522 }
2523
2524 static void ena_update_hints(struct ena_adapter *adapter,
2525                              struct ena_admin_ena_hw_hints *hints)
2526 {
2527         if (hints->admin_completion_tx_timeout)
2528                 adapter->ena_dev.admin_queue.completion_timeout =
2529                         hints->admin_completion_tx_timeout * 1000;
2530
2531         if (hints->mmio_read_timeout)
2532                 /* convert to usec */
2533                 adapter->ena_dev.mmio_read.reg_read_to =
2534                         hints->mmio_read_timeout * 1000;
2535
2536         if (hints->missing_tx_completion_timeout) {
2537                 if (hints->missing_tx_completion_timeout ==
2538                     ENA_HW_HINTS_NO_TIMEOUT) {
2539                         adapter->missing_tx_completion_to =
2540                                 ENA_HW_HINTS_NO_TIMEOUT;
2541                 } else {
2542                         /* Convert from msecs to ticks */
2543                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2544                                 hints->missing_tx_completion_timeout / 1000;
2545                         adapter->tx_cleanup_stall_delay =
2546                                 adapter->missing_tx_completion_to / 2;
2547                 }
2548         }
2549
2550         if (hints->driver_watchdog_timeout) {
2551                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2552                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2553                 else
2554                         // Convert msecs to ticks
2555                         adapter->keep_alive_timeout =
2556                                 (hints->driver_watchdog_timeout *
2557                                 rte_get_timer_hz()) / 1000;
2558         }
2559 }
2560
2561 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2562                                               struct rte_mbuf *mbuf)
2563 {
2564         struct ena_com_dev *ena_dev;
2565         int num_segments, header_len, rc;
2566
2567         ena_dev = &tx_ring->adapter->ena_dev;
2568         num_segments = mbuf->nb_segs;
2569         header_len = mbuf->data_len;
2570
2571         if (likely(num_segments < tx_ring->sgl_size))
2572                 goto checkspace;
2573
2574         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2575             (num_segments == tx_ring->sgl_size) &&
2576             (header_len < tx_ring->tx_max_header_size))
2577                 goto checkspace;
2578
2579         /* Checking for space for 2 additional metadata descriptors due to
2580          * possible header split and metadata descriptor. Linearization will
2581          * be needed so we reduce the segments number from num_segments to 1
2582          */
2583         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2584                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2585                 return ENA_COM_NO_MEM;
2586         }
2587         ++tx_ring->tx_stats.linearize;
2588         rc = rte_pktmbuf_linearize(mbuf);
2589         if (unlikely(rc)) {
2590                 PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2591                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2592                 ++tx_ring->tx_stats.linearize_failed;
2593                 return rc;
2594         }
2595
2596         return 0;
2597
2598 checkspace:
2599         /* Checking for space for 2 additional metadata descriptors due to
2600          * possible header split and metadata descriptor
2601          */
2602         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2603                                           num_segments + 2)) {
2604                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2605                 return ENA_COM_NO_MEM;
2606         }
2607
2608         return 0;
2609 }
2610
2611 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2612         struct ena_tx_buffer *tx_info,
2613         struct rte_mbuf *mbuf,
2614         void **push_header,
2615         uint16_t *header_len)
2616 {
2617         struct ena_com_buf *ena_buf;
2618         uint16_t delta, seg_len, push_len;
2619
2620         delta = 0;
2621         seg_len = mbuf->data_len;
2622
2623         tx_info->mbuf = mbuf;
2624         ena_buf = tx_info->bufs;
2625
2626         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2627                 /*
2628                  * Tx header might be (and will be in most cases) smaller than
2629                  * tx_max_header_size. But it's not an issue to send more data
2630                  * to the device, than actually needed if the mbuf size is
2631                  * greater than tx_max_header_size.
2632                  */
2633                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2634                 *header_len = push_len;
2635
2636                 if (likely(push_len <= seg_len)) {
2637                         /* If the push header is in the single segment, then
2638                          * just point it to the 1st mbuf data.
2639                          */
2640                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2641                 } else {
2642                         /* If the push header lays in the several segments, copy
2643                          * it to the intermediate buffer.
2644                          */
2645                         rte_pktmbuf_read(mbuf, 0, push_len,
2646                                 tx_ring->push_buf_intermediate_buf);
2647                         *push_header = tx_ring->push_buf_intermediate_buf;
2648                         delta = push_len - seg_len;
2649                 }
2650         } else {
2651                 *push_header = NULL;
2652                 *header_len = 0;
2653                 push_len = 0;
2654         }
2655
2656         /* Process first segment taking into consideration pushed header */
2657         if (seg_len > push_len) {
2658                 ena_buf->paddr = mbuf->buf_iova +
2659                                 mbuf->data_off +
2660                                 push_len;
2661                 ena_buf->len = seg_len - push_len;
2662                 ena_buf++;
2663                 tx_info->num_of_bufs++;
2664         }
2665
2666         while ((mbuf = mbuf->next) != NULL) {
2667                 seg_len = mbuf->data_len;
2668
2669                 /* Skip mbufs if whole data is pushed as a header */
2670                 if (unlikely(delta > seg_len)) {
2671                         delta -= seg_len;
2672                         continue;
2673                 }
2674
2675                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2676                 ena_buf->len = seg_len - delta;
2677                 ena_buf++;
2678                 tx_info->num_of_bufs++;
2679
2680                 delta = 0;
2681         }
2682 }
2683
2684 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2685 {
2686         struct ena_tx_buffer *tx_info;
2687         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2688         uint16_t next_to_use;
2689         uint16_t header_len;
2690         uint16_t req_id;
2691         void *push_header;
2692         int nb_hw_desc;
2693         int rc;
2694
2695         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2696         if (unlikely(rc))
2697                 return rc;
2698
2699         next_to_use = tx_ring->next_to_use;
2700
2701         req_id = tx_ring->empty_tx_reqs[next_to_use];
2702         tx_info = &tx_ring->tx_buffer_info[req_id];
2703         tx_info->num_of_bufs = 0;
2704
2705         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2706
2707         ena_tx_ctx.ena_bufs = tx_info->bufs;
2708         ena_tx_ctx.push_header = push_header;
2709         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2710         ena_tx_ctx.req_id = req_id;
2711         ena_tx_ctx.header_len = header_len;
2712
2713         /* Set Tx offloads flags, if applicable */
2714         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2715                 tx_ring->disable_meta_caching);
2716
2717         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2718                         &ena_tx_ctx))) {
2719                 PMD_TX_LOG(DEBUG,
2720                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2721                         tx_ring->id);
2722                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2723                 tx_ring->tx_stats.doorbells++;
2724                 tx_ring->pkts_without_db = false;
2725         }
2726
2727         /* prepare the packet's descriptors to dma engine */
2728         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2729                 &nb_hw_desc);
2730         if (unlikely(rc)) {
2731                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2732                 ++tx_ring->tx_stats.prepare_ctx_err;
2733                 tx_ring->adapter->reset_reason =
2734                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2735                 tx_ring->adapter->trigger_reset = true;
2736                 return rc;
2737         }
2738
2739         tx_info->tx_descs = nb_hw_desc;
2740         tx_info->timestamp = rte_get_timer_cycles();
2741
2742         tx_ring->tx_stats.cnt++;
2743         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2744
2745         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2746                 tx_ring->size_mask);
2747
2748         return 0;
2749 }
2750
2751 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2752 {
2753         unsigned int total_tx_descs = 0;
2754         uint16_t cleanup_budget;
2755         uint16_t next_to_clean = tx_ring->next_to_clean;
2756
2757         /* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2758         cleanup_budget = tx_ring->size_mask;
2759
2760         while (likely(total_tx_descs < cleanup_budget)) {
2761                 struct rte_mbuf *mbuf;
2762                 struct ena_tx_buffer *tx_info;
2763                 uint16_t req_id;
2764
2765                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2766                         break;
2767
2768                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2769                         break;
2770
2771                 /* Get Tx info & store how many descs were processed  */
2772                 tx_info = &tx_ring->tx_buffer_info[req_id];
2773                 tx_info->timestamp = 0;
2774
2775                 mbuf = tx_info->mbuf;
2776                 rte_pktmbuf_free(mbuf);
2777
2778                 tx_info->mbuf = NULL;
2779                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2780
2781                 total_tx_descs += tx_info->tx_descs;
2782
2783                 /* Put back descriptor to the ring for reuse */
2784                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2785                         tx_ring->size_mask);
2786         }
2787
2788         if (likely(total_tx_descs > 0)) {
2789                 /* acknowledge completion of sent packets */
2790                 tx_ring->next_to_clean = next_to_clean;
2791                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2792                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2793         }
2794
2795         /* Notify completion handler that the cleanup was just called */
2796         tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2797 }
2798
2799 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2800                                   uint16_t nb_pkts)
2801 {
2802         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2803         int available_desc;
2804         uint16_t sent_idx = 0;
2805
2806 #ifdef RTE_ETHDEV_DEBUG_TX
2807         /* Check adapter state */
2808         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2809                 PMD_TX_LOG(ALERT,
2810                         "Trying to xmit pkts while device is NOT running\n");
2811                 return 0;
2812         }
2813 #endif
2814
2815         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2816                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2817                         break;
2818                 tx_ring->pkts_without_db = true;
2819                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2820                         tx_ring->size_mask)]);
2821         }
2822
2823         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2824         tx_ring->tx_stats.available_desc = available_desc;
2825
2826         /* If there are ready packets to be xmitted... */
2827         if (likely(tx_ring->pkts_without_db)) {
2828                 /* ...let HW do its best :-) */
2829                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2830                 tx_ring->tx_stats.doorbells++;
2831                 tx_ring->pkts_without_db = false;
2832         }
2833
2834         if (available_desc < tx_ring->tx_free_thresh)
2835                 ena_tx_cleanup(tx_ring);
2836
2837         tx_ring->tx_stats.available_desc =
2838                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2839         tx_ring->tx_stats.tx_poll++;
2840
2841         return sent_idx;
2842 }
2843
2844 int ena_copy_eni_stats(struct ena_adapter *adapter)
2845 {
2846         struct ena_admin_eni_stats admin_eni_stats;
2847         int rc;
2848
2849         rte_spinlock_lock(&adapter->admin_lock);
2850         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2851         rte_spinlock_unlock(&adapter->admin_lock);
2852         if (rc != 0) {
2853                 if (rc == ENA_COM_UNSUPPORTED) {
2854                         PMD_DRV_LOG(DEBUG,
2855                                 "Retrieving ENI metrics is not supported\n");
2856                 } else {
2857                         PMD_DRV_LOG(WARNING,
2858                                 "Failed to get ENI metrics, rc: %d\n", rc);
2859                 }
2860                 return rc;
2861         }
2862
2863         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2864                 sizeof(struct ena_stats_eni));
2865
2866         return 0;
2867 }
2868
2869 /**
2870  * DPDK callback to retrieve names of extended device statistics
2871  *
2872  * @param dev
2873  *   Pointer to Ethernet device structure.
2874  * @param[out] xstats_names
2875  *   Buffer to insert names into.
2876  * @param n
2877  *   Number of names.
2878  *
2879  * @return
2880  *   Number of xstats names.
2881  */
2882 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2883                                 struct rte_eth_xstat_name *xstats_names,
2884                                 unsigned int n)
2885 {
2886         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2887         unsigned int stat, i, count = 0;
2888
2889         if (n < xstats_count || !xstats_names)
2890                 return xstats_count;
2891
2892         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2893                 strcpy(xstats_names[count].name,
2894                         ena_stats_global_strings[stat].name);
2895
2896         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2897                 strcpy(xstats_names[count].name,
2898                         ena_stats_eni_strings[stat].name);
2899
2900         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2901                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2902                         snprintf(xstats_names[count].name,
2903                                 sizeof(xstats_names[count].name),
2904                                 "rx_q%d_%s", i,
2905                                 ena_stats_rx_strings[stat].name);
2906
2907         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2908                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2909                         snprintf(xstats_names[count].name,
2910                                 sizeof(xstats_names[count].name),
2911                                 "tx_q%d_%s", i,
2912                                 ena_stats_tx_strings[stat].name);
2913
2914         return xstats_count;
2915 }
2916
2917 /**
2918  * DPDK callback to get extended device statistics.
2919  *
2920  * @param dev
2921  *   Pointer to Ethernet device structure.
2922  * @param[out] stats
2923  *   Stats table output buffer.
2924  * @param n
2925  *   The size of the stats table.
2926  *
2927  * @return
2928  *   Number of xstats on success, negative on failure.
2929  */
2930 static int ena_xstats_get(struct rte_eth_dev *dev,
2931                           struct rte_eth_xstat *xstats,
2932                           unsigned int n)
2933 {
2934         struct ena_adapter *adapter = dev->data->dev_private;
2935         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2936         unsigned int stat, i, count = 0;
2937         int stat_offset;
2938         void *stats_begin;
2939
2940         if (n < xstats_count)
2941                 return xstats_count;
2942
2943         if (!xstats)
2944                 return 0;
2945
2946         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2947                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2948                 stats_begin = &adapter->dev_stats;
2949
2950                 xstats[count].id = count;
2951                 xstats[count].value = *((uint64_t *)
2952                         ((char *)stats_begin + stat_offset));
2953         }
2954
2955         /* Even if the function below fails, we should copy previous (or initial
2956          * values) to keep structure of rte_eth_xstat consistent.
2957          */
2958         ena_copy_eni_stats(adapter);
2959         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2960                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2961                 stats_begin = &adapter->eni_stats;
2962
2963                 xstats[count].id = count;
2964                 xstats[count].value = *((uint64_t *)
2965                     ((char *)stats_begin + stat_offset));
2966         }
2967
2968         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2969                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2970                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2971                         stats_begin = &adapter->rx_ring[i].rx_stats;
2972
2973                         xstats[count].id = count;
2974                         xstats[count].value = *((uint64_t *)
2975                                 ((char *)stats_begin + stat_offset));
2976                 }
2977         }
2978
2979         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2980                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2981                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2982                         stats_begin = &adapter->tx_ring[i].rx_stats;
2983
2984                         xstats[count].id = count;
2985                         xstats[count].value = *((uint64_t *)
2986                                 ((char *)stats_begin + stat_offset));
2987                 }
2988         }
2989
2990         return count;
2991 }
2992
2993 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2994                                 const uint64_t *ids,
2995                                 uint64_t *values,
2996                                 unsigned int n)
2997 {
2998         struct ena_adapter *adapter = dev->data->dev_private;
2999         uint64_t id;
3000         uint64_t rx_entries, tx_entries;
3001         unsigned int i;
3002         int qid;
3003         int valid = 0;
3004         bool was_eni_copied = false;
3005
3006         for (i = 0; i < n; ++i) {
3007                 id = ids[i];
3008                 /* Check if id belongs to global statistics */
3009                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3010                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3011                         ++valid;
3012                         continue;
3013                 }
3014
3015                 /* Check if id belongs to ENI statistics */
3016                 id -= ENA_STATS_ARRAY_GLOBAL;
3017                 if (id < ENA_STATS_ARRAY_ENI) {
3018                         /* Avoid reading ENI stats multiple times in a single
3019                          * function call, as it requires communication with the
3020                          * admin queue.
3021                          */
3022                         if (!was_eni_copied) {
3023                                 was_eni_copied = true;
3024                                 ena_copy_eni_stats(adapter);
3025                         }
3026                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
3027                         ++valid;
3028                         continue;
3029                 }
3030
3031                 /* Check if id belongs to rx queue statistics */
3032                 id -= ENA_STATS_ARRAY_ENI;
3033                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3034                 if (id < rx_entries) {
3035                         qid = id % dev->data->nb_rx_queues;
3036                         id /= dev->data->nb_rx_queues;
3037                         values[i] = *((uint64_t *)
3038                                 &adapter->rx_ring[qid].rx_stats + id);
3039                         ++valid;
3040                         continue;
3041                 }
3042                                 /* Check if id belongs to rx queue statistics */
3043                 id -= rx_entries;
3044                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3045                 if (id < tx_entries) {
3046                         qid = id % dev->data->nb_tx_queues;
3047                         id /= dev->data->nb_tx_queues;
3048                         values[i] = *((uint64_t *)
3049                                 &adapter->tx_ring[qid].tx_stats + id);
3050                         ++valid;
3051                         continue;
3052                 }
3053         }
3054
3055         return valid;
3056 }
3057
3058 static int ena_process_bool_devarg(const char *key,
3059                                    const char *value,
3060                                    void *opaque)
3061 {
3062         struct ena_adapter *adapter = opaque;
3063         bool bool_value;
3064
3065         /* Parse the value. */
3066         if (strcmp(value, "1") == 0) {
3067                 bool_value = true;
3068         } else if (strcmp(value, "0") == 0) {
3069                 bool_value = false;
3070         } else {
3071                 PMD_INIT_LOG(ERR,
3072                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3073                         value, key);
3074                 return -EINVAL;
3075         }
3076
3077         /* Now, assign it to the proper adapter field. */
3078         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3079                 adapter->use_large_llq_hdr = bool_value;
3080
3081         return 0;
3082 }
3083
3084 static int ena_parse_devargs(struct ena_adapter *adapter,
3085                              struct rte_devargs *devargs)
3086 {
3087         static const char * const allowed_args[] = {
3088                 ENA_DEVARG_LARGE_LLQ_HDR,
3089                 NULL,
3090         };
3091         struct rte_kvargs *kvlist;
3092         int rc;
3093
3094         if (devargs == NULL)
3095                 return 0;
3096
3097         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3098         if (kvlist == NULL) {
3099                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3100                         devargs->args);
3101                 return -EINVAL;
3102         }
3103
3104         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3105                 ena_process_bool_devarg, adapter);
3106
3107         rte_kvargs_free(kvlist);
3108
3109         return rc;
3110 }
3111
3112 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3113 {
3114         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3115         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3116         int rc;
3117         uint16_t vectors_nb, i;
3118         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3119
3120         if (!rx_intr_requested)
3121                 return 0;
3122
3123         if (!rte_intr_cap_multiple(intr_handle)) {
3124                 PMD_DRV_LOG(ERR,
3125                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3126                 return -ENOTSUP;
3127         }
3128
3129         /* Disable interrupt mapping before the configuration starts. */
3130         rte_intr_disable(intr_handle);
3131
3132         /* Verify if there are enough vectors available. */
3133         vectors_nb = dev->data->nb_rx_queues;
3134         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3135                 PMD_DRV_LOG(ERR,
3136                         "Too many Rx interrupts requested, maximum number: %d\n",
3137                         RTE_MAX_RXTX_INTR_VEC_ID);
3138                 rc = -ENOTSUP;
3139                 goto enable_intr;
3140         }
3141
3142         intr_handle->intr_vec = rte_zmalloc("intr_vec",
3143                 dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
3144         if (intr_handle->intr_vec == NULL) {
3145                 PMD_DRV_LOG(ERR,
3146                         "Failed to allocate interrupt vector for %d queues\n",
3147                         dev->data->nb_rx_queues);
3148                 rc = -ENOMEM;
3149                 goto enable_intr;
3150         }
3151
3152         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3153         if (rc != 0)
3154                 goto free_intr_vec;
3155
3156         if (!rte_intr_allow_others(intr_handle)) {
3157                 PMD_DRV_LOG(ERR,
3158                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3159                 goto disable_intr_efd;
3160         }
3161
3162         for (i = 0; i < vectors_nb; ++i)
3163                 intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
3164
3165         rte_intr_enable(intr_handle);
3166         return 0;
3167
3168 disable_intr_efd:
3169         rte_intr_efd_disable(intr_handle);
3170 free_intr_vec:
3171         rte_free(intr_handle->intr_vec);
3172         intr_handle->intr_vec = NULL;
3173 enable_intr:
3174         rte_intr_enable(intr_handle);
3175         return rc;
3176 }
3177
3178 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3179                                  uint16_t queue_id,
3180                                  bool unmask)
3181 {
3182         struct ena_adapter *adapter = dev->data->dev_private;
3183         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3184         struct ena_eth_io_intr_reg intr_reg;
3185
3186         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3187         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3188 }
3189
3190 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3191                                     uint16_t queue_id)
3192 {
3193         ena_rx_queue_intr_set(dev, queue_id, true);
3194
3195         return 0;
3196 }
3197
3198 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3199                                      uint16_t queue_id)
3200 {
3201         ena_rx_queue_intr_set(dev, queue_id, false);
3202
3203         return 0;
3204 }
3205
3206 /*********************************************************************
3207  *  PMD configuration
3208  *********************************************************************/
3209 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3210         struct rte_pci_device *pci_dev)
3211 {
3212         return rte_eth_dev_pci_generic_probe(pci_dev,
3213                 sizeof(struct ena_adapter), eth_ena_dev_init);
3214 }
3215
3216 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3217 {
3218         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3219 }
3220
3221 static struct rte_pci_driver rte_ena_pmd = {
3222         .id_table = pci_id_ena_map,
3223         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3224                      RTE_PCI_DRV_WC_ACTIVATE,
3225         .probe = eth_ena_pci_probe,
3226         .remove = eth_ena_pci_remove,
3227 };
3228
3229 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3230 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3231 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3232 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3233 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3234 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3235 #ifdef RTE_ETHDEV_DEBUG_RX
3236 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3237 #endif
3238 #ifdef RTE_ETHDEV_DEBUG_TX
3239 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3240 #endif
3241 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3242
3243 /******************************************************************************
3244  ******************************** AENQ Handlers *******************************
3245  *****************************************************************************/
3246 static void ena_update_on_link_change(void *adapter_data,
3247                                       struct ena_admin_aenq_entry *aenq_e)
3248 {
3249         struct rte_eth_dev *eth_dev = adapter_data;
3250         struct ena_adapter *adapter = eth_dev->data->dev_private;
3251         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3252         uint32_t status;
3253
3254         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3255
3256         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3257         adapter->link_status = status;
3258
3259         ena_link_update(eth_dev, 0);
3260         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3261 }
3262
3263 static void ena_notification(void *adapter_data,
3264                              struct ena_admin_aenq_entry *aenq_e)
3265 {
3266         struct rte_eth_dev *eth_dev = adapter_data;
3267         struct ena_adapter *adapter = eth_dev->data->dev_private;
3268         struct ena_admin_ena_hw_hints *hints;
3269
3270         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3271                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3272                         aenq_e->aenq_common_desc.group,
3273                         ENA_ADMIN_NOTIFICATION);
3274
3275         switch (aenq_e->aenq_common_desc.syndrome) {
3276         case ENA_ADMIN_UPDATE_HINTS:
3277                 hints = (struct ena_admin_ena_hw_hints *)
3278                         (&aenq_e->inline_data_w4);
3279                 ena_update_hints(adapter, hints);
3280                 break;
3281         default:
3282                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3283                         aenq_e->aenq_common_desc.syndrome);
3284         }
3285 }
3286
3287 static void ena_keep_alive(void *adapter_data,
3288                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3289 {
3290         struct rte_eth_dev *eth_dev = adapter_data;
3291         struct ena_adapter *adapter = eth_dev->data->dev_private;
3292         struct ena_admin_aenq_keep_alive_desc *desc;
3293         uint64_t rx_drops;
3294         uint64_t tx_drops;
3295
3296         adapter->timestamp_wd = rte_get_timer_cycles();
3297
3298         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3299         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3300         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3301
3302         adapter->drv_stats->rx_drops = rx_drops;
3303         adapter->dev_stats.tx_drops = tx_drops;
3304 }
3305
3306 /**
3307  * This handler will called for unknown event group or unimplemented handlers
3308  **/
3309 static void unimplemented_aenq_handler(__rte_unused void *data,
3310                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3311 {
3312         PMD_DRV_LOG(ERR,
3313                 "Unknown event was received or event with unimplemented handler\n");
3314 }
3315
3316 static struct ena_aenq_handlers aenq_handlers = {
3317         .handlers = {
3318                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3319                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3320                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3321         },
3322         .unimplemented_handler = unimplemented_aenq_handler
3323 };