ee059fc165d9e1c962c33399a94db657ee56e135
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    3
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 enum ethtool_stringset {
42         ETH_SS_TEST             = 0,
43         ETH_SS_STATS,
44 };
45
46 struct ena_stats {
47         char name[ETH_GSTRING_LEN];
48         int stat_offset;
49 };
50
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52         .name = #stat, \
53         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55
56 #define ENA_STAT_RX_ENTRY(stat) \
57         ENA_STAT_ENTRY(stat, rx)
58
59 #define ENA_STAT_TX_ENTRY(stat) \
60         ENA_STAT_ENTRY(stat, tx)
61
62 #define ENA_STAT_ENI_ENTRY(stat) \
63         ENA_STAT_ENTRY(stat, eni)
64
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66         ENA_STAT_ENTRY(stat, dev)
67
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76
77 static const struct ena_stats ena_stats_global_strings[] = {
78         ENA_STAT_GLOBAL_ENTRY(wd_expired),
79         ENA_STAT_GLOBAL_ENTRY(dev_start),
80         ENA_STAT_GLOBAL_ENTRY(dev_stop),
81         ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83
84 static const struct ena_stats ena_stats_eni_strings[] = {
85         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91
92 static const struct ena_stats ena_stats_tx_strings[] = {
93         ENA_STAT_TX_ENTRY(cnt),
94         ENA_STAT_TX_ENTRY(bytes),
95         ENA_STAT_TX_ENTRY(prepare_ctx_err),
96         ENA_STAT_TX_ENTRY(linearize),
97         ENA_STAT_TX_ENTRY(linearize_failed),
98         ENA_STAT_TX_ENTRY(tx_poll),
99         ENA_STAT_TX_ENTRY(doorbells),
100         ENA_STAT_TX_ENTRY(bad_req_id),
101         ENA_STAT_TX_ENTRY(available_desc),
102 };
103
104 static const struct ena_stats ena_stats_rx_strings[] = {
105         ENA_STAT_RX_ENTRY(cnt),
106         ENA_STAT_RX_ENTRY(bytes),
107         ENA_STAT_RX_ENTRY(refill_partial),
108         ENA_STAT_RX_ENTRY(bad_csum),
109         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
110         ENA_STAT_RX_ENTRY(bad_desc_num),
111         ENA_STAT_RX_ENTRY(bad_req_id),
112 };
113
114 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
115 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
116 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
117 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
118
119 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
120                         DEV_TX_OFFLOAD_UDP_CKSUM |\
121                         DEV_TX_OFFLOAD_IPV4_CKSUM |\
122                         DEV_TX_OFFLOAD_TCP_TSO)
123 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
124                        PKT_TX_IP_CKSUM |\
125                        PKT_TX_TCP_SEG)
126
127 /** Vendor ID used by Amazon devices */
128 #define PCI_VENDOR_ID_AMAZON 0x1D0F
129 /** Amazon devices */
130 #define PCI_DEVICE_ID_ENA_VF            0xEC20
131 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
132
133 #define ENA_TX_OFFLOAD_MASK     (\
134         PKT_TX_L4_MASK |         \
135         PKT_TX_IPV6 |            \
136         PKT_TX_IPV4 |            \
137         PKT_TX_IP_CKSUM |        \
138         PKT_TX_TCP_SEG)
139
140 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
141         (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142
143 static const struct rte_pci_id pci_id_ena_map[] = {
144         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
145         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
146         { .device_id = 0 },
147 };
148
149 static struct ena_aenq_handlers aenq_handlers;
150
151 static int ena_device_init(struct ena_com_dev *ena_dev,
152                            struct rte_pci_device *pdev,
153                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
154                            bool *wd_state);
155 static int ena_dev_configure(struct rte_eth_dev *dev);
156 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
157         struct ena_tx_buffer *tx_info,
158         struct rte_mbuf *mbuf,
159         void **push_header,
160         uint16_t *header_len);
161 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
162 static void ena_tx_cleanup(struct ena_ring *tx_ring);
163 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
164                                   uint16_t nb_pkts);
165 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
166                 uint16_t nb_pkts);
167 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
168                               uint16_t nb_desc, unsigned int socket_id,
169                               const struct rte_eth_txconf *tx_conf);
170 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
171                               uint16_t nb_desc, unsigned int socket_id,
172                               const struct rte_eth_rxconf *rx_conf,
173                               struct rte_mempool *mp);
174 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
175 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
176                                     struct ena_com_rx_buf_info *ena_bufs,
177                                     uint32_t descs,
178                                     uint16_t *next_to_clean,
179                                     uint8_t offset);
180 static uint16_t eth_ena_recv_pkts(void *rx_queue,
181                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
182 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
183                                   struct rte_mbuf *mbuf, uint16_t id);
184 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
185 static void ena_init_rings(struct ena_adapter *adapter,
186                            bool disable_meta_caching);
187 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
188 static int ena_start(struct rte_eth_dev *dev);
189 static int ena_stop(struct rte_eth_dev *dev);
190 static int ena_close(struct rte_eth_dev *dev);
191 static int ena_dev_reset(struct rte_eth_dev *dev);
192 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
193 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
194 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
195 static void ena_rx_queue_release(void *queue);
196 static void ena_tx_queue_release(void *queue);
197 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
198 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
199 static int ena_link_update(struct rte_eth_dev *dev,
200                            int wait_to_complete);
201 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
202 static void ena_queue_stop(struct ena_ring *ring);
203 static void ena_queue_stop_all(struct rte_eth_dev *dev,
204                               enum ena_ring_type ring_type);
205 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
206 static int ena_queue_start_all(struct rte_eth_dev *dev,
207                                enum ena_ring_type ring_type);
208 static void ena_stats_restart(struct rte_eth_dev *dev);
209 static int ena_infos_get(struct rte_eth_dev *dev,
210                          struct rte_eth_dev_info *dev_info);
211 static void ena_interrupt_handler_rte(void *cb_arg);
212 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
213 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
214 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
215 static int ena_xstats_get_names(struct rte_eth_dev *dev,
216                                 struct rte_eth_xstat_name *xstats_names,
217                                 unsigned int n);
218 static int ena_xstats_get(struct rte_eth_dev *dev,
219                           struct rte_eth_xstat *stats,
220                           unsigned int n);
221 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
222                                 const uint64_t *ids,
223                                 uint64_t *values,
224                                 unsigned int n);
225 static int ena_process_bool_devarg(const char *key,
226                                    const char *value,
227                                    void *opaque);
228 static int ena_parse_devargs(struct ena_adapter *adapter,
229                              struct rte_devargs *devargs);
230 static int ena_copy_eni_stats(struct ena_adapter *adapter);
231 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
232 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
233                                     uint16_t queue_id);
234 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
235                                      uint16_t queue_id);
236
237 static const struct eth_dev_ops ena_dev_ops = {
238         .dev_configure        = ena_dev_configure,
239         .dev_infos_get        = ena_infos_get,
240         .rx_queue_setup       = ena_rx_queue_setup,
241         .tx_queue_setup       = ena_tx_queue_setup,
242         .dev_start            = ena_start,
243         .dev_stop             = ena_stop,
244         .link_update          = ena_link_update,
245         .stats_get            = ena_stats_get,
246         .xstats_get_names     = ena_xstats_get_names,
247         .xstats_get           = ena_xstats_get,
248         .xstats_get_by_id     = ena_xstats_get_by_id,
249         .mtu_set              = ena_mtu_set,
250         .rx_queue_release     = ena_rx_queue_release,
251         .tx_queue_release     = ena_tx_queue_release,
252         .dev_close            = ena_close,
253         .dev_reset            = ena_dev_reset,
254         .reta_update          = ena_rss_reta_update,
255         .reta_query           = ena_rss_reta_query,
256         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
257         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
258         .rss_hash_update      = ena_rss_hash_update,
259         .rss_hash_conf_get    = ena_rss_hash_conf_get,
260 };
261
262 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
263                                        struct ena_com_rx_ctx *ena_rx_ctx,
264                                        bool fill_hash)
265 {
266         uint64_t ol_flags = 0;
267         uint32_t packet_type = 0;
268
269         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
270                 packet_type |= RTE_PTYPE_L4_TCP;
271         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
272                 packet_type |= RTE_PTYPE_L4_UDP;
273
274         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
275                 packet_type |= RTE_PTYPE_L3_IPV4;
276                 if (unlikely(ena_rx_ctx->l3_csum_err))
277                         ol_flags |= PKT_RX_IP_CKSUM_BAD;
278                 else
279                         ol_flags |= PKT_RX_IP_CKSUM_GOOD;
280         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
281                 packet_type |= RTE_PTYPE_L3_IPV6;
282         }
283
284         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
285                 ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
286         else
287                 if (unlikely(ena_rx_ctx->l4_csum_err))
288                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
289                 else
290                         ol_flags |= PKT_RX_L4_CKSUM_GOOD;
291
292         if (fill_hash &&
293             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
294                 ol_flags |= PKT_RX_RSS_HASH;
295                 mbuf->hash.rss = ena_rx_ctx->hash;
296         }
297
298         mbuf->ol_flags = ol_flags;
299         mbuf->packet_type = packet_type;
300 }
301
302 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
303                                        struct ena_com_tx_ctx *ena_tx_ctx,
304                                        uint64_t queue_offloads,
305                                        bool disable_meta_caching)
306 {
307         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
308
309         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
310             (queue_offloads & QUEUE_OFFLOADS)) {
311                 /* check if TSO is required */
312                 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
313                     (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
314                         ena_tx_ctx->tso_enable = true;
315
316                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
317                 }
318
319                 /* check if L3 checksum is needed */
320                 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
321                     (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
322                         ena_tx_ctx->l3_csum_enable = true;
323
324                 if (mbuf->ol_flags & PKT_TX_IPV6) {
325                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
326                 } else {
327                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
328
329                         /* set don't fragment (DF) flag */
330                         if (mbuf->packet_type &
331                                 (RTE_PTYPE_L4_NONFRAG
332                                  | RTE_PTYPE_INNER_L4_NONFRAG))
333                                 ena_tx_ctx->df = true;
334                 }
335
336                 /* check if L4 checksum is needed */
337                 if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
338                     (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
339                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
340                         ena_tx_ctx->l4_csum_enable = true;
341                 } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
342                                 PKT_TX_UDP_CKSUM) &&
343                                 (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
344                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
345                         ena_tx_ctx->l4_csum_enable = true;
346                 } else {
347                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
348                         ena_tx_ctx->l4_csum_enable = false;
349                 }
350
351                 ena_meta->mss = mbuf->tso_segsz;
352                 ena_meta->l3_hdr_len = mbuf->l3_len;
353                 ena_meta->l3_hdr_offset = mbuf->l2_len;
354
355                 ena_tx_ctx->meta_valid = true;
356         } else if (disable_meta_caching) {
357                 memset(ena_meta, 0, sizeof(*ena_meta));
358                 ena_tx_ctx->meta_valid = true;
359         } else {
360                 ena_tx_ctx->meta_valid = false;
361         }
362 }
363
364 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
365 {
366         struct ena_tx_buffer *tx_info = NULL;
367
368         if (likely(req_id < tx_ring->ring_size)) {
369                 tx_info = &tx_ring->tx_buffer_info[req_id];
370                 if (likely(tx_info->mbuf))
371                         return 0;
372         }
373
374         if (tx_info)
375                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
376         else
377                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
378
379         /* Trigger device reset */
380         ++tx_ring->tx_stats.bad_req_id;
381         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
382         tx_ring->adapter->trigger_reset = true;
383         return -EFAULT;
384 }
385
386 static void ena_config_host_info(struct ena_com_dev *ena_dev)
387 {
388         struct ena_admin_host_info *host_info;
389         int rc;
390
391         /* Allocate only the host info */
392         rc = ena_com_allocate_host_info(ena_dev);
393         if (rc) {
394                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
395                 return;
396         }
397
398         host_info = ena_dev->host_attr.host_info;
399
400         host_info->os_type = ENA_ADMIN_OS_DPDK;
401         host_info->kernel_ver = RTE_VERSION;
402         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
403                 sizeof(host_info->kernel_ver_str));
404         host_info->os_dist = RTE_VERSION;
405         strlcpy((char *)host_info->os_dist_str, rte_version(),
406                 sizeof(host_info->os_dist_str));
407         host_info->driver_version =
408                 (DRV_MODULE_VER_MAJOR) |
409                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
410                 (DRV_MODULE_VER_SUBMINOR <<
411                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
412         host_info->num_cpus = rte_lcore_count();
413
414         host_info->driver_supported_features =
415                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
416                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
417
418         rc = ena_com_set_host_attributes(ena_dev);
419         if (rc) {
420                 if (rc == -ENA_COM_UNSUPPORTED)
421                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
422                 else
423                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
424
425                 goto err;
426         }
427
428         return;
429
430 err:
431         ena_com_delete_host_info(ena_dev);
432 }
433
434 /* This function calculates the number of xstats based on the current config */
435 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
436 {
437         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
438                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
439                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
440 }
441
442 static void ena_config_debug_area(struct ena_adapter *adapter)
443 {
444         u32 debug_area_size;
445         int rc, ss_count;
446
447         ss_count = ena_xstats_calc_num(adapter->edev_data);
448
449         /* allocate 32 bytes for each string and 64bit for the value */
450         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
451
452         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
453         if (rc) {
454                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
455                 return;
456         }
457
458         rc = ena_com_set_host_attributes(&adapter->ena_dev);
459         if (rc) {
460                 if (rc == -ENA_COM_UNSUPPORTED)
461                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
462                 else
463                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
464
465                 goto err;
466         }
467
468         return;
469 err:
470         ena_com_delete_debug_area(&adapter->ena_dev);
471 }
472
473 static int ena_close(struct rte_eth_dev *dev)
474 {
475         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
476         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
477         struct ena_adapter *adapter = dev->data->dev_private;
478         int ret = 0;
479
480         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
481                 return 0;
482
483         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
484                 ret = ena_stop(dev);
485         adapter->state = ENA_ADAPTER_STATE_CLOSED;
486
487         ena_rx_queue_release_all(dev);
488         ena_tx_queue_release_all(dev);
489
490         rte_free(adapter->drv_stats);
491         adapter->drv_stats = NULL;
492
493         rte_intr_disable(intr_handle);
494         rte_intr_callback_unregister(intr_handle,
495                                      ena_interrupt_handler_rte,
496                                      dev);
497
498         /*
499          * MAC is not allocated dynamically. Setting NULL should prevent from
500          * release of the resource in the rte_eth_dev_release_port().
501          */
502         dev->data->mac_addrs = NULL;
503
504         return ret;
505 }
506
507 static int
508 ena_dev_reset(struct rte_eth_dev *dev)
509 {
510         int rc = 0;
511
512         /* Cannot release memory in secondary process */
513         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
514                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
515                 return -EPERM;
516         }
517
518         ena_destroy_device(dev);
519         rc = eth_ena_dev_init(dev);
520         if (rc)
521                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
522
523         return rc;
524 }
525
526 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
527 {
528         struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
529         int nb_queues = dev->data->nb_rx_queues;
530         int i;
531
532         for (i = 0; i < nb_queues; i++)
533                 ena_rx_queue_release(queues[i]);
534 }
535
536 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
537 {
538         struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
539         int nb_queues = dev->data->nb_tx_queues;
540         int i;
541
542         for (i = 0; i < nb_queues; i++)
543                 ena_tx_queue_release(queues[i]);
544 }
545
546 static void ena_rx_queue_release(void *queue)
547 {
548         struct ena_ring *ring = (struct ena_ring *)queue;
549
550         /* Free ring resources */
551         if (ring->rx_buffer_info)
552                 rte_free(ring->rx_buffer_info);
553         ring->rx_buffer_info = NULL;
554
555         if (ring->rx_refill_buffer)
556                 rte_free(ring->rx_refill_buffer);
557         ring->rx_refill_buffer = NULL;
558
559         if (ring->empty_rx_reqs)
560                 rte_free(ring->empty_rx_reqs);
561         ring->empty_rx_reqs = NULL;
562
563         ring->configured = 0;
564
565         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
566                 ring->port_id, ring->id);
567 }
568
569 static void ena_tx_queue_release(void *queue)
570 {
571         struct ena_ring *ring = (struct ena_ring *)queue;
572
573         /* Free ring resources */
574         if (ring->push_buf_intermediate_buf)
575                 rte_free(ring->push_buf_intermediate_buf);
576
577         if (ring->tx_buffer_info)
578                 rte_free(ring->tx_buffer_info);
579
580         if (ring->empty_tx_reqs)
581                 rte_free(ring->empty_tx_reqs);
582
583         ring->empty_tx_reqs = NULL;
584         ring->tx_buffer_info = NULL;
585         ring->push_buf_intermediate_buf = NULL;
586
587         ring->configured = 0;
588
589         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
590                 ring->port_id, ring->id);
591 }
592
593 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
594 {
595         unsigned int i;
596
597         for (i = 0; i < ring->ring_size; ++i) {
598                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
599                 if (rx_info->mbuf) {
600                         rte_mbuf_raw_free(rx_info->mbuf);
601                         rx_info->mbuf = NULL;
602                 }
603         }
604 }
605
606 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
607 {
608         unsigned int i;
609
610         for (i = 0; i < ring->ring_size; ++i) {
611                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
612
613                 if (tx_buf->mbuf) {
614                         rte_pktmbuf_free(tx_buf->mbuf);
615                         tx_buf->mbuf = NULL;
616                 }
617         }
618 }
619
620 static int ena_link_update(struct rte_eth_dev *dev,
621                            __rte_unused int wait_to_complete)
622 {
623         struct rte_eth_link *link = &dev->data->dev_link;
624         struct ena_adapter *adapter = dev->data->dev_private;
625
626         link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
627         link->link_speed = ETH_SPEED_NUM_NONE;
628         link->link_duplex = ETH_LINK_FULL_DUPLEX;
629
630         return 0;
631 }
632
633 static int ena_queue_start_all(struct rte_eth_dev *dev,
634                                enum ena_ring_type ring_type)
635 {
636         struct ena_adapter *adapter = dev->data->dev_private;
637         struct ena_ring *queues = NULL;
638         int nb_queues;
639         int i = 0;
640         int rc = 0;
641
642         if (ring_type == ENA_RING_TYPE_RX) {
643                 queues = adapter->rx_ring;
644                 nb_queues = dev->data->nb_rx_queues;
645         } else {
646                 queues = adapter->tx_ring;
647                 nb_queues = dev->data->nb_tx_queues;
648         }
649         for (i = 0; i < nb_queues; i++) {
650                 if (queues[i].configured) {
651                         if (ring_type == ENA_RING_TYPE_RX) {
652                                 ena_assert_msg(
653                                         dev->data->rx_queues[i] == &queues[i],
654                                         "Inconsistent state of Rx queues\n");
655                         } else {
656                                 ena_assert_msg(
657                                         dev->data->tx_queues[i] == &queues[i],
658                                         "Inconsistent state of Tx queues\n");
659                         }
660
661                         rc = ena_queue_start(dev, &queues[i]);
662
663                         if (rc) {
664                                 PMD_INIT_LOG(ERR,
665                                         "Failed to start queue[%d] of type(%d)\n",
666                                         i, ring_type);
667                                 goto err;
668                         }
669                 }
670         }
671
672         return 0;
673
674 err:
675         while (i--)
676                 if (queues[i].configured)
677                         ena_queue_stop(&queues[i]);
678
679         return rc;
680 }
681
682 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
683 {
684         uint32_t max_frame_len = adapter->max_mtu;
685
686         if (adapter->edev_data->dev_conf.rxmode.offloads &
687             DEV_RX_OFFLOAD_JUMBO_FRAME)
688                 max_frame_len =
689                         adapter->edev_data->dev_conf.rxmode.max_rx_pkt_len;
690
691         return max_frame_len;
692 }
693
694 static int ena_check_valid_conf(struct ena_adapter *adapter)
695 {
696         uint32_t max_frame_len = ena_get_mtu_conf(adapter);
697
698         if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
699                 PMD_INIT_LOG(ERR,
700                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
701                         max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
702                 return ENA_COM_UNSUPPORTED;
703         }
704
705         return 0;
706 }
707
708 static int
709 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
710                        bool use_large_llq_hdr)
711 {
712         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
713         struct ena_com_dev *ena_dev = ctx->ena_dev;
714         uint32_t max_tx_queue_size;
715         uint32_t max_rx_queue_size;
716
717         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
718                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
719                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
720                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
721                         max_queue_ext->max_rx_sq_depth);
722                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
723
724                 if (ena_dev->tx_mem_queue_type ==
725                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
726                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
727                                 llq->max_llq_depth);
728                 } else {
729                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
730                                 max_queue_ext->max_tx_sq_depth);
731                 }
732
733                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
734                         max_queue_ext->max_per_packet_rx_descs);
735                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
736                         max_queue_ext->max_per_packet_tx_descs);
737         } else {
738                 struct ena_admin_queue_feature_desc *max_queues =
739                         &ctx->get_feat_ctx->max_queues;
740                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
741                         max_queues->max_sq_depth);
742                 max_tx_queue_size = max_queues->max_cq_depth;
743
744                 if (ena_dev->tx_mem_queue_type ==
745                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
746                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
747                                 llq->max_llq_depth);
748                 } else {
749                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
750                                 max_queues->max_sq_depth);
751                 }
752
753                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
754                         max_queues->max_packet_rx_descs);
755                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
756                         max_queues->max_packet_tx_descs);
757         }
758
759         /* Round down to the nearest power of 2 */
760         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
761         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
762
763         if (use_large_llq_hdr) {
764                 if ((llq->entry_size_ctrl_supported &
765                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
766                     (ena_dev->tx_mem_queue_type ==
767                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
768                         max_tx_queue_size /= 2;
769                         PMD_INIT_LOG(INFO,
770                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
771                                 max_tx_queue_size);
772                 } else {
773                         PMD_INIT_LOG(ERR,
774                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
775                 }
776         }
777
778         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
779                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
780                 return -EFAULT;
781         }
782
783         ctx->max_tx_queue_size = max_tx_queue_size;
784         ctx->max_rx_queue_size = max_rx_queue_size;
785
786         return 0;
787 }
788
789 static void ena_stats_restart(struct rte_eth_dev *dev)
790 {
791         struct ena_adapter *adapter = dev->data->dev_private;
792
793         rte_atomic64_init(&adapter->drv_stats->ierrors);
794         rte_atomic64_init(&adapter->drv_stats->oerrors);
795         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
796         adapter->drv_stats->rx_drops = 0;
797 }
798
799 static int ena_stats_get(struct rte_eth_dev *dev,
800                           struct rte_eth_stats *stats)
801 {
802         struct ena_admin_basic_stats ena_stats;
803         struct ena_adapter *adapter = dev->data->dev_private;
804         struct ena_com_dev *ena_dev = &adapter->ena_dev;
805         int rc;
806         int i;
807         int max_rings_stats;
808
809         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
810                 return -ENOTSUP;
811
812         memset(&ena_stats, 0, sizeof(ena_stats));
813
814         rte_spinlock_lock(&adapter->admin_lock);
815         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
816         rte_spinlock_unlock(&adapter->admin_lock);
817         if (unlikely(rc)) {
818                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
819                 return rc;
820         }
821
822         /* Set of basic statistics from ENA */
823         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
824                                           ena_stats.rx_pkts_low);
825         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
826                                           ena_stats.tx_pkts_low);
827         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
828                                         ena_stats.rx_bytes_low);
829         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
830                                         ena_stats.tx_bytes_low);
831
832         /* Driver related stats */
833         stats->imissed = adapter->drv_stats->rx_drops;
834         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
835         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
836         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
837
838         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
839                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
840         for (i = 0; i < max_rings_stats; ++i) {
841                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
842
843                 stats->q_ibytes[i] = rx_stats->bytes;
844                 stats->q_ipackets[i] = rx_stats->cnt;
845                 stats->q_errors[i] = rx_stats->bad_desc_num +
846                         rx_stats->bad_req_id;
847         }
848
849         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
850                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
851         for (i = 0; i < max_rings_stats; ++i) {
852                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
853
854                 stats->q_obytes[i] = tx_stats->bytes;
855                 stats->q_opackets[i] = tx_stats->cnt;
856         }
857
858         return 0;
859 }
860
861 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
862 {
863         struct ena_adapter *adapter;
864         struct ena_com_dev *ena_dev;
865         int rc = 0;
866
867         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
868         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
869         adapter = dev->data->dev_private;
870
871         ena_dev = &adapter->ena_dev;
872         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
873
874         if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
875                 PMD_DRV_LOG(ERR,
876                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
877                         mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
878                 return -EINVAL;
879         }
880
881         rc = ena_com_set_dev_mtu(ena_dev, mtu);
882         if (rc)
883                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
884         else
885                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
886
887         return rc;
888 }
889
890 static int ena_start(struct rte_eth_dev *dev)
891 {
892         struct ena_adapter *adapter = dev->data->dev_private;
893         uint64_t ticks;
894         int rc = 0;
895
896         /* Cannot allocate memory in secondary process */
897         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
898                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
899                 return -EPERM;
900         }
901
902         rc = ena_check_valid_conf(adapter);
903         if (rc)
904                 return rc;
905
906         rc = ena_setup_rx_intr(dev);
907         if (rc)
908                 return rc;
909
910         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
911         if (rc)
912                 return rc;
913
914         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
915         if (rc)
916                 goto err_start_tx;
917
918         if (adapter->edev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) {
919                 rc = ena_rss_configure(adapter);
920                 if (rc)
921                         goto err_rss_init;
922         }
923
924         ena_stats_restart(dev);
925
926         adapter->timestamp_wd = rte_get_timer_cycles();
927         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
928
929         ticks = rte_get_timer_hz();
930         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
931                         ena_timer_wd_callback, dev);
932
933         ++adapter->dev_stats.dev_start;
934         adapter->state = ENA_ADAPTER_STATE_RUNNING;
935
936         return 0;
937
938 err_rss_init:
939         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
940 err_start_tx:
941         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
942         return rc;
943 }
944
945 static int ena_stop(struct rte_eth_dev *dev)
946 {
947         struct ena_adapter *adapter = dev->data->dev_private;
948         struct ena_com_dev *ena_dev = &adapter->ena_dev;
949         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
950         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
951         int rc;
952
953         /* Cannot free memory in secondary process */
954         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
955                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
956                 return -EPERM;
957         }
958
959         rte_timer_stop_sync(&adapter->timer_wd);
960         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
961         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
962
963         if (adapter->trigger_reset) {
964                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
965                 if (rc)
966                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
967         }
968
969         rte_intr_disable(intr_handle);
970
971         rte_intr_efd_disable(intr_handle);
972         if (intr_handle->intr_vec != NULL) {
973                 rte_free(intr_handle->intr_vec);
974                 intr_handle->intr_vec = NULL;
975         }
976
977         rte_intr_enable(intr_handle);
978
979         ++adapter->dev_stats.dev_stop;
980         adapter->state = ENA_ADAPTER_STATE_STOPPED;
981         dev->data->dev_started = 0;
982
983         return 0;
984 }
985
986 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
987 {
988         struct ena_adapter *adapter = ring->adapter;
989         struct ena_com_dev *ena_dev = &adapter->ena_dev;
990         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
991         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
992         struct ena_com_create_io_ctx ctx =
993                 /* policy set to _HOST just to satisfy icc compiler */
994                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
995                   0, 0, 0, 0, 0 };
996         uint16_t ena_qid;
997         unsigned int i;
998         int rc;
999
1000         ctx.msix_vector = -1;
1001         if (ring->type == ENA_RING_TYPE_TX) {
1002                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1003                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1004                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1005                 for (i = 0; i < ring->ring_size; i++)
1006                         ring->empty_tx_reqs[i] = i;
1007         } else {
1008                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1009                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1010                 if (rte_intr_dp_is_en(intr_handle))
1011                         ctx.msix_vector = intr_handle->intr_vec[ring->id];
1012                 for (i = 0; i < ring->ring_size; i++)
1013                         ring->empty_rx_reqs[i] = i;
1014         }
1015         ctx.queue_size = ring->ring_size;
1016         ctx.qid = ena_qid;
1017         ctx.numa_node = ring->numa_socket_id;
1018
1019         rc = ena_com_create_io_queue(ena_dev, &ctx);
1020         if (rc) {
1021                 PMD_DRV_LOG(ERR,
1022                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1023                         ring->id, ena_qid, rc);
1024                 return rc;
1025         }
1026
1027         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1028                                      &ring->ena_com_io_sq,
1029                                      &ring->ena_com_io_cq);
1030         if (rc) {
1031                 PMD_DRV_LOG(ERR,
1032                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1033                         ring->id, rc);
1034                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1035                 return rc;
1036         }
1037
1038         if (ring->type == ENA_RING_TYPE_TX)
1039                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1040
1041         /* Start with Rx interrupts being masked. */
1042         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1043                 ena_rx_queue_intr_disable(dev, ring->id);
1044
1045         return 0;
1046 }
1047
1048 static void ena_queue_stop(struct ena_ring *ring)
1049 {
1050         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1051
1052         if (ring->type == ENA_RING_TYPE_RX) {
1053                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1054                 ena_rx_queue_release_bufs(ring);
1055         } else {
1056                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1057                 ena_tx_queue_release_bufs(ring);
1058         }
1059 }
1060
1061 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1062                               enum ena_ring_type ring_type)
1063 {
1064         struct ena_adapter *adapter = dev->data->dev_private;
1065         struct ena_ring *queues = NULL;
1066         uint16_t nb_queues, i;
1067
1068         if (ring_type == ENA_RING_TYPE_RX) {
1069                 queues = adapter->rx_ring;
1070                 nb_queues = dev->data->nb_rx_queues;
1071         } else {
1072                 queues = adapter->tx_ring;
1073                 nb_queues = dev->data->nb_tx_queues;
1074         }
1075
1076         for (i = 0; i < nb_queues; ++i)
1077                 if (queues[i].configured)
1078                         ena_queue_stop(&queues[i]);
1079 }
1080
1081 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1082 {
1083         int rc, bufs_num;
1084
1085         ena_assert_msg(ring->configured == 1,
1086                        "Trying to start unconfigured queue\n");
1087
1088         rc = ena_create_io_queue(dev, ring);
1089         if (rc) {
1090                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1091                 return rc;
1092         }
1093
1094         ring->next_to_clean = 0;
1095         ring->next_to_use = 0;
1096
1097         if (ring->type == ENA_RING_TYPE_TX) {
1098                 ring->tx_stats.available_desc =
1099                         ena_com_free_q_entries(ring->ena_com_io_sq);
1100                 return 0;
1101         }
1102
1103         bufs_num = ring->ring_size - 1;
1104         rc = ena_populate_rx_queue(ring, bufs_num);
1105         if (rc != bufs_num) {
1106                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1107                                          ENA_IO_RXQ_IDX(ring->id));
1108                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1109                 return ENA_COM_FAULT;
1110         }
1111         /* Flush per-core RX buffers pools cache as they can be used on other
1112          * cores as well.
1113          */
1114         rte_mempool_cache_flush(NULL, ring->mb_pool);
1115
1116         return 0;
1117 }
1118
1119 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1120                               uint16_t queue_idx,
1121                               uint16_t nb_desc,
1122                               unsigned int socket_id,
1123                               const struct rte_eth_txconf *tx_conf)
1124 {
1125         struct ena_ring *txq = NULL;
1126         struct ena_adapter *adapter = dev->data->dev_private;
1127         unsigned int i;
1128
1129         txq = &adapter->tx_ring[queue_idx];
1130
1131         if (txq->configured) {
1132                 PMD_DRV_LOG(CRIT,
1133                         "API violation. Queue[%d] is already configured\n",
1134                         queue_idx);
1135                 return ENA_COM_FAULT;
1136         }
1137
1138         if (!rte_is_power_of_2(nb_desc)) {
1139                 PMD_DRV_LOG(ERR,
1140                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1141                         nb_desc);
1142                 return -EINVAL;
1143         }
1144
1145         if (nb_desc > adapter->max_tx_ring_size) {
1146                 PMD_DRV_LOG(ERR,
1147                         "Unsupported size of Tx queue (max size: %d)\n",
1148                         adapter->max_tx_ring_size);
1149                 return -EINVAL;
1150         }
1151
1152         txq->port_id = dev->data->port_id;
1153         txq->next_to_clean = 0;
1154         txq->next_to_use = 0;
1155         txq->ring_size = nb_desc;
1156         txq->size_mask = nb_desc - 1;
1157         txq->numa_socket_id = socket_id;
1158         txq->pkts_without_db = false;
1159
1160         txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1161                                           sizeof(struct ena_tx_buffer) *
1162                                           txq->ring_size,
1163                                           RTE_CACHE_LINE_SIZE);
1164         if (!txq->tx_buffer_info) {
1165                 PMD_DRV_LOG(ERR,
1166                         "Failed to allocate memory for Tx buffer info\n");
1167                 return -ENOMEM;
1168         }
1169
1170         txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1171                                          sizeof(u16) * txq->ring_size,
1172                                          RTE_CACHE_LINE_SIZE);
1173         if (!txq->empty_tx_reqs) {
1174                 PMD_DRV_LOG(ERR,
1175                         "Failed to allocate memory for empty Tx requests\n");
1176                 rte_free(txq->tx_buffer_info);
1177                 return -ENOMEM;
1178         }
1179
1180         txq->push_buf_intermediate_buf =
1181                 rte_zmalloc("txq->push_buf_intermediate_buf",
1182                             txq->tx_max_header_size,
1183                             RTE_CACHE_LINE_SIZE);
1184         if (!txq->push_buf_intermediate_buf) {
1185                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1186                 rte_free(txq->tx_buffer_info);
1187                 rte_free(txq->empty_tx_reqs);
1188                 return -ENOMEM;
1189         }
1190
1191         for (i = 0; i < txq->ring_size; i++)
1192                 txq->empty_tx_reqs[i] = i;
1193
1194         if (tx_conf != NULL) {
1195                 txq->offloads =
1196                         tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1197         }
1198         /* Store pointer to this queue in upper layer */
1199         txq->configured = 1;
1200         dev->data->tx_queues[queue_idx] = txq;
1201
1202         return 0;
1203 }
1204
1205 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1206                               uint16_t queue_idx,
1207                               uint16_t nb_desc,
1208                               unsigned int socket_id,
1209                               const struct rte_eth_rxconf *rx_conf,
1210                               struct rte_mempool *mp)
1211 {
1212         struct ena_adapter *adapter = dev->data->dev_private;
1213         struct ena_ring *rxq = NULL;
1214         size_t buffer_size;
1215         int i;
1216
1217         rxq = &adapter->rx_ring[queue_idx];
1218         if (rxq->configured) {
1219                 PMD_DRV_LOG(CRIT,
1220                         "API violation. Queue[%d] is already configured\n",
1221                         queue_idx);
1222                 return ENA_COM_FAULT;
1223         }
1224
1225         if (!rte_is_power_of_2(nb_desc)) {
1226                 PMD_DRV_LOG(ERR,
1227                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1228                         nb_desc);
1229                 return -EINVAL;
1230         }
1231
1232         if (nb_desc > adapter->max_rx_ring_size) {
1233                 PMD_DRV_LOG(ERR,
1234                         "Unsupported size of Rx queue (max size: %d)\n",
1235                         adapter->max_rx_ring_size);
1236                 return -EINVAL;
1237         }
1238
1239         /* ENA isn't supporting buffers smaller than 1400 bytes */
1240         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1241         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1242                 PMD_DRV_LOG(ERR,
1243                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1244                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1245                 return -EINVAL;
1246         }
1247
1248         rxq->port_id = dev->data->port_id;
1249         rxq->next_to_clean = 0;
1250         rxq->next_to_use = 0;
1251         rxq->ring_size = nb_desc;
1252         rxq->size_mask = nb_desc - 1;
1253         rxq->numa_socket_id = socket_id;
1254         rxq->mb_pool = mp;
1255
1256         rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1257                 sizeof(struct ena_rx_buffer) * nb_desc,
1258                 RTE_CACHE_LINE_SIZE);
1259         if (!rxq->rx_buffer_info) {
1260                 PMD_DRV_LOG(ERR,
1261                         "Failed to allocate memory for Rx buffer info\n");
1262                 return -ENOMEM;
1263         }
1264
1265         rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1266                                             sizeof(struct rte_mbuf *) * nb_desc,
1267                                             RTE_CACHE_LINE_SIZE);
1268
1269         if (!rxq->rx_refill_buffer) {
1270                 PMD_DRV_LOG(ERR,
1271                         "Failed to allocate memory for Rx refill buffer\n");
1272                 rte_free(rxq->rx_buffer_info);
1273                 rxq->rx_buffer_info = NULL;
1274                 return -ENOMEM;
1275         }
1276
1277         rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1278                                          sizeof(uint16_t) * nb_desc,
1279                                          RTE_CACHE_LINE_SIZE);
1280         if (!rxq->empty_rx_reqs) {
1281                 PMD_DRV_LOG(ERR,
1282                         "Failed to allocate memory for empty Rx requests\n");
1283                 rte_free(rxq->rx_buffer_info);
1284                 rxq->rx_buffer_info = NULL;
1285                 rte_free(rxq->rx_refill_buffer);
1286                 rxq->rx_refill_buffer = NULL;
1287                 return -ENOMEM;
1288         }
1289
1290         for (i = 0; i < nb_desc; i++)
1291                 rxq->empty_rx_reqs[i] = i;
1292
1293         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1294
1295         /* Store pointer to this queue in upper layer */
1296         rxq->configured = 1;
1297         dev->data->rx_queues[queue_idx] = rxq;
1298
1299         return 0;
1300 }
1301
1302 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1303                                   struct rte_mbuf *mbuf, uint16_t id)
1304 {
1305         struct ena_com_buf ebuf;
1306         int rc;
1307
1308         /* prepare physical address for DMA transaction */
1309         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1310         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1311
1312         /* pass resource to device */
1313         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1314         if (unlikely(rc != 0))
1315                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1316
1317         return rc;
1318 }
1319
1320 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1321 {
1322         unsigned int i;
1323         int rc;
1324         uint16_t next_to_use = rxq->next_to_use;
1325         uint16_t req_id;
1326 #ifdef RTE_ETHDEV_DEBUG_RX
1327         uint16_t in_use;
1328 #endif
1329         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1330
1331         if (unlikely(!count))
1332                 return 0;
1333
1334 #ifdef RTE_ETHDEV_DEBUG_RX
1335         in_use = rxq->ring_size - 1 -
1336                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1337         if (unlikely((in_use + count) >= rxq->ring_size))
1338                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1339 #endif
1340
1341         /* get resources for incoming packets */
1342         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1343         if (unlikely(rc < 0)) {
1344                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1345                 ++rxq->rx_stats.mbuf_alloc_fail;
1346                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1347                 return 0;
1348         }
1349
1350         for (i = 0; i < count; i++) {
1351                 struct rte_mbuf *mbuf = mbufs[i];
1352                 struct ena_rx_buffer *rx_info;
1353
1354                 if (likely((i + 4) < count))
1355                         rte_prefetch0(mbufs[i + 4]);
1356
1357                 req_id = rxq->empty_rx_reqs[next_to_use];
1358                 rx_info = &rxq->rx_buffer_info[req_id];
1359
1360                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1361                 if (unlikely(rc != 0))
1362                         break;
1363
1364                 rx_info->mbuf = mbuf;
1365                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1366         }
1367
1368         if (unlikely(i < count)) {
1369                 PMD_RX_LOG(WARNING,
1370                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1371                         rxq->id, i, count);
1372                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1373                 ++rxq->rx_stats.refill_partial;
1374         }
1375
1376         /* When we submitted free recources to device... */
1377         if (likely(i > 0)) {
1378                 /* ...let HW know that it can fill buffers with data. */
1379                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1380
1381                 rxq->next_to_use = next_to_use;
1382         }
1383
1384         return i;
1385 }
1386
1387 static int ena_device_init(struct ena_com_dev *ena_dev,
1388                            struct rte_pci_device *pdev,
1389                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1390                            bool *wd_state)
1391 {
1392         uint32_t aenq_groups;
1393         int rc;
1394         bool readless_supported;
1395
1396         /* Initialize mmio registers */
1397         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1398         if (rc) {
1399                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1400                 return rc;
1401         }
1402
1403         /* The PCIe configuration space revision id indicate if mmio reg
1404          * read is disabled.
1405          */
1406         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1407         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1408
1409         /* reset device */
1410         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1411         if (rc) {
1412                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1413                 goto err_mmio_read_less;
1414         }
1415
1416         /* check FW version */
1417         rc = ena_com_validate_version(ena_dev);
1418         if (rc) {
1419                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1420                 goto err_mmio_read_less;
1421         }
1422
1423         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1424
1425         /* ENA device administration layer init */
1426         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1427         if (rc) {
1428                 PMD_DRV_LOG(ERR,
1429                         "Cannot initialize ENA admin queue\n");
1430                 goto err_mmio_read_less;
1431         }
1432
1433         /* To enable the msix interrupts the driver needs to know the number
1434          * of queues. So the driver uses polling mode to retrieve this
1435          * information.
1436          */
1437         ena_com_set_admin_polling_mode(ena_dev, true);
1438
1439         ena_config_host_info(ena_dev);
1440
1441         /* Get Device Attributes and features */
1442         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1443         if (rc) {
1444                 PMD_DRV_LOG(ERR,
1445                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1446                 goto err_admin_init;
1447         }
1448
1449         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1450                       BIT(ENA_ADMIN_NOTIFICATION) |
1451                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1452                       BIT(ENA_ADMIN_FATAL_ERROR) |
1453                       BIT(ENA_ADMIN_WARNING);
1454
1455         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1456         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1457         if (rc) {
1458                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1459                 goto err_admin_init;
1460         }
1461
1462         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1463
1464         return 0;
1465
1466 err_admin_init:
1467         ena_com_admin_destroy(ena_dev);
1468
1469 err_mmio_read_less:
1470         ena_com_mmio_reg_read_request_destroy(ena_dev);
1471
1472         return rc;
1473 }
1474
1475 static void ena_interrupt_handler_rte(void *cb_arg)
1476 {
1477         struct rte_eth_dev *dev = cb_arg;
1478         struct ena_adapter *adapter = dev->data->dev_private;
1479         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1480
1481         ena_com_admin_q_comp_intr_handler(ena_dev);
1482         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1483                 ena_com_aenq_intr_handler(ena_dev, dev);
1484 }
1485
1486 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1487 {
1488         if (!adapter->wd_state)
1489                 return;
1490
1491         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1492                 return;
1493
1494         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1495             adapter->keep_alive_timeout)) {
1496                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1497                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1498                 adapter->trigger_reset = true;
1499                 ++adapter->dev_stats.wd_expired;
1500         }
1501 }
1502
1503 /* Check if admin queue is enabled */
1504 static void check_for_admin_com_state(struct ena_adapter *adapter)
1505 {
1506         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1507                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1508                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1509                 adapter->trigger_reset = true;
1510         }
1511 }
1512
1513 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1514                                   void *arg)
1515 {
1516         struct rte_eth_dev *dev = arg;
1517         struct ena_adapter *adapter = dev->data->dev_private;
1518
1519         check_for_missing_keep_alive(adapter);
1520         check_for_admin_com_state(adapter);
1521
1522         if (unlikely(adapter->trigger_reset)) {
1523                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1524                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1525                         NULL);
1526         }
1527 }
1528
1529 static inline void
1530 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1531                                struct ena_admin_feature_llq_desc *llq,
1532                                bool use_large_llq_hdr)
1533 {
1534         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1535         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1536         llq_config->llq_num_decs_before_header =
1537                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1538
1539         if (use_large_llq_hdr &&
1540             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1541                 llq_config->llq_ring_entry_size =
1542                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1543                 llq_config->llq_ring_entry_size_value = 256;
1544         } else {
1545                 llq_config->llq_ring_entry_size =
1546                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1547                 llq_config->llq_ring_entry_size_value = 128;
1548         }
1549 }
1550
1551 static int
1552 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1553                                 struct ena_com_dev *ena_dev,
1554                                 struct ena_admin_feature_llq_desc *llq,
1555                                 struct ena_llq_configurations *llq_default_configurations)
1556 {
1557         int rc;
1558         u32 llq_feature_mask;
1559
1560         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1561         if (!(ena_dev->supported_features & llq_feature_mask)) {
1562                 PMD_DRV_LOG(INFO,
1563                         "LLQ is not supported. Fallback to host mode policy.\n");
1564                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1565                 return 0;
1566         }
1567
1568         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1569         if (unlikely(rc)) {
1570                 PMD_INIT_LOG(WARNING,
1571                         "Failed to config dev mode. Fallback to host mode policy.\n");
1572                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1573                 return 0;
1574         }
1575
1576         /* Nothing to config, exit */
1577         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1578                 return 0;
1579
1580         if (!adapter->dev_mem_base) {
1581                 PMD_DRV_LOG(ERR,
1582                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1583                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1584                 return 0;
1585         }
1586
1587         ena_dev->mem_bar = adapter->dev_mem_base;
1588
1589         return 0;
1590 }
1591
1592 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1593         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1594 {
1595         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1596
1597         /* Regular queues capabilities */
1598         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1599                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1600                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1601                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1602                                     max_queue_ext->max_rx_cq_num);
1603                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1604                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1605         } else {
1606                 struct ena_admin_queue_feature_desc *max_queues =
1607                         &get_feat_ctx->max_queues;
1608                 io_tx_sq_num = max_queues->max_sq_num;
1609                 io_tx_cq_num = max_queues->max_cq_num;
1610                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1611         }
1612
1613         /* In case of LLQ use the llq number in the get feature cmd */
1614         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1615                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1616
1617         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1618         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1619         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1620
1621         if (unlikely(max_num_io_queues == 0)) {
1622                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1623                 return -EFAULT;
1624         }
1625
1626         return max_num_io_queues;
1627 }
1628
1629 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1630 {
1631         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1632         struct rte_pci_device *pci_dev;
1633         struct rte_intr_handle *intr_handle;
1634         struct ena_adapter *adapter = eth_dev->data->dev_private;
1635         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1636         struct ena_com_dev_get_features_ctx get_feat_ctx;
1637         struct ena_llq_configurations llq_config;
1638         const char *queue_type_str;
1639         uint32_t max_num_io_queues;
1640         int rc;
1641         static int adapters_found;
1642         bool disable_meta_caching;
1643         bool wd_state = false;
1644
1645         eth_dev->dev_ops = &ena_dev_ops;
1646         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1647         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1648         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1649
1650         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1651                 return 0;
1652
1653         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1654
1655         memset(adapter, 0, sizeof(struct ena_adapter));
1656         ena_dev = &adapter->ena_dev;
1657
1658         adapter->edev_data = eth_dev->data;
1659
1660         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1661
1662         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1663                      pci_dev->addr.domain,
1664                      pci_dev->addr.bus,
1665                      pci_dev->addr.devid,
1666                      pci_dev->addr.function);
1667
1668         intr_handle = &pci_dev->intr_handle;
1669
1670         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1671         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1672
1673         if (!adapter->regs) {
1674                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1675                              ENA_REGS_BAR);
1676                 return -ENXIO;
1677         }
1678
1679         ena_dev->reg_bar = adapter->regs;
1680         /* This is a dummy pointer for ena_com functions. */
1681         ena_dev->dmadev = adapter;
1682
1683         adapter->id_number = adapters_found;
1684
1685         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1686                  adapter->id_number);
1687
1688         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1689         if (rc != 0) {
1690                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1691                 goto err;
1692         }
1693
1694         /* device specific initialization routine */
1695         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1696         if (rc) {
1697                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1698                 goto err;
1699         }
1700         adapter->wd_state = wd_state;
1701
1702         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1703                 adapter->use_large_llq_hdr);
1704         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1705                                              &get_feat_ctx.llq, &llq_config);
1706         if (unlikely(rc)) {
1707                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1708                 return rc;
1709         }
1710
1711         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1712                 queue_type_str = "Regular";
1713         else
1714                 queue_type_str = "Low latency";
1715         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1716
1717         calc_queue_ctx.ena_dev = ena_dev;
1718         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1719
1720         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1721         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1722                 adapter->use_large_llq_hdr);
1723         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1724                 rc = -EFAULT;
1725                 goto err_device_destroy;
1726         }
1727
1728         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1729         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1730         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1731         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1732         adapter->max_num_io_queues = max_num_io_queues;
1733
1734         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1735                 disable_meta_caching =
1736                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1737                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1738         } else {
1739                 disable_meta_caching = false;
1740         }
1741
1742         /* prepare ring structures */
1743         ena_init_rings(adapter, disable_meta_caching);
1744
1745         ena_config_debug_area(adapter);
1746
1747         /* Set max MTU for this device */
1748         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1749
1750         /* set device support for offloads */
1751         adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1752                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1753         adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1754                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1755         adapter->offloads.rx_csum_supported =
1756                 (get_feat_ctx.offload.rx_supported &
1757                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1758         adapter->offloads.rss_hash_supported =
1759                 (get_feat_ctx.offload.rx_supported &
1760                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK) != 0;
1761
1762         /* Copy MAC address and point DPDK to it */
1763         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1764         rte_ether_addr_copy((struct rte_ether_addr *)
1765                         get_feat_ctx.dev_attr.mac_addr,
1766                         (struct rte_ether_addr *)adapter->mac_addr);
1767
1768         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1769         if (unlikely(rc != 0)) {
1770                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1771                 goto err_delete_debug_area;
1772         }
1773
1774         adapter->drv_stats = rte_zmalloc("adapter stats",
1775                                          sizeof(*adapter->drv_stats),
1776                                          RTE_CACHE_LINE_SIZE);
1777         if (!adapter->drv_stats) {
1778                 PMD_DRV_LOG(ERR,
1779                         "Failed to allocate memory for adapter statistics\n");
1780                 rc = -ENOMEM;
1781                 goto err_rss_destroy;
1782         }
1783
1784         rte_spinlock_init(&adapter->admin_lock);
1785
1786         rte_intr_callback_register(intr_handle,
1787                                    ena_interrupt_handler_rte,
1788                                    eth_dev);
1789         rte_intr_enable(intr_handle);
1790         ena_com_set_admin_polling_mode(ena_dev, false);
1791         ena_com_admin_aenq_enable(ena_dev);
1792
1793         if (adapters_found == 0)
1794                 rte_timer_subsystem_init();
1795         rte_timer_init(&adapter->timer_wd);
1796
1797         adapters_found++;
1798         adapter->state = ENA_ADAPTER_STATE_INIT;
1799
1800         return 0;
1801
1802 err_rss_destroy:
1803         ena_com_rss_destroy(ena_dev);
1804 err_delete_debug_area:
1805         ena_com_delete_debug_area(ena_dev);
1806
1807 err_device_destroy:
1808         ena_com_delete_host_info(ena_dev);
1809         ena_com_admin_destroy(ena_dev);
1810
1811 err:
1812         return rc;
1813 }
1814
1815 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1816 {
1817         struct ena_adapter *adapter = eth_dev->data->dev_private;
1818         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1819
1820         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1821                 return;
1822
1823         ena_com_set_admin_running_state(ena_dev, false);
1824
1825         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1826                 ena_close(eth_dev);
1827
1828         ena_com_rss_destroy(ena_dev);
1829
1830         ena_com_delete_debug_area(ena_dev);
1831         ena_com_delete_host_info(ena_dev);
1832
1833         ena_com_abort_admin_commands(ena_dev);
1834         ena_com_wait_for_abort_completion(ena_dev);
1835         ena_com_admin_destroy(ena_dev);
1836         ena_com_mmio_reg_read_request_destroy(ena_dev);
1837
1838         adapter->state = ENA_ADAPTER_STATE_FREE;
1839 }
1840
1841 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1842 {
1843         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1844                 return 0;
1845
1846         ena_destroy_device(eth_dev);
1847
1848         return 0;
1849 }
1850
1851 static int ena_dev_configure(struct rte_eth_dev *dev)
1852 {
1853         struct ena_adapter *adapter = dev->data->dev_private;
1854
1855         adapter->state = ENA_ADAPTER_STATE_CONFIG;
1856
1857         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1858                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1859
1860         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1861         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1862         return 0;
1863 }
1864
1865 static void ena_init_rings(struct ena_adapter *adapter,
1866                            bool disable_meta_caching)
1867 {
1868         size_t i;
1869
1870         for (i = 0; i < adapter->max_num_io_queues; i++) {
1871                 struct ena_ring *ring = &adapter->tx_ring[i];
1872
1873                 ring->configured = 0;
1874                 ring->type = ENA_RING_TYPE_TX;
1875                 ring->adapter = adapter;
1876                 ring->id = i;
1877                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1878                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1879                 ring->sgl_size = adapter->max_tx_sgl_size;
1880                 ring->disable_meta_caching = disable_meta_caching;
1881         }
1882
1883         for (i = 0; i < adapter->max_num_io_queues; i++) {
1884                 struct ena_ring *ring = &adapter->rx_ring[i];
1885
1886                 ring->configured = 0;
1887                 ring->type = ENA_RING_TYPE_RX;
1888                 ring->adapter = adapter;
1889                 ring->id = i;
1890                 ring->sgl_size = adapter->max_rx_sgl_size;
1891         }
1892 }
1893
1894 static int ena_infos_get(struct rte_eth_dev *dev,
1895                           struct rte_eth_dev_info *dev_info)
1896 {
1897         struct ena_adapter *adapter;
1898         struct ena_com_dev *ena_dev;
1899         uint64_t rx_feat = 0, tx_feat = 0;
1900
1901         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1902         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1903         adapter = dev->data->dev_private;
1904
1905         ena_dev = &adapter->ena_dev;
1906         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1907
1908         dev_info->speed_capa =
1909                         ETH_LINK_SPEED_1G   |
1910                         ETH_LINK_SPEED_2_5G |
1911                         ETH_LINK_SPEED_5G   |
1912                         ETH_LINK_SPEED_10G  |
1913                         ETH_LINK_SPEED_25G  |
1914                         ETH_LINK_SPEED_40G  |
1915                         ETH_LINK_SPEED_50G  |
1916                         ETH_LINK_SPEED_100G;
1917
1918         /* Set Tx & Rx features available for device */
1919         if (adapter->offloads.tso4_supported)
1920                 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
1921
1922         if (adapter->offloads.tx_csum_supported)
1923                 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
1924                         DEV_TX_OFFLOAD_UDP_CKSUM |
1925                         DEV_TX_OFFLOAD_TCP_CKSUM;
1926
1927         if (adapter->offloads.rx_csum_supported)
1928                 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
1929                         DEV_RX_OFFLOAD_UDP_CKSUM  |
1930                         DEV_RX_OFFLOAD_TCP_CKSUM;
1931
1932         rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
1933
1934         /* Inform framework about available features */
1935         dev_info->rx_offload_capa = rx_feat;
1936         if (adapter->offloads.rss_hash_supported)
1937                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_RSS_HASH;
1938         dev_info->rx_queue_offload_capa = rx_feat;
1939         dev_info->tx_offload_capa = tx_feat;
1940         dev_info->tx_queue_offload_capa = tx_feat;
1941
1942         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
1943         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
1944
1945         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
1946         dev_info->max_rx_pktlen  = adapter->max_mtu;
1947         dev_info->max_mac_addrs = 1;
1948
1949         dev_info->max_rx_queues = adapter->max_num_io_queues;
1950         dev_info->max_tx_queues = adapter->max_num_io_queues;
1951         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
1952
1953         adapter->tx_supported_offloads = tx_feat;
1954         adapter->rx_supported_offloads = rx_feat;
1955
1956         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
1957         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1958         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1959                                         adapter->max_rx_sgl_size);
1960         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1961                                         adapter->max_rx_sgl_size);
1962
1963         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
1964         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
1965         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1966                                         adapter->max_tx_sgl_size);
1967         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
1968                                         adapter->max_tx_sgl_size);
1969
1970         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
1971         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
1972
1973         return 0;
1974 }
1975
1976 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
1977 {
1978         mbuf->data_len = len;
1979         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
1980         mbuf->refcnt = 1;
1981         mbuf->next = NULL;
1982 }
1983
1984 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
1985                                     struct ena_com_rx_buf_info *ena_bufs,
1986                                     uint32_t descs,
1987                                     uint16_t *next_to_clean,
1988                                     uint8_t offset)
1989 {
1990         struct rte_mbuf *mbuf;
1991         struct rte_mbuf *mbuf_head;
1992         struct ena_rx_buffer *rx_info;
1993         int rc;
1994         uint16_t ntc, len, req_id, buf = 0;
1995
1996         if (unlikely(descs == 0))
1997                 return NULL;
1998
1999         ntc = *next_to_clean;
2000
2001         len = ena_bufs[buf].len;
2002         req_id = ena_bufs[buf].req_id;
2003
2004         rx_info = &rx_ring->rx_buffer_info[req_id];
2005
2006         mbuf = rx_info->mbuf;
2007         RTE_ASSERT(mbuf != NULL);
2008
2009         ena_init_rx_mbuf(mbuf, len);
2010
2011         /* Fill the mbuf head with the data specific for 1st segment. */
2012         mbuf_head = mbuf;
2013         mbuf_head->nb_segs = descs;
2014         mbuf_head->port = rx_ring->port_id;
2015         mbuf_head->pkt_len = len;
2016         mbuf_head->data_off += offset;
2017
2018         rx_info->mbuf = NULL;
2019         rx_ring->empty_rx_reqs[ntc] = req_id;
2020         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2021
2022         while (--descs) {
2023                 ++buf;
2024                 len = ena_bufs[buf].len;
2025                 req_id = ena_bufs[buf].req_id;
2026
2027                 rx_info = &rx_ring->rx_buffer_info[req_id];
2028                 RTE_ASSERT(rx_info->mbuf != NULL);
2029
2030                 if (unlikely(len == 0)) {
2031                         /*
2032                          * Some devices can pass descriptor with the length 0.
2033                          * To avoid confusion, the PMD is simply putting the
2034                          * descriptor back, as it was never used. We'll avoid
2035                          * mbuf allocation that way.
2036                          */
2037                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2038                                 rx_info->mbuf, req_id);
2039                         if (unlikely(rc != 0)) {
2040                                 /* Free the mbuf in case of an error. */
2041                                 rte_mbuf_raw_free(rx_info->mbuf);
2042                         } else {
2043                                 /*
2044                                  * If there was no error, just exit the loop as
2045                                  * 0 length descriptor is always the last one.
2046                                  */
2047                                 break;
2048                         }
2049                 } else {
2050                         /* Create an mbuf chain. */
2051                         mbuf->next = rx_info->mbuf;
2052                         mbuf = mbuf->next;
2053
2054                         ena_init_rx_mbuf(mbuf, len);
2055                         mbuf_head->pkt_len += len;
2056                 }
2057
2058                 /*
2059                  * Mark the descriptor as depleted and perform necessary
2060                  * cleanup.
2061                  * This code will execute in two cases:
2062                  *  1. Descriptor len was greater than 0 - normal situation.
2063                  *  2. Descriptor len was 0 and we failed to add the descriptor
2064                  *     to the device. In that situation, we should try to add
2065                  *     the mbuf again in the populate routine and mark the
2066                  *     descriptor as used up by the device.
2067                  */
2068                 rx_info->mbuf = NULL;
2069                 rx_ring->empty_rx_reqs[ntc] = req_id;
2070                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2071         }
2072
2073         *next_to_clean = ntc;
2074
2075         return mbuf_head;
2076 }
2077
2078 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2079                                   uint16_t nb_pkts)
2080 {
2081         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2082         unsigned int free_queue_entries;
2083         unsigned int refill_threshold;
2084         uint16_t next_to_clean = rx_ring->next_to_clean;
2085         uint16_t descs_in_use;
2086         struct rte_mbuf *mbuf;
2087         uint16_t completed;
2088         struct ena_com_rx_ctx ena_rx_ctx;
2089         int i, rc = 0;
2090         bool fill_hash;
2091
2092 #ifdef RTE_ETHDEV_DEBUG_RX
2093         /* Check adapter state */
2094         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2095                 PMD_RX_LOG(ALERT,
2096                         "Trying to receive pkts while device is NOT running\n");
2097                 return 0;
2098         }
2099 #endif
2100
2101         fill_hash = rx_ring->offloads & DEV_RX_OFFLOAD_RSS_HASH;
2102
2103         descs_in_use = rx_ring->ring_size -
2104                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2105         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2106
2107         for (completed = 0; completed < nb_pkts; completed++) {
2108                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2109                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2110                 ena_rx_ctx.descs = 0;
2111                 ena_rx_ctx.pkt_offset = 0;
2112                 /* receive packet context */
2113                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2114                                     rx_ring->ena_com_io_sq,
2115                                     &ena_rx_ctx);
2116                 if (unlikely(rc)) {
2117                         PMD_RX_LOG(ERR,
2118                                 "Failed to get the packet from the device, rc: %d\n",
2119                                 rc);
2120                         if (rc == ENA_COM_NO_SPACE) {
2121                                 ++rx_ring->rx_stats.bad_desc_num;
2122                                 rx_ring->adapter->reset_reason =
2123                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2124                         } else {
2125                                 ++rx_ring->rx_stats.bad_req_id;
2126                                 rx_ring->adapter->reset_reason =
2127                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2128                         }
2129                         rx_ring->adapter->trigger_reset = true;
2130                         return 0;
2131                 }
2132
2133                 mbuf = ena_rx_mbuf(rx_ring,
2134                         ena_rx_ctx.ena_bufs,
2135                         ena_rx_ctx.descs,
2136                         &next_to_clean,
2137                         ena_rx_ctx.pkt_offset);
2138                 if (unlikely(mbuf == NULL)) {
2139                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2140                                 rx_ring->empty_rx_reqs[next_to_clean] =
2141                                         rx_ring->ena_bufs[i].req_id;
2142                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2143                                         next_to_clean, rx_ring->size_mask);
2144                         }
2145                         break;
2146                 }
2147
2148                 /* fill mbuf attributes if any */
2149                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2150
2151                 if (unlikely(mbuf->ol_flags &
2152                                 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2153                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2154                         ++rx_ring->rx_stats.bad_csum;
2155                 }
2156
2157                 rx_pkts[completed] = mbuf;
2158                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2159         }
2160
2161         rx_ring->rx_stats.cnt += completed;
2162         rx_ring->next_to_clean = next_to_clean;
2163
2164         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2165         refill_threshold =
2166                 RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2167                 (unsigned int)ENA_REFILL_THRESH_PACKET);
2168
2169         /* Burst refill to save doorbells, memory barriers, const interval */
2170         if (free_queue_entries > refill_threshold) {
2171                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2172                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2173         }
2174
2175         return completed;
2176 }
2177
2178 static uint16_t
2179 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2180                 uint16_t nb_pkts)
2181 {
2182         int32_t ret;
2183         uint32_t i;
2184         struct rte_mbuf *m;
2185         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2186         struct rte_ipv4_hdr *ip_hdr;
2187         uint64_t ol_flags;
2188         uint16_t frag_field;
2189
2190         for (i = 0; i != nb_pkts; i++) {
2191                 m = tx_pkts[i];
2192                 ol_flags = m->ol_flags;
2193
2194                 if (!(ol_flags & PKT_TX_IPV4))
2195                         continue;
2196
2197                 /* If there was not L2 header length specified, assume it is
2198                  * length of the ethernet header.
2199                  */
2200                 if (unlikely(m->l2_len == 0))
2201                         m->l2_len = sizeof(struct rte_ether_hdr);
2202
2203                 ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2204                                                  m->l2_len);
2205                 frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2206
2207                 if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2208                         m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2209
2210                         /* If IPv4 header has DF flag enabled and TSO support is
2211                          * disabled, partial chcecksum should not be calculated.
2212                          */
2213                         if (!tx_ring->adapter->offloads.tso4_supported)
2214                                 continue;
2215                 }
2216
2217                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2218                                 (ol_flags & PKT_TX_L4_MASK) ==
2219                                 PKT_TX_SCTP_CKSUM) {
2220                         rte_errno = ENOTSUP;
2221                         return i;
2222                 }
2223
2224 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2225                 ret = rte_validate_tx_offload(m);
2226                 if (ret != 0) {
2227                         rte_errno = -ret;
2228                         return i;
2229                 }
2230 #endif
2231
2232                 /* In case we are supposed to TSO and have DF not set (DF=0)
2233                  * hardware must be provided with partial checksum, otherwise
2234                  * it will take care of necessary calculations.
2235                  */
2236
2237                 ret = rte_net_intel_cksum_flags_prepare(m,
2238                         ol_flags & ~PKT_TX_TCP_SEG);
2239                 if (ret != 0) {
2240                         rte_errno = -ret;
2241                         return i;
2242                 }
2243         }
2244
2245         return i;
2246 }
2247
2248 static void ena_update_hints(struct ena_adapter *adapter,
2249                              struct ena_admin_ena_hw_hints *hints)
2250 {
2251         if (hints->admin_completion_tx_timeout)
2252                 adapter->ena_dev.admin_queue.completion_timeout =
2253                         hints->admin_completion_tx_timeout * 1000;
2254
2255         if (hints->mmio_read_timeout)
2256                 /* convert to usec */
2257                 adapter->ena_dev.mmio_read.reg_read_to =
2258                         hints->mmio_read_timeout * 1000;
2259
2260         if (hints->driver_watchdog_timeout) {
2261                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2262                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2263                 else
2264                         // Convert msecs to ticks
2265                         adapter->keep_alive_timeout =
2266                                 (hints->driver_watchdog_timeout *
2267                                 rte_get_timer_hz()) / 1000;
2268         }
2269 }
2270
2271 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2272                                               struct rte_mbuf *mbuf)
2273 {
2274         struct ena_com_dev *ena_dev;
2275         int num_segments, header_len, rc;
2276
2277         ena_dev = &tx_ring->adapter->ena_dev;
2278         num_segments = mbuf->nb_segs;
2279         header_len = mbuf->data_len;
2280
2281         if (likely(num_segments < tx_ring->sgl_size))
2282                 goto checkspace;
2283
2284         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2285             (num_segments == tx_ring->sgl_size) &&
2286             (header_len < tx_ring->tx_max_header_size))
2287                 goto checkspace;
2288
2289         /* Checking for space for 2 additional metadata descriptors due to
2290          * possible header split and metadata descriptor. Linearization will
2291          * be needed so we reduce the segments number from num_segments to 1
2292          */
2293         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2294                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2295                 return ENA_COM_NO_MEM;
2296         }
2297         ++tx_ring->tx_stats.linearize;
2298         rc = rte_pktmbuf_linearize(mbuf);
2299         if (unlikely(rc)) {
2300                 PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2301                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2302                 ++tx_ring->tx_stats.linearize_failed;
2303                 return rc;
2304         }
2305
2306         return 0;
2307
2308 checkspace:
2309         /* Checking for space for 2 additional metadata descriptors due to
2310          * possible header split and metadata descriptor
2311          */
2312         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2313                                           num_segments + 2)) {
2314                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2315                 return ENA_COM_NO_MEM;
2316         }
2317
2318         return 0;
2319 }
2320
2321 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2322         struct ena_tx_buffer *tx_info,
2323         struct rte_mbuf *mbuf,
2324         void **push_header,
2325         uint16_t *header_len)
2326 {
2327         struct ena_com_buf *ena_buf;
2328         uint16_t delta, seg_len, push_len;
2329
2330         delta = 0;
2331         seg_len = mbuf->data_len;
2332
2333         tx_info->mbuf = mbuf;
2334         ena_buf = tx_info->bufs;
2335
2336         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2337                 /*
2338                  * Tx header might be (and will be in most cases) smaller than
2339                  * tx_max_header_size. But it's not an issue to send more data
2340                  * to the device, than actually needed if the mbuf size is
2341                  * greater than tx_max_header_size.
2342                  */
2343                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2344                 *header_len = push_len;
2345
2346                 if (likely(push_len <= seg_len)) {
2347                         /* If the push header is in the single segment, then
2348                          * just point it to the 1st mbuf data.
2349                          */
2350                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2351                 } else {
2352                         /* If the push header lays in the several segments, copy
2353                          * it to the intermediate buffer.
2354                          */
2355                         rte_pktmbuf_read(mbuf, 0, push_len,
2356                                 tx_ring->push_buf_intermediate_buf);
2357                         *push_header = tx_ring->push_buf_intermediate_buf;
2358                         delta = push_len - seg_len;
2359                 }
2360         } else {
2361                 *push_header = NULL;
2362                 *header_len = 0;
2363                 push_len = 0;
2364         }
2365
2366         /* Process first segment taking into consideration pushed header */
2367         if (seg_len > push_len) {
2368                 ena_buf->paddr = mbuf->buf_iova +
2369                                 mbuf->data_off +
2370                                 push_len;
2371                 ena_buf->len = seg_len - push_len;
2372                 ena_buf++;
2373                 tx_info->num_of_bufs++;
2374         }
2375
2376         while ((mbuf = mbuf->next) != NULL) {
2377                 seg_len = mbuf->data_len;
2378
2379                 /* Skip mbufs if whole data is pushed as a header */
2380                 if (unlikely(delta > seg_len)) {
2381                         delta -= seg_len;
2382                         continue;
2383                 }
2384
2385                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2386                 ena_buf->len = seg_len - delta;
2387                 ena_buf++;
2388                 tx_info->num_of_bufs++;
2389
2390                 delta = 0;
2391         }
2392 }
2393
2394 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2395 {
2396         struct ena_tx_buffer *tx_info;
2397         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2398         uint16_t next_to_use;
2399         uint16_t header_len;
2400         uint16_t req_id;
2401         void *push_header;
2402         int nb_hw_desc;
2403         int rc;
2404
2405         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2406         if (unlikely(rc))
2407                 return rc;
2408
2409         next_to_use = tx_ring->next_to_use;
2410
2411         req_id = tx_ring->empty_tx_reqs[next_to_use];
2412         tx_info = &tx_ring->tx_buffer_info[req_id];
2413         tx_info->num_of_bufs = 0;
2414
2415         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2416
2417         ena_tx_ctx.ena_bufs = tx_info->bufs;
2418         ena_tx_ctx.push_header = push_header;
2419         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2420         ena_tx_ctx.req_id = req_id;
2421         ena_tx_ctx.header_len = header_len;
2422
2423         /* Set Tx offloads flags, if applicable */
2424         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2425                 tx_ring->disable_meta_caching);
2426
2427         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2428                         &ena_tx_ctx))) {
2429                 PMD_TX_LOG(DEBUG,
2430                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2431                         tx_ring->id);
2432                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2433                 tx_ring->tx_stats.doorbells++;
2434                 tx_ring->pkts_without_db = false;
2435         }
2436
2437         /* prepare the packet's descriptors to dma engine */
2438         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2439                 &nb_hw_desc);
2440         if (unlikely(rc)) {
2441                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2442                 ++tx_ring->tx_stats.prepare_ctx_err;
2443                 tx_ring->adapter->reset_reason =
2444                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2445                 tx_ring->adapter->trigger_reset = true;
2446                 return rc;
2447         }
2448
2449         tx_info->tx_descs = nb_hw_desc;
2450
2451         tx_ring->tx_stats.cnt++;
2452         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2453
2454         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2455                 tx_ring->size_mask);
2456
2457         return 0;
2458 }
2459
2460 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2461 {
2462         unsigned int cleanup_budget;
2463         unsigned int total_tx_descs = 0;
2464         uint16_t next_to_clean = tx_ring->next_to_clean;
2465
2466         cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2467                 (unsigned int)ENA_REFILL_THRESH_PACKET);
2468
2469         while (likely(total_tx_descs < cleanup_budget)) {
2470                 struct rte_mbuf *mbuf;
2471                 struct ena_tx_buffer *tx_info;
2472                 uint16_t req_id;
2473
2474                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2475                         break;
2476
2477                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2478                         break;
2479
2480                 /* Get Tx info & store how many descs were processed  */
2481                 tx_info = &tx_ring->tx_buffer_info[req_id];
2482
2483                 mbuf = tx_info->mbuf;
2484                 rte_pktmbuf_free(mbuf);
2485
2486                 tx_info->mbuf = NULL;
2487                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2488
2489                 total_tx_descs += tx_info->tx_descs;
2490
2491                 /* Put back descriptor to the ring for reuse */
2492                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2493                         tx_ring->size_mask);
2494         }
2495
2496         if (likely(total_tx_descs > 0)) {
2497                 /* acknowledge completion of sent packets */
2498                 tx_ring->next_to_clean = next_to_clean;
2499                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2500                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2501         }
2502 }
2503
2504 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2505                                   uint16_t nb_pkts)
2506 {
2507         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2508         uint16_t sent_idx = 0;
2509
2510 #ifdef RTE_ETHDEV_DEBUG_TX
2511         /* Check adapter state */
2512         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2513                 PMD_TX_LOG(ALERT,
2514                         "Trying to xmit pkts while device is NOT running\n");
2515                 return 0;
2516         }
2517 #endif
2518
2519         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2520                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2521                         break;
2522                 tx_ring->pkts_without_db = true;
2523                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2524                         tx_ring->size_mask)]);
2525         }
2526
2527         tx_ring->tx_stats.available_desc =
2528                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2529
2530         /* If there are ready packets to be xmitted... */
2531         if (likely(tx_ring->pkts_without_db)) {
2532                 /* ...let HW do its best :-) */
2533                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2534                 tx_ring->tx_stats.doorbells++;
2535                 tx_ring->pkts_without_db = false;
2536         }
2537
2538         ena_tx_cleanup(tx_ring);
2539
2540         tx_ring->tx_stats.available_desc =
2541                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2542         tx_ring->tx_stats.tx_poll++;
2543
2544         return sent_idx;
2545 }
2546
2547 int ena_copy_eni_stats(struct ena_adapter *adapter)
2548 {
2549         struct ena_admin_eni_stats admin_eni_stats;
2550         int rc;
2551
2552         rte_spinlock_lock(&adapter->admin_lock);
2553         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2554         rte_spinlock_unlock(&adapter->admin_lock);
2555         if (rc != 0) {
2556                 if (rc == ENA_COM_UNSUPPORTED) {
2557                         PMD_DRV_LOG(DEBUG,
2558                                 "Retrieving ENI metrics is not supported\n");
2559                 } else {
2560                         PMD_DRV_LOG(WARNING,
2561                                 "Failed to get ENI metrics, rc: %d\n", rc);
2562                 }
2563                 return rc;
2564         }
2565
2566         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2567                 sizeof(struct ena_stats_eni));
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * DPDK callback to retrieve names of extended device statistics
2574  *
2575  * @param dev
2576  *   Pointer to Ethernet device structure.
2577  * @param[out] xstats_names
2578  *   Buffer to insert names into.
2579  * @param n
2580  *   Number of names.
2581  *
2582  * @return
2583  *   Number of xstats names.
2584  */
2585 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2586                                 struct rte_eth_xstat_name *xstats_names,
2587                                 unsigned int n)
2588 {
2589         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2590         unsigned int stat, i, count = 0;
2591
2592         if (n < xstats_count || !xstats_names)
2593                 return xstats_count;
2594
2595         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2596                 strcpy(xstats_names[count].name,
2597                         ena_stats_global_strings[stat].name);
2598
2599         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2600                 strcpy(xstats_names[count].name,
2601                         ena_stats_eni_strings[stat].name);
2602
2603         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2604                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2605                         snprintf(xstats_names[count].name,
2606                                 sizeof(xstats_names[count].name),
2607                                 "rx_q%d_%s", i,
2608                                 ena_stats_rx_strings[stat].name);
2609
2610         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2611                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2612                         snprintf(xstats_names[count].name,
2613                                 sizeof(xstats_names[count].name),
2614                                 "tx_q%d_%s", i,
2615                                 ena_stats_tx_strings[stat].name);
2616
2617         return xstats_count;
2618 }
2619
2620 /**
2621  * DPDK callback to get extended device statistics.
2622  *
2623  * @param dev
2624  *   Pointer to Ethernet device structure.
2625  * @param[out] stats
2626  *   Stats table output buffer.
2627  * @param n
2628  *   The size of the stats table.
2629  *
2630  * @return
2631  *   Number of xstats on success, negative on failure.
2632  */
2633 static int ena_xstats_get(struct rte_eth_dev *dev,
2634                           struct rte_eth_xstat *xstats,
2635                           unsigned int n)
2636 {
2637         struct ena_adapter *adapter = dev->data->dev_private;
2638         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2639         unsigned int stat, i, count = 0;
2640         int stat_offset;
2641         void *stats_begin;
2642
2643         if (n < xstats_count)
2644                 return xstats_count;
2645
2646         if (!xstats)
2647                 return 0;
2648
2649         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2650                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2651                 stats_begin = &adapter->dev_stats;
2652
2653                 xstats[count].id = count;
2654                 xstats[count].value = *((uint64_t *)
2655                         ((char *)stats_begin + stat_offset));
2656         }
2657
2658         /* Even if the function below fails, we should copy previous (or initial
2659          * values) to keep structure of rte_eth_xstat consistent.
2660          */
2661         ena_copy_eni_stats(adapter);
2662         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2663                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2664                 stats_begin = &adapter->eni_stats;
2665
2666                 xstats[count].id = count;
2667                 xstats[count].value = *((uint64_t *)
2668                     ((char *)stats_begin + stat_offset));
2669         }
2670
2671         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2672                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2673                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2674                         stats_begin = &adapter->rx_ring[i].rx_stats;
2675
2676                         xstats[count].id = count;
2677                         xstats[count].value = *((uint64_t *)
2678                                 ((char *)stats_begin + stat_offset));
2679                 }
2680         }
2681
2682         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2683                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2684                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2685                         stats_begin = &adapter->tx_ring[i].rx_stats;
2686
2687                         xstats[count].id = count;
2688                         xstats[count].value = *((uint64_t *)
2689                                 ((char *)stats_begin + stat_offset));
2690                 }
2691         }
2692
2693         return count;
2694 }
2695
2696 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2697                                 const uint64_t *ids,
2698                                 uint64_t *values,
2699                                 unsigned int n)
2700 {
2701         struct ena_adapter *adapter = dev->data->dev_private;
2702         uint64_t id;
2703         uint64_t rx_entries, tx_entries;
2704         unsigned int i;
2705         int qid;
2706         int valid = 0;
2707         bool was_eni_copied = false;
2708
2709         for (i = 0; i < n; ++i) {
2710                 id = ids[i];
2711                 /* Check if id belongs to global statistics */
2712                 if (id < ENA_STATS_ARRAY_GLOBAL) {
2713                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
2714                         ++valid;
2715                         continue;
2716                 }
2717
2718                 /* Check if id belongs to ENI statistics */
2719                 id -= ENA_STATS_ARRAY_GLOBAL;
2720                 if (id < ENA_STATS_ARRAY_ENI) {
2721                         /* Avoid reading ENI stats multiple times in a single
2722                          * function call, as it requires communication with the
2723                          * admin queue.
2724                          */
2725                         if (!was_eni_copied) {
2726                                 was_eni_copied = true;
2727                                 ena_copy_eni_stats(adapter);
2728                         }
2729                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
2730                         ++valid;
2731                         continue;
2732                 }
2733
2734                 /* Check if id belongs to rx queue statistics */
2735                 id -= ENA_STATS_ARRAY_ENI;
2736                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2737                 if (id < rx_entries) {
2738                         qid = id % dev->data->nb_rx_queues;
2739                         id /= dev->data->nb_rx_queues;
2740                         values[i] = *((uint64_t *)
2741                                 &adapter->rx_ring[qid].rx_stats + id);
2742                         ++valid;
2743                         continue;
2744                 }
2745                                 /* Check if id belongs to rx queue statistics */
2746                 id -= rx_entries;
2747                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2748                 if (id < tx_entries) {
2749                         qid = id % dev->data->nb_tx_queues;
2750                         id /= dev->data->nb_tx_queues;
2751                         values[i] = *((uint64_t *)
2752                                 &adapter->tx_ring[qid].tx_stats + id);
2753                         ++valid;
2754                         continue;
2755                 }
2756         }
2757
2758         return valid;
2759 }
2760
2761 static int ena_process_bool_devarg(const char *key,
2762                                    const char *value,
2763                                    void *opaque)
2764 {
2765         struct ena_adapter *adapter = opaque;
2766         bool bool_value;
2767
2768         /* Parse the value. */
2769         if (strcmp(value, "1") == 0) {
2770                 bool_value = true;
2771         } else if (strcmp(value, "0") == 0) {
2772                 bool_value = false;
2773         } else {
2774                 PMD_INIT_LOG(ERR,
2775                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2776                         value, key);
2777                 return -EINVAL;
2778         }
2779
2780         /* Now, assign it to the proper adapter field. */
2781         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
2782                 adapter->use_large_llq_hdr = bool_value;
2783
2784         return 0;
2785 }
2786
2787 static int ena_parse_devargs(struct ena_adapter *adapter,
2788                              struct rte_devargs *devargs)
2789 {
2790         static const char * const allowed_args[] = {
2791                 ENA_DEVARG_LARGE_LLQ_HDR,
2792                 NULL,
2793         };
2794         struct rte_kvargs *kvlist;
2795         int rc;
2796
2797         if (devargs == NULL)
2798                 return 0;
2799
2800         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2801         if (kvlist == NULL) {
2802                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2803                         devargs->args);
2804                 return -EINVAL;
2805         }
2806
2807         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2808                 ena_process_bool_devarg, adapter);
2809
2810         rte_kvargs_free(kvlist);
2811
2812         return rc;
2813 }
2814
2815 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
2816 {
2817         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2818         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2819         int rc;
2820         uint16_t vectors_nb, i;
2821         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
2822
2823         if (!rx_intr_requested)
2824                 return 0;
2825
2826         if (!rte_intr_cap_multiple(intr_handle)) {
2827                 PMD_DRV_LOG(ERR,
2828                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
2829                 return -ENOTSUP;
2830         }
2831
2832         /* Disable interrupt mapping before the configuration starts. */
2833         rte_intr_disable(intr_handle);
2834
2835         /* Verify if there are enough vectors available. */
2836         vectors_nb = dev->data->nb_rx_queues;
2837         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
2838                 PMD_DRV_LOG(ERR,
2839                         "Too many Rx interrupts requested, maximum number: %d\n",
2840                         RTE_MAX_RXTX_INTR_VEC_ID);
2841                 rc = -ENOTSUP;
2842                 goto enable_intr;
2843         }
2844
2845         intr_handle->intr_vec = rte_zmalloc("intr_vec",
2846                 dev->data->nb_rx_queues * sizeof(*intr_handle->intr_vec), 0);
2847         if (intr_handle->intr_vec == NULL) {
2848                 PMD_DRV_LOG(ERR,
2849                         "Failed to allocate interrupt vector for %d queues\n",
2850                         dev->data->nb_rx_queues);
2851                 rc = -ENOMEM;
2852                 goto enable_intr;
2853         }
2854
2855         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
2856         if (rc != 0)
2857                 goto free_intr_vec;
2858
2859         if (!rte_intr_allow_others(intr_handle)) {
2860                 PMD_DRV_LOG(ERR,
2861                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
2862                 goto disable_intr_efd;
2863         }
2864
2865         for (i = 0; i < vectors_nb; ++i)
2866                 intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
2867
2868         rte_intr_enable(intr_handle);
2869         return 0;
2870
2871 disable_intr_efd:
2872         rte_intr_efd_disable(intr_handle);
2873 free_intr_vec:
2874         rte_free(intr_handle->intr_vec);
2875         intr_handle->intr_vec = NULL;
2876 enable_intr:
2877         rte_intr_enable(intr_handle);
2878         return rc;
2879 }
2880
2881 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
2882                                  uint16_t queue_id,
2883                                  bool unmask)
2884 {
2885         struct ena_adapter *adapter = dev->data->dev_private;
2886         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
2887         struct ena_eth_io_intr_reg intr_reg;
2888
2889         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
2890         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
2891 }
2892
2893 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
2894                                     uint16_t queue_id)
2895 {
2896         ena_rx_queue_intr_set(dev, queue_id, true);
2897
2898         return 0;
2899 }
2900
2901 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
2902                                      uint16_t queue_id)
2903 {
2904         ena_rx_queue_intr_set(dev, queue_id, false);
2905
2906         return 0;
2907 }
2908
2909 /*********************************************************************
2910  *  PMD configuration
2911  *********************************************************************/
2912 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2913         struct rte_pci_device *pci_dev)
2914 {
2915         return rte_eth_dev_pci_generic_probe(pci_dev,
2916                 sizeof(struct ena_adapter), eth_ena_dev_init);
2917 }
2918
2919 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2920 {
2921         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2922 }
2923
2924 static struct rte_pci_driver rte_ena_pmd = {
2925         .id_table = pci_id_ena_map,
2926         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2927                      RTE_PCI_DRV_WC_ACTIVATE,
2928         .probe = eth_ena_pci_probe,
2929         .remove = eth_ena_pci_remove,
2930 };
2931
2932 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2933 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2934 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2935 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2936 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
2937 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
2938 #ifdef RTE_ETHDEV_DEBUG_RX
2939 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
2940 #endif
2941 #ifdef RTE_ETHDEV_DEBUG_TX
2942 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
2943 #endif
2944 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
2945
2946 /******************************************************************************
2947  ******************************** AENQ Handlers *******************************
2948  *****************************************************************************/
2949 static void ena_update_on_link_change(void *adapter_data,
2950                                       struct ena_admin_aenq_entry *aenq_e)
2951 {
2952         struct rte_eth_dev *eth_dev = adapter_data;
2953         struct ena_adapter *adapter = eth_dev->data->dev_private;
2954         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2955         uint32_t status;
2956
2957         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2958
2959         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2960         adapter->link_status = status;
2961
2962         ena_link_update(eth_dev, 0);
2963         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2964 }
2965
2966 static void ena_notification(void *adapter_data,
2967                              struct ena_admin_aenq_entry *aenq_e)
2968 {
2969         struct rte_eth_dev *eth_dev = adapter_data;
2970         struct ena_adapter *adapter = eth_dev->data->dev_private;
2971         struct ena_admin_ena_hw_hints *hints;
2972
2973         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2974                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
2975                         aenq_e->aenq_common_desc.group,
2976                         ENA_ADMIN_NOTIFICATION);
2977
2978         switch (aenq_e->aenq_common_desc.syndrome) {
2979         case ENA_ADMIN_UPDATE_HINTS:
2980                 hints = (struct ena_admin_ena_hw_hints *)
2981                         (&aenq_e->inline_data_w4);
2982                 ena_update_hints(adapter, hints);
2983                 break;
2984         default:
2985                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
2986                         aenq_e->aenq_common_desc.syndrome);
2987         }
2988 }
2989
2990 static void ena_keep_alive(void *adapter_data,
2991                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
2992 {
2993         struct rte_eth_dev *eth_dev = adapter_data;
2994         struct ena_adapter *adapter = eth_dev->data->dev_private;
2995         struct ena_admin_aenq_keep_alive_desc *desc;
2996         uint64_t rx_drops;
2997         uint64_t tx_drops;
2998
2999         adapter->timestamp_wd = rte_get_timer_cycles();
3000
3001         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3002         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3003         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3004
3005         adapter->drv_stats->rx_drops = rx_drops;
3006         adapter->dev_stats.tx_drops = tx_drops;
3007 }
3008
3009 /**
3010  * This handler will called for unknown event group or unimplemented handlers
3011  **/
3012 static void unimplemented_aenq_handler(__rte_unused void *data,
3013                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3014 {
3015         PMD_DRV_LOG(ERR,
3016                 "Unknown event was received or event with unimplemented handler\n");
3017 }
3018
3019 static struct ena_aenq_handlers aenq_handlers = {
3020         .handlers = {
3021                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3022                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3023                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3024         },
3025         .unimplemented_handler = unimplemented_aenq_handler
3026 };