fb02e1152a53d49424a5236ae6beb2d8ff3d220f
[dpdk.git] / drivers / net / fm10k / fm10k_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2016 Intel Corporation
3  */
4
5 #include <inttypes.h>
6
7 #include <rte_ethdev_driver.h>
8 #include <rte_common.h>
9 #include <rte_net.h>
10 #include "fm10k.h"
11 #include "base/fm10k_type.h"
12
13 #ifdef RTE_PMD_PACKET_PREFETCH
14 #define rte_packet_prefetch(p)  rte_prefetch1(p)
15 #else
16 #define rte_packet_prefetch(p)  do {} while (0)
17 #endif
18
19 #ifdef RTE_LIBRTE_FM10K_DEBUG_RX
20 static inline void dump_rxd(union fm10k_rx_desc *rxd)
21 {
22         PMD_RX_LOG(DEBUG, "+----------------|----------------+");
23         PMD_RX_LOG(DEBUG, "|     GLORT      | PKT HDR & TYPE |");
24         PMD_RX_LOG(DEBUG, "|   0x%08x   |   0x%08x   |", rxd->d.glort,
25                         rxd->d.data);
26         PMD_RX_LOG(DEBUG, "+----------------|----------------+");
27         PMD_RX_LOG(DEBUG, "|   VLAN & LEN   |     STATUS     |");
28         PMD_RX_LOG(DEBUG, "|   0x%08x   |   0x%08x   |", rxd->d.vlan_len,
29                         rxd->d.staterr);
30         PMD_RX_LOG(DEBUG, "+----------------|----------------+");
31         PMD_RX_LOG(DEBUG, "|    RESERVED    |    RSS_HASH    |");
32         PMD_RX_LOG(DEBUG, "|   0x%08x   |   0x%08x   |", 0, rxd->d.rss);
33         PMD_RX_LOG(DEBUG, "+----------------|----------------+");
34         PMD_RX_LOG(DEBUG, "|            TIME TAG             |");
35         PMD_RX_LOG(DEBUG, "|       0x%016"PRIx64"        |", rxd->q.timestamp);
36         PMD_RX_LOG(DEBUG, "+----------------|----------------+");
37 }
38 #endif
39
40 #define FM10K_TX_OFFLOAD_MASK (  \
41                 PKT_TX_VLAN_PKT |        \
42                 PKT_TX_IPV6 |            \
43                 PKT_TX_IPV4 |            \
44                 PKT_TX_IP_CKSUM |        \
45                 PKT_TX_L4_MASK |         \
46                 PKT_TX_TCP_SEG)
47
48 #define FM10K_TX_OFFLOAD_NOTSUP_MASK \
49                 (PKT_TX_OFFLOAD_MASK ^ FM10K_TX_OFFLOAD_MASK)
50
51 /* @note: When this function is changed, make corresponding change to
52  * fm10k_dev_supported_ptypes_get()
53  */
54 static inline void
55 rx_desc_to_ol_flags(struct rte_mbuf *m, const union fm10k_rx_desc *d)
56 {
57         static const uint32_t
58                 ptype_table[FM10K_RXD_PKTTYPE_MASK >> FM10K_RXD_PKTTYPE_SHIFT]
59                         __rte_cache_aligned = {
60                 [FM10K_PKTTYPE_OTHER] = RTE_PTYPE_L2_ETHER,
61                 [FM10K_PKTTYPE_IPV4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4,
62                 [FM10K_PKTTYPE_IPV4_EX] = RTE_PTYPE_L2_ETHER |
63                         RTE_PTYPE_L3_IPV4_EXT,
64                 [FM10K_PKTTYPE_IPV6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6,
65                 [FM10K_PKTTYPE_IPV6_EX] = RTE_PTYPE_L2_ETHER |
66                         RTE_PTYPE_L3_IPV6_EXT,
67                 [FM10K_PKTTYPE_IPV4 | FM10K_PKTTYPE_TCP] = RTE_PTYPE_L2_ETHER |
68                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
69                 [FM10K_PKTTYPE_IPV6 | FM10K_PKTTYPE_TCP] = RTE_PTYPE_L2_ETHER |
70                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
71                 [FM10K_PKTTYPE_IPV4 | FM10K_PKTTYPE_UDP] = RTE_PTYPE_L2_ETHER |
72                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
73                 [FM10K_PKTTYPE_IPV6 | FM10K_PKTTYPE_UDP] = RTE_PTYPE_L2_ETHER |
74                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
75         };
76
77         m->packet_type = ptype_table[(d->w.pkt_info & FM10K_RXD_PKTTYPE_MASK)
78                                                 >> FM10K_RXD_PKTTYPE_SHIFT];
79
80         if (d->w.pkt_info & FM10K_RXD_RSSTYPE_MASK)
81                 m->ol_flags |= PKT_RX_RSS_HASH;
82
83         if (unlikely((d->d.staterr &
84                 (FM10K_RXD_STATUS_IPCS | FM10K_RXD_STATUS_IPE)) ==
85                 (FM10K_RXD_STATUS_IPCS | FM10K_RXD_STATUS_IPE)))
86                 m->ol_flags |= PKT_RX_IP_CKSUM_BAD;
87         else
88                 m->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
89
90         if (unlikely((d->d.staterr &
91                 (FM10K_RXD_STATUS_L4CS | FM10K_RXD_STATUS_L4E)) ==
92                 (FM10K_RXD_STATUS_L4CS | FM10K_RXD_STATUS_L4E)))
93                 m->ol_flags |= PKT_RX_L4_CKSUM_BAD;
94         else
95                 m->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
96 }
97
98 uint16_t
99 fm10k_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
100         uint16_t nb_pkts)
101 {
102         struct rte_mbuf *mbuf;
103         union fm10k_rx_desc desc;
104         struct fm10k_rx_queue *q = rx_queue;
105         uint16_t count = 0;
106         int alloc = 0;
107         uint16_t next_dd;
108         int ret;
109
110         next_dd = q->next_dd;
111
112         nb_pkts = RTE_MIN(nb_pkts, q->alloc_thresh);
113         for (count = 0; count < nb_pkts; ++count) {
114                 if (!(q->hw_ring[next_dd].d.staterr & FM10K_RXD_STATUS_DD))
115                         break;
116                 mbuf = q->sw_ring[next_dd];
117                 desc = q->hw_ring[next_dd];
118 #ifdef RTE_LIBRTE_FM10K_DEBUG_RX
119                 dump_rxd(&desc);
120 #endif
121                 rte_pktmbuf_pkt_len(mbuf) = desc.w.length;
122                 rte_pktmbuf_data_len(mbuf) = desc.w.length;
123
124                 mbuf->ol_flags = 0;
125 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
126                 rx_desc_to_ol_flags(mbuf, &desc);
127 #endif
128
129                 mbuf->hash.rss = desc.d.rss;
130                 /**
131                  * Packets in fm10k device always carry at least one VLAN tag.
132                  * For those packets coming in without VLAN tag,
133                  * the port default VLAN tag will be used.
134                  * So, always PKT_RX_VLAN flag is set and vlan_tci
135                  * is valid for each RX packet's mbuf.
136                  */
137                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
138                 mbuf->vlan_tci = desc.w.vlan;
139                 /**
140                  * mbuf->vlan_tci_outer is an idle field in fm10k driver,
141                  * so it can be selected to store sglort value.
142                  */
143                 if (q->rx_ftag_en)
144                         mbuf->vlan_tci_outer = rte_le_to_cpu_16(desc.w.sglort);
145
146                 rx_pkts[count] = mbuf;
147                 if (++next_dd == q->nb_desc) {
148                         next_dd = 0;
149                         alloc = 1;
150                 }
151
152                 /* Prefetch next mbuf while processing current one. */
153                 rte_prefetch0(q->sw_ring[next_dd]);
154
155                 /*
156                  * When next RX descriptor is on a cache-line boundary,
157                  * prefetch the next 4 RX descriptors and the next 8 pointers
158                  * to mbufs.
159                  */
160                 if ((next_dd & 0x3) == 0) {
161                         rte_prefetch0(&q->hw_ring[next_dd]);
162                         rte_prefetch0(&q->sw_ring[next_dd]);
163                 }
164         }
165
166         q->next_dd = next_dd;
167
168         if ((q->next_dd > q->next_trigger) || (alloc == 1)) {
169                 ret = rte_mempool_get_bulk(q->mp,
170                                         (void **)&q->sw_ring[q->next_alloc],
171                                         q->alloc_thresh);
172
173                 if (unlikely(ret != 0)) {
174                         uint16_t port = q->port_id;
175                         PMD_RX_LOG(ERR, "Failed to alloc mbuf");
176                         /*
177                          * Need to restore next_dd if we cannot allocate new
178                          * buffers to replenish the old ones.
179                          */
180                         q->next_dd = (q->next_dd + q->nb_desc - count) %
181                                                                 q->nb_desc;
182                         rte_eth_devices[port].data->rx_mbuf_alloc_failed++;
183                         return 0;
184                 }
185
186                 for (; q->next_alloc <= q->next_trigger; ++q->next_alloc) {
187                         mbuf = q->sw_ring[q->next_alloc];
188
189                         /* setup static mbuf fields */
190                         fm10k_pktmbuf_reset(mbuf, q->port_id);
191
192                         /* write descriptor */
193                         desc.q.pkt_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
194                         desc.q.hdr_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
195                         q->hw_ring[q->next_alloc] = desc;
196                 }
197                 FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_trigger);
198                 q->next_trigger += q->alloc_thresh;
199                 if (q->next_trigger >= q->nb_desc) {
200                         q->next_trigger = q->alloc_thresh - 1;
201                         q->next_alloc = 0;
202                 }
203         }
204
205         return count;
206 }
207
208 uint16_t
209 fm10k_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
210                                 uint16_t nb_pkts)
211 {
212         struct rte_mbuf *mbuf;
213         union fm10k_rx_desc desc;
214         struct fm10k_rx_queue *q = rx_queue;
215         uint16_t count = 0;
216         uint16_t nb_rcv, nb_seg;
217         int alloc = 0;
218         uint16_t next_dd;
219         struct rte_mbuf *first_seg = q->pkt_first_seg;
220         struct rte_mbuf *last_seg = q->pkt_last_seg;
221         int ret;
222
223         next_dd = q->next_dd;
224         nb_rcv = 0;
225
226         nb_seg = RTE_MIN(nb_pkts, q->alloc_thresh);
227         for (count = 0; count < nb_seg; count++) {
228                 if (!(q->hw_ring[next_dd].d.staterr & FM10K_RXD_STATUS_DD))
229                         break;
230                 mbuf = q->sw_ring[next_dd];
231                 desc = q->hw_ring[next_dd];
232 #ifdef RTE_LIBRTE_FM10K_DEBUG_RX
233                 dump_rxd(&desc);
234 #endif
235
236                 if (++next_dd == q->nb_desc) {
237                         next_dd = 0;
238                         alloc = 1;
239                 }
240
241                 /* Prefetch next mbuf while processing current one. */
242                 rte_prefetch0(q->sw_ring[next_dd]);
243
244                 /*
245                  * When next RX descriptor is on a cache-line boundary,
246                  * prefetch the next 4 RX descriptors and the next 8 pointers
247                  * to mbufs.
248                  */
249                 if ((next_dd & 0x3) == 0) {
250                         rte_prefetch0(&q->hw_ring[next_dd]);
251                         rte_prefetch0(&q->sw_ring[next_dd]);
252                 }
253
254                 /* Fill data length */
255                 rte_pktmbuf_data_len(mbuf) = desc.w.length;
256
257                 /*
258                  * If this is the first buffer of the received packet,
259                  * set the pointer to the first mbuf of the packet and
260                  * initialize its context.
261                  * Otherwise, update the total length and the number of segments
262                  * of the current scattered packet, and update the pointer to
263                  * the last mbuf of the current packet.
264                  */
265                 if (!first_seg) {
266                         first_seg = mbuf;
267                         first_seg->pkt_len = desc.w.length;
268                 } else {
269                         first_seg->pkt_len =
270                                         (uint16_t)(first_seg->pkt_len +
271                                         rte_pktmbuf_data_len(mbuf));
272                         first_seg->nb_segs++;
273                         last_seg->next = mbuf;
274                 }
275
276                 /*
277                  * If this is not the last buffer of the received packet,
278                  * update the pointer to the last mbuf of the current scattered
279                  * packet and continue to parse the RX ring.
280                  */
281                 if (!(desc.d.staterr & FM10K_RXD_STATUS_EOP)) {
282                         last_seg = mbuf;
283                         continue;
284                 }
285
286                 first_seg->ol_flags = 0;
287 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
288                 rx_desc_to_ol_flags(first_seg, &desc);
289 #endif
290                 first_seg->hash.rss = desc.d.rss;
291                 /**
292                  * Packets in fm10k device always carry at least one VLAN tag.
293                  * For those packets coming in without VLAN tag,
294                  * the port default VLAN tag will be used.
295                  * So, always PKT_RX_VLAN flag is set and vlan_tci
296                  * is valid for each RX packet's mbuf.
297                  */
298                 first_seg->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
299                 first_seg->vlan_tci = desc.w.vlan;
300                 /**
301                  * mbuf->vlan_tci_outer is an idle field in fm10k driver,
302                  * so it can be selected to store sglort value.
303                  */
304                 if (q->rx_ftag_en)
305                         first_seg->vlan_tci_outer =
306                                 rte_le_to_cpu_16(desc.w.sglort);
307
308                 /* Prefetch data of first segment, if configured to do so. */
309                 rte_packet_prefetch((char *)first_seg->buf_addr +
310                         first_seg->data_off);
311
312                 /*
313                  * Store the mbuf address into the next entry of the array
314                  * of returned packets.
315                  */
316                 rx_pkts[nb_rcv++] = first_seg;
317
318                 /*
319                  * Setup receipt context for a new packet.
320                  */
321                 first_seg = NULL;
322         }
323
324         q->next_dd = next_dd;
325
326         if ((q->next_dd > q->next_trigger) || (alloc == 1)) {
327                 ret = rte_mempool_get_bulk(q->mp,
328                                         (void **)&q->sw_ring[q->next_alloc],
329                                         q->alloc_thresh);
330
331                 if (unlikely(ret != 0)) {
332                         uint16_t port = q->port_id;
333                         PMD_RX_LOG(ERR, "Failed to alloc mbuf");
334                         /*
335                          * Need to restore next_dd if we cannot allocate new
336                          * buffers to replenish the old ones.
337                          */
338                         q->next_dd = (q->next_dd + q->nb_desc - count) %
339                                                                 q->nb_desc;
340                         rte_eth_devices[port].data->rx_mbuf_alloc_failed++;
341                         return 0;
342                 }
343
344                 for (; q->next_alloc <= q->next_trigger; ++q->next_alloc) {
345                         mbuf = q->sw_ring[q->next_alloc];
346
347                         /* setup static mbuf fields */
348                         fm10k_pktmbuf_reset(mbuf, q->port_id);
349
350                         /* write descriptor */
351                         desc.q.pkt_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
352                         desc.q.hdr_addr = MBUF_DMA_ADDR_DEFAULT(mbuf);
353                         q->hw_ring[q->next_alloc] = desc;
354                 }
355                 FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_trigger);
356                 q->next_trigger += q->alloc_thresh;
357                 if (q->next_trigger >= q->nb_desc) {
358                         q->next_trigger = q->alloc_thresh - 1;
359                         q->next_alloc = 0;
360                 }
361         }
362
363         q->pkt_first_seg = first_seg;
364         q->pkt_last_seg = last_seg;
365
366         return nb_rcv;
367 }
368
369 int
370 fm10k_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
371 {
372         volatile union fm10k_rx_desc *rxdp;
373         struct fm10k_rx_queue *rxq = rx_queue;
374         uint16_t desc;
375         int ret;
376
377         if (unlikely(offset >= rxq->nb_desc)) {
378                 PMD_DRV_LOG(ERR, "Invalid RX descriptor offset %u", offset);
379                 return 0;
380         }
381
382         desc = rxq->next_dd + offset;
383         if (desc >= rxq->nb_desc)
384                 desc -= rxq->nb_desc;
385
386         rxdp = &rxq->hw_ring[desc];
387
388         ret = !!(rxdp->w.status &
389                         rte_cpu_to_le_16(FM10K_RXD_STATUS_DD));
390
391         return ret;
392 }
393
394 int
395 fm10k_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
396 {
397         volatile union fm10k_rx_desc *rxdp;
398         struct fm10k_rx_queue *rxq = rx_queue;
399         uint16_t nb_hold, trigger_last;
400         uint16_t desc;
401         int ret;
402
403         if (unlikely(offset >= rxq->nb_desc)) {
404                 PMD_DRV_LOG(ERR, "Invalid RX descriptor offset %u", offset);
405                 return 0;
406         }
407
408         if (rxq->next_trigger < rxq->alloc_thresh)
409                 trigger_last = rxq->next_trigger +
410                                         rxq->nb_desc - rxq->alloc_thresh;
411         else
412                 trigger_last = rxq->next_trigger - rxq->alloc_thresh;
413
414         if (rxq->next_dd < trigger_last)
415                 nb_hold = rxq->next_dd + rxq->nb_desc - trigger_last;
416         else
417                 nb_hold = rxq->next_dd - trigger_last;
418
419         if (offset >= rxq->nb_desc - nb_hold)
420                 return RTE_ETH_RX_DESC_UNAVAIL;
421
422         desc = rxq->next_dd + offset;
423         if (desc >= rxq->nb_desc)
424                 desc -= rxq->nb_desc;
425
426         rxdp = &rxq->hw_ring[desc];
427
428         ret = !!(rxdp->w.status &
429                         rte_cpu_to_le_16(FM10K_RXD_STATUS_DD));
430
431         return ret;
432 }
433
434 int
435 fm10k_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
436 {
437         volatile struct fm10k_tx_desc *txdp;
438         struct fm10k_tx_queue *txq = tx_queue;
439         uint16_t desc;
440         uint16_t next_rs = txq->nb_desc;
441         struct fifo rs_tracker = txq->rs_tracker;
442         struct fifo *r = &rs_tracker;
443
444         if (unlikely(offset >= txq->nb_desc))
445                 return -EINVAL;
446
447         desc = txq->next_free + offset;
448         /* go to next desc that has the RS bit */
449         desc = (desc / txq->rs_thresh + 1) *
450                 txq->rs_thresh - 1;
451
452         if (desc >= txq->nb_desc) {
453                 desc -= txq->nb_desc;
454                 if (desc >= txq->nb_desc)
455                         desc -= txq->nb_desc;
456         }
457
458         r->head = r->list;
459         for ( ; r->head != r->endp; ) {
460                 if (*r->head >= desc && *r->head < next_rs)
461                         next_rs = *r->head;
462                 ++r->head;
463         }
464
465         txdp = &txq->hw_ring[next_rs];
466         if (txdp->flags & FM10K_TXD_FLAG_DONE)
467                 return RTE_ETH_TX_DESC_DONE;
468
469         return RTE_ETH_TX_DESC_FULL;
470 }
471
472 /*
473  * Free multiple TX mbuf at a time if they are in the same pool
474  *
475  * @txep: software desc ring index that starts to free
476  * @num: number of descs to free
477  *
478  */
479 static inline void tx_free_bulk_mbuf(struct rte_mbuf **txep, int num)
480 {
481         struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
482         int i;
483         int nb_free = 0;
484
485         if (unlikely(num == 0))
486                 return;
487
488         m = rte_pktmbuf_prefree_seg(txep[0]);
489         if (likely(m != NULL)) {
490                 free[0] = m;
491                 nb_free = 1;
492                 for (i = 1; i < num; i++) {
493                         m = rte_pktmbuf_prefree_seg(txep[i]);
494                         if (likely(m != NULL)) {
495                                 if (likely(m->pool == free[0]->pool))
496                                         free[nb_free++] = m;
497                                 else {
498                                         rte_mempool_put_bulk(free[0]->pool,
499                                                         (void *)free, nb_free);
500                                         free[0] = m;
501                                         nb_free = 1;
502                                 }
503                         }
504                         txep[i] = NULL;
505                 }
506                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
507         } else {
508                 for (i = 1; i < num; i++) {
509                         m = rte_pktmbuf_prefree_seg(txep[i]);
510                         if (m != NULL)
511                                 rte_mempool_put(m->pool, m);
512                         txep[i] = NULL;
513                 }
514         }
515 }
516
517 static inline void tx_free_descriptors(struct fm10k_tx_queue *q)
518 {
519         uint16_t next_rs, count = 0;
520
521         next_rs = fifo_peek(&q->rs_tracker);
522         if (!(q->hw_ring[next_rs].flags & FM10K_TXD_FLAG_DONE))
523                 return;
524
525         /* the DONE flag is set on this descriptor so remove the ID
526          * from the RS bit tracker and free the buffers */
527         fifo_remove(&q->rs_tracker);
528
529         /* wrap around? if so, free buffers from last_free up to but NOT
530          * including nb_desc */
531         if (q->last_free > next_rs) {
532                 count = q->nb_desc - q->last_free;
533                 tx_free_bulk_mbuf(&q->sw_ring[q->last_free], count);
534                 q->last_free = 0;
535         }
536
537         /* adjust free descriptor count before the next loop */
538         q->nb_free += count + (next_rs + 1 - q->last_free);
539
540         /* free buffers from last_free, up to and including next_rs */
541         if (q->last_free <= next_rs) {
542                 count = next_rs - q->last_free + 1;
543                 tx_free_bulk_mbuf(&q->sw_ring[q->last_free], count);
544                 q->last_free += count;
545         }
546
547         if (q->last_free == q->nb_desc)
548                 q->last_free = 0;
549 }
550
551 static inline void tx_xmit_pkt(struct fm10k_tx_queue *q, struct rte_mbuf *mb)
552 {
553         uint16_t last_id;
554         uint8_t flags, hdrlen;
555
556         /* always set the LAST flag on the last descriptor used to
557          * transmit the packet */
558         flags = FM10K_TXD_FLAG_LAST;
559         last_id = q->next_free + mb->nb_segs - 1;
560         if (last_id >= q->nb_desc)
561                 last_id = last_id - q->nb_desc;
562
563         /* but only set the RS flag on the last descriptor if rs_thresh
564          * descriptors will be used since the RS flag was last set */
565         if ((q->nb_used + mb->nb_segs) >= q->rs_thresh) {
566                 flags |= FM10K_TXD_FLAG_RS;
567                 fifo_insert(&q->rs_tracker, last_id);
568                 q->nb_used = 0;
569         } else {
570                 q->nb_used = q->nb_used + mb->nb_segs;
571         }
572
573         q->nb_free -= mb->nb_segs;
574
575         q->hw_ring[q->next_free].flags = 0;
576         if (q->tx_ftag_en)
577                 q->hw_ring[q->next_free].flags |= FM10K_TXD_FLAG_FTAG;
578         /* set checksum flags on first descriptor of packet. SCTP checksum
579          * offload is not supported, but we do not explicitly check for this
580          * case in favor of greatly simplified processing. */
581         if (mb->ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK | PKT_TX_TCP_SEG))
582                 q->hw_ring[q->next_free].flags |= FM10K_TXD_FLAG_CSUM;
583
584         /* set vlan if requested */
585         if (mb->ol_flags & PKT_TX_VLAN_PKT)
586                 q->hw_ring[q->next_free].vlan = mb->vlan_tci;
587
588         q->sw_ring[q->next_free] = mb;
589         q->hw_ring[q->next_free].buffer_addr =
590                         rte_cpu_to_le_64(MBUF_DMA_ADDR(mb));
591         q->hw_ring[q->next_free].buflen =
592                         rte_cpu_to_le_16(rte_pktmbuf_data_len(mb));
593
594         if (mb->ol_flags & PKT_TX_TCP_SEG) {
595                 hdrlen = mb->outer_l2_len + mb->outer_l3_len + mb->l2_len +
596                         mb->l3_len + mb->l4_len;
597                 if (q->hw_ring[q->next_free].flags & FM10K_TXD_FLAG_FTAG)
598                         hdrlen += sizeof(struct fm10k_ftag);
599
600                 if (likely((hdrlen >= FM10K_TSO_MIN_HEADERLEN) &&
601                                 (hdrlen <= FM10K_TSO_MAX_HEADERLEN) &&
602                                 (mb->tso_segsz >= FM10K_TSO_MINMSS))) {
603                         q->hw_ring[q->next_free].mss = mb->tso_segsz;
604                         q->hw_ring[q->next_free].hdrlen = hdrlen;
605                 }
606         }
607
608         if (++q->next_free == q->nb_desc)
609                 q->next_free = 0;
610
611         /* fill up the rings */
612         for (mb = mb->next; mb != NULL; mb = mb->next) {
613                 q->sw_ring[q->next_free] = mb;
614                 q->hw_ring[q->next_free].buffer_addr =
615                                 rte_cpu_to_le_64(MBUF_DMA_ADDR(mb));
616                 q->hw_ring[q->next_free].buflen =
617                                 rte_cpu_to_le_16(rte_pktmbuf_data_len(mb));
618                 q->hw_ring[q->next_free].flags = 0;
619                 if (++q->next_free == q->nb_desc)
620                         q->next_free = 0;
621         }
622
623         q->hw_ring[last_id].flags |= flags;
624 }
625
626 uint16_t
627 fm10k_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
628         uint16_t nb_pkts)
629 {
630         struct fm10k_tx_queue *q = tx_queue;
631         struct rte_mbuf *mb;
632         uint16_t count;
633
634         for (count = 0; count < nb_pkts; ++count) {
635                 mb = tx_pkts[count];
636
637                 /* running low on descriptors? try to free some... */
638                 if (q->nb_free < q->free_thresh)
639                         tx_free_descriptors(q);
640
641                 /* make sure there are enough free descriptors to transmit the
642                  * entire packet before doing anything */
643                 if (q->nb_free < mb->nb_segs)
644                         break;
645
646                 /* sanity check to make sure the mbuf is valid */
647                 if ((mb->nb_segs == 0) ||
648                     ((mb->nb_segs > 1) && (mb->next == NULL)))
649                         break;
650
651                 /* process the packet */
652                 tx_xmit_pkt(q, mb);
653         }
654
655         /* update the tail pointer if any packets were processed */
656         if (likely(count > 0))
657                 FM10K_PCI_REG_WRITE(q->tail_ptr, q->next_free);
658
659         return count;
660 }
661
662 uint16_t
663 fm10k_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
664                 uint16_t nb_pkts)
665 {
666         int i, ret;
667         struct rte_mbuf *m;
668
669         for (i = 0; i < nb_pkts; i++) {
670                 m = tx_pkts[i];
671
672                 if ((m->ol_flags & PKT_TX_TCP_SEG) &&
673                                 (m->tso_segsz < FM10K_TSO_MINMSS)) {
674                         rte_errno = -EINVAL;
675                         return i;
676                 }
677
678                 if (m->ol_flags & FM10K_TX_OFFLOAD_NOTSUP_MASK) {
679                         rte_errno = -ENOTSUP;
680                         return i;
681                 }
682
683 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
684                 ret = rte_validate_tx_offload(m);
685                 if (ret != 0) {
686                         rte_errno = ret;
687                         return i;
688                 }
689 #endif
690                 ret = rte_net_intel_cksum_prepare(m);
691                 if (ret != 0) {
692                         rte_errno = ret;
693                         return i;
694                 }
695         }
696
697         return i;
698 }