net/hns3: support Tx push quick doorbell for performance
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
20 #define HNS3_SERVICE_QUICK_INTERVAL     10
21 #define HNS3_INVALID_PVID               0xFFFF
22
23 #define HNS3_FILTER_TYPE_VF             0
24 #define HNS3_FILTER_TYPE_PORT           1
25 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
26 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
27 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
28 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
29 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
30 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
31                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
32 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
33                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
34
35 /* Reset related Registers */
36 #define HNS3_GLOBAL_RESET_BIT           0
37 #define HNS3_CORE_RESET_BIT             1
38 #define HNS3_IMP_RESET_BIT              2
39 #define HNS3_FUN_RST_ING_B              0
40
41 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
42 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
43 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
44 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
45
46 #define HNS3_RESET_WAIT_MS      100
47 #define HNS3_RESET_WAIT_CNT     200
48
49 /* FEC mode order defined in HNS3 hardware */
50 #define HNS3_HW_FEC_MODE_NOFEC  0
51 #define HNS3_HW_FEC_MODE_BASER  1
52 #define HNS3_HW_FEC_MODE_RS     2
53
54 enum hns3_evt_cause {
55         HNS3_VECTOR0_EVENT_RST,
56         HNS3_VECTOR0_EVENT_MBX,
57         HNS3_VECTOR0_EVENT_ERR,
58         HNS3_VECTOR0_EVENT_PTP,
59         HNS3_VECTOR0_EVENT_OTHER,
60 };
61
62 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
63         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
64                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
65                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
66
67         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
68                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
69                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
70                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
71
72         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
73                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
74                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
75
76         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
77                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
78                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
79                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
80
81         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
82                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
83                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
84
85         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
86                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
87                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
88 };
89
90 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
91                                                  uint64_t *levels);
92 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
93 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
94                                     int on);
95 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
96 static bool hns3_update_link_status(struct hns3_hw *hw);
97
98 static int hns3_add_mc_addr(struct hns3_hw *hw,
99                             struct rte_ether_addr *mac_addr);
100 static int hns3_remove_mc_addr(struct hns3_hw *hw,
101                             struct rte_ether_addr *mac_addr);
102 static int hns3_restore_fec(struct hns3_hw *hw);
103 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
104 static int hns3_do_stop(struct hns3_adapter *hns);
105 static int hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds);
106
107 void hns3_ether_format_addr(char *buf, uint16_t size,
108                             const struct rte_ether_addr *ether_addr)
109 {
110         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
111                 ether_addr->addr_bytes[0],
112                 ether_addr->addr_bytes[4],
113                 ether_addr->addr_bytes[5]);
114 }
115
116 static void
117 hns3_pf_disable_irq0(struct hns3_hw *hw)
118 {
119         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
120 }
121
122 static void
123 hns3_pf_enable_irq0(struct hns3_hw *hw)
124 {
125         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
126 }
127
128 static enum hns3_evt_cause
129 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
130                           uint32_t *vec_val)
131 {
132         struct hns3_hw *hw = &hns->hw;
133
134         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
135         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
136         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
137         if (!is_delay) {
138                 hw->reset.stats.imp_cnt++;
139                 hns3_warn(hw, "IMP reset detected, clear reset status");
140         } else {
141                 hns3_schedule_delayed_reset(hns);
142                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
143         }
144
145         return HNS3_VECTOR0_EVENT_RST;
146 }
147
148 static enum hns3_evt_cause
149 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
150                              uint32_t *vec_val)
151 {
152         struct hns3_hw *hw = &hns->hw;
153
154         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
155         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
156         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
157         if (!is_delay) {
158                 hw->reset.stats.global_cnt++;
159                 hns3_warn(hw, "Global reset detected, clear reset status");
160         } else {
161                 hns3_schedule_delayed_reset(hns);
162                 hns3_warn(hw,
163                           "Global reset detected, don't clear reset status");
164         }
165
166         return HNS3_VECTOR0_EVENT_RST;
167 }
168
169 static enum hns3_evt_cause
170 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
171 {
172         struct hns3_hw *hw = &hns->hw;
173         uint32_t vector0_int_stats;
174         uint32_t cmdq_src_val;
175         uint32_t hw_err_src_reg;
176         uint32_t val;
177         enum hns3_evt_cause ret;
178         bool is_delay;
179
180         /* fetch the events from their corresponding regs */
181         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
182         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
183         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
184
185         is_delay = clearval == NULL ? true : false;
186         /*
187          * Assumption: If by any chance reset and mailbox events are reported
188          * together then we will only process reset event and defer the
189          * processing of the mailbox events. Since, we would have not cleared
190          * RX CMDQ event this time we would receive again another interrupt
191          * from H/W just for the mailbox.
192          */
193         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
194                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
195                 goto out;
196         }
197
198         /* Global reset */
199         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
200                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
201                 goto out;
202         }
203
204         /* Check for vector0 1588 event source */
205         if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
206                 val = BIT(HNS3_VECTOR0_1588_INT_B);
207                 ret = HNS3_VECTOR0_EVENT_PTP;
208                 goto out;
209         }
210
211         /* check for vector0 msix event source */
212         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
213             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
214                 val = vector0_int_stats | hw_err_src_reg;
215                 ret = HNS3_VECTOR0_EVENT_ERR;
216                 goto out;
217         }
218
219         /* check for vector0 mailbox(=CMDQ RX) event source */
220         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
221                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
222                 val = cmdq_src_val;
223                 ret = HNS3_VECTOR0_EVENT_MBX;
224                 goto out;
225         }
226
227         val = vector0_int_stats;
228         ret = HNS3_VECTOR0_EVENT_OTHER;
229 out:
230
231         if (clearval)
232                 *clearval = val;
233         return ret;
234 }
235
236 static bool
237 hns3_is_1588_event_type(uint32_t event_type)
238 {
239         return (event_type == HNS3_VECTOR0_EVENT_PTP);
240 }
241
242 static void
243 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
244 {
245         if (event_type == HNS3_VECTOR0_EVENT_RST ||
246             hns3_is_1588_event_type(event_type))
247                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
248         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
249                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
250 }
251
252 static void
253 hns3_clear_all_event_cause(struct hns3_hw *hw)
254 {
255         uint32_t vector0_int_stats;
256
257         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
258         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
259                 hns3_warn(hw, "Probe during IMP reset interrupt");
260
261         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
262                 hns3_warn(hw, "Probe during Global reset interrupt");
263
264         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
265                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
266                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
267                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
268         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
269         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
270                                 BIT(HNS3_VECTOR0_1588_INT_B));
271 }
272
273 static void
274 hns3_handle_mac_tnl(struct hns3_hw *hw)
275 {
276         struct hns3_cmd_desc desc;
277         uint32_t status;
278         int ret;
279
280         /* query and clear mac tnl interrupt */
281         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
282         ret = hns3_cmd_send(hw, &desc, 1);
283         if (ret) {
284                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
285                 return;
286         }
287
288         status = rte_le_to_cpu_32(desc.data[0]);
289         if (status) {
290                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
291                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
292                                           false);
293                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
294                 ret = hns3_cmd_send(hw, &desc, 1);
295                 if (ret)
296                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
297                                  ret);
298         }
299 }
300
301 static void
302 hns3_interrupt_handler(void *param)
303 {
304         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
305         struct hns3_adapter *hns = dev->data->dev_private;
306         struct hns3_hw *hw = &hns->hw;
307         enum hns3_evt_cause event_cause;
308         uint32_t clearval = 0;
309         uint32_t vector0_int;
310         uint32_t ras_int;
311         uint32_t cmdq_int;
312
313         /* Disable interrupt */
314         hns3_pf_disable_irq0(hw);
315
316         event_cause = hns3_check_event_cause(hns, &clearval);
317         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
318         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
319         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
320         /* vector 0 interrupt is shared with reset and mailbox source events. */
321         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
322                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
323                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
324                           vector0_int, ras_int, cmdq_int);
325                 hns3_handle_mac_tnl(hw);
326                 hns3_handle_error(hns);
327         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
328                 hns3_warn(hw, "received reset interrupt");
329                 hns3_schedule_reset(hns);
330         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
331                 hns3_dev_handle_mbx_msg(hw);
332         } else {
333                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
334                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
335                           vector0_int, ras_int, cmdq_int);
336         }
337
338         hns3_clear_event_cause(hw, event_cause, clearval);
339         /* Enable interrupt if it is not cause by reset */
340         hns3_pf_enable_irq0(hw);
341 }
342
343 static int
344 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
345 {
346 #define HNS3_VLAN_ID_OFFSET_STEP        160
347 #define HNS3_VLAN_BYTE_SIZE             8
348         struct hns3_vlan_filter_pf_cfg_cmd *req;
349         struct hns3_hw *hw = &hns->hw;
350         uint8_t vlan_offset_byte_val;
351         struct hns3_cmd_desc desc;
352         uint8_t vlan_offset_byte;
353         uint8_t vlan_offset_base;
354         int ret;
355
356         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
357
358         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
359         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
360                            HNS3_VLAN_BYTE_SIZE;
361         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
362
363         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
364         req->vlan_offset = vlan_offset_base;
365         req->vlan_cfg = on ? 0 : 1;
366         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
367
368         ret = hns3_cmd_send(hw, &desc, 1);
369         if (ret)
370                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
371                          vlan_id, ret);
372
373         return ret;
374 }
375
376 static void
377 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
378 {
379         struct hns3_user_vlan_table *vlan_entry;
380         struct hns3_pf *pf = &hns->pf;
381
382         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
383                 if (vlan_entry->vlan_id == vlan_id) {
384                         if (vlan_entry->hd_tbl_status)
385                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
386                         LIST_REMOVE(vlan_entry, next);
387                         rte_free(vlan_entry);
388                         break;
389                 }
390         }
391 }
392
393 static void
394 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
395                         bool writen_to_tbl)
396 {
397         struct hns3_user_vlan_table *vlan_entry;
398         struct hns3_hw *hw = &hns->hw;
399         struct hns3_pf *pf = &hns->pf;
400
401         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
402                 if (vlan_entry->vlan_id == vlan_id)
403                         return;
404         }
405
406         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
407         if (vlan_entry == NULL) {
408                 hns3_err(hw, "Failed to malloc hns3 vlan table");
409                 return;
410         }
411
412         vlan_entry->hd_tbl_status = writen_to_tbl;
413         vlan_entry->vlan_id = vlan_id;
414
415         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
416 }
417
418 static int
419 hns3_restore_vlan_table(struct hns3_adapter *hns)
420 {
421         struct hns3_user_vlan_table *vlan_entry;
422         struct hns3_hw *hw = &hns->hw;
423         struct hns3_pf *pf = &hns->pf;
424         uint16_t vlan_id;
425         int ret = 0;
426
427         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
428                 return hns3_vlan_pvid_configure(hns,
429                                                 hw->port_base_vlan_cfg.pvid, 1);
430
431         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
432                 if (vlan_entry->hd_tbl_status) {
433                         vlan_id = vlan_entry->vlan_id;
434                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
435                         if (ret)
436                                 break;
437                 }
438         }
439
440         return ret;
441 }
442
443 static int
444 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
445 {
446         struct hns3_hw *hw = &hns->hw;
447         bool writen_to_tbl = false;
448         int ret = 0;
449
450         /*
451          * When vlan filter is enabled, hardware regards packets without vlan
452          * as packets with vlan 0. So, to receive packets without vlan, vlan id
453          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
454          */
455         if (on == 0 && vlan_id == 0)
456                 return 0;
457
458         /*
459          * When port base vlan enabled, we use port base vlan as the vlan
460          * filter condition. In this case, we don't update vlan filter table
461          * when user add new vlan or remove exist vlan, just update the
462          * vlan list. The vlan id in vlan list will be written in vlan filter
463          * table until port base vlan disabled
464          */
465         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
466                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
467                 writen_to_tbl = true;
468         }
469
470         if (ret == 0) {
471                 if (on)
472                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
473                 else
474                         hns3_rm_dev_vlan_table(hns, vlan_id);
475         }
476         return ret;
477 }
478
479 static int
480 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
481 {
482         struct hns3_adapter *hns = dev->data->dev_private;
483         struct hns3_hw *hw = &hns->hw;
484         int ret;
485
486         rte_spinlock_lock(&hw->lock);
487         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
488         rte_spinlock_unlock(&hw->lock);
489         return ret;
490 }
491
492 static int
493 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
494                          uint16_t tpid)
495 {
496         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
497         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
498         struct hns3_hw *hw = &hns->hw;
499         struct hns3_cmd_desc desc;
500         int ret;
501
502         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
503              vlan_type != ETH_VLAN_TYPE_OUTER)) {
504                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
505                 return -EINVAL;
506         }
507
508         if (tpid != RTE_ETHER_TYPE_VLAN) {
509                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
510                 return -EINVAL;
511         }
512
513         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
514         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
515
516         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
517                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
518                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
519         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
520                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
521                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
522                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
523                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
524         }
525
526         ret = hns3_cmd_send(hw, &desc, 1);
527         if (ret) {
528                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
529                          ret);
530                 return ret;
531         }
532
533         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
534
535         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
536         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
537         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
538
539         ret = hns3_cmd_send(hw, &desc, 1);
540         if (ret)
541                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
542                          ret);
543         return ret;
544 }
545
546 static int
547 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
548                    uint16_t tpid)
549 {
550         struct hns3_adapter *hns = dev->data->dev_private;
551         struct hns3_hw *hw = &hns->hw;
552         int ret;
553
554         rte_spinlock_lock(&hw->lock);
555         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
556         rte_spinlock_unlock(&hw->lock);
557         return ret;
558 }
559
560 static int
561 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
562                              struct hns3_rx_vtag_cfg *vcfg)
563 {
564         struct hns3_vport_vtag_rx_cfg_cmd *req;
565         struct hns3_hw *hw = &hns->hw;
566         struct hns3_cmd_desc desc;
567         uint16_t vport_id;
568         uint8_t bitmap;
569         int ret;
570
571         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
572
573         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
574         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
575                      vcfg->strip_tag1_en ? 1 : 0);
576         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
577                      vcfg->strip_tag2_en ? 1 : 0);
578         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
579                      vcfg->vlan1_vlan_prionly ? 1 : 0);
580         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
581                      vcfg->vlan2_vlan_prionly ? 1 : 0);
582
583         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
584         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
585                      vcfg->strip_tag1_discard_en ? 1 : 0);
586         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
587                      vcfg->strip_tag2_discard_en ? 1 : 0);
588         /*
589          * In current version VF is not supported when PF is driven by DPDK
590          * driver, just need to configure parameters for PF vport.
591          */
592         vport_id = HNS3_PF_FUNC_ID;
593         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
594         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
595         req->vf_bitmap[req->vf_offset] = bitmap;
596
597         ret = hns3_cmd_send(hw, &desc, 1);
598         if (ret)
599                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
600         return ret;
601 }
602
603 static void
604 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
605                            struct hns3_rx_vtag_cfg *vcfg)
606 {
607         struct hns3_pf *pf = &hns->pf;
608         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
609 }
610
611 static void
612 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
613                            struct hns3_tx_vtag_cfg *vcfg)
614 {
615         struct hns3_pf *pf = &hns->pf;
616         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
617 }
618
619 static int
620 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
621 {
622         struct hns3_rx_vtag_cfg rxvlan_cfg;
623         struct hns3_hw *hw = &hns->hw;
624         int ret;
625
626         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
627                 rxvlan_cfg.strip_tag1_en = false;
628                 rxvlan_cfg.strip_tag2_en = enable;
629                 rxvlan_cfg.strip_tag2_discard_en = false;
630         } else {
631                 rxvlan_cfg.strip_tag1_en = enable;
632                 rxvlan_cfg.strip_tag2_en = true;
633                 rxvlan_cfg.strip_tag2_discard_en = true;
634         }
635
636         rxvlan_cfg.strip_tag1_discard_en = false;
637         rxvlan_cfg.vlan1_vlan_prionly = false;
638         rxvlan_cfg.vlan2_vlan_prionly = false;
639         rxvlan_cfg.rx_vlan_offload_en = enable;
640
641         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
642         if (ret) {
643                 hns3_err(hw, "%s strip rx vtag failed, ret = %d.",
644                                 enable ? "enable" : "disable", ret);
645                 return ret;
646         }
647
648         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
649
650         return ret;
651 }
652
653 static int
654 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
655                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
656 {
657         struct hns3_vlan_filter_ctrl_cmd *req;
658         struct hns3_cmd_desc desc;
659         int ret;
660
661         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
662
663         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
664         req->vlan_type = vlan_type;
665         req->vlan_fe = filter_en ? fe_type : 0;
666         req->vf_id = vf_id;
667
668         ret = hns3_cmd_send(hw, &desc, 1);
669         if (ret)
670                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
671
672         return ret;
673 }
674
675 static int
676 hns3_vlan_filter_init(struct hns3_adapter *hns)
677 {
678         struct hns3_hw *hw = &hns->hw;
679         int ret;
680
681         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
682                                         HNS3_FILTER_FE_EGRESS, false,
683                                         HNS3_PF_FUNC_ID);
684         if (ret) {
685                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
686                 return ret;
687         }
688
689         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
690                                         HNS3_FILTER_FE_INGRESS, false,
691                                         HNS3_PF_FUNC_ID);
692         if (ret)
693                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
694
695         return ret;
696 }
697
698 static int
699 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
700 {
701         struct hns3_hw *hw = &hns->hw;
702         int ret;
703
704         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
705                                         HNS3_FILTER_FE_INGRESS, enable,
706                                         HNS3_PF_FUNC_ID);
707         if (ret)
708                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
709                          enable ? "enable" : "disable", ret);
710
711         return ret;
712 }
713
714 static int
715 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
716 {
717         struct hns3_adapter *hns = dev->data->dev_private;
718         struct hns3_hw *hw = &hns->hw;
719         struct rte_eth_rxmode *rxmode;
720         unsigned int tmp_mask;
721         bool enable;
722         int ret = 0;
723
724         rte_spinlock_lock(&hw->lock);
725         rxmode = &dev->data->dev_conf.rxmode;
726         tmp_mask = (unsigned int)mask;
727         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
728                 /* ignore vlan filter configuration during promiscuous mode */
729                 if (!dev->data->promiscuous) {
730                         /* Enable or disable VLAN filter */
731                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
732                                  true : false;
733
734                         ret = hns3_enable_vlan_filter(hns, enable);
735                         if (ret) {
736                                 rte_spinlock_unlock(&hw->lock);
737                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
738                                          enable ? "enable" : "disable", ret);
739                                 return ret;
740                         }
741                 }
742         }
743
744         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
745                 /* Enable or disable VLAN stripping */
746                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
747                     true : false;
748
749                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
750                 if (ret) {
751                         rte_spinlock_unlock(&hw->lock);
752                         hns3_err(hw, "failed to %s rx strip, ret = %d",
753                                  enable ? "enable" : "disable", ret);
754                         return ret;
755                 }
756         }
757
758         rte_spinlock_unlock(&hw->lock);
759
760         return ret;
761 }
762
763 static int
764 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
765                              struct hns3_tx_vtag_cfg *vcfg)
766 {
767         struct hns3_vport_vtag_tx_cfg_cmd *req;
768         struct hns3_cmd_desc desc;
769         struct hns3_hw *hw = &hns->hw;
770         uint16_t vport_id;
771         uint8_t bitmap;
772         int ret;
773
774         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
775
776         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
777         req->def_vlan_tag1 = vcfg->default_tag1;
778         req->def_vlan_tag2 = vcfg->default_tag2;
779         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
780                      vcfg->accept_tag1 ? 1 : 0);
781         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
782                      vcfg->accept_untag1 ? 1 : 0);
783         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
784                      vcfg->accept_tag2 ? 1 : 0);
785         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
786                      vcfg->accept_untag2 ? 1 : 0);
787         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
788                      vcfg->insert_tag1_en ? 1 : 0);
789         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
790                      vcfg->insert_tag2_en ? 1 : 0);
791         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
792
793         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
794         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
795                      vcfg->tag_shift_mode_en ? 1 : 0);
796
797         /*
798          * In current version VF is not supported when PF is driven by DPDK
799          * driver, just need to configure parameters for PF vport.
800          */
801         vport_id = HNS3_PF_FUNC_ID;
802         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
803         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
804         req->vf_bitmap[req->vf_offset] = bitmap;
805
806         ret = hns3_cmd_send(hw, &desc, 1);
807         if (ret)
808                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
809
810         return ret;
811 }
812
813 static int
814 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
815                      uint16_t pvid)
816 {
817         struct hns3_hw *hw = &hns->hw;
818         struct hns3_tx_vtag_cfg txvlan_cfg;
819         int ret;
820
821         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
822                 txvlan_cfg.accept_tag1 = true;
823                 txvlan_cfg.insert_tag1_en = false;
824                 txvlan_cfg.default_tag1 = 0;
825         } else {
826                 txvlan_cfg.accept_tag1 =
827                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
828                 txvlan_cfg.insert_tag1_en = true;
829                 txvlan_cfg.default_tag1 = pvid;
830         }
831
832         txvlan_cfg.accept_untag1 = true;
833         txvlan_cfg.accept_tag2 = true;
834         txvlan_cfg.accept_untag2 = true;
835         txvlan_cfg.insert_tag2_en = false;
836         txvlan_cfg.default_tag2 = 0;
837         txvlan_cfg.tag_shift_mode_en = true;
838
839         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
840         if (ret) {
841                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
842                          ret);
843                 return ret;
844         }
845
846         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
847         return ret;
848 }
849
850
851 static void
852 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
853 {
854         struct hns3_user_vlan_table *vlan_entry;
855         struct hns3_pf *pf = &hns->pf;
856
857         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
858                 if (vlan_entry->hd_tbl_status) {
859                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
860                         vlan_entry->hd_tbl_status = false;
861                 }
862         }
863
864         if (is_del_list) {
865                 vlan_entry = LIST_FIRST(&pf->vlan_list);
866                 while (vlan_entry) {
867                         LIST_REMOVE(vlan_entry, next);
868                         rte_free(vlan_entry);
869                         vlan_entry = LIST_FIRST(&pf->vlan_list);
870                 }
871         }
872 }
873
874 static void
875 hns3_add_all_vlan_table(struct hns3_adapter *hns)
876 {
877         struct hns3_user_vlan_table *vlan_entry;
878         struct hns3_pf *pf = &hns->pf;
879
880         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
881                 if (!vlan_entry->hd_tbl_status) {
882                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
883                         vlan_entry->hd_tbl_status = true;
884                 }
885         }
886 }
887
888 static void
889 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
890 {
891         struct hns3_hw *hw = &hns->hw;
892         int ret;
893
894         hns3_rm_all_vlan_table(hns, true);
895         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
896                 ret = hns3_set_port_vlan_filter(hns,
897                                                 hw->port_base_vlan_cfg.pvid, 0);
898                 if (ret) {
899                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
900                                  ret);
901                         return;
902                 }
903         }
904 }
905
906 static int
907 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
908                         uint16_t port_base_vlan_state, uint16_t new_pvid)
909 {
910         struct hns3_hw *hw = &hns->hw;
911         uint16_t old_pvid;
912         int ret;
913
914         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
915                 old_pvid = hw->port_base_vlan_cfg.pvid;
916                 if (old_pvid != HNS3_INVALID_PVID) {
917                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
918                         if (ret) {
919                                 hns3_err(hw, "failed to remove old pvid %u, "
920                                                 "ret = %d", old_pvid, ret);
921                                 return ret;
922                         }
923                 }
924
925                 hns3_rm_all_vlan_table(hns, false);
926                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
927                 if (ret) {
928                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
929                                         new_pvid, ret);
930                         return ret;
931                 }
932         } else {
933                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
934                 if (ret) {
935                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
936                                         new_pvid, ret);
937                         return ret;
938                 }
939
940                 hns3_add_all_vlan_table(hns);
941         }
942         return 0;
943 }
944
945 static int
946 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
947 {
948         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
949         struct hns3_rx_vtag_cfg rx_vlan_cfg;
950         bool rx_strip_en;
951         int ret;
952
953         rx_strip_en = old_cfg->rx_vlan_offload_en;
954         if (on) {
955                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
956                 rx_vlan_cfg.strip_tag2_en = true;
957                 rx_vlan_cfg.strip_tag2_discard_en = true;
958         } else {
959                 rx_vlan_cfg.strip_tag1_en = false;
960                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
961                 rx_vlan_cfg.strip_tag2_discard_en = false;
962         }
963         rx_vlan_cfg.strip_tag1_discard_en = false;
964         rx_vlan_cfg.vlan1_vlan_prionly = false;
965         rx_vlan_cfg.vlan2_vlan_prionly = false;
966         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
967
968         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
969         if (ret)
970                 return ret;
971
972         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
973         return ret;
974 }
975
976 static int
977 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
978 {
979         struct hns3_hw *hw = &hns->hw;
980         uint16_t port_base_vlan_state;
981         int ret, err;
982
983         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
984                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
985                         hns3_warn(hw, "Invalid operation! As current pvid set "
986                                   "is %u, disable pvid %u is invalid",
987                                   hw->port_base_vlan_cfg.pvid, pvid);
988                 return 0;
989         }
990
991         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
992                                     HNS3_PORT_BASE_VLAN_DISABLE;
993         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
994         if (ret) {
995                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
996                          ret);
997                 return ret;
998         }
999
1000         ret = hns3_en_pvid_strip(hns, on);
1001         if (ret) {
1002                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
1003                          "ret = %d", ret);
1004                 goto pvid_vlan_strip_fail;
1005         }
1006
1007         if (pvid == HNS3_INVALID_PVID)
1008                 goto out;
1009         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1010         if (ret) {
1011                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1012                          ret);
1013                 goto vlan_filter_set_fail;
1014         }
1015
1016 out:
1017         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1018         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1019         return ret;
1020
1021 vlan_filter_set_fail:
1022         err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1023                                         HNS3_PORT_BASE_VLAN_ENABLE);
1024         if (err)
1025                 hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1026
1027 pvid_vlan_strip_fail:
1028         err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1029                                         hw->port_base_vlan_cfg.pvid);
1030         if (err)
1031                 hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1032
1033         return ret;
1034 }
1035
1036 static int
1037 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1038 {
1039         struct hns3_adapter *hns = dev->data->dev_private;
1040         struct hns3_hw *hw = &hns->hw;
1041         bool pvid_en_state_change;
1042         uint16_t pvid_state;
1043         int ret;
1044
1045         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1046                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1047                          RTE_ETHER_MAX_VLAN_ID);
1048                 return -EINVAL;
1049         }
1050
1051         /*
1052          * If PVID configuration state change, should refresh the PVID
1053          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1054          */
1055         pvid_state = hw->port_base_vlan_cfg.state;
1056         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1057             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1058                 pvid_en_state_change = false;
1059         else
1060                 pvid_en_state_change = true;
1061
1062         rte_spinlock_lock(&hw->lock);
1063         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1064         rte_spinlock_unlock(&hw->lock);
1065         if (ret)
1066                 return ret;
1067         /*
1068          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1069          * need be processed by PMD driver.
1070          */
1071         if (pvid_en_state_change &&
1072             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1073                 hns3_update_all_queues_pvid_proc_en(hw);
1074
1075         return 0;
1076 }
1077
1078 static int
1079 hns3_default_vlan_config(struct hns3_adapter *hns)
1080 {
1081         struct hns3_hw *hw = &hns->hw;
1082         int ret;
1083
1084         /*
1085          * When vlan filter is enabled, hardware regards packets without vlan
1086          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1087          * table, packets without vlan won't be received. So, add vlan 0 as
1088          * the default vlan.
1089          */
1090         ret = hns3_vlan_filter_configure(hns, 0, 1);
1091         if (ret)
1092                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1093         return ret;
1094 }
1095
1096 static int
1097 hns3_init_vlan_config(struct hns3_adapter *hns)
1098 {
1099         struct hns3_hw *hw = &hns->hw;
1100         int ret;
1101
1102         /*
1103          * This function can be called in the initialization and reset process,
1104          * when in reset process, it means that hardware had been reseted
1105          * successfully and we need to restore the hardware configuration to
1106          * ensure that the hardware configuration remains unchanged before and
1107          * after reset.
1108          */
1109         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1110                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1111                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1112         }
1113
1114         ret = hns3_vlan_filter_init(hns);
1115         if (ret) {
1116                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1117                 return ret;
1118         }
1119
1120         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1121                                        RTE_ETHER_TYPE_VLAN);
1122         if (ret) {
1123                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1124                 return ret;
1125         }
1126
1127         /*
1128          * When in the reinit dev stage of the reset process, the following
1129          * vlan-related configurations may differ from those at initialization,
1130          * we will restore configurations to hardware in hns3_restore_vlan_table
1131          * and hns3_restore_vlan_conf later.
1132          */
1133         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1134                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1135                 if (ret) {
1136                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1137                         return ret;
1138                 }
1139
1140                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1141                 if (ret) {
1142                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1143                                  ret);
1144                         return ret;
1145                 }
1146         }
1147
1148         return hns3_default_vlan_config(hns);
1149 }
1150
1151 static int
1152 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1153 {
1154         struct hns3_pf *pf = &hns->pf;
1155         struct hns3_hw *hw = &hns->hw;
1156         uint64_t offloads;
1157         bool enable;
1158         int ret;
1159
1160         if (!hw->data->promiscuous) {
1161                 /* restore vlan filter states */
1162                 offloads = hw->data->dev_conf.rxmode.offloads;
1163                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1164                 ret = hns3_enable_vlan_filter(hns, enable);
1165                 if (ret) {
1166                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1167                                  "ret = %d", ret);
1168                         return ret;
1169                 }
1170         }
1171
1172         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1173         if (ret) {
1174                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1175                 return ret;
1176         }
1177
1178         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1179         if (ret)
1180                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1181
1182         return ret;
1183 }
1184
1185 static int
1186 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1187 {
1188         struct hns3_adapter *hns = dev->data->dev_private;
1189         struct rte_eth_dev_data *data = dev->data;
1190         struct rte_eth_txmode *txmode;
1191         struct hns3_hw *hw = &hns->hw;
1192         int mask;
1193         int ret;
1194
1195         txmode = &data->dev_conf.txmode;
1196         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1197                 hns3_warn(hw,
1198                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1199                           "configuration is not supported! Ignore these two "
1200                           "parameters: hw_vlan_reject_tagged(%u), "
1201                           "hw_vlan_reject_untagged(%u)",
1202                           txmode->hw_vlan_reject_tagged,
1203                           txmode->hw_vlan_reject_untagged);
1204
1205         /* Apply vlan offload setting */
1206         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1207         ret = hns3_vlan_offload_set(dev, mask);
1208         if (ret) {
1209                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1210                          ret);
1211                 return ret;
1212         }
1213
1214         /*
1215          * If pvid config is not set in rte_eth_conf, driver needn't to set
1216          * VLAN pvid related configuration to hardware.
1217          */
1218         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1219                 return 0;
1220
1221         /* Apply pvid setting */
1222         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1223                                  txmode->hw_vlan_insert_pvid);
1224         if (ret)
1225                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1226                          txmode->pvid, ret);
1227
1228         return ret;
1229 }
1230
1231 static int
1232 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1233                 unsigned int tso_mss_max)
1234 {
1235         struct hns3_cfg_tso_status_cmd *req;
1236         struct hns3_cmd_desc desc;
1237         uint16_t tso_mss;
1238
1239         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1240
1241         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1242
1243         tso_mss = 0;
1244         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1245                        tso_mss_min);
1246         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1247
1248         tso_mss = 0;
1249         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1250                        tso_mss_max);
1251         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1252
1253         return hns3_cmd_send(hw, &desc, 1);
1254 }
1255
1256 static int
1257 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1258                    uint16_t *allocated_size, bool is_alloc)
1259 {
1260         struct hns3_umv_spc_alc_cmd *req;
1261         struct hns3_cmd_desc desc;
1262         int ret;
1263
1264         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1265         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1266         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1267         req->space_size = rte_cpu_to_le_32(space_size);
1268
1269         ret = hns3_cmd_send(hw, &desc, 1);
1270         if (ret) {
1271                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1272                              is_alloc ? "allocate" : "free", ret);
1273                 return ret;
1274         }
1275
1276         if (is_alloc && allocated_size)
1277                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1278
1279         return 0;
1280 }
1281
1282 static int
1283 hns3_init_umv_space(struct hns3_hw *hw)
1284 {
1285         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1286         struct hns3_pf *pf = &hns->pf;
1287         uint16_t allocated_size = 0;
1288         int ret;
1289
1290         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1291                                  true);
1292         if (ret)
1293                 return ret;
1294
1295         if (allocated_size < pf->wanted_umv_size)
1296                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1297                              pf->wanted_umv_size, allocated_size);
1298
1299         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1300                                                 pf->wanted_umv_size;
1301         pf->used_umv_size = 0;
1302         return 0;
1303 }
1304
1305 static int
1306 hns3_uninit_umv_space(struct hns3_hw *hw)
1307 {
1308         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1309         struct hns3_pf *pf = &hns->pf;
1310         int ret;
1311
1312         if (pf->max_umv_size == 0)
1313                 return 0;
1314
1315         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1316         if (ret)
1317                 return ret;
1318
1319         pf->max_umv_size = 0;
1320
1321         return 0;
1322 }
1323
1324 static bool
1325 hns3_is_umv_space_full(struct hns3_hw *hw)
1326 {
1327         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1328         struct hns3_pf *pf = &hns->pf;
1329         bool is_full;
1330
1331         is_full = (pf->used_umv_size >= pf->max_umv_size);
1332
1333         return is_full;
1334 }
1335
1336 static void
1337 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1338 {
1339         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1340         struct hns3_pf *pf = &hns->pf;
1341
1342         if (is_free) {
1343                 if (pf->used_umv_size > 0)
1344                         pf->used_umv_size--;
1345         } else
1346                 pf->used_umv_size++;
1347 }
1348
1349 static void
1350 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1351                       const uint8_t *addr, bool is_mc)
1352 {
1353         const unsigned char *mac_addr = addr;
1354         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1355                             ((uint32_t)mac_addr[2] << 16) |
1356                             ((uint32_t)mac_addr[1] << 8) |
1357                             (uint32_t)mac_addr[0];
1358         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1359
1360         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1361         if (is_mc) {
1362                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1363                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1364                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1365         }
1366
1367         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1368         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1369 }
1370
1371 static int
1372 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1373                              uint8_t resp_code,
1374                              enum hns3_mac_vlan_tbl_opcode op)
1375 {
1376         if (cmdq_resp) {
1377                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1378                          cmdq_resp);
1379                 return -EIO;
1380         }
1381
1382         if (op == HNS3_MAC_VLAN_ADD) {
1383                 if (resp_code == 0 || resp_code == 1) {
1384                         return 0;
1385                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1386                         hns3_err(hw, "add mac addr failed for uc_overflow");
1387                         return -ENOSPC;
1388                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1389                         hns3_err(hw, "add mac addr failed for mc_overflow");
1390                         return -ENOSPC;
1391                 }
1392
1393                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1394                          resp_code);
1395                 return -EIO;
1396         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1397                 if (resp_code == 0) {
1398                         return 0;
1399                 } else if (resp_code == 1) {
1400                         hns3_dbg(hw, "remove mac addr failed for miss");
1401                         return -ENOENT;
1402                 }
1403
1404                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1405                          resp_code);
1406                 return -EIO;
1407         } else if (op == HNS3_MAC_VLAN_LKUP) {
1408                 if (resp_code == 0) {
1409                         return 0;
1410                 } else if (resp_code == 1) {
1411                         hns3_dbg(hw, "lookup mac addr failed for miss");
1412                         return -ENOENT;
1413                 }
1414
1415                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1416                          resp_code);
1417                 return -EIO;
1418         }
1419
1420         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1421                  op);
1422
1423         return -EINVAL;
1424 }
1425
1426 static int
1427 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1428                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1429                          struct hns3_cmd_desc *desc, bool is_mc)
1430 {
1431         uint8_t resp_code;
1432         uint16_t retval;
1433         int ret;
1434
1435         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1436         if (is_mc) {
1437                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1438                 memcpy(desc[0].data, req,
1439                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1440                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1441                                           true);
1442                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1443                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1444                                           true);
1445                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1446         } else {
1447                 memcpy(desc[0].data, req,
1448                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1449                 ret = hns3_cmd_send(hw, desc, 1);
1450         }
1451         if (ret) {
1452                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1453                          ret);
1454                 return ret;
1455         }
1456         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1457         retval = rte_le_to_cpu_16(desc[0].retval);
1458
1459         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1460                                             HNS3_MAC_VLAN_LKUP);
1461 }
1462
1463 static int
1464 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1465                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1466                       struct hns3_cmd_desc *mc_desc)
1467 {
1468         uint8_t resp_code;
1469         uint16_t retval;
1470         int cfg_status;
1471         int ret;
1472
1473         if (mc_desc == NULL) {
1474                 struct hns3_cmd_desc desc;
1475
1476                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1477                 memcpy(desc.data, req,
1478                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1479                 ret = hns3_cmd_send(hw, &desc, 1);
1480                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1481                 retval = rte_le_to_cpu_16(desc.retval);
1482
1483                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1484                                                           HNS3_MAC_VLAN_ADD);
1485         } else {
1486                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1487                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1488                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1489                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1490                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1491                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1492                 memcpy(mc_desc[0].data, req,
1493                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1494                 mc_desc[0].retval = 0;
1495                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1496                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1497                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1498
1499                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1500                                                           HNS3_MAC_VLAN_ADD);
1501         }
1502
1503         if (ret) {
1504                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1505                 return ret;
1506         }
1507
1508         return cfg_status;
1509 }
1510
1511 static int
1512 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1513                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1514 {
1515         struct hns3_cmd_desc desc;
1516         uint8_t resp_code;
1517         uint16_t retval;
1518         int ret;
1519
1520         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1521
1522         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1523
1524         ret = hns3_cmd_send(hw, &desc, 1);
1525         if (ret) {
1526                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1527                 return ret;
1528         }
1529         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1530         retval = rte_le_to_cpu_16(desc.retval);
1531
1532         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1533                                             HNS3_MAC_VLAN_REMOVE);
1534 }
1535
1536 static int
1537 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1538 {
1539         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1540         struct hns3_mac_vlan_tbl_entry_cmd req;
1541         struct hns3_pf *pf = &hns->pf;
1542         struct hns3_cmd_desc desc[3];
1543         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1544         uint16_t egress_port = 0;
1545         uint8_t vf_id;
1546         int ret;
1547
1548         /* check if mac addr is valid */
1549         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1550                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1551                                       mac_addr);
1552                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1553                          mac_str);
1554                 return -EINVAL;
1555         }
1556
1557         memset(&req, 0, sizeof(req));
1558
1559         /*
1560          * In current version VF is not supported when PF is driven by DPDK
1561          * driver, just need to configure parameters for PF vport.
1562          */
1563         vf_id = HNS3_PF_FUNC_ID;
1564         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1565                        HNS3_MAC_EPORT_VFID_S, vf_id);
1566
1567         req.egress_port = rte_cpu_to_le_16(egress_port);
1568
1569         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1570
1571         /*
1572          * Lookup the mac address in the mac_vlan table, and add
1573          * it if the entry is inexistent. Repeated unicast entry
1574          * is not allowed in the mac vlan table.
1575          */
1576         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1577         if (ret == -ENOENT) {
1578                 if (!hns3_is_umv_space_full(hw)) {
1579                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1580                         if (!ret)
1581                                 hns3_update_umv_space(hw, false);
1582                         return ret;
1583                 }
1584
1585                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1586
1587                 return -ENOSPC;
1588         }
1589
1590         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1591
1592         /* check if we just hit the duplicate */
1593         if (ret == 0) {
1594                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1595                 return 0;
1596         }
1597
1598         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1599                  mac_str);
1600
1601         return ret;
1602 }
1603
1604 static int
1605 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1606 {
1607         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1608         struct rte_ether_addr *addr;
1609         int ret;
1610         int i;
1611
1612         for (i = 0; i < hw->mc_addrs_num; i++) {
1613                 addr = &hw->mc_addrs[i];
1614                 /* Check if there are duplicate addresses */
1615                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1616                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1617                                               addr);
1618                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1619                                  "(%s) is added by the set_mc_mac_addr_list "
1620                                  "API", mac_str);
1621                         return -EINVAL;
1622                 }
1623         }
1624
1625         ret = hns3_add_mc_addr(hw, mac_addr);
1626         if (ret) {
1627                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1628                                       mac_addr);
1629                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1630                          mac_str, ret);
1631         }
1632         return ret;
1633 }
1634
1635 static int
1636 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1637 {
1638         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1639         int ret;
1640
1641         ret = hns3_remove_mc_addr(hw, mac_addr);
1642         if (ret) {
1643                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1644                                       mac_addr);
1645                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1646                          mac_str, ret);
1647         }
1648         return ret;
1649 }
1650
1651 static int
1652 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1653                   uint32_t idx, __rte_unused uint32_t pool)
1654 {
1655         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1656         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1657         int ret;
1658
1659         rte_spinlock_lock(&hw->lock);
1660
1661         /*
1662          * In hns3 network engine adding UC and MC mac address with different
1663          * commands with firmware. We need to determine whether the input
1664          * address is a UC or a MC address to call different commands.
1665          * By the way, it is recommended calling the API function named
1666          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1667          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1668          * may affect the specifications of UC mac addresses.
1669          */
1670         if (rte_is_multicast_ether_addr(mac_addr))
1671                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1672         else
1673                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1674
1675         if (ret) {
1676                 rte_spinlock_unlock(&hw->lock);
1677                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1678                                       mac_addr);
1679                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1680                          ret);
1681                 return ret;
1682         }
1683
1684         if (idx == 0)
1685                 hw->mac.default_addr_setted = true;
1686         rte_spinlock_unlock(&hw->lock);
1687
1688         return ret;
1689 }
1690
1691 static int
1692 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1693 {
1694         struct hns3_mac_vlan_tbl_entry_cmd req;
1695         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1696         int ret;
1697
1698         /* check if mac addr is valid */
1699         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1700                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1701                                       mac_addr);
1702                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1703                          mac_str);
1704                 return -EINVAL;
1705         }
1706
1707         memset(&req, 0, sizeof(req));
1708         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1709         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1710         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1711         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1712                 return 0;
1713         else if (ret == 0)
1714                 hns3_update_umv_space(hw, true);
1715
1716         return ret;
1717 }
1718
1719 static void
1720 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1721 {
1722         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1723         /* index will be checked by upper level rte interface */
1724         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1725         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1726         int ret;
1727
1728         rte_spinlock_lock(&hw->lock);
1729
1730         if (rte_is_multicast_ether_addr(mac_addr))
1731                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1732         else
1733                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1734         rte_spinlock_unlock(&hw->lock);
1735         if (ret) {
1736                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1737                                       mac_addr);
1738                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1739                          ret);
1740         }
1741 }
1742
1743 static int
1744 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1745                           struct rte_ether_addr *mac_addr)
1746 {
1747         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1748         struct rte_ether_addr *oaddr;
1749         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1750         bool default_addr_setted;
1751         bool rm_succes = false;
1752         int ret, ret_val;
1753
1754         /*
1755          * It has been guaranteed that input parameter named mac_addr is valid
1756          * address in the rte layer of DPDK framework.
1757          */
1758         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1759         default_addr_setted = hw->mac.default_addr_setted;
1760         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1761                 return 0;
1762
1763         rte_spinlock_lock(&hw->lock);
1764         if (default_addr_setted) {
1765                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1766                 if (ret) {
1767                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1768                                               oaddr);
1769                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1770                                   mac_str, ret);
1771                         rm_succes = false;
1772                 } else
1773                         rm_succes = true;
1774         }
1775
1776         ret = hns3_add_uc_addr_common(hw, mac_addr);
1777         if (ret) {
1778                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1779                                       mac_addr);
1780                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1781                 goto err_add_uc_addr;
1782         }
1783
1784         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1785         if (ret) {
1786                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1787                 goto err_pause_addr_cfg;
1788         }
1789
1790         rte_ether_addr_copy(mac_addr,
1791                             (struct rte_ether_addr *)hw->mac.mac_addr);
1792         hw->mac.default_addr_setted = true;
1793         rte_spinlock_unlock(&hw->lock);
1794
1795         return 0;
1796
1797 err_pause_addr_cfg:
1798         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1799         if (ret_val) {
1800                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1801                                       mac_addr);
1802                 hns3_warn(hw,
1803                           "Failed to roll back to del setted mac addr(%s): %d",
1804                           mac_str, ret_val);
1805         }
1806
1807 err_add_uc_addr:
1808         if (rm_succes) {
1809                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1810                 if (ret_val) {
1811                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1812                                               oaddr);
1813                         hns3_warn(hw,
1814                                   "Failed to restore old uc mac addr(%s): %d",
1815                                   mac_str, ret_val);
1816                         hw->mac.default_addr_setted = false;
1817                 }
1818         }
1819         rte_spinlock_unlock(&hw->lock);
1820
1821         return ret;
1822 }
1823
1824 static int
1825 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1826 {
1827         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1828         struct hns3_hw *hw = &hns->hw;
1829         struct rte_ether_addr *addr;
1830         int err = 0;
1831         int ret;
1832         int i;
1833
1834         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1835                 addr = &hw->data->mac_addrs[i];
1836                 if (rte_is_zero_ether_addr(addr))
1837                         continue;
1838                 if (rte_is_multicast_ether_addr(addr))
1839                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1840                               hns3_add_mc_addr(hw, addr);
1841                 else
1842                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1843                               hns3_add_uc_addr_common(hw, addr);
1844
1845                 if (ret) {
1846                         err = ret;
1847                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1848                                               addr);
1849                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1850                                  "ret = %d.", del ? "remove" : "restore",
1851                                  mac_str, i, ret);
1852                 }
1853         }
1854         return err;
1855 }
1856
1857 static void
1858 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1859 {
1860 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1861         uint8_t word_num;
1862         uint8_t bit_num;
1863
1864         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1865                 word_num = vfid / 32;
1866                 bit_num = vfid % 32;
1867                 if (clr)
1868                         desc[1].data[word_num] &=
1869                             rte_cpu_to_le_32(~(1UL << bit_num));
1870                 else
1871                         desc[1].data[word_num] |=
1872                             rte_cpu_to_le_32(1UL << bit_num);
1873         } else {
1874                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1875                 bit_num = vfid % 32;
1876                 if (clr)
1877                         desc[2].data[word_num] &=
1878                             rte_cpu_to_le_32(~(1UL << bit_num));
1879                 else
1880                         desc[2].data[word_num] |=
1881                             rte_cpu_to_le_32(1UL << bit_num);
1882         }
1883 }
1884
1885 static int
1886 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1887 {
1888         struct hns3_mac_vlan_tbl_entry_cmd req;
1889         struct hns3_cmd_desc desc[3];
1890         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1891         uint8_t vf_id;
1892         int ret;
1893
1894         /* Check if mac addr is valid */
1895         if (!rte_is_multicast_ether_addr(mac_addr)) {
1896                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1897                                       mac_addr);
1898                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1899                          mac_str);
1900                 return -EINVAL;
1901         }
1902
1903         memset(&req, 0, sizeof(req));
1904         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1905         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1906         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1907         if (ret) {
1908                 /* This mac addr do not exist, add new entry for it */
1909                 memset(desc[0].data, 0, sizeof(desc[0].data));
1910                 memset(desc[1].data, 0, sizeof(desc[0].data));
1911                 memset(desc[2].data, 0, sizeof(desc[0].data));
1912         }
1913
1914         /*
1915          * In current version VF is not supported when PF is driven by DPDK
1916          * driver, just need to configure parameters for PF vport.
1917          */
1918         vf_id = HNS3_PF_FUNC_ID;
1919         hns3_update_desc_vfid(desc, vf_id, false);
1920         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1921         if (ret) {
1922                 if (ret == -ENOSPC)
1923                         hns3_err(hw, "mc mac vlan table is full");
1924                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1925                                       mac_addr);
1926                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1927         }
1928
1929         return ret;
1930 }
1931
1932 static int
1933 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1934 {
1935         struct hns3_mac_vlan_tbl_entry_cmd req;
1936         struct hns3_cmd_desc desc[3];
1937         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1938         uint8_t vf_id;
1939         int ret;
1940
1941         /* Check if mac addr is valid */
1942         if (!rte_is_multicast_ether_addr(mac_addr)) {
1943                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1944                                       mac_addr);
1945                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1946                          mac_str);
1947                 return -EINVAL;
1948         }
1949
1950         memset(&req, 0, sizeof(req));
1951         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1952         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1953         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1954         if (ret == 0) {
1955                 /*
1956                  * This mac addr exist, remove this handle's VFID for it.
1957                  * In current version VF is not supported when PF is driven by
1958                  * DPDK driver, just need to configure parameters for PF vport.
1959                  */
1960                 vf_id = HNS3_PF_FUNC_ID;
1961                 hns3_update_desc_vfid(desc, vf_id, true);
1962
1963                 /* All the vfid is zero, so need to delete this entry */
1964                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1965         } else if (ret == -ENOENT) {
1966                 /* This mac addr doesn't exist. */
1967                 return 0;
1968         }
1969
1970         if (ret) {
1971                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1972                                       mac_addr);
1973                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1974         }
1975
1976         return ret;
1977 }
1978
1979 static int
1980 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1981                            struct rte_ether_addr *mc_addr_set,
1982                            uint32_t nb_mc_addr)
1983 {
1984         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1985         struct rte_ether_addr *addr;
1986         uint32_t i;
1987         uint32_t j;
1988
1989         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1990                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1991                          "invalid. valid range: 0~%d",
1992                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1993                 return -EINVAL;
1994         }
1995
1996         /* Check if input mac addresses are valid */
1997         for (i = 0; i < nb_mc_addr; i++) {
1998                 addr = &mc_addr_set[i];
1999                 if (!rte_is_multicast_ether_addr(addr)) {
2000                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2001                                               addr);
2002                         hns3_err(hw,
2003                                  "failed to set mc mac addr, addr(%s) invalid.",
2004                                  mac_str);
2005                         return -EINVAL;
2006                 }
2007
2008                 /* Check if there are duplicate addresses */
2009                 for (j = i + 1; j < nb_mc_addr; j++) {
2010                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2011                                 hns3_ether_format_addr(mac_str,
2012                                                       RTE_ETHER_ADDR_FMT_SIZE,
2013                                                       addr);
2014                                 hns3_err(hw, "failed to set mc mac addr, "
2015                                          "addrs invalid. two same addrs(%s).",
2016                                          mac_str);
2017                                 return -EINVAL;
2018                         }
2019                 }
2020
2021                 /*
2022                  * Check if there are duplicate addresses between mac_addrs
2023                  * and mc_addr_set
2024                  */
2025                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
2026                         if (rte_is_same_ether_addr(addr,
2027                                                    &hw->data->mac_addrs[j])) {
2028                                 hns3_ether_format_addr(mac_str,
2029                                                       RTE_ETHER_ADDR_FMT_SIZE,
2030                                                       addr);
2031                                 hns3_err(hw, "failed to set mc mac addr, "
2032                                          "addrs invalid. addrs(%s) has already "
2033                                          "configured in mac_addr add API",
2034                                          mac_str);
2035                                 return -EINVAL;
2036                         }
2037                 }
2038         }
2039
2040         return 0;
2041 }
2042
2043 static void
2044 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2045                            struct rte_ether_addr *mc_addr_set,
2046                            int mc_addr_num,
2047                            struct rte_ether_addr *reserved_addr_list,
2048                            int *reserved_addr_num,
2049                            struct rte_ether_addr *add_addr_list,
2050                            int *add_addr_num,
2051                            struct rte_ether_addr *rm_addr_list,
2052                            int *rm_addr_num)
2053 {
2054         struct rte_ether_addr *addr;
2055         int current_addr_num;
2056         int reserved_num = 0;
2057         int add_num = 0;
2058         int rm_num = 0;
2059         int num;
2060         int i;
2061         int j;
2062         bool same_addr;
2063
2064         /* Calculate the mc mac address list that should be removed */
2065         current_addr_num = hw->mc_addrs_num;
2066         for (i = 0; i < current_addr_num; i++) {
2067                 addr = &hw->mc_addrs[i];
2068                 same_addr = false;
2069                 for (j = 0; j < mc_addr_num; j++) {
2070                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2071                                 same_addr = true;
2072                                 break;
2073                         }
2074                 }
2075
2076                 if (!same_addr) {
2077                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2078                         rm_num++;
2079                 } else {
2080                         rte_ether_addr_copy(addr,
2081                                             &reserved_addr_list[reserved_num]);
2082                         reserved_num++;
2083                 }
2084         }
2085
2086         /* Calculate the mc mac address list that should be added */
2087         for (i = 0; i < mc_addr_num; i++) {
2088                 addr = &mc_addr_set[i];
2089                 same_addr = false;
2090                 for (j = 0; j < current_addr_num; j++) {
2091                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2092                                 same_addr = true;
2093                                 break;
2094                         }
2095                 }
2096
2097                 if (!same_addr) {
2098                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2099                         add_num++;
2100                 }
2101         }
2102
2103         /* Reorder the mc mac address list maintained by driver */
2104         for (i = 0; i < reserved_num; i++)
2105                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2106
2107         for (i = 0; i < rm_num; i++) {
2108                 num = reserved_num + i;
2109                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2110         }
2111
2112         *reserved_addr_num = reserved_num;
2113         *add_addr_num = add_num;
2114         *rm_addr_num = rm_num;
2115 }
2116
2117 static int
2118 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2119                           struct rte_ether_addr *mc_addr_set,
2120                           uint32_t nb_mc_addr)
2121 {
2122         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2123         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2124         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2125         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2126         struct rte_ether_addr *addr;
2127         int reserved_addr_num;
2128         int add_addr_num;
2129         int rm_addr_num;
2130         int mc_addr_num;
2131         int num;
2132         int ret;
2133         int i;
2134
2135         /* Check if input parameters are valid */
2136         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2137         if (ret)
2138                 return ret;
2139
2140         rte_spinlock_lock(&hw->lock);
2141
2142         /*
2143          * Calculate the mc mac address lists those should be removed and be
2144          * added, Reorder the mc mac address list maintained by driver.
2145          */
2146         mc_addr_num = (int)nb_mc_addr;
2147         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2148                                    reserved_addr_list, &reserved_addr_num,
2149                                    add_addr_list, &add_addr_num,
2150                                    rm_addr_list, &rm_addr_num);
2151
2152         /* Remove mc mac addresses */
2153         for (i = 0; i < rm_addr_num; i++) {
2154                 num = rm_addr_num - i - 1;
2155                 addr = &rm_addr_list[num];
2156                 ret = hns3_remove_mc_addr(hw, addr);
2157                 if (ret) {
2158                         rte_spinlock_unlock(&hw->lock);
2159                         return ret;
2160                 }
2161                 hw->mc_addrs_num--;
2162         }
2163
2164         /* Add mc mac addresses */
2165         for (i = 0; i < add_addr_num; i++) {
2166                 addr = &add_addr_list[i];
2167                 ret = hns3_add_mc_addr(hw, addr);
2168                 if (ret) {
2169                         rte_spinlock_unlock(&hw->lock);
2170                         return ret;
2171                 }
2172
2173                 num = reserved_addr_num + i;
2174                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2175                 hw->mc_addrs_num++;
2176         }
2177         rte_spinlock_unlock(&hw->lock);
2178
2179         return 0;
2180 }
2181
2182 static int
2183 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2184 {
2185         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2186         struct hns3_hw *hw = &hns->hw;
2187         struct rte_ether_addr *addr;
2188         int err = 0;
2189         int ret;
2190         int i;
2191
2192         for (i = 0; i < hw->mc_addrs_num; i++) {
2193                 addr = &hw->mc_addrs[i];
2194                 if (!rte_is_multicast_ether_addr(addr))
2195                         continue;
2196                 if (del)
2197                         ret = hns3_remove_mc_addr(hw, addr);
2198                 else
2199                         ret = hns3_add_mc_addr(hw, addr);
2200                 if (ret) {
2201                         err = ret;
2202                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2203                                               addr);
2204                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2205                                  del ? "Remove" : "Restore", mac_str, ret);
2206                 }
2207         }
2208         return err;
2209 }
2210
2211 static int
2212 hns3_check_mq_mode(struct rte_eth_dev *dev)
2213 {
2214         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2215         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2216         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2217         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2218         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2219         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2220         uint8_t num_tc;
2221         int max_tc = 0;
2222         int i;
2223
2224         if ((rx_mq_mode & ETH_MQ_RX_VMDQ_FLAG) ||
2225             (tx_mq_mode == ETH_MQ_TX_VMDQ_DCB ||
2226              tx_mq_mode == ETH_MQ_TX_VMDQ_ONLY)) {
2227                 hns3_err(hw, "VMDQ is not supported, rx_mq_mode = %d, tx_mq_mode = %d.",
2228                          rx_mq_mode, tx_mq_mode);
2229                 return -EOPNOTSUPP;
2230         }
2231
2232         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2233         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2234         if (rx_mq_mode & ETH_MQ_RX_DCB_FLAG) {
2235                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2236                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2237                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2238                         return -EINVAL;
2239                 }
2240
2241                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2242                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2243                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2244                                  "nb_tcs(%d) != %d or %d in rx direction.",
2245                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2246                         return -EINVAL;
2247                 }
2248
2249                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2250                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2251                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2252                         return -EINVAL;
2253                 }
2254
2255                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2256                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2257                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2258                                          "is not equal to one in tx direction.",
2259                                          i, dcb_rx_conf->dcb_tc[i]);
2260                                 return -EINVAL;
2261                         }
2262                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2263                                 max_tc = dcb_rx_conf->dcb_tc[i];
2264                 }
2265
2266                 num_tc = max_tc + 1;
2267                 if (num_tc > dcb_rx_conf->nb_tcs) {
2268                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2269                                  num_tc, dcb_rx_conf->nb_tcs);
2270                         return -EINVAL;
2271                 }
2272         }
2273
2274         return 0;
2275 }
2276
2277 static int
2278 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2279                            enum hns3_ring_type queue_type, uint16_t queue_id)
2280 {
2281         struct hns3_cmd_desc desc;
2282         struct hns3_ctrl_vector_chain_cmd *req =
2283                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2284         enum hns3_opcode_type op;
2285         uint16_t tqp_type_and_id = 0;
2286         uint16_t type;
2287         uint16_t gl;
2288         int ret;
2289
2290         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2291         hns3_cmd_setup_basic_desc(&desc, op, false);
2292         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2293                                               HNS3_TQP_INT_ID_L_S);
2294         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2295                                               HNS3_TQP_INT_ID_H_S);
2296
2297         if (queue_type == HNS3_RING_TYPE_RX)
2298                 gl = HNS3_RING_GL_RX;
2299         else
2300                 gl = HNS3_RING_GL_TX;
2301
2302         type = queue_type;
2303
2304         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2305                        type);
2306         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2307         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2308                        gl);
2309         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2310         req->int_cause_num = 1;
2311         ret = hns3_cmd_send(hw, &desc, 1);
2312         if (ret) {
2313                 hns3_err(hw, "%s TQP %u fail, vector_id = %u, ret = %d.",
2314                          en ? "Map" : "Unmap", queue_id, vector_id, ret);
2315                 return ret;
2316         }
2317
2318         return 0;
2319 }
2320
2321 static int
2322 hns3_init_ring_with_vector(struct hns3_hw *hw)
2323 {
2324         uint16_t vec;
2325         int ret;
2326         int i;
2327
2328         /*
2329          * In hns3 network engine, vector 0 is always the misc interrupt of this
2330          * function, vector 1~N can be used respectively for the queues of the
2331          * function. Tx and Rx queues with the same number share the interrupt
2332          * vector. In the initialization clearing the all hardware mapping
2333          * relationship configurations between queues and interrupt vectors is
2334          * needed, so some error caused by the residual configurations, such as
2335          * the unexpected Tx interrupt, can be avoid.
2336          */
2337         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2338         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2339                 vec = vec - 1; /* the last interrupt is reserved */
2340         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2341         for (i = 0; i < hw->intr_tqps_num; i++) {
2342                 /*
2343                  * Set gap limiter/rate limiter/quanity limiter algorithm
2344                  * configuration for interrupt coalesce of queue's interrupt.
2345                  */
2346                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2347                                        HNS3_TQP_INTR_GL_DEFAULT);
2348                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2349                                        HNS3_TQP_INTR_GL_DEFAULT);
2350                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2351                 /*
2352                  * QL(quantity limiter) is not used currently, just set 0 to
2353                  * close it.
2354                  */
2355                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2356
2357                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2358                                                  HNS3_RING_TYPE_TX, i);
2359                 if (ret) {
2360                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2361                                           "vector: %u, ret=%d", i, vec, ret);
2362                         return ret;
2363                 }
2364
2365                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2366                                                  HNS3_RING_TYPE_RX, i);
2367                 if (ret) {
2368                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2369                                           "vector: %u, ret=%d", i, vec, ret);
2370                         return ret;
2371                 }
2372         }
2373
2374         return 0;
2375 }
2376
2377 static int
2378 hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
2379 {
2380         struct hns3_adapter *hns = dev->data->dev_private;
2381         struct hns3_hw *hw = &hns->hw;
2382         uint32_t max_rx_pkt_len;
2383         uint16_t mtu;
2384         int ret;
2385
2386         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
2387                 return 0;
2388
2389         /*
2390          * If jumbo frames are enabled, MTU needs to be refreshed
2391          * according to the maximum RX packet length.
2392          */
2393         max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2394         if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2395             max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2396                 hns3_err(hw, "maximum Rx packet length must be greater than %u "
2397                          "and no more than %u when jumbo frame enabled.",
2398                          (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2399                          (uint16_t)HNS3_MAX_FRAME_LEN);
2400                 return -EINVAL;
2401         }
2402
2403         mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2404         ret = hns3_dev_mtu_set(dev, mtu);
2405         if (ret)
2406                 return ret;
2407         dev->data->mtu = mtu;
2408
2409         return 0;
2410 }
2411
2412 static int
2413 hns3_setup_dcb(struct rte_eth_dev *dev)
2414 {
2415         struct hns3_adapter *hns = dev->data->dev_private;
2416         struct hns3_hw *hw = &hns->hw;
2417         int ret;
2418
2419         if (!hns3_dev_dcb_supported(hw)) {
2420                 hns3_err(hw, "this port does not support dcb configurations.");
2421                 return -EOPNOTSUPP;
2422         }
2423
2424         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2425                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2426                 return -EOPNOTSUPP;
2427         }
2428
2429         ret = hns3_dcb_configure(hns);
2430         if (ret)
2431                 hns3_err(hw, "failed to config dcb: %d", ret);
2432
2433         return ret;
2434 }
2435
2436 static int
2437 hns3_check_link_speed(struct hns3_hw *hw, uint32_t link_speeds)
2438 {
2439         int ret;
2440
2441         /*
2442          * Some hardware doesn't support auto-negotiation, but users may not
2443          * configure link_speeds (default 0), which means auto-negotiation.
2444          * In this case, a warning message need to be printed, instead of
2445          * an error.
2446          */
2447         if (link_speeds == ETH_LINK_SPEED_AUTONEG &&
2448             hw->mac.support_autoneg == 0) {
2449                 hns3_warn(hw, "auto-negotiation is not supported, use default fixed speed!");
2450                 return 0;
2451         }
2452
2453         if (link_speeds != ETH_LINK_SPEED_AUTONEG) {
2454                 ret = hns3_check_port_speed(hw, link_speeds);
2455                 if (ret)
2456                         return ret;
2457         }
2458
2459         return 0;
2460 }
2461
2462 static int
2463 hns3_check_dev_conf(struct rte_eth_dev *dev)
2464 {
2465         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2466         struct rte_eth_conf *conf = &dev->data->dev_conf;
2467         int ret;
2468
2469         ret = hns3_check_mq_mode(dev);
2470         if (ret)
2471                 return ret;
2472
2473         return hns3_check_link_speed(hw, conf->link_speeds);
2474 }
2475
2476 static int
2477 hns3_dev_configure(struct rte_eth_dev *dev)
2478 {
2479         struct hns3_adapter *hns = dev->data->dev_private;
2480         struct rte_eth_conf *conf = &dev->data->dev_conf;
2481         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2482         struct hns3_hw *hw = &hns->hw;
2483         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2484         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2485         struct rte_eth_rss_conf rss_conf;
2486         bool gro_en;
2487         int ret;
2488
2489         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2490
2491         /*
2492          * Some versions of hardware network engine does not support
2493          * individually enable/disable/reset the Tx or Rx queue. These devices
2494          * must enable/disable/reset Tx and Rx queues at the same time. When the
2495          * numbers of Tx queues allocated by upper applications are not equal to
2496          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2497          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2498          * work as usual. But these fake queues are imperceptible, and can not
2499          * be used by upper applications.
2500          */
2501         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2502         if (ret) {
2503                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
2504                 hw->cfg_max_queues = 0;
2505                 return ret;
2506         }
2507
2508         hw->adapter_state = HNS3_NIC_CONFIGURING;
2509         ret = hns3_check_dev_conf(dev);
2510         if (ret)
2511                 goto cfg_err;
2512
2513         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2514                 ret = hns3_setup_dcb(dev);
2515                 if (ret)
2516                         goto cfg_err;
2517         }
2518
2519         /* When RSS is not configured, redirect the packet queue 0 */
2520         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2521                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2522                 rss_conf = conf->rx_adv_conf.rss_conf;
2523                 hw->rss_dis_flag = false;
2524                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2525                 if (ret)
2526                         goto cfg_err;
2527         }
2528
2529         ret = hns3_refresh_mtu(dev, conf);
2530         if (ret)
2531                 goto cfg_err;
2532
2533         ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2534         if (ret)
2535                 goto cfg_err;
2536
2537         ret = hns3_dev_configure_vlan(dev);
2538         if (ret)
2539                 goto cfg_err;
2540
2541         /* config hardware GRO */
2542         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2543         ret = hns3_config_gro(hw, gro_en);
2544         if (ret)
2545                 goto cfg_err;
2546
2547         hns3_init_rx_ptype_tble(dev);
2548         hw->adapter_state = HNS3_NIC_CONFIGURED;
2549
2550         return 0;
2551
2552 cfg_err:
2553         hw->cfg_max_queues = 0;
2554         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2555         hw->adapter_state = HNS3_NIC_INITIALIZED;
2556
2557         return ret;
2558 }
2559
2560 static int
2561 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2562 {
2563         struct hns3_config_max_frm_size_cmd *req;
2564         struct hns3_cmd_desc desc;
2565
2566         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2567
2568         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2569         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2570         req->min_frm_size = RTE_ETHER_MIN_LEN;
2571
2572         return hns3_cmd_send(hw, &desc, 1);
2573 }
2574
2575 static int
2576 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2577 {
2578         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2579         uint16_t original_mps = hns->pf.mps;
2580         int err;
2581         int ret;
2582
2583         ret = hns3_set_mac_mtu(hw, mps);
2584         if (ret) {
2585                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2586                 return ret;
2587         }
2588
2589         hns->pf.mps = mps;
2590         ret = hns3_buffer_alloc(hw);
2591         if (ret) {
2592                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2593                 goto rollback;
2594         }
2595
2596         return 0;
2597
2598 rollback:
2599         err = hns3_set_mac_mtu(hw, original_mps);
2600         if (err) {
2601                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2602                 return ret;
2603         }
2604         hns->pf.mps = original_mps;
2605
2606         return ret;
2607 }
2608
2609 static int
2610 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2611 {
2612         struct hns3_adapter *hns = dev->data->dev_private;
2613         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2614         struct hns3_hw *hw = &hns->hw;
2615         bool is_jumbo_frame;
2616         int ret;
2617
2618         if (dev->data->dev_started) {
2619                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2620                          "before configuration", dev->data->port_id);
2621                 return -EBUSY;
2622         }
2623
2624         rte_spinlock_lock(&hw->lock);
2625         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2626         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2627
2628         /*
2629          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2630          * assign to "uint16_t" type variable.
2631          */
2632         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2633         if (ret) {
2634                 rte_spinlock_unlock(&hw->lock);
2635                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2636                          dev->data->port_id, mtu, ret);
2637                 return ret;
2638         }
2639
2640         if (is_jumbo_frame)
2641                 dev->data->dev_conf.rxmode.offloads |=
2642                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2643         else
2644                 dev->data->dev_conf.rxmode.offloads &=
2645                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2646         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2647         rte_spinlock_unlock(&hw->lock);
2648
2649         return 0;
2650 }
2651
2652 static uint32_t
2653 hns3_get_copper_port_speed_capa(uint32_t supported_speed)
2654 {
2655         uint32_t speed_capa = 0;
2656
2657         if (supported_speed & HNS3_PHY_LINK_SPEED_10M_HD_BIT)
2658                 speed_capa |= ETH_LINK_SPEED_10M_HD;
2659         if (supported_speed & HNS3_PHY_LINK_SPEED_10M_BIT)
2660                 speed_capa |= ETH_LINK_SPEED_10M;
2661         if (supported_speed & HNS3_PHY_LINK_SPEED_100M_HD_BIT)
2662                 speed_capa |= ETH_LINK_SPEED_100M_HD;
2663         if (supported_speed & HNS3_PHY_LINK_SPEED_100M_BIT)
2664                 speed_capa |= ETH_LINK_SPEED_100M;
2665         if (supported_speed & HNS3_PHY_LINK_SPEED_1000M_BIT)
2666                 speed_capa |= ETH_LINK_SPEED_1G;
2667
2668         return speed_capa;
2669 }
2670
2671 static uint32_t
2672 hns3_get_firber_port_speed_capa(uint32_t supported_speed)
2673 {
2674         uint32_t speed_capa = 0;
2675
2676         if (supported_speed & HNS3_FIBER_LINK_SPEED_1G_BIT)
2677                 speed_capa |= ETH_LINK_SPEED_1G;
2678         if (supported_speed & HNS3_FIBER_LINK_SPEED_10G_BIT)
2679                 speed_capa |= ETH_LINK_SPEED_10G;
2680         if (supported_speed & HNS3_FIBER_LINK_SPEED_25G_BIT)
2681                 speed_capa |= ETH_LINK_SPEED_25G;
2682         if (supported_speed & HNS3_FIBER_LINK_SPEED_40G_BIT)
2683                 speed_capa |= ETH_LINK_SPEED_40G;
2684         if (supported_speed & HNS3_FIBER_LINK_SPEED_50G_BIT)
2685                 speed_capa |= ETH_LINK_SPEED_50G;
2686         if (supported_speed & HNS3_FIBER_LINK_SPEED_100G_BIT)
2687                 speed_capa |= ETH_LINK_SPEED_100G;
2688         if (supported_speed & HNS3_FIBER_LINK_SPEED_200G_BIT)
2689                 speed_capa |= ETH_LINK_SPEED_200G;
2690
2691         return speed_capa;
2692 }
2693
2694 static uint32_t
2695 hns3_get_speed_capa(struct hns3_hw *hw)
2696 {
2697         struct hns3_mac *mac = &hw->mac;
2698         uint32_t speed_capa;
2699
2700         if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
2701                 speed_capa =
2702                         hns3_get_copper_port_speed_capa(mac->supported_speed);
2703         else
2704                 speed_capa =
2705                         hns3_get_firber_port_speed_capa(mac->supported_speed);
2706
2707         if (mac->support_autoneg == 0)
2708                 speed_capa |= ETH_LINK_SPEED_FIXED;
2709
2710         return speed_capa;
2711 }
2712
2713 int
2714 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2715 {
2716         struct hns3_adapter *hns = eth_dev->data->dev_private;
2717         struct hns3_hw *hw = &hns->hw;
2718         uint16_t queue_num = hw->tqps_num;
2719
2720         /*
2721          * In interrupt mode, 'max_rx_queues' is set based on the number of
2722          * MSI-X interrupt resources of the hardware.
2723          */
2724         if (hw->data->dev_conf.intr_conf.rxq == 1)
2725                 queue_num = hw->intr_tqps_num;
2726
2727         info->max_rx_queues = queue_num;
2728         info->max_tx_queues = hw->tqps_num;
2729         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2730         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2731         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2732         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2733         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2734         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2735                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2736                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2737                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2738                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2739                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2740                                  DEV_RX_OFFLOAD_KEEP_CRC |
2741                                  DEV_RX_OFFLOAD_SCATTER |
2742                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2743                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2744                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2745                                  DEV_RX_OFFLOAD_RSS_HASH |
2746                                  DEV_RX_OFFLOAD_TCP_LRO);
2747         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2748                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2749                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2750                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2751                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2752                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2753                                  DEV_TX_OFFLOAD_TCP_TSO |
2754                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2755                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2756                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2757                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2758                                  hns3_txvlan_cap_get(hw));
2759
2760         if (hns3_dev_outer_udp_cksum_supported(hw))
2761                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2762
2763         if (hns3_dev_indep_txrx_supported(hw))
2764                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2765                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2766
2767         if (hns3_dev_ptp_supported(hw))
2768                 info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
2769
2770         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2771                 .nb_max = HNS3_MAX_RING_DESC,
2772                 .nb_min = HNS3_MIN_RING_DESC,
2773                 .nb_align = HNS3_ALIGN_RING_DESC,
2774         };
2775
2776         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2777                 .nb_max = HNS3_MAX_RING_DESC,
2778                 .nb_min = HNS3_MIN_RING_DESC,
2779                 .nb_align = HNS3_ALIGN_RING_DESC,
2780                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2781                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2782         };
2783
2784         info->speed_capa = hns3_get_speed_capa(hw);
2785         info->default_rxconf = (struct rte_eth_rxconf) {
2786                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2787                 /*
2788                  * If there are no available Rx buffer descriptors, incoming
2789                  * packets are always dropped by hardware based on hns3 network
2790                  * engine.
2791                  */
2792                 .rx_drop_en = 1,
2793                 .offloads = 0,
2794         };
2795         info->default_txconf = (struct rte_eth_txconf) {
2796                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2797                 .offloads = 0,
2798         };
2799
2800         info->reta_size = hw->rss_ind_tbl_size;
2801         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2802         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2803
2804         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2805         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2806         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2807         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2808         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2809         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2810
2811         return 0;
2812 }
2813
2814 static int
2815 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2816                     size_t fw_size)
2817 {
2818         struct hns3_adapter *hns = eth_dev->data->dev_private;
2819         struct hns3_hw *hw = &hns->hw;
2820         uint32_t version = hw->fw_version;
2821         int ret;
2822
2823         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2824                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2825                                       HNS3_FW_VERSION_BYTE3_S),
2826                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2827                                       HNS3_FW_VERSION_BYTE2_S),
2828                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2829                                       HNS3_FW_VERSION_BYTE1_S),
2830                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2831                                       HNS3_FW_VERSION_BYTE0_S));
2832         if (ret < 0)
2833                 return -EINVAL;
2834
2835         ret += 1; /* add the size of '\0' */
2836         if (fw_size < (size_t)ret)
2837                 return ret;
2838         else
2839                 return 0;
2840 }
2841
2842 static int
2843 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2844 {
2845         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2846         int ret;
2847
2848         (void)hns3_update_link_status(hw);
2849
2850         ret = hns3_update_link_info(eth_dev);
2851         if (ret)
2852                 hw->mac.link_status = ETH_LINK_DOWN;
2853
2854         return ret;
2855 }
2856
2857 static void
2858 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2859                       struct rte_eth_link *new_link)
2860 {
2861         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2862         struct hns3_mac *mac = &hw->mac;
2863
2864         switch (mac->link_speed) {
2865         case ETH_SPEED_NUM_10M:
2866         case ETH_SPEED_NUM_100M:
2867         case ETH_SPEED_NUM_1G:
2868         case ETH_SPEED_NUM_10G:
2869         case ETH_SPEED_NUM_25G:
2870         case ETH_SPEED_NUM_40G:
2871         case ETH_SPEED_NUM_50G:
2872         case ETH_SPEED_NUM_100G:
2873         case ETH_SPEED_NUM_200G:
2874                 if (mac->link_status)
2875                         new_link->link_speed = mac->link_speed;
2876                 break;
2877         default:
2878                 if (mac->link_status)
2879                         new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2880                 break;
2881         }
2882
2883         if (!mac->link_status)
2884                 new_link->link_speed = ETH_SPEED_NUM_NONE;
2885
2886         new_link->link_duplex = mac->link_duplex;
2887         new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2888         new_link->link_autoneg = mac->link_autoneg;
2889 }
2890
2891 static int
2892 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2893 {
2894 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2895 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2896
2897         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2898         uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2899         struct hns3_mac *mac = &hw->mac;
2900         struct rte_eth_link new_link;
2901         int ret;
2902
2903         /* When port is stopped, report link down. */
2904         if (eth_dev->data->dev_started == 0) {
2905                 new_link.link_autoneg = mac->link_autoneg;
2906                 new_link.link_duplex = mac->link_duplex;
2907                 new_link.link_speed = ETH_SPEED_NUM_NONE;
2908                 new_link.link_status = ETH_LINK_DOWN;
2909                 goto out;
2910         }
2911
2912         do {
2913                 ret = hns3_update_port_link_info(eth_dev);
2914                 if (ret) {
2915                         hns3_err(hw, "failed to get port link info, ret = %d.",
2916                                  ret);
2917                         break;
2918                 }
2919
2920                 if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
2921                         break;
2922
2923                 rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2924         } while (retry_cnt--);
2925
2926         memset(&new_link, 0, sizeof(new_link));
2927         hns3_setup_linkstatus(eth_dev, &new_link);
2928
2929 out:
2930         return rte_eth_linkstatus_set(eth_dev, &new_link);
2931 }
2932
2933 static int
2934 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2935 {
2936         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2937         struct hns3_pf *pf = &hns->pf;
2938
2939         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2940                 return -EINVAL;
2941
2942         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2943
2944         return 0;
2945 }
2946
2947 static int
2948 hns3_query_function_status(struct hns3_hw *hw)
2949 {
2950 #define HNS3_QUERY_MAX_CNT              10
2951 #define HNS3_QUERY_SLEEP_MSCOEND        1
2952         struct hns3_func_status_cmd *req;
2953         struct hns3_cmd_desc desc;
2954         int timeout = 0;
2955         int ret;
2956
2957         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2958         req = (struct hns3_func_status_cmd *)desc.data;
2959
2960         do {
2961                 ret = hns3_cmd_send(hw, &desc, 1);
2962                 if (ret) {
2963                         PMD_INIT_LOG(ERR, "query function status failed %d",
2964                                      ret);
2965                         return ret;
2966                 }
2967
2968                 /* Check pf reset is done */
2969                 if (req->pf_state)
2970                         break;
2971
2972                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2973         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2974
2975         return hns3_parse_func_status(hw, req);
2976 }
2977
2978 static int
2979 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2980 {
2981         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2982         struct hns3_pf *pf = &hns->pf;
2983
2984         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2985                 /*
2986                  * The total_tqps_num obtained from firmware is maximum tqp
2987                  * numbers of this port, which should be used for PF and VFs.
2988                  * There is no need for pf to have so many tqp numbers in
2989                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2990                  * coming from config file, is assigned to maximum queue number
2991                  * for the PF of this port by user. So users can modify the
2992                  * maximum queue number of PF according to their own application
2993                  * scenarios, which is more flexible to use. In addition, many
2994                  * memories can be saved due to allocating queue statistics
2995                  * room according to the actual number of queues required. The
2996                  * maximum queue number of PF for network engine with
2997                  * revision_id greater than 0x30 is assigned by config file.
2998                  */
2999                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
3000                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
3001                                  "must be greater than 0.",
3002                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
3003                         return -EINVAL;
3004                 }
3005
3006                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
3007                                        hw->total_tqps_num);
3008         } else {
3009                 /*
3010                  * Due to the limitation on the number of PF interrupts
3011                  * available, the maximum queue number assigned to PF on
3012                  * the network engine with revision_id 0x21 is 64.
3013                  */
3014                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
3015                                        HNS3_MAX_TQP_NUM_HIP08_PF);
3016         }
3017
3018         return 0;
3019 }
3020
3021 static int
3022 hns3_query_pf_resource(struct hns3_hw *hw)
3023 {
3024         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3025         struct hns3_pf *pf = &hns->pf;
3026         struct hns3_pf_res_cmd *req;
3027         struct hns3_cmd_desc desc;
3028         int ret;
3029
3030         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
3031         ret = hns3_cmd_send(hw, &desc, 1);
3032         if (ret) {
3033                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
3034                 return ret;
3035         }
3036
3037         req = (struct hns3_pf_res_cmd *)desc.data;
3038         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
3039                              rte_le_to_cpu_16(req->ext_tqp_num);
3040         ret = hns3_get_pf_max_tqp_num(hw);
3041         if (ret)
3042                 return ret;
3043
3044         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
3045         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
3046
3047         if (req->tx_buf_size)
3048                 pf->tx_buf_size =
3049                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
3050         else
3051                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
3052
3053         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
3054
3055         if (req->dv_buf_size)
3056                 pf->dv_buf_size =
3057                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
3058         else
3059                 pf->dv_buf_size = HNS3_DEFAULT_DV;
3060
3061         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
3062
3063         hw->num_msi =
3064                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
3065                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
3066
3067         return 0;
3068 }
3069
3070 static void
3071 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
3072 {
3073         struct hns3_cfg_param_cmd *req;
3074         uint64_t mac_addr_tmp_high;
3075         uint8_t ext_rss_size_max;
3076         uint64_t mac_addr_tmp;
3077         uint32_t i;
3078
3079         req = (struct hns3_cfg_param_cmd *)desc[0].data;
3080
3081         /* get the configuration */
3082         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3083                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
3084         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
3085                                            HNS3_CFG_TQP_DESC_N_M,
3086                                            HNS3_CFG_TQP_DESC_N_S);
3087
3088         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3089                                        HNS3_CFG_PHY_ADDR_M,
3090                                        HNS3_CFG_PHY_ADDR_S);
3091         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3092                                          HNS3_CFG_MEDIA_TP_M,
3093                                          HNS3_CFG_MEDIA_TP_S);
3094         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3095                                          HNS3_CFG_RX_BUF_LEN_M,
3096                                          HNS3_CFG_RX_BUF_LEN_S);
3097         /* get mac address */
3098         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
3099         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3100                                            HNS3_CFG_MAC_ADDR_H_M,
3101                                            HNS3_CFG_MAC_ADDR_H_S);
3102
3103         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3104
3105         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3106                                             HNS3_CFG_DEFAULT_SPEED_M,
3107                                             HNS3_CFG_DEFAULT_SPEED_S);
3108         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3109                                            HNS3_CFG_RSS_SIZE_M,
3110                                            HNS3_CFG_RSS_SIZE_S);
3111
3112         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3113                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3114
3115         req = (struct hns3_cfg_param_cmd *)desc[1].data;
3116         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3117
3118         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3119                                             HNS3_CFG_SPEED_ABILITY_M,
3120                                             HNS3_CFG_SPEED_ABILITY_S);
3121         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3122                                         HNS3_CFG_UMV_TBL_SPACE_M,
3123                                         HNS3_CFG_UMV_TBL_SPACE_S);
3124         if (!cfg->umv_space)
3125                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3126
3127         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3128                                                HNS3_CFG_EXT_RSS_SIZE_M,
3129                                                HNS3_CFG_EXT_RSS_SIZE_S);
3130         /*
3131          * Field ext_rss_size_max obtained from firmware will be more flexible
3132          * for future changes and expansions, which is an exponent of 2, instead
3133          * of reading out directly. If this field is not zero, hns3 PF PMD
3134          * driver uses it as rss_size_max under one TC. Device, whose revision
3135          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3136          * maximum number of queues supported under a TC through this field.
3137          */
3138         if (ext_rss_size_max)
3139                 cfg->rss_size_max = 1U << ext_rss_size_max;
3140 }
3141
3142 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3143  * @hw: pointer to struct hns3_hw
3144  * @hcfg: the config structure to be getted
3145  */
3146 static int
3147 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3148 {
3149         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3150         struct hns3_cfg_param_cmd *req;
3151         uint32_t offset;
3152         uint32_t i;
3153         int ret;
3154
3155         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3156                 offset = 0;
3157                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
3158                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3159                                           true);
3160                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3161                                i * HNS3_CFG_RD_LEN_BYTES);
3162                 /* Len should be divided by 4 when send to hardware */
3163                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3164                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3165                 req->offset = rte_cpu_to_le_32(offset);
3166         }
3167
3168         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3169         if (ret) {
3170                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3171                 return ret;
3172         }
3173
3174         hns3_parse_cfg(hcfg, desc);
3175
3176         return 0;
3177 }
3178
3179 static int
3180 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3181 {
3182         switch (speed_cmd) {
3183         case HNS3_CFG_SPEED_10M:
3184                 *speed = ETH_SPEED_NUM_10M;
3185                 break;
3186         case HNS3_CFG_SPEED_100M:
3187                 *speed = ETH_SPEED_NUM_100M;
3188                 break;
3189         case HNS3_CFG_SPEED_1G:
3190                 *speed = ETH_SPEED_NUM_1G;
3191                 break;
3192         case HNS3_CFG_SPEED_10G:
3193                 *speed = ETH_SPEED_NUM_10G;
3194                 break;
3195         case HNS3_CFG_SPEED_25G:
3196                 *speed = ETH_SPEED_NUM_25G;
3197                 break;
3198         case HNS3_CFG_SPEED_40G:
3199                 *speed = ETH_SPEED_NUM_40G;
3200                 break;
3201         case HNS3_CFG_SPEED_50G:
3202                 *speed = ETH_SPEED_NUM_50G;
3203                 break;
3204         case HNS3_CFG_SPEED_100G:
3205                 *speed = ETH_SPEED_NUM_100G;
3206                 break;
3207         case HNS3_CFG_SPEED_200G:
3208                 *speed = ETH_SPEED_NUM_200G;
3209                 break;
3210         default:
3211                 return -EINVAL;
3212         }
3213
3214         return 0;
3215 }
3216
3217 static void
3218 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3219 {
3220         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3221         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3222         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3223         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3224         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3225 }
3226
3227 static void
3228 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3229 {
3230         struct hns3_dev_specs_0_cmd *req0;
3231
3232         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3233
3234         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3235         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3236         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3237         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3238         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3239 }
3240
3241 static int
3242 hns3_check_dev_specifications(struct hns3_hw *hw)
3243 {
3244         if (hw->rss_ind_tbl_size == 0 ||
3245             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3246                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3247                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3248                               HNS3_RSS_IND_TBL_SIZE_MAX);
3249                 return -EINVAL;
3250         }
3251
3252         return 0;
3253 }
3254
3255 static int
3256 hns3_query_dev_specifications(struct hns3_hw *hw)
3257 {
3258         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3259         int ret;
3260         int i;
3261
3262         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3263                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3264                                           true);
3265                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3266         }
3267         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3268
3269         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3270         if (ret)
3271                 return ret;
3272
3273         hns3_parse_dev_specifications(hw, desc);
3274
3275         return hns3_check_dev_specifications(hw);
3276 }
3277
3278 static int
3279 hns3_get_capability(struct hns3_hw *hw)
3280 {
3281         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3282         struct rte_pci_device *pci_dev;
3283         struct hns3_pf *pf = &hns->pf;
3284         struct rte_eth_dev *eth_dev;
3285         uint16_t device_id;
3286         uint8_t revision;
3287         int ret;
3288
3289         eth_dev = &rte_eth_devices[hw->data->port_id];
3290         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3291         device_id = pci_dev->id.device_id;
3292
3293         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3294             device_id == HNS3_DEV_ID_50GE_RDMA ||
3295             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3296             device_id == HNS3_DEV_ID_200G_RDMA)
3297                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3298
3299         /* Get PCI revision id */
3300         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3301                                   HNS3_PCI_REVISION_ID);
3302         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3303                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3304                              ret);
3305                 return -EIO;
3306         }
3307         hw->revision = revision;
3308
3309         if (revision < PCI_REVISION_ID_HIP09_A) {
3310                 hns3_set_default_dev_specifications(hw);
3311                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3312                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3313                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3314                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3315                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3316                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3317                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3318                 hw->rss_info.ipv6_sctp_offload_supported = false;
3319                 hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3320                 return 0;
3321         }
3322
3323         ret = hns3_query_dev_specifications(hw);
3324         if (ret) {
3325                 PMD_INIT_LOG(ERR,
3326                              "failed to query dev specifications, ret = %d",
3327                              ret);
3328                 return ret;
3329         }
3330
3331         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3332         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3333         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3334         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3335         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3336         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3337         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3338         hw->rss_info.ipv6_sctp_offload_supported = true;
3339         hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3340
3341         return 0;
3342 }
3343
3344 static int
3345 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3346 {
3347         int ret;
3348
3349         switch (media_type) {
3350         case HNS3_MEDIA_TYPE_COPPER:
3351                 if (!hns3_dev_copper_supported(hw)) {
3352                         PMD_INIT_LOG(ERR,
3353                                      "Media type is copper, not supported.");
3354                         ret = -EOPNOTSUPP;
3355                 } else {
3356                         ret = 0;
3357                 }
3358                 break;
3359         case HNS3_MEDIA_TYPE_FIBER:
3360                 ret = 0;
3361                 break;
3362         case HNS3_MEDIA_TYPE_BACKPLANE:
3363                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3364                 ret = -EOPNOTSUPP;
3365                 break;
3366         default:
3367                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3368                 ret = -EINVAL;
3369                 break;
3370         }
3371
3372         return ret;
3373 }
3374
3375 static int
3376 hns3_get_board_configuration(struct hns3_hw *hw)
3377 {
3378         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3379         struct hns3_pf *pf = &hns->pf;
3380         struct hns3_cfg cfg;
3381         int ret;
3382
3383         ret = hns3_get_board_cfg(hw, &cfg);
3384         if (ret) {
3385                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3386                 return ret;
3387         }
3388
3389         ret = hns3_check_media_type(hw, cfg.media_type);
3390         if (ret)
3391                 return ret;
3392
3393         hw->mac.media_type = cfg.media_type;
3394         hw->rss_size_max = cfg.rss_size_max;
3395         hw->rss_dis_flag = false;
3396         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3397         hw->mac.phy_addr = cfg.phy_addr;
3398         hw->mac.default_addr_setted = false;
3399         hw->num_tx_desc = cfg.tqp_desc_num;
3400         hw->num_rx_desc = cfg.tqp_desc_num;
3401         hw->dcb_info.num_pg = 1;
3402         hw->dcb_info.hw_pfc_map = 0;
3403
3404         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3405         if (ret) {
3406                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3407                              cfg.default_speed, ret);
3408                 return ret;
3409         }
3410
3411         pf->tc_max = cfg.tc_num;
3412         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3413                 PMD_INIT_LOG(WARNING,
3414                              "Get TC num(%u) from flash, set TC num to 1",
3415                              pf->tc_max);
3416                 pf->tc_max = 1;
3417         }
3418
3419         /* Dev does not support DCB */
3420         if (!hns3_dev_dcb_supported(hw)) {
3421                 pf->tc_max = 1;
3422                 pf->pfc_max = 0;
3423         } else
3424                 pf->pfc_max = pf->tc_max;
3425
3426         hw->dcb_info.num_tc = 1;
3427         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3428                                      hw->tqps_num / hw->dcb_info.num_tc);
3429         hns3_set_bit(hw->hw_tc_map, 0, 1);
3430         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3431
3432         pf->wanted_umv_size = cfg.umv_space;
3433
3434         return ret;
3435 }
3436
3437 static int
3438 hns3_get_configuration(struct hns3_hw *hw)
3439 {
3440         int ret;
3441
3442         ret = hns3_query_function_status(hw);
3443         if (ret) {
3444                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3445                 return ret;
3446         }
3447
3448         /* Get device capability */
3449         ret = hns3_get_capability(hw);
3450         if (ret) {
3451                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3452                 return ret;
3453         }
3454
3455         /* Get pf resource */
3456         ret = hns3_query_pf_resource(hw);
3457         if (ret) {
3458                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3459                 return ret;
3460         }
3461
3462         ret = hns3_get_board_configuration(hw);
3463         if (ret) {
3464                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3465                 return ret;
3466         }
3467
3468         ret = hns3_query_dev_fec_info(hw);
3469         if (ret)
3470                 PMD_INIT_LOG(ERR,
3471                              "failed to query FEC information, ret = %d", ret);
3472
3473         return ret;
3474 }
3475
3476 static int
3477 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3478                       uint16_t tqp_vid, bool is_pf)
3479 {
3480         struct hns3_tqp_map_cmd *req;
3481         struct hns3_cmd_desc desc;
3482         int ret;
3483
3484         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3485
3486         req = (struct hns3_tqp_map_cmd *)desc.data;
3487         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3488         req->tqp_vf = func_id;
3489         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3490         if (!is_pf)
3491                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3492         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3493
3494         ret = hns3_cmd_send(hw, &desc, 1);
3495         if (ret)
3496                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3497
3498         return ret;
3499 }
3500
3501 static int
3502 hns3_map_tqp(struct hns3_hw *hw)
3503 {
3504         int ret;
3505         int i;
3506
3507         /*
3508          * In current version, VF is not supported when PF is driven by DPDK
3509          * driver, so we assign total tqps_num tqps allocated to this port
3510          * to PF.
3511          */
3512         for (i = 0; i < hw->total_tqps_num; i++) {
3513                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3514                 if (ret)
3515                         return ret;
3516         }
3517
3518         return 0;
3519 }
3520
3521 static int
3522 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3523 {
3524         struct hns3_config_mac_speed_dup_cmd *req;
3525         struct hns3_cmd_desc desc;
3526         int ret;
3527
3528         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3529
3530         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3531
3532         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3533
3534         switch (speed) {
3535         case ETH_SPEED_NUM_10M:
3536                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3537                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3538                 break;
3539         case ETH_SPEED_NUM_100M:
3540                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3541                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3542                 break;
3543         case ETH_SPEED_NUM_1G:
3544                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3545                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3546                 break;
3547         case ETH_SPEED_NUM_10G:
3548                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3549                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3550                 break;
3551         case ETH_SPEED_NUM_25G:
3552                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3553                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3554                 break;
3555         case ETH_SPEED_NUM_40G:
3556                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3557                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3558                 break;
3559         case ETH_SPEED_NUM_50G:
3560                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3561                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3562                 break;
3563         case ETH_SPEED_NUM_100G:
3564                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3565                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3566                 break;
3567         case ETH_SPEED_NUM_200G:
3568                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3569                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3570                 break;
3571         default:
3572                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3573                 return -EINVAL;
3574         }
3575
3576         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3577
3578         ret = hns3_cmd_send(hw, &desc, 1);
3579         if (ret)
3580                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3581
3582         return ret;
3583 }
3584
3585 static int
3586 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3587 {
3588         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3589         struct hns3_pf *pf = &hns->pf;
3590         struct hns3_priv_buf *priv;
3591         uint32_t i, total_size;
3592
3593         total_size = pf->pkt_buf_size;
3594
3595         /* alloc tx buffer for all enabled tc */
3596         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3597                 priv = &buf_alloc->priv_buf[i];
3598
3599                 if (hw->hw_tc_map & BIT(i)) {
3600                         if (total_size < pf->tx_buf_size)
3601                                 return -ENOMEM;
3602
3603                         priv->tx_buf_size = pf->tx_buf_size;
3604                 } else
3605                         priv->tx_buf_size = 0;
3606
3607                 total_size -= priv->tx_buf_size;
3608         }
3609
3610         return 0;
3611 }
3612
3613 static int
3614 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3615 {
3616 /* TX buffer size is unit by 128 byte */
3617 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3618 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3619         struct hns3_tx_buff_alloc_cmd *req;
3620         struct hns3_cmd_desc desc;
3621         uint32_t buf_size;
3622         uint32_t i;
3623         int ret;
3624
3625         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3626
3627         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3628         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3629                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3630
3631                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3632                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3633                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3634         }
3635
3636         ret = hns3_cmd_send(hw, &desc, 1);
3637         if (ret)
3638                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3639
3640         return ret;
3641 }
3642
3643 static int
3644 hns3_get_tc_num(struct hns3_hw *hw)
3645 {
3646         int cnt = 0;
3647         uint8_t i;
3648
3649         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3650                 if (hw->hw_tc_map & BIT(i))
3651                         cnt++;
3652         return cnt;
3653 }
3654
3655 static uint32_t
3656 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3657 {
3658         struct hns3_priv_buf *priv;
3659         uint32_t rx_priv = 0;
3660         int i;
3661
3662         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3663                 priv = &buf_alloc->priv_buf[i];
3664                 if (priv->enable)
3665                         rx_priv += priv->buf_size;
3666         }
3667         return rx_priv;
3668 }
3669
3670 static uint32_t
3671 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3672 {
3673         uint32_t total_tx_size = 0;
3674         uint32_t i;
3675
3676         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3677                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3678
3679         return total_tx_size;
3680 }
3681
3682 /* Get the number of pfc enabled TCs, which have private buffer */
3683 static int
3684 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3685 {
3686         struct hns3_priv_buf *priv;
3687         int cnt = 0;
3688         uint8_t i;
3689
3690         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3691                 priv = &buf_alloc->priv_buf[i];
3692                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3693                         cnt++;
3694         }
3695
3696         return cnt;
3697 }
3698
3699 /* Get the number of pfc disabled TCs, which have private buffer */
3700 static int
3701 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3702                          struct hns3_pkt_buf_alloc *buf_alloc)
3703 {
3704         struct hns3_priv_buf *priv;
3705         int cnt = 0;
3706         uint8_t i;
3707
3708         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3709                 priv = &buf_alloc->priv_buf[i];
3710                 if (hw->hw_tc_map & BIT(i) &&
3711                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3712                         cnt++;
3713         }
3714
3715         return cnt;
3716 }
3717
3718 static bool
3719 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3720                   uint32_t rx_all)
3721 {
3722         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3723         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3724         struct hns3_pf *pf = &hns->pf;
3725         uint32_t shared_buf, aligned_mps;
3726         uint32_t rx_priv;
3727         uint8_t tc_num;
3728         uint8_t i;
3729
3730         tc_num = hns3_get_tc_num(hw);
3731         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3732
3733         if (hns3_dev_dcb_supported(hw))
3734                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3735                                         pf->dv_buf_size;
3736         else
3737                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3738                                         + pf->dv_buf_size;
3739
3740         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3741         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3742                              HNS3_BUF_SIZE_UNIT);
3743
3744         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3745         if (rx_all < rx_priv + shared_std)
3746                 return false;
3747
3748         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3749         buf_alloc->s_buf.buf_size = shared_buf;
3750         if (hns3_dev_dcb_supported(hw)) {
3751                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3752                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3753                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3754                                   HNS3_BUF_SIZE_UNIT);
3755         } else {
3756                 buf_alloc->s_buf.self.high =
3757                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3758                 buf_alloc->s_buf.self.low = aligned_mps;
3759         }
3760
3761         if (hns3_dev_dcb_supported(hw)) {
3762                 hi_thrd = shared_buf - pf->dv_buf_size;
3763
3764                 if (tc_num <= NEED_RESERVE_TC_NUM)
3765                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3766                                   BUF_MAX_PERCENT;
3767
3768                 if (tc_num)
3769                         hi_thrd = hi_thrd / tc_num;
3770
3771                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3772                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3773                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3774         } else {
3775                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3776                 lo_thrd = aligned_mps;
3777         }
3778
3779         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3780                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3781                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3782         }
3783
3784         return true;
3785 }
3786
3787 static bool
3788 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3789                      struct hns3_pkt_buf_alloc *buf_alloc)
3790 {
3791         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3792         struct hns3_pf *pf = &hns->pf;
3793         struct hns3_priv_buf *priv;
3794         uint32_t aligned_mps;
3795         uint32_t rx_all;
3796         uint8_t i;
3797
3798         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3799         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3800
3801         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3802                 priv = &buf_alloc->priv_buf[i];
3803
3804                 priv->enable = 0;
3805                 priv->wl.low = 0;
3806                 priv->wl.high = 0;
3807                 priv->buf_size = 0;
3808
3809                 if (!(hw->hw_tc_map & BIT(i)))
3810                         continue;
3811
3812                 priv->enable = 1;
3813                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3814                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3815                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3816                                                 HNS3_BUF_SIZE_UNIT);
3817                 } else {
3818                         priv->wl.low = 0;
3819                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3820                                         aligned_mps;
3821                 }
3822
3823                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3824         }
3825
3826         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3827 }
3828
3829 static bool
3830 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3831                              struct hns3_pkt_buf_alloc *buf_alloc)
3832 {
3833         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3834         struct hns3_pf *pf = &hns->pf;
3835         struct hns3_priv_buf *priv;
3836         int no_pfc_priv_num;
3837         uint32_t rx_all;
3838         uint8_t mask;
3839         int i;
3840
3841         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3842         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3843
3844         /* let the last to be cleared first */
3845         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3846                 priv = &buf_alloc->priv_buf[i];
3847                 mask = BIT((uint8_t)i);
3848                 if (hw->hw_tc_map & mask &&
3849                     !(hw->dcb_info.hw_pfc_map & mask)) {
3850                         /* Clear the no pfc TC private buffer */
3851                         priv->wl.low = 0;
3852                         priv->wl.high = 0;
3853                         priv->buf_size = 0;
3854                         priv->enable = 0;
3855                         no_pfc_priv_num--;
3856                 }
3857
3858                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3859                     no_pfc_priv_num == 0)
3860                         break;
3861         }
3862
3863         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3864 }
3865
3866 static bool
3867 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3868                            struct hns3_pkt_buf_alloc *buf_alloc)
3869 {
3870         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3871         struct hns3_pf *pf = &hns->pf;
3872         struct hns3_priv_buf *priv;
3873         uint32_t rx_all;
3874         int pfc_priv_num;
3875         uint8_t mask;
3876         int i;
3877
3878         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3879         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3880
3881         /* let the last to be cleared first */
3882         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3883                 priv = &buf_alloc->priv_buf[i];
3884                 mask = BIT((uint8_t)i);
3885                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3886                         /* Reduce the number of pfc TC with private buffer */
3887                         priv->wl.low = 0;
3888                         priv->enable = 0;
3889                         priv->wl.high = 0;
3890                         priv->buf_size = 0;
3891                         pfc_priv_num--;
3892                 }
3893                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3894                     pfc_priv_num == 0)
3895                         break;
3896         }
3897
3898         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3899 }
3900
3901 static bool
3902 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3903                           struct hns3_pkt_buf_alloc *buf_alloc)
3904 {
3905 #define COMPENSATE_BUFFER       0x3C00
3906 #define COMPENSATE_HALF_MPS_NUM 5
3907 #define PRIV_WL_GAP             0x1800
3908         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3909         struct hns3_pf *pf = &hns->pf;
3910         uint32_t tc_num = hns3_get_tc_num(hw);
3911         uint32_t half_mps = pf->mps >> 1;
3912         struct hns3_priv_buf *priv;
3913         uint32_t min_rx_priv;
3914         uint32_t rx_priv;
3915         uint8_t i;
3916
3917         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3918         if (tc_num)
3919                 rx_priv = rx_priv / tc_num;
3920
3921         if (tc_num <= NEED_RESERVE_TC_NUM)
3922                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3923
3924         /*
3925          * Minimum value of private buffer in rx direction (min_rx_priv) is
3926          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3927          * buffer if rx_priv is greater than min_rx_priv.
3928          */
3929         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3930                         COMPENSATE_HALF_MPS_NUM * half_mps;
3931         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3932         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3933         if (rx_priv < min_rx_priv)
3934                 return false;
3935
3936         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3937                 priv = &buf_alloc->priv_buf[i];
3938                 priv->enable = 0;
3939                 priv->wl.low = 0;
3940                 priv->wl.high = 0;
3941                 priv->buf_size = 0;
3942
3943                 if (!(hw->hw_tc_map & BIT(i)))
3944                         continue;
3945
3946                 priv->enable = 1;
3947                 priv->buf_size = rx_priv;
3948                 priv->wl.high = rx_priv - pf->dv_buf_size;
3949                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3950         }
3951
3952         buf_alloc->s_buf.buf_size = 0;
3953
3954         return true;
3955 }
3956
3957 /*
3958  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3959  * @hw: pointer to struct hns3_hw
3960  * @buf_alloc: pointer to buffer calculation data
3961  * @return: 0: calculate sucessful, negative: fail
3962  */
3963 static int
3964 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3965 {
3966         /* When DCB is not supported, rx private buffer is not allocated. */
3967         if (!hns3_dev_dcb_supported(hw)) {
3968                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3969                 struct hns3_pf *pf = &hns->pf;
3970                 uint32_t rx_all = pf->pkt_buf_size;
3971
3972                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3973                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3974                         return -ENOMEM;
3975
3976                 return 0;
3977         }
3978
3979         /*
3980          * Try to allocate privated packet buffer for all TCs without share
3981          * buffer.
3982          */
3983         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3984                 return 0;
3985
3986         /*
3987          * Try to allocate privated packet buffer for all TCs with share
3988          * buffer.
3989          */
3990         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3991                 return 0;
3992
3993         /*
3994          * For different application scenes, the enabled port number, TC number
3995          * and no_drop TC number are different. In order to obtain the better
3996          * performance, software could allocate the buffer size and configure
3997          * the waterline by trying to decrease the private buffer size according
3998          * to the order, namely, waterline of valid tc, pfc disabled tc, pfc
3999          * enabled tc.
4000          */
4001         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
4002                 return 0;
4003
4004         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
4005                 return 0;
4006
4007         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
4008                 return 0;
4009
4010         return -ENOMEM;
4011 }
4012
4013 static int
4014 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4015 {
4016         struct hns3_rx_priv_buff_cmd *req;
4017         struct hns3_cmd_desc desc;
4018         uint32_t buf_size;
4019         int ret;
4020         int i;
4021
4022         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
4023         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
4024
4025         /* Alloc private buffer TCs */
4026         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
4027                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
4028
4029                 req->buf_num[i] =
4030                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
4031                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
4032         }
4033
4034         buf_size = buf_alloc->s_buf.buf_size;
4035         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
4036                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
4037
4038         ret = hns3_cmd_send(hw, &desc, 1);
4039         if (ret)
4040                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
4041
4042         return ret;
4043 }
4044
4045 static int
4046 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4047 {
4048 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
4049         struct hns3_rx_priv_wl_buf *req;
4050         struct hns3_priv_buf *priv;
4051         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
4052         int i, j;
4053         int ret;
4054
4055         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
4056                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
4057                                           false);
4058                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
4059
4060                 /* The first descriptor set the NEXT bit to 1 */
4061                 if (i == 0)
4062                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4063                 else
4064                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4065
4066                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4067                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
4068
4069                         priv = &buf_alloc->priv_buf[idx];
4070                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
4071                                                         HNS3_BUF_UNIT_S);
4072                         req->tc_wl[j].high |=
4073                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4074                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
4075                                                         HNS3_BUF_UNIT_S);
4076                         req->tc_wl[j].low |=
4077                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4078                 }
4079         }
4080
4081         /* Send 2 descriptor at one time */
4082         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
4083         if (ret)
4084                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
4085                              ret);
4086         return ret;
4087 }
4088
4089 static int
4090 hns3_common_thrd_config(struct hns3_hw *hw,
4091                         struct hns3_pkt_buf_alloc *buf_alloc)
4092 {
4093 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
4094         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
4095         struct hns3_rx_com_thrd *req;
4096         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
4097         struct hns3_tc_thrd *tc;
4098         int tc_idx;
4099         int i, j;
4100         int ret;
4101
4102         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4103                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4104                                           false);
4105                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
4106
4107                 /* The first descriptor set the NEXT bit to 1 */
4108                 if (i == 0)
4109                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4110                 else
4111                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4112
4113                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4114                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4115                         tc = &s_buf->tc_thrd[tc_idx];
4116
4117                         req->com_thrd[j].high =
4118                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4119                         req->com_thrd[j].high |=
4120                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4121                         req->com_thrd[j].low =
4122                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4123                         req->com_thrd[j].low |=
4124                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4125                 }
4126         }
4127
4128         /* Send 2 descriptors at one time */
4129         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4130         if (ret)
4131                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4132
4133         return ret;
4134 }
4135
4136 static int
4137 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4138 {
4139         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4140         struct hns3_rx_com_wl *req;
4141         struct hns3_cmd_desc desc;
4142         int ret;
4143
4144         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4145
4146         req = (struct hns3_rx_com_wl *)desc.data;
4147         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4148         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4149
4150         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4151         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4152
4153         ret = hns3_cmd_send(hw, &desc, 1);
4154         if (ret)
4155                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4156
4157         return ret;
4158 }
4159
4160 int
4161 hns3_buffer_alloc(struct hns3_hw *hw)
4162 {
4163         struct hns3_pkt_buf_alloc pkt_buf;
4164         int ret;
4165
4166         memset(&pkt_buf, 0, sizeof(pkt_buf));
4167         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4168         if (ret) {
4169                 PMD_INIT_LOG(ERR,
4170                              "could not calc tx buffer size for all TCs %d",
4171                              ret);
4172                 return ret;
4173         }
4174
4175         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4176         if (ret) {
4177                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4178                 return ret;
4179         }
4180
4181         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4182         if (ret) {
4183                 PMD_INIT_LOG(ERR,
4184                              "could not calc rx priv buffer size for all TCs %d",
4185                              ret);
4186                 return ret;
4187         }
4188
4189         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4190         if (ret) {
4191                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4192                 return ret;
4193         }
4194
4195         if (hns3_dev_dcb_supported(hw)) {
4196                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4197                 if (ret) {
4198                         PMD_INIT_LOG(ERR,
4199                                      "could not configure rx private waterline %d",
4200                                      ret);
4201                         return ret;
4202                 }
4203
4204                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4205                 if (ret) {
4206                         PMD_INIT_LOG(ERR,
4207                                      "could not configure common threshold %d",
4208                                      ret);
4209                         return ret;
4210                 }
4211         }
4212
4213         ret = hns3_common_wl_config(hw, &pkt_buf);
4214         if (ret)
4215                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4216                              ret);
4217
4218         return ret;
4219 }
4220
4221 static int
4222 hns3_mac_init(struct hns3_hw *hw)
4223 {
4224         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4225         struct hns3_mac *mac = &hw->mac;
4226         struct hns3_pf *pf = &hns->pf;
4227         int ret;
4228
4229         pf->support_sfp_query = true;
4230         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4231         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4232         if (ret) {
4233                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4234                 return ret;
4235         }
4236
4237         mac->link_status = ETH_LINK_DOWN;
4238
4239         return hns3_config_mtu(hw, pf->mps);
4240 }
4241
4242 static int
4243 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4244 {
4245 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4246 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4247 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4248 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4249         int return_status;
4250
4251         if (cmdq_resp) {
4252                 PMD_INIT_LOG(ERR,
4253                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4254                              cmdq_resp);
4255                 return -EIO;
4256         }
4257
4258         switch (resp_code) {
4259         case HNS3_ETHERTYPE_SUCCESS_ADD:
4260         case HNS3_ETHERTYPE_ALREADY_ADD:
4261                 return_status = 0;
4262                 break;
4263         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4264                 PMD_INIT_LOG(ERR,
4265                              "add mac ethertype failed for manager table overflow.");
4266                 return_status = -EIO;
4267                 break;
4268         case HNS3_ETHERTYPE_KEY_CONFLICT:
4269                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4270                 return_status = -EIO;
4271                 break;
4272         default:
4273                 PMD_INIT_LOG(ERR,
4274                              "add mac ethertype failed for undefined, code=%u.",
4275                              resp_code);
4276                 return_status = -EIO;
4277                 break;
4278         }
4279
4280         return return_status;
4281 }
4282
4283 static int
4284 hns3_add_mgr_tbl(struct hns3_hw *hw,
4285                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4286 {
4287         struct hns3_cmd_desc desc;
4288         uint8_t resp_code;
4289         uint16_t retval;
4290         int ret;
4291
4292         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4293         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4294
4295         ret = hns3_cmd_send(hw, &desc, 1);
4296         if (ret) {
4297                 PMD_INIT_LOG(ERR,
4298                              "add mac ethertype failed for cmd_send, ret =%d.",
4299                              ret);
4300                 return ret;
4301         }
4302
4303         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4304         retval = rte_le_to_cpu_16(desc.retval);
4305
4306         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4307 }
4308
4309 static void
4310 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4311                      int *table_item_num)
4312 {
4313         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4314
4315         /*
4316          * In current version, we add one item in management table as below:
4317          * 0x0180C200000E -- LLDP MC address
4318          */
4319         tbl = mgr_table;
4320         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4321         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4322         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4323         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4324         tbl->i_port_bitmap = 0x1;
4325         *table_item_num = 1;
4326 }
4327
4328 static int
4329 hns3_init_mgr_tbl(struct hns3_hw *hw)
4330 {
4331 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4332         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4333         int table_item_num;
4334         int ret;
4335         int i;
4336
4337         memset(mgr_table, 0, sizeof(mgr_table));
4338         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4339         for (i = 0; i < table_item_num; i++) {
4340                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4341                 if (ret) {
4342                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4343                                      ret);
4344                         return ret;
4345                 }
4346         }
4347
4348         return 0;
4349 }
4350
4351 static void
4352 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4353                         bool en_mc, bool en_bc, int vport_id)
4354 {
4355         if (!param)
4356                 return;
4357
4358         memset(param, 0, sizeof(struct hns3_promisc_param));
4359         if (en_uc)
4360                 param->enable = HNS3_PROMISC_EN_UC;
4361         if (en_mc)
4362                 param->enable |= HNS3_PROMISC_EN_MC;
4363         if (en_bc)
4364                 param->enable |= HNS3_PROMISC_EN_BC;
4365         param->vf_id = vport_id;
4366 }
4367
4368 static int
4369 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4370 {
4371         struct hns3_promisc_cfg_cmd *req;
4372         struct hns3_cmd_desc desc;
4373         int ret;
4374
4375         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4376
4377         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4378         req->vf_id = param->vf_id;
4379         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4380             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4381
4382         ret = hns3_cmd_send(hw, &desc, 1);
4383         if (ret)
4384                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4385
4386         return ret;
4387 }
4388
4389 static int
4390 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4391 {
4392         struct hns3_promisc_param param;
4393         bool en_bc_pmc = true;
4394         uint8_t vf_id;
4395
4396         /*
4397          * In current version VF is not supported when PF is driven by DPDK
4398          * driver, just need to configure parameters for PF vport.
4399          */
4400         vf_id = HNS3_PF_FUNC_ID;
4401
4402         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4403         return hns3_cmd_set_promisc_mode(hw, &param);
4404 }
4405
4406 static int
4407 hns3_promisc_init(struct hns3_hw *hw)
4408 {
4409         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4410         struct hns3_pf *pf = &hns->pf;
4411         struct hns3_promisc_param param;
4412         uint16_t func_id;
4413         int ret;
4414
4415         ret = hns3_set_promisc_mode(hw, false, false);
4416         if (ret) {
4417                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4418                 return ret;
4419         }
4420
4421         /*
4422          * In current version VFs are not supported when PF is driven by DPDK
4423          * driver. After PF has been taken over by DPDK, the original VF will
4424          * be invalid. So, there is a possibility of entry residues. It should
4425          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4426          * during init.
4427          */
4428         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4429                 hns3_promisc_param_init(&param, false, false, false, func_id);
4430                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4431                 if (ret) {
4432                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4433                                         " ret = %d", func_id, ret);
4434                         return ret;
4435                 }
4436         }
4437
4438         return 0;
4439 }
4440
4441 static void
4442 hns3_promisc_uninit(struct hns3_hw *hw)
4443 {
4444         struct hns3_promisc_param param;
4445         uint16_t func_id;
4446         int ret;
4447
4448         func_id = HNS3_PF_FUNC_ID;
4449
4450         /*
4451          * In current version VFs are not supported when PF is driven by
4452          * DPDK driver, and VFs' promisc mode status has been cleared during
4453          * init and their status will not change. So just clear PF's promisc
4454          * mode status during uninit.
4455          */
4456         hns3_promisc_param_init(&param, false, false, false, func_id);
4457         ret = hns3_cmd_set_promisc_mode(hw, &param);
4458         if (ret)
4459                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4460                                 " uninit, ret = %d", ret);
4461 }
4462
4463 static int
4464 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4465 {
4466         bool allmulti = dev->data->all_multicast ? true : false;
4467         struct hns3_adapter *hns = dev->data->dev_private;
4468         struct hns3_hw *hw = &hns->hw;
4469         uint64_t offloads;
4470         int err;
4471         int ret;
4472
4473         rte_spinlock_lock(&hw->lock);
4474         ret = hns3_set_promisc_mode(hw, true, true);
4475         if (ret) {
4476                 rte_spinlock_unlock(&hw->lock);
4477                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4478                          ret);
4479                 return ret;
4480         }
4481
4482         /*
4483          * When promiscuous mode was enabled, disable the vlan filter to let
4484          * all packets coming in in the receiving direction.
4485          */
4486         offloads = dev->data->dev_conf.rxmode.offloads;
4487         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4488                 ret = hns3_enable_vlan_filter(hns, false);
4489                 if (ret) {
4490                         hns3_err(hw, "failed to enable promiscuous mode due to "
4491                                      "failure to disable vlan filter, ret = %d",
4492                                  ret);
4493                         err = hns3_set_promisc_mode(hw, false, allmulti);
4494                         if (err)
4495                                 hns3_err(hw, "failed to restore promiscuous "
4496                                          "status after disable vlan filter "
4497                                          "failed during enabling promiscuous "
4498                                          "mode, ret = %d", ret);
4499                 }
4500         }
4501
4502         rte_spinlock_unlock(&hw->lock);
4503
4504         return ret;
4505 }
4506
4507 static int
4508 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4509 {
4510         bool allmulti = dev->data->all_multicast ? true : false;
4511         struct hns3_adapter *hns = dev->data->dev_private;
4512         struct hns3_hw *hw = &hns->hw;
4513         uint64_t offloads;
4514         int err;
4515         int ret;
4516
4517         /* If now in all_multicast mode, must remain in all_multicast mode. */
4518         rte_spinlock_lock(&hw->lock);
4519         ret = hns3_set_promisc_mode(hw, false, allmulti);
4520         if (ret) {
4521                 rte_spinlock_unlock(&hw->lock);
4522                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4523                          ret);
4524                 return ret;
4525         }
4526         /* when promiscuous mode was disabled, restore the vlan filter status */
4527         offloads = dev->data->dev_conf.rxmode.offloads;
4528         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4529                 ret = hns3_enable_vlan_filter(hns, true);
4530                 if (ret) {
4531                         hns3_err(hw, "failed to disable promiscuous mode due to"
4532                                  " failure to restore vlan filter, ret = %d",
4533                                  ret);
4534                         err = hns3_set_promisc_mode(hw, true, true);
4535                         if (err)
4536                                 hns3_err(hw, "failed to restore promiscuous "
4537                                          "status after enabling vlan filter "
4538                                          "failed during disabling promiscuous "
4539                                          "mode, ret = %d", ret);
4540                 }
4541         }
4542         rte_spinlock_unlock(&hw->lock);
4543
4544         return ret;
4545 }
4546
4547 static int
4548 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4549 {
4550         struct hns3_adapter *hns = dev->data->dev_private;
4551         struct hns3_hw *hw = &hns->hw;
4552         int ret;
4553
4554         if (dev->data->promiscuous)
4555                 return 0;
4556
4557         rte_spinlock_lock(&hw->lock);
4558         ret = hns3_set_promisc_mode(hw, false, true);
4559         rte_spinlock_unlock(&hw->lock);
4560         if (ret)
4561                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4562                          ret);
4563
4564         return ret;
4565 }
4566
4567 static int
4568 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4569 {
4570         struct hns3_adapter *hns = dev->data->dev_private;
4571         struct hns3_hw *hw = &hns->hw;
4572         int ret;
4573
4574         /* If now in promiscuous mode, must remain in all_multicast mode. */
4575         if (dev->data->promiscuous)
4576                 return 0;
4577
4578         rte_spinlock_lock(&hw->lock);
4579         ret = hns3_set_promisc_mode(hw, false, false);
4580         rte_spinlock_unlock(&hw->lock);
4581         if (ret)
4582                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4583                          ret);
4584
4585         return ret;
4586 }
4587
4588 static int
4589 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4590 {
4591         struct hns3_hw *hw = &hns->hw;
4592         bool allmulti = hw->data->all_multicast ? true : false;
4593         int ret;
4594
4595         if (hw->data->promiscuous) {
4596                 ret = hns3_set_promisc_mode(hw, true, true);
4597                 if (ret)
4598                         hns3_err(hw, "failed to restore promiscuous mode, "
4599                                  "ret = %d", ret);
4600                 return ret;
4601         }
4602
4603         ret = hns3_set_promisc_mode(hw, false, allmulti);
4604         if (ret)
4605                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4606                          ret);
4607         return ret;
4608 }
4609
4610 static int
4611 hns3_get_sfp_info(struct hns3_hw *hw, struct hns3_mac *mac_info)
4612 {
4613         struct hns3_sfp_info_cmd *resp;
4614         struct hns3_cmd_desc desc;
4615         int ret;
4616
4617         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
4618         resp = (struct hns3_sfp_info_cmd *)desc.data;
4619         resp->query_type = HNS3_ACTIVE_QUERY;
4620
4621         ret = hns3_cmd_send(hw, &desc, 1);
4622         if (ret == -EOPNOTSUPP) {
4623                 hns3_warn(hw, "firmware does not support get SFP info,"
4624                           " ret = %d.", ret);
4625                 return ret;
4626         } else if (ret) {
4627                 hns3_err(hw, "get sfp info failed, ret = %d.", ret);
4628                 return ret;
4629         }
4630
4631         /*
4632          * In some case, the speed of MAC obtained from firmware may be 0, it
4633          * shouldn't be set to mac->speed.
4634          */
4635         if (!rte_le_to_cpu_32(resp->sfp_speed))
4636                 return 0;
4637
4638         mac_info->link_speed = rte_le_to_cpu_32(resp->sfp_speed);
4639         /*
4640          * if resp->supported_speed is 0, it means it's an old version
4641          * firmware, do not update these params.
4642          */
4643         if (resp->supported_speed) {
4644                 mac_info->query_type = HNS3_ACTIVE_QUERY;
4645                 mac_info->supported_speed =
4646                                         rte_le_to_cpu_32(resp->supported_speed);
4647                 mac_info->support_autoneg = resp->autoneg_ability;
4648                 mac_info->link_autoneg = (resp->autoneg == 0) ? ETH_LINK_FIXED
4649                                         : ETH_LINK_AUTONEG;
4650         } else {
4651                 mac_info->query_type = HNS3_DEFAULT_QUERY;
4652         }
4653
4654         return 0;
4655 }
4656
4657 static uint8_t
4658 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4659 {
4660         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4661                 duplex = ETH_LINK_FULL_DUPLEX;
4662
4663         return duplex;
4664 }
4665
4666 static int
4667 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4668 {
4669         struct hns3_mac *mac = &hw->mac;
4670         int ret;
4671
4672         duplex = hns3_check_speed_dup(duplex, speed);
4673         if (mac->link_speed == speed && mac->link_duplex == duplex)
4674                 return 0;
4675
4676         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4677         if (ret)
4678                 return ret;
4679
4680         ret = hns3_port_shaper_update(hw, speed);
4681         if (ret)
4682                 return ret;
4683
4684         mac->link_speed = speed;
4685         mac->link_duplex = duplex;
4686
4687         return 0;
4688 }
4689
4690 static int
4691 hns3_update_fiber_link_info(struct hns3_hw *hw)
4692 {
4693         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4694         struct hns3_mac *mac = &hw->mac;
4695         struct hns3_mac mac_info;
4696         int ret;
4697
4698         /* If firmware do not support get SFP/qSFP speed, return directly */
4699         if (!pf->support_sfp_query)
4700                 return 0;
4701
4702         memset(&mac_info, 0, sizeof(struct hns3_mac));
4703         ret = hns3_get_sfp_info(hw, &mac_info);
4704         if (ret == -EOPNOTSUPP) {
4705                 pf->support_sfp_query = false;
4706                 return ret;
4707         } else if (ret)
4708                 return ret;
4709
4710         /* Do nothing if no SFP */
4711         if (mac_info.link_speed == ETH_SPEED_NUM_NONE)
4712                 return 0;
4713
4714         /*
4715          * If query_type is HNS3_ACTIVE_QUERY, it is no need
4716          * to reconfigure the speed of MAC. Otherwise, it indicates
4717          * that the current firmware only supports to obtain the
4718          * speed of the SFP, and the speed of MAC needs to reconfigure.
4719          */
4720         mac->query_type = mac_info.query_type;
4721         if (mac->query_type == HNS3_ACTIVE_QUERY) {
4722                 if (mac_info.link_speed != mac->link_speed) {
4723                         ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4724                         if (ret)
4725                                 return ret;
4726                 }
4727
4728                 mac->link_speed = mac_info.link_speed;
4729                 mac->supported_speed = mac_info.supported_speed;
4730                 mac->support_autoneg = mac_info.support_autoneg;
4731                 mac->link_autoneg = mac_info.link_autoneg;
4732
4733                 return 0;
4734         }
4735
4736         /* Config full duplex for SFP */
4737         return hns3_cfg_mac_speed_dup(hw, mac_info.link_speed,
4738                                       ETH_LINK_FULL_DUPLEX);
4739 }
4740
4741 static void
4742 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4743 {
4744 #define HNS3_PHY_SUPPORTED_SPEED_MASK   0x2f
4745
4746         struct hns3_phy_params_bd0_cmd *req;
4747         uint32_t supported;
4748
4749         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4750         mac->link_speed = rte_le_to_cpu_32(req->speed);
4751         mac->link_duplex = hns3_get_bit(req->duplex,
4752                                            HNS3_PHY_DUPLEX_CFG_B);
4753         mac->link_autoneg = hns3_get_bit(req->autoneg,
4754                                            HNS3_PHY_AUTONEG_CFG_B);
4755         mac->advertising = rte_le_to_cpu_32(req->advertising);
4756         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4757         supported = rte_le_to_cpu_32(req->supported);
4758         mac->supported_speed = supported & HNS3_PHY_SUPPORTED_SPEED_MASK;
4759         mac->support_autoneg = !!(supported & HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4760 }
4761
4762 static int
4763 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4764 {
4765         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4766         uint16_t i;
4767         int ret;
4768
4769         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4770                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4771                                           true);
4772                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4773         }
4774         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4775
4776         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4777         if (ret) {
4778                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4779                 return ret;
4780         }
4781
4782         hns3_parse_copper_phy_params(desc, mac);
4783
4784         return 0;
4785 }
4786
4787 static int
4788 hns3_update_copper_link_info(struct hns3_hw *hw)
4789 {
4790         struct hns3_mac *mac = &hw->mac;
4791         struct hns3_mac mac_info;
4792         int ret;
4793
4794         memset(&mac_info, 0, sizeof(struct hns3_mac));
4795         ret = hns3_get_copper_phy_params(hw, &mac_info);
4796         if (ret)
4797                 return ret;
4798
4799         if (mac_info.link_speed != mac->link_speed) {
4800                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4801                 if (ret)
4802                         return ret;
4803         }
4804
4805         mac->link_speed = mac_info.link_speed;
4806         mac->link_duplex = mac_info.link_duplex;
4807         mac->link_autoneg = mac_info.link_autoneg;
4808         mac->supported_speed = mac_info.supported_speed;
4809         mac->advertising = mac_info.advertising;
4810         mac->lp_advertising = mac_info.lp_advertising;
4811         mac->support_autoneg = mac_info.support_autoneg;
4812
4813         return 0;
4814 }
4815
4816 static int
4817 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4818 {
4819         struct hns3_adapter *hns = eth_dev->data->dev_private;
4820         struct hns3_hw *hw = &hns->hw;
4821         int ret = 0;
4822
4823         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4824                 ret = hns3_update_copper_link_info(hw);
4825         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4826                 ret = hns3_update_fiber_link_info(hw);
4827
4828         return ret;
4829 }
4830
4831 static int
4832 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4833 {
4834         struct hns3_config_mac_mode_cmd *req;
4835         struct hns3_cmd_desc desc;
4836         uint32_t loop_en = 0;
4837         uint8_t val = 0;
4838         int ret;
4839
4840         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4841
4842         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4843         if (enable)
4844                 val = 1;
4845         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4846         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4847         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4848         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4849         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4850         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4851         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4852         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4853         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4854         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4855
4856         /*
4857          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4858          * when receiving frames. Otherwise, CRC will be stripped.
4859          */
4860         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4861                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4862         else
4863                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4864         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4865         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4866         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4867         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4868
4869         ret = hns3_cmd_send(hw, &desc, 1);
4870         if (ret)
4871                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4872
4873         return ret;
4874 }
4875
4876 static int
4877 hns3_get_mac_link_status(struct hns3_hw *hw)
4878 {
4879         struct hns3_link_status_cmd *req;
4880         struct hns3_cmd_desc desc;
4881         int link_status;
4882         int ret;
4883
4884         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4885         ret = hns3_cmd_send(hw, &desc, 1);
4886         if (ret) {
4887                 hns3_err(hw, "get link status cmd failed %d", ret);
4888                 return ETH_LINK_DOWN;
4889         }
4890
4891         req = (struct hns3_link_status_cmd *)desc.data;
4892         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4893
4894         return !!link_status;
4895 }
4896
4897 static bool
4898 hns3_update_link_status(struct hns3_hw *hw)
4899 {
4900         int state;
4901
4902         state = hns3_get_mac_link_status(hw);
4903         if (state != hw->mac.link_status) {
4904                 hw->mac.link_status = state;
4905                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4906                 return true;
4907         }
4908
4909         return false;
4910 }
4911
4912 void
4913 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4914 {
4915         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4916         struct rte_eth_link new_link;
4917         int ret;
4918
4919         if (query)
4920                 hns3_update_port_link_info(dev);
4921
4922         memset(&new_link, 0, sizeof(new_link));
4923         hns3_setup_linkstatus(dev, &new_link);
4924
4925         ret = rte_eth_linkstatus_set(dev, &new_link);
4926         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4927                 hns3_start_report_lse(dev);
4928 }
4929
4930 static void
4931 hns3_service_handler(void *param)
4932 {
4933         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4934         struct hns3_adapter *hns = eth_dev->data->dev_private;
4935         struct hns3_hw *hw = &hns->hw;
4936
4937         if (!hns3_is_reset_pending(hns))
4938                 hns3_update_linkstatus_and_event(hw, true);
4939         else
4940                 hns3_warn(hw, "Cancel the query when reset is pending");
4941
4942         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4943 }
4944
4945 static int
4946 hns3_init_hardware(struct hns3_adapter *hns)
4947 {
4948         struct hns3_hw *hw = &hns->hw;
4949         int ret;
4950
4951         ret = hns3_map_tqp(hw);
4952         if (ret) {
4953                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4954                 return ret;
4955         }
4956
4957         ret = hns3_init_umv_space(hw);
4958         if (ret) {
4959                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4960                 return ret;
4961         }
4962
4963         ret = hns3_mac_init(hw);
4964         if (ret) {
4965                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4966                 goto err_mac_init;
4967         }
4968
4969         ret = hns3_init_mgr_tbl(hw);
4970         if (ret) {
4971                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4972                 goto err_mac_init;
4973         }
4974
4975         ret = hns3_promisc_init(hw);
4976         if (ret) {
4977                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4978                              ret);
4979                 goto err_mac_init;
4980         }
4981
4982         ret = hns3_init_vlan_config(hns);
4983         if (ret) {
4984                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4985                 goto err_mac_init;
4986         }
4987
4988         ret = hns3_dcb_init(hw);
4989         if (ret) {
4990                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4991                 goto err_mac_init;
4992         }
4993
4994         ret = hns3_init_fd_config(hns);
4995         if (ret) {
4996                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4997                 goto err_mac_init;
4998         }
4999
5000         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
5001         if (ret) {
5002                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
5003                 goto err_mac_init;
5004         }
5005
5006         ret = hns3_config_gro(hw, false);
5007         if (ret) {
5008                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
5009                 goto err_mac_init;
5010         }
5011
5012         /*
5013          * In the initialization clearing the all hardware mapping relationship
5014          * configurations between queues and interrupt vectors is needed, so
5015          * some error caused by the residual configurations, such as the
5016          * unexpected interrupt, can be avoid.
5017          */
5018         ret = hns3_init_ring_with_vector(hw);
5019         if (ret) {
5020                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
5021                 goto err_mac_init;
5022         }
5023
5024         return 0;
5025
5026 err_mac_init:
5027         hns3_uninit_umv_space(hw);
5028         return ret;
5029 }
5030
5031 static int
5032 hns3_clear_hw(struct hns3_hw *hw)
5033 {
5034         struct hns3_cmd_desc desc;
5035         int ret;
5036
5037         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
5038
5039         ret = hns3_cmd_send(hw, &desc, 1);
5040         if (ret && ret != -EOPNOTSUPP)
5041                 return ret;
5042
5043         return 0;
5044 }
5045
5046 static void
5047 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
5048 {
5049         uint32_t val;
5050
5051         /*
5052          * The new firmware support report more hardware error types by
5053          * msix mode. These errors are defined as RAS errors in hardware
5054          * and belong to a different type from the MSI-x errors processed
5055          * by the network driver.
5056          *
5057          * Network driver should open the new error report on initialization.
5058          */
5059         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5060         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
5061         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
5062 }
5063
5064 static uint32_t
5065 hns3_set_firber_default_support_speed(struct hns3_hw *hw)
5066 {
5067         struct hns3_mac *mac = &hw->mac;
5068
5069         switch (mac->link_speed) {
5070         case ETH_SPEED_NUM_1G:
5071                 return HNS3_FIBER_LINK_SPEED_1G_BIT;
5072         case ETH_SPEED_NUM_10G:
5073                 return HNS3_FIBER_LINK_SPEED_10G_BIT;
5074         case ETH_SPEED_NUM_25G:
5075                 return HNS3_FIBER_LINK_SPEED_25G_BIT;
5076         case ETH_SPEED_NUM_40G:
5077                 return HNS3_FIBER_LINK_SPEED_40G_BIT;
5078         case ETH_SPEED_NUM_50G:
5079                 return HNS3_FIBER_LINK_SPEED_50G_BIT;
5080         case ETH_SPEED_NUM_100G:
5081                 return HNS3_FIBER_LINK_SPEED_100G_BIT;
5082         case ETH_SPEED_NUM_200G:
5083                 return HNS3_FIBER_LINK_SPEED_200G_BIT;
5084         default:
5085                 hns3_warn(hw, "invalid speed %u Mbps.", mac->link_speed);
5086                 return 0;
5087         }
5088 }
5089
5090 /*
5091  * Validity of supported_speed for firber and copper media type can be
5092  * guaranteed by the following policy:
5093  * Copper:
5094  *       Although the initialization of the phy in the firmware may not be
5095  *       completed, the firmware can guarantees that the supported_speed is
5096  *       an valid value.
5097  * Firber:
5098  *       If the version of firmware supports the acitive query way of the
5099  *       HNS3_OPC_GET_SFP_INFO opcode, the supported_speed can be obtained
5100  *       through it. If unsupported, use the SFP's speed as the value of the
5101  *       supported_speed.
5102  */
5103 static int
5104 hns3_get_port_supported_speed(struct rte_eth_dev *eth_dev)
5105 {
5106         struct hns3_adapter *hns = eth_dev->data->dev_private;
5107         struct hns3_hw *hw = &hns->hw;
5108         struct hns3_mac *mac = &hw->mac;
5109         int ret;
5110
5111         ret = hns3_update_link_info(eth_dev);
5112         if (ret)
5113                 return ret;
5114
5115         if (mac->media_type == HNS3_MEDIA_TYPE_FIBER) {
5116                 /*
5117                  * Some firmware does not support the report of supported_speed,
5118                  * and only report the effective speed of SFP. In this case, it
5119                  * is necessary to use the SFP's speed as the supported_speed.
5120                  */
5121                 if (mac->supported_speed == 0)
5122                         mac->supported_speed =
5123                                 hns3_set_firber_default_support_speed(hw);
5124         }
5125
5126         return 0;
5127 }
5128
5129 static void
5130 hns3_get_fc_autoneg_capability(struct hns3_adapter *hns)
5131 {
5132         struct hns3_mac *mac = &hns->hw.mac;
5133
5134         if (mac->media_type == HNS3_MEDIA_TYPE_COPPER) {
5135                 hns->pf.support_fc_autoneg = true;
5136                 return;
5137         }
5138
5139         /*
5140          * Flow control auto-negotiation requires the cooperation of the driver
5141          * and firmware. Currently, the optical port does not support flow
5142          * control auto-negotiation.
5143          */
5144         hns->pf.support_fc_autoneg = false;
5145 }
5146
5147 static int
5148 hns3_init_pf(struct rte_eth_dev *eth_dev)
5149 {
5150         struct rte_device *dev = eth_dev->device;
5151         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5152         struct hns3_adapter *hns = eth_dev->data->dev_private;
5153         struct hns3_hw *hw = &hns->hw;
5154         int ret;
5155
5156         PMD_INIT_FUNC_TRACE();
5157
5158         /* Get hardware io base address from pcie BAR2 IO space */
5159         hw->io_base = pci_dev->mem_resource[2].addr;
5160
5161         /* Firmware command queue initialize */
5162         ret = hns3_cmd_init_queue(hw);
5163         if (ret) {
5164                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
5165                 goto err_cmd_init_queue;
5166         }
5167
5168         hns3_clear_all_event_cause(hw);
5169
5170         /* Firmware command initialize */
5171         ret = hns3_cmd_init(hw);
5172         if (ret) {
5173                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
5174                 goto err_cmd_init;
5175         }
5176
5177         hns3_tx_push_init(eth_dev);
5178
5179         /*
5180          * To ensure that the hardware environment is clean during
5181          * initialization, the driver actively clear the hardware environment
5182          * during initialization, including PF and corresponding VFs' vlan, mac,
5183          * flow table configurations, etc.
5184          */
5185         ret = hns3_clear_hw(hw);
5186         if (ret) {
5187                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
5188                 goto err_cmd_init;
5189         }
5190
5191         /* Hardware statistics of imissed registers cleared. */
5192         ret = hns3_update_imissed_stats(hw, true);
5193         if (ret) {
5194                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5195                 goto err_cmd_init;
5196         }
5197
5198         hns3_config_all_msix_error(hw, true);
5199
5200         ret = rte_intr_callback_register(&pci_dev->intr_handle,
5201                                          hns3_interrupt_handler,
5202                                          eth_dev);
5203         if (ret) {
5204                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5205                 goto err_intr_callback_register;
5206         }
5207
5208         ret = hns3_ptp_init(hw);
5209         if (ret)
5210                 goto err_get_config;
5211
5212         /* Enable interrupt */
5213         rte_intr_enable(&pci_dev->intr_handle);
5214         hns3_pf_enable_irq0(hw);
5215
5216         /* Get configuration */
5217         ret = hns3_get_configuration(hw);
5218         if (ret) {
5219                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5220                 goto err_get_config;
5221         }
5222
5223         ret = hns3_tqp_stats_init(hw);
5224         if (ret)
5225                 goto err_get_config;
5226
5227         ret = hns3_init_hardware(hns);
5228         if (ret) {
5229                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5230                 goto err_init_hw;
5231         }
5232
5233         /* Initialize flow director filter list & hash */
5234         ret = hns3_fdir_filter_init(hns);
5235         if (ret) {
5236                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5237                 goto err_fdir;
5238         }
5239
5240         hns3_rss_set_default_args(hw);
5241
5242         ret = hns3_enable_hw_error_intr(hns, true);
5243         if (ret) {
5244                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5245                              ret);
5246                 goto err_enable_intr;
5247         }
5248
5249         ret = hns3_get_port_supported_speed(eth_dev);
5250         if (ret) {
5251                 PMD_INIT_LOG(ERR, "failed to get speed capabilities supported "
5252                              "by device, ret = %d.", ret);
5253                 goto err_supported_speed;
5254         }
5255
5256         hns3_get_fc_autoneg_capability(hns);
5257
5258         hns3_tm_conf_init(eth_dev);
5259
5260         return 0;
5261
5262 err_supported_speed:
5263         (void)hns3_enable_hw_error_intr(hns, false);
5264 err_enable_intr:
5265         hns3_fdir_filter_uninit(hns);
5266 err_fdir:
5267         hns3_uninit_umv_space(hw);
5268 err_init_hw:
5269         hns3_tqp_stats_uninit(hw);
5270 err_get_config:
5271         hns3_pf_disable_irq0(hw);
5272         rte_intr_disable(&pci_dev->intr_handle);
5273         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5274                              eth_dev);
5275 err_intr_callback_register:
5276 err_cmd_init:
5277         hns3_cmd_uninit(hw);
5278         hns3_cmd_destroy_queue(hw);
5279 err_cmd_init_queue:
5280         hw->io_base = NULL;
5281
5282         return ret;
5283 }
5284
5285 static void
5286 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5287 {
5288         struct hns3_adapter *hns = eth_dev->data->dev_private;
5289         struct rte_device *dev = eth_dev->device;
5290         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5291         struct hns3_hw *hw = &hns->hw;
5292
5293         PMD_INIT_FUNC_TRACE();
5294
5295         hns3_tm_conf_uninit(eth_dev);
5296         hns3_enable_hw_error_intr(hns, false);
5297         hns3_rss_uninit(hns);
5298         (void)hns3_config_gro(hw, false);
5299         hns3_promisc_uninit(hw);
5300         hns3_fdir_filter_uninit(hns);
5301         hns3_uninit_umv_space(hw);
5302         hns3_tqp_stats_uninit(hw);
5303         hns3_config_mac_tnl_int(hw, false);
5304         hns3_pf_disable_irq0(hw);
5305         rte_intr_disable(&pci_dev->intr_handle);
5306         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5307                              eth_dev);
5308         hns3_config_all_msix_error(hw, false);
5309         hns3_cmd_uninit(hw);
5310         hns3_cmd_destroy_queue(hw);
5311         hw->io_base = NULL;
5312 }
5313
5314 static uint32_t
5315 hns3_convert_link_speeds2bitmap_copper(uint32_t link_speeds)
5316 {
5317         uint32_t speed_bit;
5318
5319         switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5320         case ETH_LINK_SPEED_10M:
5321                 speed_bit = HNS3_PHY_LINK_SPEED_10M_BIT;
5322                 break;
5323         case ETH_LINK_SPEED_10M_HD:
5324                 speed_bit = HNS3_PHY_LINK_SPEED_10M_HD_BIT;
5325                 break;
5326         case ETH_LINK_SPEED_100M:
5327                 speed_bit = HNS3_PHY_LINK_SPEED_100M_BIT;
5328                 break;
5329         case ETH_LINK_SPEED_100M_HD:
5330                 speed_bit = HNS3_PHY_LINK_SPEED_100M_HD_BIT;
5331                 break;
5332         case ETH_LINK_SPEED_1G:
5333                 speed_bit = HNS3_PHY_LINK_SPEED_1000M_BIT;
5334                 break;
5335         default:
5336                 speed_bit = 0;
5337                 break;
5338         }
5339
5340         return speed_bit;
5341 }
5342
5343 static uint32_t
5344 hns3_convert_link_speeds2bitmap_fiber(uint32_t link_speeds)
5345 {
5346         uint32_t speed_bit;
5347
5348         switch (link_speeds & ~ETH_LINK_SPEED_FIXED) {
5349         case ETH_LINK_SPEED_1G:
5350                 speed_bit = HNS3_FIBER_LINK_SPEED_1G_BIT;
5351                 break;
5352         case ETH_LINK_SPEED_10G:
5353                 speed_bit = HNS3_FIBER_LINK_SPEED_10G_BIT;
5354                 break;
5355         case ETH_LINK_SPEED_25G:
5356                 speed_bit = HNS3_FIBER_LINK_SPEED_25G_BIT;
5357                 break;
5358         case ETH_LINK_SPEED_40G:
5359                 speed_bit = HNS3_FIBER_LINK_SPEED_40G_BIT;
5360                 break;
5361         case ETH_LINK_SPEED_50G:
5362                 speed_bit = HNS3_FIBER_LINK_SPEED_50G_BIT;
5363                 break;
5364         case ETH_LINK_SPEED_100G:
5365                 speed_bit = HNS3_FIBER_LINK_SPEED_100G_BIT;
5366                 break;
5367         case ETH_LINK_SPEED_200G:
5368                 speed_bit = HNS3_FIBER_LINK_SPEED_200G_BIT;
5369                 break;
5370         default:
5371                 speed_bit = 0;
5372                 break;
5373         }
5374
5375         return speed_bit;
5376 }
5377
5378 static int
5379 hns3_check_port_speed(struct hns3_hw *hw, uint32_t link_speeds)
5380 {
5381         struct hns3_mac *mac = &hw->mac;
5382         uint32_t supported_speed = mac->supported_speed;
5383         uint32_t speed_bit = 0;
5384
5385         if (mac->media_type == HNS3_MEDIA_TYPE_COPPER)
5386                 speed_bit = hns3_convert_link_speeds2bitmap_copper(link_speeds);
5387         else if (mac->media_type == HNS3_MEDIA_TYPE_FIBER)
5388                 speed_bit = hns3_convert_link_speeds2bitmap_fiber(link_speeds);
5389
5390         if (!(speed_bit & supported_speed)) {
5391                 hns3_err(hw, "link_speeds(0x%x) exceeds the supported speed capability or is incorrect.",
5392                          link_speeds);
5393                 return -EINVAL;
5394         }
5395
5396         return 0;
5397 }
5398
5399 static inline uint32_t
5400 hns3_get_link_speed(uint32_t link_speeds)
5401 {
5402         uint32_t speed = ETH_SPEED_NUM_NONE;
5403
5404         if (link_speeds & ETH_LINK_SPEED_10M ||
5405             link_speeds & ETH_LINK_SPEED_10M_HD)
5406                 speed = ETH_SPEED_NUM_10M;
5407         if (link_speeds & ETH_LINK_SPEED_100M ||
5408             link_speeds & ETH_LINK_SPEED_100M_HD)
5409                 speed = ETH_SPEED_NUM_100M;
5410         if (link_speeds & ETH_LINK_SPEED_1G)
5411                 speed = ETH_SPEED_NUM_1G;
5412         if (link_speeds & ETH_LINK_SPEED_10G)
5413                 speed = ETH_SPEED_NUM_10G;
5414         if (link_speeds & ETH_LINK_SPEED_25G)
5415                 speed = ETH_SPEED_NUM_25G;
5416         if (link_speeds & ETH_LINK_SPEED_40G)
5417                 speed = ETH_SPEED_NUM_40G;
5418         if (link_speeds & ETH_LINK_SPEED_50G)
5419                 speed = ETH_SPEED_NUM_50G;
5420         if (link_speeds & ETH_LINK_SPEED_100G)
5421                 speed = ETH_SPEED_NUM_100G;
5422         if (link_speeds & ETH_LINK_SPEED_200G)
5423                 speed = ETH_SPEED_NUM_200G;
5424
5425         return speed;
5426 }
5427
5428 static uint8_t
5429 hns3_get_link_duplex(uint32_t link_speeds)
5430 {
5431         if ((link_speeds & ETH_LINK_SPEED_10M_HD) ||
5432             (link_speeds & ETH_LINK_SPEED_100M_HD))
5433                 return ETH_LINK_HALF_DUPLEX;
5434         else
5435                 return ETH_LINK_FULL_DUPLEX;
5436 }
5437
5438 static int
5439 hns3_set_copper_port_link_speed(struct hns3_hw *hw,
5440                                 struct hns3_set_link_speed_cfg *cfg)
5441 {
5442         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
5443         struct hns3_phy_params_bd0_cmd *req;
5444         uint16_t i;
5445
5446         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
5447                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
5448                                           false);
5449                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
5450         }
5451         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, false);
5452         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
5453         req->autoneg = cfg->autoneg;
5454
5455         /*
5456          * The full speed capability is used to negotiate when
5457          * auto-negotiation is enabled.
5458          */
5459         if (cfg->autoneg) {
5460                 req->advertising = HNS3_PHY_LINK_SPEED_10M_BIT |
5461                                     HNS3_PHY_LINK_SPEED_10M_HD_BIT |
5462                                     HNS3_PHY_LINK_SPEED_100M_BIT |
5463                                     HNS3_PHY_LINK_SPEED_100M_HD_BIT |
5464                                     HNS3_PHY_LINK_SPEED_1000M_BIT;
5465         } else {
5466                 req->speed = cfg->speed;
5467                 req->duplex = cfg->duplex;
5468         }
5469
5470         return hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
5471 }
5472
5473 static int
5474 hns3_set_autoneg(struct hns3_hw *hw, bool enable)
5475 {
5476         struct hns3_config_auto_neg_cmd *req;
5477         struct hns3_cmd_desc desc;
5478         uint32_t flag = 0;
5479         int ret;
5480
5481         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_AN_MODE, false);
5482
5483         req = (struct hns3_config_auto_neg_cmd *)desc.data;
5484         if (enable)
5485                 hns3_set_bit(flag, HNS3_MAC_CFG_AN_EN_B, 1);
5486         req->cfg_an_cmd_flag = rte_cpu_to_le_32(flag);
5487
5488         ret = hns3_cmd_send(hw, &desc, 1);
5489         if (ret)
5490                 hns3_err(hw, "autoneg set cmd failed, ret = %d.", ret);
5491
5492         return ret;
5493 }
5494
5495 static int
5496 hns3_set_fiber_port_link_speed(struct hns3_hw *hw,
5497                                struct hns3_set_link_speed_cfg *cfg)
5498 {
5499         int ret;
5500
5501         if (hw->mac.support_autoneg) {
5502                 ret = hns3_set_autoneg(hw, cfg->autoneg);
5503                 if (ret) {
5504                         hns3_err(hw, "failed to configure auto-negotiation.");
5505                         return ret;
5506                 }
5507
5508                 /*
5509                  * To enable auto-negotiation, we only need to open the switch
5510                  * of auto-negotiation, then firmware sets all speed
5511                  * capabilities.
5512                  */
5513                 if (cfg->autoneg)
5514                         return 0;
5515         }
5516
5517         /*
5518          * Some hardware doesn't support auto-negotiation, but users may not
5519          * configure link_speeds (default 0), which means auto-negotiation.
5520          * In this case, it should return success.
5521          */
5522         if (cfg->autoneg)
5523                 return 0;
5524
5525         return hns3_cfg_mac_speed_dup(hw, cfg->speed, cfg->duplex);
5526 }
5527
5528 static int
5529 hns3_set_port_link_speed(struct hns3_hw *hw,
5530                          struct hns3_set_link_speed_cfg *cfg)
5531 {
5532         int ret;
5533
5534         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER) {
5535 #if defined(RTE_HNS3_ONLY_1630_FPGA)
5536                 struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
5537                 if (pf->is_tmp_phy)
5538                         return 0;
5539 #endif
5540
5541                 ret = hns3_set_copper_port_link_speed(hw, cfg);
5542                 if (ret) {
5543                         hns3_err(hw, "failed to set copper port link speed,"
5544                                  "ret = %d.", ret);
5545                         return ret;
5546                 }
5547         } else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER) {
5548                 ret = hns3_set_fiber_port_link_speed(hw, cfg);
5549                 if (ret) {
5550                         hns3_err(hw, "failed to set fiber port link speed,"
5551                                  "ret = %d.", ret);
5552                         return ret;
5553                 }
5554         }
5555
5556         return 0;
5557 }
5558
5559 static int
5560 hns3_apply_link_speed(struct hns3_hw *hw)
5561 {
5562         struct rte_eth_conf *conf = &hw->data->dev_conf;
5563         struct hns3_set_link_speed_cfg cfg;
5564
5565         memset(&cfg, 0, sizeof(struct hns3_set_link_speed_cfg));
5566         cfg.autoneg = (conf->link_speeds == ETH_LINK_SPEED_AUTONEG) ?
5567                         ETH_LINK_AUTONEG : ETH_LINK_FIXED;
5568         if (cfg.autoneg != ETH_LINK_AUTONEG) {
5569                 cfg.speed = hns3_get_link_speed(conf->link_speeds);
5570                 cfg.duplex = hns3_get_link_duplex(conf->link_speeds);
5571         }
5572
5573         return hns3_set_port_link_speed(hw, &cfg);
5574 }
5575
5576 static int
5577 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5578 {
5579         struct hns3_hw *hw = &hns->hw;
5580         int ret;
5581
5582         ret = hns3_update_queue_map_configure(hns);
5583         if (ret) {
5584                 hns3_err(hw, "failed to update queue mapping configuration, ret = %d",
5585                          ret);
5586                 return ret;
5587         }
5588
5589         /* Note: hns3_tm_conf_update must be called after configuring DCB. */
5590         ret = hns3_tm_conf_update(hw);
5591         if (ret) {
5592                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5593                 return ret;
5594         }
5595
5596         hns3_enable_rxd_adv_layout(hw);
5597
5598         ret = hns3_init_queues(hns, reset_queue);
5599         if (ret) {
5600                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5601                 return ret;
5602         }
5603
5604         ret = hns3_cfg_mac_mode(hw, true);
5605         if (ret) {
5606                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5607                 goto err_config_mac_mode;
5608         }
5609
5610         ret = hns3_apply_link_speed(hw);
5611         if (ret)
5612                 goto err_set_link_speed;
5613
5614         return 0;
5615
5616 err_set_link_speed:
5617         (void)hns3_cfg_mac_mode(hw, false);
5618
5619 err_config_mac_mode:
5620         hns3_dev_release_mbufs(hns);
5621         /*
5622          * Here is exception handling, hns3_reset_all_tqps will have the
5623          * corresponding error message if it is handled incorrectly, so it is
5624          * not necessary to check hns3_reset_all_tqps return value, here keep
5625          * ret as the error code causing the exception.
5626          */
5627         (void)hns3_reset_all_tqps(hns);
5628         return ret;
5629 }
5630
5631 static int
5632 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5633 {
5634         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5635         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5636         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5637         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5638         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5639         uint32_t intr_vector;
5640         uint16_t q_id;
5641         int ret;
5642
5643         /*
5644          * hns3 needs a separate interrupt to be used as event interrupt which
5645          * could not be shared with task queue pair, so KERNEL drivers need
5646          * support multiple interrupt vectors.
5647          */
5648         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5649             !rte_intr_cap_multiple(intr_handle))
5650                 return 0;
5651
5652         rte_intr_disable(intr_handle);
5653         intr_vector = hw->used_rx_queues;
5654         /* creates event fd for each intr vector when MSIX is used */
5655         if (rte_intr_efd_enable(intr_handle, intr_vector))
5656                 return -EINVAL;
5657
5658         if (intr_handle->intr_vec == NULL) {
5659                 intr_handle->intr_vec =
5660                         rte_zmalloc("intr_vec",
5661                                     hw->used_rx_queues * sizeof(int), 0);
5662                 if (intr_handle->intr_vec == NULL) {
5663                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5664                                         hw->used_rx_queues);
5665                         ret = -ENOMEM;
5666                         goto alloc_intr_vec_error;
5667                 }
5668         }
5669
5670         if (rte_intr_allow_others(intr_handle)) {
5671                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5672                 base = RTE_INTR_VEC_RXTX_OFFSET;
5673         }
5674
5675         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5676                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5677                                                  HNS3_RING_TYPE_RX, q_id);
5678                 if (ret)
5679                         goto bind_vector_error;
5680                 intr_handle->intr_vec[q_id] = vec;
5681                 /*
5682                  * If there are not enough efds (e.g. not enough interrupt),
5683                  * remaining queues will be bond to the last interrupt.
5684                  */
5685                 if (vec < base + intr_handle->nb_efd - 1)
5686                         vec++;
5687         }
5688         rte_intr_enable(intr_handle);
5689         return 0;
5690
5691 bind_vector_error:
5692         rte_free(intr_handle->intr_vec);
5693         intr_handle->intr_vec = NULL;
5694 alloc_intr_vec_error:
5695         rte_intr_efd_disable(intr_handle);
5696         return ret;
5697 }
5698
5699 static int
5700 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5701 {
5702         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5703         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5704         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5705         uint16_t q_id;
5706         int ret;
5707
5708         if (dev->data->dev_conf.intr_conf.rxq == 0)
5709                 return 0;
5710
5711         if (rte_intr_dp_is_en(intr_handle)) {
5712                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5713                         ret = hns3_bind_ring_with_vector(hw,
5714                                         intr_handle->intr_vec[q_id], true,
5715                                         HNS3_RING_TYPE_RX, q_id);
5716                         if (ret)
5717                                 return ret;
5718                 }
5719         }
5720
5721         return 0;
5722 }
5723
5724 static void
5725 hns3_restore_filter(struct rte_eth_dev *dev)
5726 {
5727         hns3_restore_rss_filter(dev);
5728 }
5729
5730 static int
5731 hns3_dev_start(struct rte_eth_dev *dev)
5732 {
5733         struct hns3_adapter *hns = dev->data->dev_private;
5734         struct hns3_hw *hw = &hns->hw;
5735         int ret;
5736
5737         PMD_INIT_FUNC_TRACE();
5738         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5739                 return -EBUSY;
5740
5741         rte_spinlock_lock(&hw->lock);
5742         hw->adapter_state = HNS3_NIC_STARTING;
5743
5744         ret = hns3_do_start(hns, true);
5745         if (ret) {
5746                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5747                 rte_spinlock_unlock(&hw->lock);
5748                 return ret;
5749         }
5750         ret = hns3_map_rx_interrupt(dev);
5751         if (ret)
5752                 goto map_rx_inter_err;
5753
5754         /*
5755          * There are three register used to control the status of a TQP
5756          * (contains a pair of Tx queue and Rx queue) in the new version network
5757          * engine. One is used to control the enabling of Tx queue, the other is
5758          * used to control the enabling of Rx queue, and the last is the master
5759          * switch used to control the enabling of the tqp. The Tx register and
5760          * TQP register must be enabled at the same time to enable a Tx queue.
5761          * The same applies to the Rx queue. For the older network engine, this
5762          * function only refresh the enabled flag, and it is used to update the
5763          * status of queue in the dpdk framework.
5764          */
5765         ret = hns3_start_all_txqs(dev);
5766         if (ret)
5767                 goto map_rx_inter_err;
5768
5769         ret = hns3_start_all_rxqs(dev);
5770         if (ret)
5771                 goto start_all_rxqs_fail;
5772
5773         hw->adapter_state = HNS3_NIC_STARTED;
5774         rte_spinlock_unlock(&hw->lock);
5775
5776         hns3_rx_scattered_calc(dev);
5777         hns3_set_rxtx_function(dev);
5778         hns3_mp_req_start_rxtx(dev);
5779
5780         hns3_restore_filter(dev);
5781
5782         /* Enable interrupt of all rx queues before enabling queues */
5783         hns3_dev_all_rx_queue_intr_enable(hw, true);
5784
5785         /*
5786          * After finished the initialization, enable tqps to receive/transmit
5787          * packets and refresh all queue status.
5788          */
5789         hns3_start_tqps(hw);
5790
5791         hns3_tm_dev_start_proc(hw);
5792
5793         if (dev->data->dev_conf.intr_conf.lsc != 0)
5794                 hns3_dev_link_update(dev, 0);
5795         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5796
5797         hns3_info(hw, "hns3 dev start successful!");
5798
5799         return 0;
5800
5801 start_all_rxqs_fail:
5802         hns3_stop_all_txqs(dev);
5803 map_rx_inter_err:
5804         (void)hns3_do_stop(hns);
5805         hw->adapter_state = HNS3_NIC_CONFIGURED;
5806         rte_spinlock_unlock(&hw->lock);
5807
5808         return ret;
5809 }
5810
5811 static int
5812 hns3_do_stop(struct hns3_adapter *hns)
5813 {
5814         struct hns3_hw *hw = &hns->hw;
5815         int ret;
5816
5817         /*
5818          * The "hns3_do_stop" function will also be called by .stop_service to
5819          * prepare reset. At the time of global or IMP reset, the command cannot
5820          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5821          * accessed during the reset process. So the mbuf can not be released
5822          * during reset and is required to be released after the reset is
5823          * completed.
5824          */
5825         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5826                 hns3_dev_release_mbufs(hns);
5827
5828         ret = hns3_cfg_mac_mode(hw, false);
5829         if (ret)
5830                 return ret;
5831         hw->mac.link_status = ETH_LINK_DOWN;
5832
5833         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5834                 hns3_configure_all_mac_addr(hns, true);
5835                 ret = hns3_reset_all_tqps(hns);
5836                 if (ret) {
5837                         hns3_err(hw, "failed to reset all queues ret = %d.",
5838                                  ret);
5839                         return ret;
5840                 }
5841         }
5842         hw->mac.default_addr_setted = false;
5843         return 0;
5844 }
5845
5846 static void
5847 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5848 {
5849         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5850         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5851         struct hns3_adapter *hns = dev->data->dev_private;
5852         struct hns3_hw *hw = &hns->hw;
5853         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5854         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5855         uint16_t q_id;
5856
5857         if (dev->data->dev_conf.intr_conf.rxq == 0)
5858                 return;
5859
5860         /* unmap the ring with vector */
5861         if (rte_intr_allow_others(intr_handle)) {
5862                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5863                 base = RTE_INTR_VEC_RXTX_OFFSET;
5864         }
5865         if (rte_intr_dp_is_en(intr_handle)) {
5866                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5867                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5868                                                          HNS3_RING_TYPE_RX,
5869                                                          q_id);
5870                         if (vec < base + intr_handle->nb_efd - 1)
5871                                 vec++;
5872                 }
5873         }
5874         /* Clean datapath event and queue/vec mapping */
5875         rte_intr_efd_disable(intr_handle);
5876         if (intr_handle->intr_vec) {
5877                 rte_free(intr_handle->intr_vec);
5878                 intr_handle->intr_vec = NULL;
5879         }
5880 }
5881
5882 static int
5883 hns3_dev_stop(struct rte_eth_dev *dev)
5884 {
5885         struct hns3_adapter *hns = dev->data->dev_private;
5886         struct hns3_hw *hw = &hns->hw;
5887
5888         PMD_INIT_FUNC_TRACE();
5889         dev->data->dev_started = 0;
5890
5891         hw->adapter_state = HNS3_NIC_STOPPING;
5892         hns3_set_rxtx_function(dev);
5893         rte_wmb();
5894         /* Disable datapath on secondary process. */
5895         hns3_mp_req_stop_rxtx(dev);
5896         /* Prevent crashes when queues are still in use. */
5897         rte_delay_ms(hw->cfg_max_queues);
5898
5899         rte_spinlock_lock(&hw->lock);
5900         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5901                 hns3_tm_dev_stop_proc(hw);
5902                 hns3_config_mac_tnl_int(hw, false);
5903                 hns3_stop_tqps(hw);
5904                 hns3_do_stop(hns);
5905                 hns3_unmap_rx_interrupt(dev);
5906                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5907         }
5908         hns3_rx_scattered_reset(dev);
5909         rte_eal_alarm_cancel(hns3_service_handler, dev);
5910         hns3_stop_report_lse(dev);
5911         rte_spinlock_unlock(&hw->lock);
5912
5913         return 0;
5914 }
5915
5916 static int
5917 hns3_dev_close(struct rte_eth_dev *eth_dev)
5918 {
5919         struct hns3_adapter *hns = eth_dev->data->dev_private;
5920         struct hns3_hw *hw = &hns->hw;
5921         int ret = 0;
5922
5923         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5924                 rte_free(eth_dev->process_private);
5925                 eth_dev->process_private = NULL;
5926                 return 0;
5927         }
5928
5929         if (hw->adapter_state == HNS3_NIC_STARTED)
5930                 ret = hns3_dev_stop(eth_dev);
5931
5932         hw->adapter_state = HNS3_NIC_CLOSING;
5933         hns3_reset_abort(hns);
5934         hw->adapter_state = HNS3_NIC_CLOSED;
5935
5936         hns3_configure_all_mc_mac_addr(hns, true);
5937         hns3_remove_all_vlan_table(hns);
5938         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5939         hns3_uninit_pf(eth_dev);
5940         hns3_free_all_queues(eth_dev);
5941         rte_free(hw->reset.wait_data);
5942         rte_free(eth_dev->process_private);
5943         eth_dev->process_private = NULL;
5944         hns3_mp_uninit_primary();
5945         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5946
5947         return ret;
5948 }
5949
5950 static void
5951 hns3_get_autoneg_rxtx_pause_copper(struct hns3_hw *hw, bool *rx_pause,
5952                                    bool *tx_pause)
5953 {
5954         struct hns3_mac *mac = &hw->mac;
5955         uint32_t advertising = mac->advertising;
5956         uint32_t lp_advertising = mac->lp_advertising;
5957         *rx_pause = false;
5958         *tx_pause = false;
5959
5960         if (advertising & lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT) {
5961                 *rx_pause = true;
5962                 *tx_pause = true;
5963         } else if (advertising & lp_advertising &
5964                    HNS3_PHY_LINK_MODE_ASYM_PAUSE_BIT) {
5965                 if (advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5966                         *rx_pause = true;
5967                 else if (lp_advertising & HNS3_PHY_LINK_MODE_PAUSE_BIT)
5968                         *tx_pause = true;
5969         }
5970 }
5971
5972 static enum hns3_fc_mode
5973 hns3_get_autoneg_fc_mode(struct hns3_hw *hw)
5974 {
5975         enum hns3_fc_mode current_mode;
5976         bool rx_pause = false;
5977         bool tx_pause = false;
5978
5979         switch (hw->mac.media_type) {
5980         case HNS3_MEDIA_TYPE_COPPER:
5981                 hns3_get_autoneg_rxtx_pause_copper(hw, &rx_pause, &tx_pause);
5982                 break;
5983
5984         /*
5985          * Flow control auto-negotiation is not supported for fiber and
5986          * backpalne media type.
5987          */
5988         case HNS3_MEDIA_TYPE_FIBER:
5989         case HNS3_MEDIA_TYPE_BACKPLANE:
5990                 hns3_err(hw, "autoneg FC mode can't be obtained, but flow control auto-negotiation is enabled.");
5991                 current_mode = hw->requested_fc_mode;
5992                 goto out;
5993         default:
5994                 hns3_err(hw, "autoneg FC mode can't be obtained for unknown media type(%u).",
5995                          hw->mac.media_type);
5996                 current_mode = HNS3_FC_NONE;
5997                 goto out;
5998         }
5999
6000         if (rx_pause && tx_pause)
6001                 current_mode = HNS3_FC_FULL;
6002         else if (rx_pause)
6003                 current_mode = HNS3_FC_RX_PAUSE;
6004         else if (tx_pause)
6005                 current_mode = HNS3_FC_TX_PAUSE;
6006         else
6007                 current_mode = HNS3_FC_NONE;
6008
6009 out:
6010         return current_mode;
6011 }
6012
6013 static enum hns3_fc_mode
6014 hns3_get_current_fc_mode(struct rte_eth_dev *dev)
6015 {
6016         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6017         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6018         struct hns3_mac *mac = &hw->mac;
6019
6020         /*
6021          * When the flow control mode is obtained, the device may not complete
6022          * auto-negotiation. It is necessary to wait for link establishment.
6023          */
6024         (void)hns3_dev_link_update(dev, 1);
6025
6026         /*
6027          * If the link auto-negotiation of the nic is disabled, or the flow
6028          * control auto-negotiation is not supported, the forced flow control
6029          * mode is used.
6030          */
6031         if (mac->link_autoneg == 0 || !pf->support_fc_autoneg)
6032                 return hw->requested_fc_mode;
6033
6034         return hns3_get_autoneg_fc_mode(hw);
6035 }
6036
6037 static int
6038 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6039 {
6040         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6041         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6042         enum hns3_fc_mode current_mode;
6043
6044         current_mode = hns3_get_current_fc_mode(dev);
6045         switch (current_mode) {
6046         case HNS3_FC_FULL:
6047                 fc_conf->mode = RTE_FC_FULL;
6048                 break;
6049         case HNS3_FC_TX_PAUSE:
6050                 fc_conf->mode = RTE_FC_TX_PAUSE;
6051                 break;
6052         case HNS3_FC_RX_PAUSE:
6053                 fc_conf->mode = RTE_FC_RX_PAUSE;
6054                 break;
6055         case HNS3_FC_NONE:
6056         default:
6057                 fc_conf->mode = RTE_FC_NONE;
6058                 break;
6059         }
6060
6061         fc_conf->pause_time = pf->pause_time;
6062         fc_conf->autoneg = pf->support_fc_autoneg ? hw->mac.link_autoneg : 0;
6063
6064         return 0;
6065 }
6066
6067 static int
6068 hns3_check_fc_autoneg_valid(struct hns3_hw *hw, uint8_t autoneg)
6069 {
6070         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
6071
6072         if (!pf->support_fc_autoneg) {
6073                 if (autoneg != 0) {
6074                         hns3_err(hw, "unsupported fc auto-negotiation setting.");
6075                         return -EOPNOTSUPP;
6076                 }
6077
6078                 /*
6079                  * Flow control auto-negotiation of the NIC is not supported,
6080                  * but other auto-negotiation features may be supported.
6081                  */
6082                 if (autoneg != hw->mac.link_autoneg) {
6083                         hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to disable autoneg!");
6084                         return -EOPNOTSUPP;
6085                 }
6086
6087                 return 0;
6088         }
6089
6090         /*
6091          * If flow control auto-negotiation of the NIC is supported, all
6092          * auto-negotiation features are supported.
6093          */
6094         if (autoneg != hw->mac.link_autoneg) {
6095                 hns3_err(hw, "please use 'link_speeds' in struct rte_eth_conf to change autoneg!");
6096                 return -EOPNOTSUPP;
6097         }
6098
6099         return 0;
6100 }
6101
6102 static int
6103 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
6104 {
6105         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6106         int ret;
6107
6108         if (fc_conf->high_water || fc_conf->low_water ||
6109             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
6110                 hns3_err(hw, "Unsupported flow control settings specified, "
6111                          "high_water(%u), low_water(%u), send_xon(%u) and "
6112                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
6113                          fc_conf->high_water, fc_conf->low_water,
6114                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
6115                 return -EINVAL;
6116         }
6117
6118         ret = hns3_check_fc_autoneg_valid(hw, fc_conf->autoneg);
6119         if (ret)
6120                 return ret;
6121
6122         if (!fc_conf->pause_time) {
6123                 hns3_err(hw, "Invalid pause time %u setting.",
6124                          fc_conf->pause_time);
6125                 return -EINVAL;
6126         }
6127
6128         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6129             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
6130                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
6131                          "current_fc_status = %d", hw->current_fc_status);
6132                 return -EOPNOTSUPP;
6133         }
6134
6135         if (hw->num_tc > 1) {
6136                 hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
6137                 return -EOPNOTSUPP;
6138         }
6139
6140         rte_spinlock_lock(&hw->lock);
6141         ret = hns3_fc_enable(dev, fc_conf);
6142         rte_spinlock_unlock(&hw->lock);
6143
6144         return ret;
6145 }
6146
6147 static int
6148 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
6149                             struct rte_eth_pfc_conf *pfc_conf)
6150 {
6151         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6152         int ret;
6153
6154         if (!hns3_dev_dcb_supported(hw)) {
6155                 hns3_err(hw, "This port does not support dcb configurations.");
6156                 return -EOPNOTSUPP;
6157         }
6158
6159         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
6160             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
6161                 hns3_err(hw, "Unsupported flow control settings specified, "
6162                          "high_water(%u), low_water(%u), send_xon(%u) and "
6163                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
6164                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
6165                          pfc_conf->fc.send_xon,
6166                          pfc_conf->fc.mac_ctrl_frame_fwd);
6167                 return -EINVAL;
6168         }
6169         if (pfc_conf->fc.autoneg) {
6170                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
6171                 return -EINVAL;
6172         }
6173         if (pfc_conf->fc.pause_time == 0) {
6174                 hns3_err(hw, "Invalid pause time %u setting.",
6175                          pfc_conf->fc.pause_time);
6176                 return -EINVAL;
6177         }
6178
6179         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
6180             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
6181                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
6182                              "current_fc_status = %d", hw->current_fc_status);
6183                 return -EOPNOTSUPP;
6184         }
6185
6186         rte_spinlock_lock(&hw->lock);
6187         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
6188         rte_spinlock_unlock(&hw->lock);
6189
6190         return ret;
6191 }
6192
6193 static int
6194 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
6195 {
6196         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6197         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
6198         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
6199         int i;
6200
6201         rte_spinlock_lock(&hw->lock);
6202         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
6203                 dcb_info->nb_tcs = pf->local_max_tc;
6204         else
6205                 dcb_info->nb_tcs = 1;
6206
6207         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
6208                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
6209         for (i = 0; i < dcb_info->nb_tcs; i++)
6210                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
6211
6212         for (i = 0; i < hw->num_tc; i++) {
6213                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
6214                 dcb_info->tc_queue.tc_txq[0][i].base =
6215                                                 hw->tc_queue[i].tqp_offset;
6216                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
6217                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
6218                                                 hw->tc_queue[i].tqp_count;
6219         }
6220         rte_spinlock_unlock(&hw->lock);
6221
6222         return 0;
6223 }
6224
6225 static int
6226 hns3_reinit_dev(struct hns3_adapter *hns)
6227 {
6228         struct hns3_hw *hw = &hns->hw;
6229         int ret;
6230
6231         ret = hns3_cmd_init(hw);
6232         if (ret) {
6233                 hns3_err(hw, "Failed to init cmd: %d", ret);
6234                 return ret;
6235         }
6236
6237         ret = hns3_reset_all_tqps(hns);
6238         if (ret) {
6239                 hns3_err(hw, "Failed to reset all queues: %d", ret);
6240                 return ret;
6241         }
6242
6243         ret = hns3_init_hardware(hns);
6244         if (ret) {
6245                 hns3_err(hw, "Failed to init hardware: %d", ret);
6246                 return ret;
6247         }
6248
6249         ret = hns3_enable_hw_error_intr(hns, true);
6250         if (ret) {
6251                 hns3_err(hw, "fail to enable hw error interrupts: %d",
6252                              ret);
6253                 return ret;
6254         }
6255         hns3_info(hw, "Reset done, driver initialization finished.");
6256
6257         return 0;
6258 }
6259
6260 static bool
6261 is_pf_reset_done(struct hns3_hw *hw)
6262 {
6263         uint32_t val, reg, reg_bit;
6264
6265         switch (hw->reset.level) {
6266         case HNS3_IMP_RESET:
6267                 reg = HNS3_GLOBAL_RESET_REG;
6268                 reg_bit = HNS3_IMP_RESET_BIT;
6269                 break;
6270         case HNS3_GLOBAL_RESET:
6271                 reg = HNS3_GLOBAL_RESET_REG;
6272                 reg_bit = HNS3_GLOBAL_RESET_BIT;
6273                 break;
6274         case HNS3_FUNC_RESET:
6275                 reg = HNS3_FUN_RST_ING;
6276                 reg_bit = HNS3_FUN_RST_ING_B;
6277                 break;
6278         case HNS3_FLR_RESET:
6279         default:
6280                 hns3_err(hw, "Wait for unsupported reset level: %d",
6281                          hw->reset.level);
6282                 return true;
6283         }
6284         val = hns3_read_dev(hw, reg);
6285         if (hns3_get_bit(val, reg_bit))
6286                 return false;
6287         else
6288                 return true;
6289 }
6290
6291 bool
6292 hns3_is_reset_pending(struct hns3_adapter *hns)
6293 {
6294         struct hns3_hw *hw = &hns->hw;
6295         enum hns3_reset_level reset;
6296
6297         hns3_check_event_cause(hns, NULL);
6298         reset = hns3_get_reset_level(hns, &hw->reset.pending);
6299         if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6300             hw->reset.level < reset) {
6301                 hns3_warn(hw, "High level reset %d is pending", reset);
6302                 return true;
6303         }
6304         reset = hns3_get_reset_level(hns, &hw->reset.request);
6305         if (reset != HNS3_NONE_RESET && hw->reset.level != HNS3_NONE_RESET &&
6306             hw->reset.level < reset) {
6307                 hns3_warn(hw, "High level reset %d is request", reset);
6308                 return true;
6309         }
6310         return false;
6311 }
6312
6313 static int
6314 hns3_wait_hardware_ready(struct hns3_adapter *hns)
6315 {
6316         struct hns3_hw *hw = &hns->hw;
6317         struct hns3_wait_data *wait_data = hw->reset.wait_data;
6318         struct timeval tv;
6319
6320         if (wait_data->result == HNS3_WAIT_SUCCESS)
6321                 return 0;
6322         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
6323                 hns3_clock_gettime(&tv);
6324                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
6325                           tv.tv_sec, tv.tv_usec);
6326                 return -ETIME;
6327         } else if (wait_data->result == HNS3_WAIT_REQUEST)
6328                 return -EAGAIN;
6329
6330         wait_data->hns = hns;
6331         wait_data->check_completion = is_pf_reset_done;
6332         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
6333                                 HNS3_RESET_WAIT_MS + hns3_clock_gettime_ms();
6334         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
6335         wait_data->count = HNS3_RESET_WAIT_CNT;
6336         wait_data->result = HNS3_WAIT_REQUEST;
6337         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
6338         return -EAGAIN;
6339 }
6340
6341 static int
6342 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
6343 {
6344         struct hns3_cmd_desc desc;
6345         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
6346
6347         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
6348         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
6349         req->fun_reset_vfid = func_id;
6350
6351         return hns3_cmd_send(hw, &desc, 1);
6352 }
6353
6354 static int
6355 hns3_imp_reset_cmd(struct hns3_hw *hw)
6356 {
6357         struct hns3_cmd_desc desc;
6358
6359         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
6360         desc.data[0] = 0xeedd;
6361
6362         return hns3_cmd_send(hw, &desc, 1);
6363 }
6364
6365 static void
6366 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
6367 {
6368         struct hns3_hw *hw = &hns->hw;
6369         struct timeval tv;
6370         uint32_t val;
6371
6372         hns3_clock_gettime(&tv);
6373         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
6374             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
6375                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
6376                           tv.tv_sec, tv.tv_usec);
6377                 return;
6378         }
6379
6380         switch (reset_level) {
6381         case HNS3_IMP_RESET:
6382                 hns3_imp_reset_cmd(hw);
6383                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
6384                           tv.tv_sec, tv.tv_usec);
6385                 break;
6386         case HNS3_GLOBAL_RESET:
6387                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
6388                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
6389                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
6390                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
6391                           tv.tv_sec, tv.tv_usec);
6392                 break;
6393         case HNS3_FUNC_RESET:
6394                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
6395                           tv.tv_sec, tv.tv_usec);
6396                 /* schedule again to check later */
6397                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
6398                 hns3_schedule_reset(hns);
6399                 break;
6400         default:
6401                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
6402                 return;
6403         }
6404         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
6405 }
6406
6407 static enum hns3_reset_level
6408 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
6409 {
6410         struct hns3_hw *hw = &hns->hw;
6411         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
6412
6413         /* Return the highest priority reset level amongst all */
6414         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
6415                 reset_level = HNS3_IMP_RESET;
6416         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
6417                 reset_level = HNS3_GLOBAL_RESET;
6418         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
6419                 reset_level = HNS3_FUNC_RESET;
6420         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
6421                 reset_level = HNS3_FLR_RESET;
6422
6423         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
6424                 return HNS3_NONE_RESET;
6425
6426         return reset_level;
6427 }
6428
6429 static void
6430 hns3_record_imp_error(struct hns3_adapter *hns)
6431 {
6432         struct hns3_hw *hw = &hns->hw;
6433         uint32_t reg_val;
6434
6435         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6436         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
6437                 hns3_warn(hw, "Detected IMP RD poison!");
6438                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
6439                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6440         }
6441
6442         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
6443                 hns3_warn(hw, "Detected IMP CMDQ error!");
6444                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
6445                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
6446         }
6447 }
6448
6449 static int
6450 hns3_prepare_reset(struct hns3_adapter *hns)
6451 {
6452         struct hns3_hw *hw = &hns->hw;
6453         uint32_t reg_val;
6454         int ret;
6455
6456         switch (hw->reset.level) {
6457         case HNS3_FUNC_RESET:
6458                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
6459                 if (ret)
6460                         return ret;
6461
6462                 /*
6463                  * After performaning pf reset, it is not necessary to do the
6464                  * mailbox handling or send any command to firmware, because
6465                  * any mailbox handling or command to firmware is only valid
6466                  * after hns3_cmd_init is called.
6467                  */
6468                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
6469                 hw->reset.stats.request_cnt++;
6470                 break;
6471         case HNS3_IMP_RESET:
6472                 hns3_record_imp_error(hns);
6473                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
6474                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
6475                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
6476                 break;
6477         default:
6478                 break;
6479         }
6480         return 0;
6481 }
6482
6483 static int
6484 hns3_set_rst_done(struct hns3_hw *hw)
6485 {
6486         struct hns3_pf_rst_done_cmd *req;
6487         struct hns3_cmd_desc desc;
6488
6489         req = (struct hns3_pf_rst_done_cmd *)desc.data;
6490         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
6491         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
6492         return hns3_cmd_send(hw, &desc, 1);
6493 }
6494
6495 static int
6496 hns3_stop_service(struct hns3_adapter *hns)
6497 {
6498         struct hns3_hw *hw = &hns->hw;
6499         struct rte_eth_dev *eth_dev;
6500
6501         eth_dev = &rte_eth_devices[hw->data->port_id];
6502         hw->mac.link_status = ETH_LINK_DOWN;
6503         if (hw->adapter_state == HNS3_NIC_STARTED) {
6504                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
6505                 hns3_update_linkstatus_and_event(hw, false);
6506         }
6507
6508         hns3_set_rxtx_function(eth_dev);
6509         rte_wmb();
6510         /* Disable datapath on secondary process. */
6511         hns3_mp_req_stop_rxtx(eth_dev);
6512         rte_delay_ms(hw->cfg_max_queues);
6513
6514         rte_spinlock_lock(&hw->lock);
6515         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
6516             hw->adapter_state == HNS3_NIC_STOPPING) {
6517                 hns3_enable_all_queues(hw, false);
6518                 hns3_do_stop(hns);
6519                 hw->reset.mbuf_deferred_free = true;
6520         } else
6521                 hw->reset.mbuf_deferred_free = false;
6522
6523         /*
6524          * It is cumbersome for hardware to pick-and-choose entries for deletion
6525          * from table space. Hence, for function reset software intervention is
6526          * required to delete the entries
6527          */
6528         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
6529                 hns3_configure_all_mc_mac_addr(hns, true);
6530         rte_spinlock_unlock(&hw->lock);
6531
6532         return 0;
6533 }
6534
6535 static int
6536 hns3_start_service(struct hns3_adapter *hns)
6537 {
6538         struct hns3_hw *hw = &hns->hw;
6539         struct rte_eth_dev *eth_dev;
6540
6541         if (hw->reset.level == HNS3_IMP_RESET ||
6542             hw->reset.level == HNS3_GLOBAL_RESET)
6543                 hns3_set_rst_done(hw);
6544         eth_dev = &rte_eth_devices[hw->data->port_id];
6545         hns3_set_rxtx_function(eth_dev);
6546         hns3_mp_req_start_rxtx(eth_dev);
6547         if (hw->adapter_state == HNS3_NIC_STARTED) {
6548                 /*
6549                  * This API parent function already hold the hns3_hw.lock, the
6550                  * hns3_service_handler may report lse, in bonding application
6551                  * it will call driver's ops which may acquire the hns3_hw.lock
6552                  * again, thus lead to deadlock.
6553                  * We defer calls hns3_service_handler to avoid the deadlock.
6554                  */
6555                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
6556                                   hns3_service_handler, eth_dev);
6557
6558                 /* Enable interrupt of all rx queues before enabling queues */
6559                 hns3_dev_all_rx_queue_intr_enable(hw, true);
6560                 /*
6561                  * Enable state of each rxq and txq will be recovered after
6562                  * reset, so we need to restore them before enable all tqps;
6563                  */
6564                 hns3_restore_tqp_enable_state(hw);
6565                 /*
6566                  * When finished the initialization, enable queues to receive
6567                  * and transmit packets.
6568                  */
6569                 hns3_enable_all_queues(hw, true);
6570         }
6571
6572         return 0;
6573 }
6574
6575 static int
6576 hns3_restore_conf(struct hns3_adapter *hns)
6577 {
6578         struct hns3_hw *hw = &hns->hw;
6579         int ret;
6580
6581         ret = hns3_configure_all_mac_addr(hns, false);
6582         if (ret)
6583                 return ret;
6584
6585         ret = hns3_configure_all_mc_mac_addr(hns, false);
6586         if (ret)
6587                 goto err_mc_mac;
6588
6589         ret = hns3_dev_promisc_restore(hns);
6590         if (ret)
6591                 goto err_promisc;
6592
6593         ret = hns3_restore_vlan_table(hns);
6594         if (ret)
6595                 goto err_promisc;
6596
6597         ret = hns3_restore_vlan_conf(hns);
6598         if (ret)
6599                 goto err_promisc;
6600
6601         ret = hns3_restore_all_fdir_filter(hns);
6602         if (ret)
6603                 goto err_promisc;
6604
6605         ret = hns3_restore_ptp(hns);
6606         if (ret)
6607                 goto err_promisc;
6608
6609         ret = hns3_restore_rx_interrupt(hw);
6610         if (ret)
6611                 goto err_promisc;
6612
6613         ret = hns3_restore_gro_conf(hw);
6614         if (ret)
6615                 goto err_promisc;
6616
6617         ret = hns3_restore_fec(hw);
6618         if (ret)
6619                 goto err_promisc;
6620
6621         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6622                 ret = hns3_do_start(hns, false);
6623                 if (ret)
6624                         goto err_promisc;
6625                 hns3_info(hw, "hns3 dev restart successful!");
6626         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
6627                 hw->adapter_state = HNS3_NIC_CONFIGURED;
6628         return 0;
6629
6630 err_promisc:
6631         hns3_configure_all_mc_mac_addr(hns, true);
6632 err_mc_mac:
6633         hns3_configure_all_mac_addr(hns, true);
6634         return ret;
6635 }
6636
6637 static void
6638 hns3_reset_service(void *param)
6639 {
6640         struct hns3_adapter *hns = (struct hns3_adapter *)param;
6641         struct hns3_hw *hw = &hns->hw;
6642         enum hns3_reset_level reset_level;
6643         struct timeval tv_delta;
6644         struct timeval tv_start;
6645         struct timeval tv;
6646         uint64_t msec;
6647         int ret;
6648
6649         /*
6650          * The interrupt is not triggered within the delay time.
6651          * The interrupt may have been lost. It is necessary to handle
6652          * the interrupt to recover from the error.
6653          */
6654         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6655                             SCHEDULE_DEFERRED) {
6656                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6657                                   __ATOMIC_RELAXED);
6658                 hns3_err(hw, "Handling interrupts in delayed tasks");
6659                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6660                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6661                 if (reset_level == HNS3_NONE_RESET) {
6662                         hns3_err(hw, "No reset level is set, try IMP reset");
6663                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6664                 }
6665         }
6666         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6667
6668         /*
6669          * Check if there is any ongoing reset in the hardware. This status can
6670          * be checked from reset_pending. If there is then, we need to wait for
6671          * hardware to complete reset.
6672          *    a. If we are able to figure out in reasonable time that hardware
6673          *       has fully resetted then, we can proceed with driver, client
6674          *       reset.
6675          *    b. else, we can come back later to check this status so re-sched
6676          *       now.
6677          */
6678         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6679         if (reset_level != HNS3_NONE_RESET) {
6680                 hns3_clock_gettime(&tv_start);
6681                 ret = hns3_reset_process(hns, reset_level);
6682                 hns3_clock_gettime(&tv);
6683                 timersub(&tv, &tv_start, &tv_delta);
6684                 msec = hns3_clock_calctime_ms(&tv_delta);
6685                 if (msec > HNS3_RESET_PROCESS_MS)
6686                         hns3_err(hw, "%d handle long time delta %" PRIu64
6687                                      " ms time=%ld.%.6ld",
6688                                  hw->reset.level, msec,
6689                                  tv.tv_sec, tv.tv_usec);
6690                 if (ret == -EAGAIN)
6691                         return;
6692         }
6693
6694         /* Check if we got any *new* reset requests to be honored */
6695         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6696         if (reset_level != HNS3_NONE_RESET)
6697                 hns3_msix_process(hns, reset_level);
6698 }
6699
6700 static unsigned int
6701 hns3_get_speed_capa_num(uint16_t device_id)
6702 {
6703         unsigned int num;
6704
6705         switch (device_id) {
6706         case HNS3_DEV_ID_25GE:
6707         case HNS3_DEV_ID_25GE_RDMA:
6708                 num = 2;
6709                 break;
6710         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6711         case HNS3_DEV_ID_200G_RDMA:
6712                 num = 1;
6713                 break;
6714         default:
6715                 num = 0;
6716                 break;
6717         }
6718
6719         return num;
6720 }
6721
6722 static int
6723 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6724                         uint16_t device_id)
6725 {
6726         switch (device_id) {
6727         case HNS3_DEV_ID_25GE:
6728         /* fallthrough */
6729         case HNS3_DEV_ID_25GE_RDMA:
6730                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6731                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6732
6733                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6734                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6735                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6736                 break;
6737         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6738                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6739                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6740                 break;
6741         case HNS3_DEV_ID_200G_RDMA:
6742                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6743                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6744                 break;
6745         default:
6746                 return -ENOTSUP;
6747         }
6748
6749         return 0;
6750 }
6751
6752 static int
6753 hns3_fec_get_capability(struct rte_eth_dev *dev,
6754                         struct rte_eth_fec_capa *speed_fec_capa,
6755                         unsigned int num)
6756 {
6757         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6758         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6759         uint16_t device_id = pci_dev->id.device_id;
6760         unsigned int capa_num;
6761         int ret;
6762
6763         capa_num = hns3_get_speed_capa_num(device_id);
6764         if (capa_num == 0) {
6765                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6766                          device_id);
6767                 return -ENOTSUP;
6768         }
6769
6770         if (speed_fec_capa == NULL || num < capa_num)
6771                 return capa_num;
6772
6773         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6774         if (ret)
6775                 return -ENOTSUP;
6776
6777         return capa_num;
6778 }
6779
6780 static int
6781 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6782 {
6783         struct hns3_config_fec_cmd *req;
6784         struct hns3_cmd_desc desc;
6785         int ret;
6786
6787         /*
6788          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6789          * in device of link speed
6790          * below 10 Gbps.
6791          */
6792         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6793                 *state = 0;
6794                 return 0;
6795         }
6796
6797         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6798         req = (struct hns3_config_fec_cmd *)desc.data;
6799         ret = hns3_cmd_send(hw, &desc, 1);
6800         if (ret) {
6801                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6802                          ret);
6803                 return ret;
6804         }
6805
6806         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6807         return 0;
6808 }
6809
6810 static int
6811 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6812 {
6813         struct hns3_sfp_info_cmd *resp;
6814         uint32_t tmp_fec_capa;
6815         uint8_t auto_state;
6816         struct hns3_cmd_desc desc;
6817         int ret;
6818
6819         /*
6820          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6821          * configured FEC mode is returned.
6822          * If link is up, current FEC mode is returned.
6823          */
6824         if (hw->mac.link_status == ETH_LINK_DOWN) {
6825                 ret = get_current_fec_auto_state(hw, &auto_state);
6826                 if (ret)
6827                         return ret;
6828
6829                 if (auto_state == 0x1) {
6830                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6831                         return 0;
6832                 }
6833         }
6834
6835         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_INFO, true);
6836         resp = (struct hns3_sfp_info_cmd *)desc.data;
6837         resp->query_type = HNS3_ACTIVE_QUERY;
6838
6839         ret = hns3_cmd_send(hw, &desc, 1);
6840         if (ret == -EOPNOTSUPP) {
6841                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6842                 return ret;
6843         } else if (ret) {
6844                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6845                 return ret;
6846         }
6847
6848         /*
6849          * FEC mode order defined in hns3 hardware is inconsistend with
6850          * that defined in the ethdev library. So the sequence needs
6851          * to be converted.
6852          */
6853         switch (resp->active_fec) {
6854         case HNS3_HW_FEC_MODE_NOFEC:
6855                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6856                 break;
6857         case HNS3_HW_FEC_MODE_BASER:
6858                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6859                 break;
6860         case HNS3_HW_FEC_MODE_RS:
6861                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6862                 break;
6863         default:
6864                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6865                 break;
6866         }
6867
6868         *fec_capa = tmp_fec_capa;
6869         return 0;
6870 }
6871
6872 static int
6873 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6874 {
6875         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6876
6877         return hns3_fec_get_internal(hw, fec_capa);
6878 }
6879
6880 static int
6881 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6882 {
6883         struct hns3_config_fec_cmd *req;
6884         struct hns3_cmd_desc desc;
6885         int ret;
6886
6887         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6888
6889         req = (struct hns3_config_fec_cmd *)desc.data;
6890         switch (mode) {
6891         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6892                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6893                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6894                 break;
6895         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6896                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6897                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6898                 break;
6899         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6900                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6901                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6902                 break;
6903         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6904                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6905                 break;
6906         default:
6907                 return 0;
6908         }
6909         ret = hns3_cmd_send(hw, &desc, 1);
6910         if (ret)
6911                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6912
6913         return ret;
6914 }
6915
6916 static uint32_t
6917 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6918 {
6919         struct hns3_mac *mac = &hw->mac;
6920         uint32_t cur_capa;
6921
6922         switch (mac->link_speed) {
6923         case ETH_SPEED_NUM_10G:
6924                 cur_capa = fec_capa[1].capa;
6925                 break;
6926         case ETH_SPEED_NUM_25G:
6927         case ETH_SPEED_NUM_100G:
6928         case ETH_SPEED_NUM_200G:
6929                 cur_capa = fec_capa[0].capa;
6930                 break;
6931         default:
6932                 cur_capa = 0;
6933                 break;
6934         }
6935
6936         return cur_capa;
6937 }
6938
6939 static bool
6940 is_fec_mode_one_bit_set(uint32_t mode)
6941 {
6942         int cnt = 0;
6943         uint8_t i;
6944
6945         for (i = 0; i < sizeof(mode); i++)
6946                 if (mode >> i & 0x1)
6947                         cnt++;
6948
6949         return cnt == 1 ? true : false;
6950 }
6951
6952 static int
6953 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6954 {
6955 #define FEC_CAPA_NUM 2
6956         struct hns3_adapter *hns = dev->data->dev_private;
6957         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6958         struct hns3_pf *pf = &hns->pf;
6959
6960         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6961         uint32_t cur_capa;
6962         uint32_t num = FEC_CAPA_NUM;
6963         int ret;
6964
6965         ret = hns3_fec_get_capability(dev, fec_capa, num);
6966         if (ret < 0)
6967                 return ret;
6968
6969         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6970         if (!is_fec_mode_one_bit_set(mode)) {
6971                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD, "
6972                              "FEC mode should be only one bit set", mode);
6973                 return -EINVAL;
6974         }
6975
6976         /*
6977          * Check whether the configured mode is within the FEC capability.
6978          * If not, the configured mode will not be supported.
6979          */
6980         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6981         if (!(cur_capa & mode)) {
6982                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6983                 return -EINVAL;
6984         }
6985
6986         rte_spinlock_lock(&hw->lock);
6987         ret = hns3_set_fec_hw(hw, mode);
6988         if (ret) {
6989                 rte_spinlock_unlock(&hw->lock);
6990                 return ret;
6991         }
6992
6993         pf->fec_mode = mode;
6994         rte_spinlock_unlock(&hw->lock);
6995
6996         return 0;
6997 }
6998
6999 static int
7000 hns3_restore_fec(struct hns3_hw *hw)
7001 {
7002         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7003         struct hns3_pf *pf = &hns->pf;
7004         uint32_t mode = pf->fec_mode;
7005         int ret;
7006
7007         ret = hns3_set_fec_hw(hw, mode);
7008         if (ret)
7009                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
7010                          mode, ret);
7011
7012         return ret;
7013 }
7014
7015 static int
7016 hns3_query_dev_fec_info(struct hns3_hw *hw)
7017 {
7018         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
7019         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
7020         int ret;
7021
7022         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
7023         if (ret)
7024                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
7025
7026         return ret;
7027 }
7028
7029 static bool
7030 hns3_optical_module_existed(struct hns3_hw *hw)
7031 {
7032         struct hns3_cmd_desc desc;
7033         bool existed;
7034         int ret;
7035
7036         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
7037         ret = hns3_cmd_send(hw, &desc, 1);
7038         if (ret) {
7039                 hns3_err(hw,
7040                          "fail to get optical module exist state, ret = %d.\n",
7041                          ret);
7042                 return false;
7043         }
7044         existed = !!desc.data[0];
7045
7046         return existed;
7047 }
7048
7049 static int
7050 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
7051                                 uint32_t len, uint8_t *data)
7052 {
7053 #define HNS3_SFP_INFO_CMD_NUM 6
7054 #define HNS3_SFP_INFO_MAX_LEN \
7055         (HNS3_SFP_INFO_BD0_LEN + \
7056         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
7057         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
7058         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
7059         uint16_t read_len;
7060         uint16_t copy_len;
7061         int ret;
7062         int i;
7063
7064         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7065                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
7066                                           true);
7067                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
7068                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
7069         }
7070
7071         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
7072         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
7073         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
7074         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
7075
7076         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
7077         if (ret) {
7078                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
7079                                 ret);
7080                 return ret;
7081         }
7082
7083         /* The data format in BD0 is different with the others. */
7084         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
7085         memcpy(data, sfp_info_bd0->data, copy_len);
7086         read_len = copy_len;
7087
7088         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
7089                 if (read_len >= len)
7090                         break;
7091
7092                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
7093                 memcpy(data + read_len, desc[i].data, copy_len);
7094                 read_len += copy_len;
7095         }
7096
7097         return (int)read_len;
7098 }
7099
7100 static int
7101 hns3_get_module_eeprom(struct rte_eth_dev *dev,
7102                        struct rte_dev_eeprom_info *info)
7103 {
7104         struct hns3_adapter *hns = dev->data->dev_private;
7105         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7106         uint32_t offset = info->offset;
7107         uint32_t len = info->length;
7108         uint8_t *data = info->data;
7109         uint32_t read_len = 0;
7110
7111         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
7112                 return -ENOTSUP;
7113
7114         if (!hns3_optical_module_existed(hw)) {
7115                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
7116                 return -EIO;
7117         }
7118
7119         while (read_len < len) {
7120                 int ret;
7121                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
7122                                                   len - read_len,
7123                                                   data + read_len);
7124                 if (ret < 0)
7125                         return -EIO;
7126                 read_len += ret;
7127         }
7128
7129         return 0;
7130 }
7131
7132 static int
7133 hns3_get_module_info(struct rte_eth_dev *dev,
7134                      struct rte_eth_dev_module_info *modinfo)
7135 {
7136 #define HNS3_SFF8024_ID_SFP             0x03
7137 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
7138 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
7139 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
7140 #define HNS3_SFF_8636_V1_3              0x03
7141         struct hns3_adapter *hns = dev->data->dev_private;
7142         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
7143         struct rte_dev_eeprom_info info;
7144         struct hns3_sfp_type sfp_type;
7145         int ret;
7146
7147         memset(&sfp_type, 0, sizeof(sfp_type));
7148         memset(&info, 0, sizeof(info));
7149         info.data = (uint8_t *)&sfp_type;
7150         info.length = sizeof(sfp_type);
7151         ret = hns3_get_module_eeprom(dev, &info);
7152         if (ret)
7153                 return ret;
7154
7155         switch (sfp_type.type) {
7156         case HNS3_SFF8024_ID_SFP:
7157                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
7158                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
7159                 break;
7160         case HNS3_SFF8024_ID_QSFP_8438:
7161                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
7162                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7163                 break;
7164         case HNS3_SFF8024_ID_QSFP_8436_8636:
7165                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
7166                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
7167                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
7168                 } else {
7169                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
7170                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7171                 }
7172                 break;
7173         case HNS3_SFF8024_ID_QSFP28_8636:
7174                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
7175                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
7176                 break;
7177         default:
7178                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
7179                          sfp_type.type, sfp_type.ext_type);
7180                 return -EINVAL;
7181         }
7182
7183         return 0;
7184 }
7185
7186 void
7187 hns3_clock_gettime(struct timeval *tv)
7188 {
7189 #ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
7190 #define CLOCK_TYPE CLOCK_MONOTONIC_RAW
7191 #else
7192 #define CLOCK_TYPE CLOCK_MONOTONIC
7193 #endif
7194 #define NSEC_TO_USEC_DIV 1000
7195
7196         struct timespec spec;
7197         (void)clock_gettime(CLOCK_TYPE, &spec);
7198
7199         tv->tv_sec = spec.tv_sec;
7200         tv->tv_usec = spec.tv_nsec / NSEC_TO_USEC_DIV;
7201 }
7202
7203 uint64_t
7204 hns3_clock_calctime_ms(struct timeval *tv)
7205 {
7206         return (uint64_t)tv->tv_sec * MSEC_PER_SEC +
7207                 tv->tv_usec / USEC_PER_MSEC;
7208 }
7209
7210 uint64_t
7211 hns3_clock_gettime_ms(void)
7212 {
7213         struct timeval tv;
7214
7215         hns3_clock_gettime(&tv);
7216         return hns3_clock_calctime_ms(&tv);
7217 }
7218
7219 static int
7220 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
7221 {
7222         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
7223
7224         RTE_SET_USED(key);
7225
7226         if (strcmp(value, "vec") == 0)
7227                 hint = HNS3_IO_FUNC_HINT_VEC;
7228         else if (strcmp(value, "sve") == 0)
7229                 hint = HNS3_IO_FUNC_HINT_SVE;
7230         else if (strcmp(value, "simple") == 0)
7231                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
7232         else if (strcmp(value, "common") == 0)
7233                 hint = HNS3_IO_FUNC_HINT_COMMON;
7234
7235         /* If the hint is valid then update output parameters */
7236         if (hint != HNS3_IO_FUNC_HINT_NONE)
7237                 *(uint32_t *)extra_args = hint;
7238
7239         return 0;
7240 }
7241
7242 static const char *
7243 hns3_get_io_hint_func_name(uint32_t hint)
7244 {
7245         switch (hint) {
7246         case HNS3_IO_FUNC_HINT_VEC:
7247                 return "vec";
7248         case HNS3_IO_FUNC_HINT_SVE:
7249                 return "sve";
7250         case HNS3_IO_FUNC_HINT_SIMPLE:
7251                 return "simple";
7252         case HNS3_IO_FUNC_HINT_COMMON:
7253                 return "common";
7254         default:
7255                 return "none";
7256         }
7257 }
7258
7259 static int
7260 hns3_parse_dev_caps_mask(const char *key, const char *value, void *extra_args)
7261 {
7262         uint64_t val;
7263
7264         RTE_SET_USED(key);
7265
7266         val = strtoull(value, NULL, 16);
7267         *(uint64_t *)extra_args = val;
7268
7269         return 0;
7270 }
7271
7272 void
7273 hns3_parse_devargs(struct rte_eth_dev *dev)
7274 {
7275         struct hns3_adapter *hns = dev->data->dev_private;
7276         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7277         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
7278         struct hns3_hw *hw = &hns->hw;
7279         uint64_t dev_caps_mask = 0;
7280         struct rte_kvargs *kvlist;
7281
7282         if (dev->device->devargs == NULL)
7283                 return;
7284
7285         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
7286         if (!kvlist)
7287                 return;
7288
7289         (void)rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
7290                            &hns3_parse_io_hint_func, &rx_func_hint);
7291         (void)rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
7292                            &hns3_parse_io_hint_func, &tx_func_hint);
7293         (void)rte_kvargs_process(kvlist, HNS3_DEVARG_DEV_CAPS_MASK,
7294                            &hns3_parse_dev_caps_mask, &dev_caps_mask);
7295         rte_kvargs_free(kvlist);
7296
7297         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7298                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
7299                           hns3_get_io_hint_func_name(rx_func_hint));
7300         hns->rx_func_hint = rx_func_hint;
7301         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
7302                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
7303                           hns3_get_io_hint_func_name(tx_func_hint));
7304         hns->tx_func_hint = tx_func_hint;
7305
7306         if (dev_caps_mask != 0)
7307                 hns3_warn(hw, "parsed %s = 0x%" PRIx64 ".",
7308                           HNS3_DEVARG_DEV_CAPS_MASK, dev_caps_mask);
7309         hns->dev_caps_mask = dev_caps_mask;
7310 }
7311
7312 static const struct eth_dev_ops hns3_eth_dev_ops = {
7313         .dev_configure      = hns3_dev_configure,
7314         .dev_start          = hns3_dev_start,
7315         .dev_stop           = hns3_dev_stop,
7316         .dev_close          = hns3_dev_close,
7317         .promiscuous_enable = hns3_dev_promiscuous_enable,
7318         .promiscuous_disable = hns3_dev_promiscuous_disable,
7319         .allmulticast_enable  = hns3_dev_allmulticast_enable,
7320         .allmulticast_disable = hns3_dev_allmulticast_disable,
7321         .mtu_set            = hns3_dev_mtu_set,
7322         .stats_get          = hns3_stats_get,
7323         .stats_reset        = hns3_stats_reset,
7324         .xstats_get         = hns3_dev_xstats_get,
7325         .xstats_get_names   = hns3_dev_xstats_get_names,
7326         .xstats_reset       = hns3_dev_xstats_reset,
7327         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
7328         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
7329         .dev_infos_get          = hns3_dev_infos_get,
7330         .fw_version_get         = hns3_fw_version_get,
7331         .rx_queue_setup         = hns3_rx_queue_setup,
7332         .tx_queue_setup         = hns3_tx_queue_setup,
7333         .rx_queue_release       = hns3_dev_rx_queue_release,
7334         .tx_queue_release       = hns3_dev_tx_queue_release,
7335         .rx_queue_start         = hns3_dev_rx_queue_start,
7336         .rx_queue_stop          = hns3_dev_rx_queue_stop,
7337         .tx_queue_start         = hns3_dev_tx_queue_start,
7338         .tx_queue_stop          = hns3_dev_tx_queue_stop,
7339         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
7340         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
7341         .rxq_info_get           = hns3_rxq_info_get,
7342         .txq_info_get           = hns3_txq_info_get,
7343         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
7344         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
7345         .flow_ctrl_get          = hns3_flow_ctrl_get,
7346         .flow_ctrl_set          = hns3_flow_ctrl_set,
7347         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
7348         .mac_addr_add           = hns3_add_mac_addr,
7349         .mac_addr_remove        = hns3_remove_mac_addr,
7350         .mac_addr_set           = hns3_set_default_mac_addr,
7351         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
7352         .link_update            = hns3_dev_link_update,
7353         .rss_hash_update        = hns3_dev_rss_hash_update,
7354         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
7355         .reta_update            = hns3_dev_rss_reta_update,
7356         .reta_query             = hns3_dev_rss_reta_query,
7357         .flow_ops_get           = hns3_dev_flow_ops_get,
7358         .vlan_filter_set        = hns3_vlan_filter_set,
7359         .vlan_tpid_set          = hns3_vlan_tpid_set,
7360         .vlan_offload_set       = hns3_vlan_offload_set,
7361         .vlan_pvid_set          = hns3_vlan_pvid_set,
7362         .get_reg                = hns3_get_regs,
7363         .get_module_info        = hns3_get_module_info,
7364         .get_module_eeprom      = hns3_get_module_eeprom,
7365         .get_dcb_info           = hns3_get_dcb_info,
7366         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
7367         .fec_get_capability     = hns3_fec_get_capability,
7368         .fec_get                = hns3_fec_get,
7369         .fec_set                = hns3_fec_set,
7370         .tm_ops_get             = hns3_tm_ops_get,
7371         .tx_done_cleanup        = hns3_tx_done_cleanup,
7372         .timesync_enable            = hns3_timesync_enable,
7373         .timesync_disable           = hns3_timesync_disable,
7374         .timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
7375         .timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
7376         .timesync_adjust_time       = hns3_timesync_adjust_time,
7377         .timesync_read_time         = hns3_timesync_read_time,
7378         .timesync_write_time        = hns3_timesync_write_time,
7379 };
7380
7381 static const struct hns3_reset_ops hns3_reset_ops = {
7382         .reset_service       = hns3_reset_service,
7383         .stop_service        = hns3_stop_service,
7384         .prepare_reset       = hns3_prepare_reset,
7385         .wait_hardware_ready = hns3_wait_hardware_ready,
7386         .reinit_dev          = hns3_reinit_dev,
7387         .restore_conf        = hns3_restore_conf,
7388         .start_service       = hns3_start_service,
7389 };
7390
7391 static int
7392 hns3_dev_init(struct rte_eth_dev *eth_dev)
7393 {
7394         struct hns3_adapter *hns = eth_dev->data->dev_private;
7395         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
7396         struct rte_ether_addr *eth_addr;
7397         struct hns3_hw *hw = &hns->hw;
7398         int ret;
7399
7400         PMD_INIT_FUNC_TRACE();
7401
7402         eth_dev->process_private = (struct hns3_process_private *)
7403             rte_zmalloc_socket("hns3_filter_list",
7404                                sizeof(struct hns3_process_private),
7405                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
7406         if (eth_dev->process_private == NULL) {
7407                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
7408                 return -ENOMEM;
7409         }
7410
7411         hns3_flow_init(eth_dev);
7412
7413         hns3_set_rxtx_function(eth_dev);
7414         eth_dev->dev_ops = &hns3_eth_dev_ops;
7415         eth_dev->rx_queue_count = hns3_rx_queue_count;
7416         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7417                 ret = hns3_mp_init_secondary();
7418                 if (ret) {
7419                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
7420                                      "process, ret = %d", ret);
7421                         goto err_mp_init_secondary;
7422                 }
7423                 hw->secondary_cnt++;
7424                 hns3_tx_push_init(eth_dev);
7425                 return 0;
7426         }
7427
7428         ret = hns3_mp_init_primary();
7429         if (ret) {
7430                 PMD_INIT_LOG(ERR,
7431                              "Failed to init for primary process, ret = %d",
7432                              ret);
7433                 goto err_mp_init_primary;
7434         }
7435
7436         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
7437         hns->is_vf = false;
7438         hw->data = eth_dev->data;
7439         hns3_parse_devargs(eth_dev);
7440
7441         /*
7442          * Set default max packet size according to the mtu
7443          * default vale in DPDK frame.
7444          */
7445         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
7446
7447         ret = hns3_reset_init(hw);
7448         if (ret)
7449                 goto err_init_reset;
7450         hw->reset.ops = &hns3_reset_ops;
7451
7452         ret = hns3_init_pf(eth_dev);
7453         if (ret) {
7454                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
7455                 goto err_init_pf;
7456         }
7457
7458         /* Allocate memory for storing MAC addresses */
7459         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
7460                                                sizeof(struct rte_ether_addr) *
7461                                                HNS3_UC_MACADDR_NUM, 0);
7462         if (eth_dev->data->mac_addrs == NULL) {
7463                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
7464                              "to store MAC addresses",
7465                              sizeof(struct rte_ether_addr) *
7466                              HNS3_UC_MACADDR_NUM);
7467                 ret = -ENOMEM;
7468                 goto err_rte_zmalloc;
7469         }
7470
7471         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
7472         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
7473                 rte_eth_random_addr(hw->mac.mac_addr);
7474                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
7475                                 (struct rte_ether_addr *)hw->mac.mac_addr);
7476                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
7477                           "unicast address, using random MAC address %s",
7478                           mac_str);
7479         }
7480         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
7481                             &eth_dev->data->mac_addrs[0]);
7482
7483         hw->adapter_state = HNS3_NIC_INITIALIZED;
7484
7485         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
7486                             SCHEDULE_PENDING) {
7487                 hns3_err(hw, "Reschedule reset service after dev_init");
7488                 hns3_schedule_reset(hns);
7489         } else {
7490                 /* IMP will wait ready flag before reset */
7491                 hns3_notify_reset_ready(hw, false);
7492         }
7493
7494         hns3_info(hw, "hns3 dev initialization successful!");
7495         return 0;
7496
7497 err_rte_zmalloc:
7498         hns3_uninit_pf(eth_dev);
7499
7500 err_init_pf:
7501         rte_free(hw->reset.wait_data);
7502
7503 err_init_reset:
7504         hns3_mp_uninit_primary();
7505
7506 err_mp_init_primary:
7507 err_mp_init_secondary:
7508         eth_dev->dev_ops = NULL;
7509         eth_dev->rx_pkt_burst = NULL;
7510         eth_dev->rx_descriptor_status = NULL;
7511         eth_dev->tx_pkt_burst = NULL;
7512         eth_dev->tx_pkt_prepare = NULL;
7513         eth_dev->tx_descriptor_status = NULL;
7514         rte_free(eth_dev->process_private);
7515         eth_dev->process_private = NULL;
7516         return ret;
7517 }
7518
7519 static int
7520 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
7521 {
7522         struct hns3_adapter *hns = eth_dev->data->dev_private;
7523         struct hns3_hw *hw = &hns->hw;
7524
7525         PMD_INIT_FUNC_TRACE();
7526
7527         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
7528                 rte_free(eth_dev->process_private);
7529                 eth_dev->process_private = NULL;
7530                 return 0;
7531         }
7532
7533         if (hw->adapter_state < HNS3_NIC_CLOSING)
7534                 hns3_dev_close(eth_dev);
7535
7536         hw->adapter_state = HNS3_NIC_REMOVED;
7537         return 0;
7538 }
7539
7540 static int
7541 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
7542                    struct rte_pci_device *pci_dev)
7543 {
7544         return rte_eth_dev_pci_generic_probe(pci_dev,
7545                                              sizeof(struct hns3_adapter),
7546                                              hns3_dev_init);
7547 }
7548
7549 static int
7550 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
7551 {
7552         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
7553 }
7554
7555 static const struct rte_pci_id pci_id_hns3_map[] = {
7556         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
7557         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
7558         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
7559         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
7560         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
7561         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
7562         { .vendor_id = 0, }, /* sentinel */
7563 };
7564
7565 static struct rte_pci_driver rte_hns3_pmd = {
7566         .id_table = pci_id_hns3_map,
7567         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
7568         .probe = eth_hns3_pci_probe,
7569         .remove = eth_hns3_pci_remove,
7570 };
7571
7572 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
7573 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
7574 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
7575 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
7576                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
7577                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
7578                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");
7579 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_init, init, NOTICE);
7580 RTE_LOG_REGISTER_SUFFIX(hns3_logtype_driver, driver, NOTICE);