mbuf: add rte prefix to offload flags
[dpdk.git] / drivers / net / fm10k / fm10k_rxtx_vec.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2015 Intel Corporation
3  */
4
5 #include <inttypes.h>
6
7 #include <ethdev_driver.h>
8 #include <rte_common.h>
9 #include "fm10k.h"
10 #include "base/fm10k_type.h"
11
12 #include <tmmintrin.h>
13
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17
18 static void
19 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
20
21 /* Handling the offload flags (olflags) field takes computation
22  * time when receiving packets. Therefore we provide a flag to disable
23  * the processing of the olflags field when they are not needed. This
24  * gives improved performance, at the cost of losing the offload info
25  * in the received packet
26  */
27 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
28
29 /* Vlan present flag shift */
30 #define VP_SHIFT     (2)
31 /* L3 type shift */
32 #define L3TYPE_SHIFT     (4)
33 /* L4 type shift */
34 #define L4TYPE_SHIFT     (7)
35 /* HBO flag shift */
36 #define HBOFLAG_SHIFT     (10)
37 /* RXE flag shift */
38 #define RXEFLAG_SHIFT     (13)
39 /* IPE/L4E flag shift */
40 #define L3L4EFLAG_SHIFT     (14)
41 /* shift RTE_MBUF_F_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42 #define CKSUM_SHIFT     (1)
43
44 static inline void
45 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
46 {
47         __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
48         union {
49                 uint16_t e[4];
50                 uint64_t dword;
51         } vol;
52
53         const __m128i pkttype_msk = _mm_set_epi16(
54                         0x0000, 0x0000, 0x0000, 0x0000,
55                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
56                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
57                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
58                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED);
59
60         /* mask everything except rss type */
61         const __m128i rsstype_msk = _mm_set_epi16(
62                         0x0000, 0x0000, 0x0000, 0x0000,
63                         0x000F, 0x000F, 0x000F, 0x000F);
64
65         /* mask for HBO and RXE flag flags */
66         const __m128i rxe_msk = _mm_set_epi16(
67                         0x0000, 0x0000, 0x0000, 0x0000,
68                         0x0001, 0x0001, 0x0001, 0x0001);
69
70         /* mask the lower byte of ol_flags */
71         const __m128i ol_flags_msk = _mm_set_epi16(
72                         0x0000, 0x0000, 0x0000, 0x0000,
73                         0x00FF, 0x00FF, 0x00FF, 0x00FF);
74
75         const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
76                         0, 0, 0, 0,
77                         0, 0, 0, 0,
78                         (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79                         (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
80                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
81                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
82
83         const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
84                         0, 0, 0, 0,
85                         0, 0, 0, 0,
86                         0, 0, 0, 0);
87
88         /* map rss type to rss hash flag */
89         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
90                         0, 0, 0, RTE_MBUF_F_RX_RSS_HASH,
91                         RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH, 0,
92                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
93                         RTE_MBUF_F_RX_RSS_HASH, 0);
94
95         /* Calculate RSS_hash and Vlan fields */
96         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
97         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
98         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
99         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
100
101         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
102         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
103         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
104
105         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
106         eflag0 = vtag1;
107         cksumflag = vtag1;
108         vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
109         vtag1 = _mm_and_si128(vtag1, pkttype_msk);
110
111         vtag1 = _mm_or_si128(ptype0, vtag1);
112
113         /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
114         eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
115         eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
116         eflag0 = _mm_or_si128(eflag0, eflag1);
117         eflag0 = _mm_and_si128(eflag0, rxe_msk);
118         eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
119
120         vtag1 = _mm_or_si128(eflag0, vtag1);
121
122         /* Process L4/L3 checksum error flags */
123         cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
124         cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
125
126         /* clean the higher byte and shift back the flag bits */
127         cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
128         cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
129         vtag1 = _mm_or_si128(cksumflag, vtag1);
130
131         vol.dword = _mm_cvtsi128_si64(vtag1);
132
133         rx_pkts[0]->ol_flags = vol.e[0];
134         rx_pkts[1]->ol_flags = vol.e[1];
135         rx_pkts[2]->ol_flags = vol.e[2];
136         rx_pkts[3]->ol_flags = vol.e[3];
137 }
138
139 /* @note: When this function is changed, make corresponding change to
140  * fm10k_dev_supported_ptypes_get().
141  */
142 static inline void
143 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
144 {
145         __m128i l3l4type0, l3l4type1, l3type, l4type;
146         union {
147                 uint16_t e[4];
148                 uint64_t dword;
149         } vol;
150
151         /* L3 pkt type mask  Bit4 to Bit6 */
152         const __m128i l3type_msk = _mm_set_epi16(
153                         0x0000, 0x0000, 0x0000, 0x0000,
154                         0x0070, 0x0070, 0x0070, 0x0070);
155
156         /* L4 pkt type mask  Bit7 to Bit9 */
157         const __m128i l4type_msk = _mm_set_epi16(
158                         0x0000, 0x0000, 0x0000, 0x0000,
159                         0x0380, 0x0380, 0x0380, 0x0380);
160
161         /* convert RRC l3 type to mbuf format */
162         const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
163                         0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
164                         RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
165                         RTE_PTYPE_L3_IPV4, 0);
166
167         /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
168          * to fill into8 bits length.
169          */
170         const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
171                         RTE_PTYPE_TUNNEL_GENEVE >> 8,
172                         RTE_PTYPE_TUNNEL_NVGRE >> 8,
173                         RTE_PTYPE_TUNNEL_VXLAN >> 8,
174                         RTE_PTYPE_TUNNEL_GRE >> 8,
175                         RTE_PTYPE_L4_UDP >> 8,
176                         RTE_PTYPE_L4_TCP >> 8,
177                         0);
178
179         l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
180         l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
181         l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
182
183         l3type = _mm_and_si128(l3l4type0, l3type_msk);
184         l4type = _mm_and_si128(l3l4type0, l4type_msk);
185
186         l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
187         l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
188
189         l3type = _mm_shuffle_epi8(l3type_flags, l3type);
190         /* l4type_flags shift-left for 8 bits, need shift-right back */
191         l4type = _mm_shuffle_epi8(l4type_flags, l4type);
192
193         l4type = _mm_slli_epi16(l4type, 8);
194         l3l4type0 = _mm_or_si128(l3type, l4type);
195         vol.dword = _mm_cvtsi128_si64(l3l4type0);
196
197         rx_pkts[0]->packet_type = vol.e[0];
198         rx_pkts[1]->packet_type = vol.e[1];
199         rx_pkts[2]->packet_type = vol.e[2];
200         rx_pkts[3]->packet_type = vol.e[3];
201 }
202 #else
203 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
204 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
205 #endif
206
207 int __rte_cold
208 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
209 {
210 #ifndef RTE_LIBRTE_IEEE1588
211         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
212         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
213
214 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
215         /* whithout rx ol_flags, no VP flag report */
216         if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
217                 return -1;
218 #endif
219
220         /* no fdir support */
221         if (fconf->mode != RTE_FDIR_MODE_NONE)
222                 return -1;
223
224         /* no header split support */
225         if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
226                 return -1;
227
228         return 0;
229 #else
230         RTE_SET_USED(dev);
231         return -1;
232 #endif
233 }
234
235 int __rte_cold
236 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
237 {
238         uintptr_t p;
239         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
240
241         mb_def.nb_segs = 1;
242         /* data_off will be ajusted after new mbuf allocated for 512-byte
243          * alignment.
244          */
245         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
246         mb_def.port = rxq->port_id;
247         rte_mbuf_refcnt_set(&mb_def, 1);
248
249         /* prevent compiler reordering: rearm_data covers previous fields */
250         rte_compiler_barrier();
251         p = (uintptr_t)&mb_def.rearm_data;
252         rxq->mbuf_initializer = *(uint64_t *)p;
253         return 0;
254 }
255
256 static inline void
257 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
258 {
259         int i;
260         uint16_t rx_id;
261         volatile union fm10k_rx_desc *rxdp;
262         struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
263         struct rte_mbuf *mb0, *mb1;
264         __m128i head_off = _mm_set_epi64x(
265                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
266                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
267         __m128i dma_addr0, dma_addr1;
268         /* Rx buffer need to be aligned with 512 byte */
269         const __m128i hba_msk = _mm_set_epi64x(0,
270                                 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
271
272         rxdp = rxq->hw_ring + rxq->rxrearm_start;
273
274         /* Pull 'n' more MBUFs into the software ring */
275         if (rte_mempool_get_bulk(rxq->mp,
276                                  (void *)mb_alloc,
277                                  RTE_FM10K_RXQ_REARM_THRESH) < 0) {
278                 dma_addr0 = _mm_setzero_si128();
279                 /* Clean up all the HW/SW ring content */
280                 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
281                         mb_alloc[i] = &rxq->fake_mbuf;
282                         _mm_store_si128((__m128i *)&rxdp[i].q,
283                                                 dma_addr0);
284                 }
285
286                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
287                         RTE_FM10K_RXQ_REARM_THRESH;
288                 return;
289         }
290
291         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
292         for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
293                 __m128i vaddr0, vaddr1;
294                 uintptr_t p0, p1;
295
296                 mb0 = mb_alloc[0];
297                 mb1 = mb_alloc[1];
298
299                 /* Flush mbuf with pkt template.
300                  * Data to be rearmed is 6 bytes long.
301                  */
302                 p0 = (uintptr_t)&mb0->rearm_data;
303                 *(uint64_t *)p0 = rxq->mbuf_initializer;
304                 p1 = (uintptr_t)&mb1->rearm_data;
305                 *(uint64_t *)p1 = rxq->mbuf_initializer;
306
307                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
308                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
309                                 offsetof(struct rte_mbuf, buf_addr) + 8);
310                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
311                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
312
313                 /* convert pa to dma_addr hdr/data */
314                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
315                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
316
317                 /* add headroom to pa values */
318                 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
319                 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
320
321                 /* Do 512 byte alignment to satisfy HW requirement, in the
322                  * meanwhile, set Header Buffer Address to zero.
323                  */
324                 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
325                 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
326
327                 /* flush desc with pa dma_addr */
328                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
329                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
330
331                 /* enforce 512B alignment on default Rx virtual addresses */
332                 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
333                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
334                                 - (char *)mb0->buf_addr);
335                 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
336                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
337                                 - (char *)mb1->buf_addr);
338         }
339
340         rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
341         if (rxq->rxrearm_start >= rxq->nb_desc)
342                 rxq->rxrearm_start = 0;
343
344         rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
345
346         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
347                         (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
348
349         /* Update the tail pointer on the NIC */
350         FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
351 }
352
353 void __rte_cold
354 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
355 {
356         const unsigned mask = rxq->nb_desc - 1;
357         unsigned i;
358
359         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
360                 return;
361
362         /* free all mbufs that are valid in the ring */
363         if (rxq->rxrearm_nb == 0) {
364                 for (i = 0; i < rxq->nb_desc; i++)
365                         if (rxq->sw_ring[i] != NULL)
366                                 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
367         } else {
368                 for (i = rxq->next_dd; i != rxq->rxrearm_start;
369                                 i = (i + 1) & mask)
370                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
371         }
372         rxq->rxrearm_nb = rxq->nb_desc;
373
374         /* set all entries to NULL */
375         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
376 }
377
378 static inline uint16_t
379 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
380                 uint16_t nb_pkts, uint8_t *split_packet)
381 {
382         volatile union fm10k_rx_desc *rxdp;
383         struct rte_mbuf **mbufp;
384         uint16_t nb_pkts_recd;
385         int pos;
386         struct fm10k_rx_queue *rxq = rx_queue;
387         uint64_t var;
388         __m128i shuf_msk;
389         __m128i dd_check, eop_check;
390         uint16_t next_dd;
391
392         next_dd = rxq->next_dd;
393
394         /* Just the act of getting into the function from the application is
395          * going to cost about 7 cycles
396          */
397         rxdp = rxq->hw_ring + next_dd;
398
399         rte_prefetch0(rxdp);
400
401         /* See if we need to rearm the RX queue - gives the prefetch a bit
402          * of time to act
403          */
404         if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
405                 fm10k_rxq_rearm(rxq);
406
407         /* Before we start moving massive data around, check to see if
408          * there is actually a packet available
409          */
410         if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
411                 return 0;
412
413         /* Vecotr RX will process 4 packets at a time, strip the unaligned
414          * tails in case it's not multiple of 4.
415          */
416         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
417
418         /* 4 packets DD mask */
419         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
420
421         /* 4 packets EOP mask */
422         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
423
424         /* mask to shuffle from desc. to mbuf */
425         shuf_msk = _mm_set_epi8(
426                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
427                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
428                 13, 12,      /* octet 12~13, 16 bits data_len */
429                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
430                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
431                 0xFF, 0xFF,  /* skip high 16 bits pkt_type */
432                 0xFF, 0xFF   /* Skip pkt_type field in shuffle operation */
433                 );
434         /*
435          * Compile-time verify the shuffle mask
436          * NOTE: some field positions already verified above, but duplicated
437          * here for completeness in case of future modifications.
438          */
439         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
440                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
441         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
442                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
443         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
444                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
445         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
446                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
447
448         /* Cache is empty -> need to scan the buffer rings, but first move
449          * the next 'n' mbufs into the cache
450          */
451         mbufp = &rxq->sw_ring[next_dd];
452
453         /* A. load 4 packet in one loop
454          * [A*. mask out 4 unused dirty field in desc]
455          * B. copy 4 mbuf point from swring to rx_pkts
456          * C. calc the number of DD bits among the 4 packets
457          * [C*. extract the end-of-packet bit, if requested]
458          * D. fill info. from desc to mbuf
459          */
460         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
461                         pos += RTE_FM10K_DESCS_PER_LOOP,
462                         rxdp += RTE_FM10K_DESCS_PER_LOOP) {
463                 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
464                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
465                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
466                 __m128i mbp1;
467                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
468 #if defined(RTE_ARCH_X86_64)
469                 __m128i mbp2;
470 #endif
471
472                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
473                 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
474
475                 /* Read desc statuses backwards to avoid race condition */
476                 /* A.1 load 4 pkts desc */
477                 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
478                 rte_compiler_barrier();
479
480                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
481                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
482
483 #if defined(RTE_ARCH_X86_64)
484                 /* B.1 load 2 64 bit mbuf poitns */
485                 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
486 #endif
487
488                 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
489                 rte_compiler_barrier();
490                 /* B.1 load 2 mbuf point */
491                 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
492                 rte_compiler_barrier();
493                 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
494
495 #if defined(RTE_ARCH_X86_64)
496                 /* B.2 copy 2 mbuf point into rx_pkts  */
497                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
498 #endif
499
500                 /* avoid compiler reorder optimization */
501                 rte_compiler_barrier();
502
503                 if (split_packet) {
504                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
505                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
506                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
507                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
508                 }
509
510                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
511                 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
512                 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
513
514                 /* C.1 4=>2 filter staterr info only */
515                 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
516                 /* C.1 4=>2 filter staterr info only */
517                 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
518
519                 /* set ol_flags with vlan packet type */
520                 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
521
522                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
523                 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
524                 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
525
526                 /* C.2 get 4 pkts staterr value  */
527                 zero = _mm_xor_si128(dd_check, dd_check);
528                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
529
530                 /* D.3 copy final 3,4 data to rx_pkts */
531                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
532                                 pkt_mb4);
533                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
534                                 pkt_mb3);
535
536                 /* C* extract and record EOP bit */
537                 if (split_packet) {
538                         __m128i eop_shuf_mask = _mm_set_epi8(
539                                         0xFF, 0xFF, 0xFF, 0xFF,
540                                         0xFF, 0xFF, 0xFF, 0xFF,
541                                         0xFF, 0xFF, 0xFF, 0xFF,
542                                         0x04, 0x0C, 0x00, 0x08
543                                         );
544
545                         /* and with mask to extract bits, flipping 1-0 */
546                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
547                         /* the staterr values are not in order, as the count
548                          * count of dd bits doesn't care. However, for end of
549                          * packet tracking, we do care, so shuffle. This also
550                          * compresses the 32-bit values to 8-bit
551                          */
552                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
553                         /* store the resulting 32-bit value */
554                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
555                         split_packet += RTE_FM10K_DESCS_PER_LOOP;
556
557                         /* zero-out next pointers */
558                         rx_pkts[pos]->next = NULL;
559                         rx_pkts[pos + 1]->next = NULL;
560                         rx_pkts[pos + 2]->next = NULL;
561                         rx_pkts[pos + 3]->next = NULL;
562                 }
563
564                 /* C.3 calc available number of desc */
565                 staterr = _mm_and_si128(staterr, dd_check);
566                 staterr = _mm_packs_epi32(staterr, zero);
567
568                 /* D.3 copy final 1,2 data to rx_pkts */
569                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
570                                 pkt_mb2);
571                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
572                                 pkt_mb1);
573
574                 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
575
576                 /* C.4 calc avaialbe number of desc */
577                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
578                 nb_pkts_recd += var;
579                 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
580                         break;
581         }
582
583         /* Update our internal tail pointer */
584         rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
585         rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
586         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
587
588         return nb_pkts_recd;
589 }
590
591 /* vPMD receive routine
592  *
593  * Notice:
594  * - don't support ol_flags for rss and csum err
595  */
596 uint16_t
597 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
598                 uint16_t nb_pkts)
599 {
600         return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
601 }
602
603 static inline uint16_t
604 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
605                 struct rte_mbuf **rx_bufs,
606                 uint16_t nb_bufs, uint8_t *split_flags)
607 {
608         struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
609         struct rte_mbuf *start = rxq->pkt_first_seg;
610         struct rte_mbuf *end =  rxq->pkt_last_seg;
611         unsigned pkt_idx, buf_idx;
612
613         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
614                 if (end != NULL) {
615                         /* processing a split packet */
616                         end->next = rx_bufs[buf_idx];
617                         start->nb_segs++;
618                         start->pkt_len += rx_bufs[buf_idx]->data_len;
619                         end = end->next;
620
621                         if (!split_flags[buf_idx]) {
622                                 /* it's the last packet of the set */
623 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
624                                 start->hash = end->hash;
625                                 start->ol_flags = end->ol_flags;
626                                 start->packet_type = end->packet_type;
627 #endif
628                                 pkts[pkt_idx++] = start;
629                                 start = end = NULL;
630                         }
631                 } else {
632                         /* not processing a split packet */
633                         if (!split_flags[buf_idx]) {
634                                 /* not a split packet, save and skip */
635                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
636                                 continue;
637                         }
638                         end = start = rx_bufs[buf_idx];
639                 }
640         }
641
642         /* save the partial packet for next time */
643         rxq->pkt_first_seg = start;
644         rxq->pkt_last_seg = end;
645         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
646         return pkt_idx;
647 }
648
649 /**
650  * vPMD receive routine that reassembles single burst of 32 scattered packets
651  *
652  * Notice:
653  * - don't support ol_flags for rss and csum err
654  */
655 static uint16_t
656 fm10k_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
657                                uint16_t nb_pkts)
658 {
659         struct fm10k_rx_queue *rxq = rx_queue;
660         uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
661         unsigned i = 0;
662
663         /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
664         nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
665         /* get some new buffers */
666         uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
667                         split_flags);
668         if (nb_bufs == 0)
669                 return 0;
670
671         /* happy day case, full burst + no packets to be joined */
672         const uint64_t *split_fl64 = (uint64_t *)split_flags;
673
674         if (rxq->pkt_first_seg == NULL &&
675                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
676                         split_fl64[2] == 0 && split_fl64[3] == 0)
677                 return nb_bufs;
678
679         /* reassemble any packets that need reassembly*/
680         if (rxq->pkt_first_seg == NULL) {
681                 /* find the first split flag, and only reassemble then*/
682                 while (i < nb_bufs && !split_flags[i])
683                         i++;
684                 if (i == nb_bufs)
685                         return nb_bufs;
686                 rxq->pkt_first_seg = rx_pkts[i];
687         }
688         return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
689                 &split_flags[i]);
690 }
691
692 /**
693  * vPMD receive routine that reassembles scattered packets.
694  */
695 uint16_t
696 fm10k_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
697                               uint16_t nb_pkts)
698 {
699         uint16_t retval = 0;
700
701         while (nb_pkts > RTE_FM10K_MAX_RX_BURST) {
702                 uint16_t burst;
703
704                 burst = fm10k_recv_scattered_burst_vec(rx_queue,
705                                                        rx_pkts + retval,
706                                                        RTE_FM10K_MAX_RX_BURST);
707                 retval += burst;
708                 nb_pkts -= burst;
709                 if (burst < RTE_FM10K_MAX_RX_BURST)
710                         return retval;
711         }
712
713         return retval + fm10k_recv_scattered_burst_vec(rx_queue,
714                                                        rx_pkts + retval,
715                                                        nb_pkts);
716 }
717
718 static const struct fm10k_txq_ops vec_txq_ops = {
719         .reset = fm10k_reset_tx_queue,
720 };
721
722 void __rte_cold
723 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
724 {
725         txq->ops = &vec_txq_ops;
726 }
727
728 int __rte_cold
729 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
730 {
731         /* Vector TX can't offload any features yet */
732         if (txq->offloads != 0)
733                 return -1;
734
735         if (txq->tx_ftag_en)
736                 return -1;
737
738         return 0;
739 }
740
741 static inline void
742 vtx1(volatile struct fm10k_tx_desc *txdp,
743                 struct rte_mbuf *pkt, uint64_t flags)
744 {
745         __m128i descriptor = _mm_set_epi64x(flags << 56 |
746                         (uint64_t)pkt->vlan_tci << 16 | (uint64_t)pkt->data_len,
747                         MBUF_DMA_ADDR(pkt));
748         _mm_store_si128((__m128i *)txdp, descriptor);
749 }
750
751 static inline void
752 vtx(volatile struct fm10k_tx_desc *txdp,
753                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
754 {
755         int i;
756
757         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
758                 vtx1(txdp, *pkt, flags);
759 }
760
761 static __rte_always_inline int
762 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
763 {
764         struct rte_mbuf **txep;
765         uint8_t flags;
766         uint32_t n;
767         uint32_t i;
768         int nb_free = 0;
769         struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
770
771         /* check DD bit on threshold descriptor */
772         flags = txq->hw_ring[txq->next_dd].flags;
773         if (!(flags & FM10K_TXD_FLAG_DONE))
774                 return 0;
775
776         n = txq->rs_thresh;
777
778         /* First buffer to free from S/W ring is at index
779          * next_dd - (rs_thresh-1)
780          */
781         txep = &txq->sw_ring[txq->next_dd - (n - 1)];
782         m = rte_pktmbuf_prefree_seg(txep[0]);
783         if (likely(m != NULL)) {
784                 free[0] = m;
785                 nb_free = 1;
786                 for (i = 1; i < n; i++) {
787                         m = rte_pktmbuf_prefree_seg(txep[i]);
788                         if (likely(m != NULL)) {
789                                 if (likely(m->pool == free[0]->pool))
790                                         free[nb_free++] = m;
791                                 else {
792                                         rte_mempool_put_bulk(free[0]->pool,
793                                                         (void *)free, nb_free);
794                                         free[0] = m;
795                                         nb_free = 1;
796                                 }
797                         }
798                 }
799                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
800         } else {
801                 for (i = 1; i < n; i++) {
802                         m = rte_pktmbuf_prefree_seg(txep[i]);
803                         if (m != NULL)
804                                 rte_mempool_put(m->pool, m);
805                 }
806         }
807
808         /* buffers were freed, update counters */
809         txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
810         txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
811         if (txq->next_dd >= txq->nb_desc)
812                 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
813
814         return txq->rs_thresh;
815 }
816
817 static __rte_always_inline void
818 tx_backlog_entry(struct rte_mbuf **txep,
819                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
820 {
821         int i;
822
823         for (i = 0; i < (int)nb_pkts; ++i)
824                 txep[i] = tx_pkts[i];
825 }
826
827 uint16_t
828 fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
829                            uint16_t nb_pkts)
830 {
831         struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
832         volatile struct fm10k_tx_desc *txdp;
833         struct rte_mbuf **txep;
834         uint16_t n, nb_commit, tx_id;
835         uint64_t flags = FM10K_TXD_FLAG_LAST;
836         uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
837         int i;
838
839         /* cross rx_thresh boundary is not allowed */
840         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
841
842         if (txq->nb_free < txq->free_thresh)
843                 fm10k_tx_free_bufs(txq);
844
845         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
846         if (unlikely(nb_pkts == 0))
847                 return 0;
848
849         tx_id = txq->next_free;
850         txdp = &txq->hw_ring[tx_id];
851         txep = &txq->sw_ring[tx_id];
852
853         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
854
855         n = (uint16_t)(txq->nb_desc - tx_id);
856         if (nb_commit >= n) {
857                 tx_backlog_entry(txep, tx_pkts, n);
858
859                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
860                         vtx1(txdp, *tx_pkts, flags);
861
862                 vtx1(txdp, *tx_pkts++, rs);
863
864                 nb_commit = (uint16_t)(nb_commit - n);
865
866                 tx_id = 0;
867                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
868
869                 /* avoid reach the end of ring */
870                 txdp = &(txq->hw_ring[tx_id]);
871                 txep = &txq->sw_ring[tx_id];
872         }
873
874         tx_backlog_entry(txep, tx_pkts, nb_commit);
875
876         vtx(txdp, tx_pkts, nb_commit, flags);
877
878         tx_id = (uint16_t)(tx_id + nb_commit);
879         if (tx_id > txq->next_rs) {
880                 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
881                 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
882         }
883
884         txq->next_free = tx_id;
885
886         FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
887
888         return nb_pkts;
889 }
890
891 static void __rte_cold
892 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
893 {
894         static const struct fm10k_tx_desc zeroed_desc = {0};
895         struct rte_mbuf **txe = txq->sw_ring;
896         uint16_t i;
897
898         /* Zero out HW ring memory */
899         for (i = 0; i < txq->nb_desc; i++)
900                 txq->hw_ring[i] = zeroed_desc;
901
902         /* Initialize SW ring entries */
903         for (i = 0; i < txq->nb_desc; i++)
904                 txe[i] = NULL;
905
906         txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
907         txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
908
909         txq->next_free = 0;
910         txq->nb_used = 0;
911         /* Always allow 1 descriptor to be un-allocated to avoid
912          * a H/W race condition
913          */
914         txq->nb_free = (uint16_t)(txq->nb_desc - 1);
915         FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
916 }