net/hns3: fix flow director lock
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                 }
160                 return 0;
161         }
162         return -ENXIO;
163 }
164
165 static int
166 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
167 {
168         /* mac address was checked by upper level interface */
169         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
170         int ret;
171
172         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
173                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
174                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
175         if (ret) {
176                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
177                                       mac_addr);
178                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
179                          mac_str, ret);
180         }
181         return ret;
182 }
183
184 static int
185 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
186 {
187         /* mac address was checked by upper level interface */
188         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
189         int ret;
190
191         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
192                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
193                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
194                                 false, NULL, 0);
195         if (ret) {
196                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
197                                       mac_addr);
198                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
199                          mac_str, ret);
200         }
201         return ret;
202 }
203
204 static int
205 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
206 {
207         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
208         struct rte_ether_addr *addr;
209         int ret;
210         int i;
211
212         for (i = 0; i < hw->mc_addrs_num; i++) {
213                 addr = &hw->mc_addrs[i];
214                 /* Check if there are duplicate addresses */
215                 if (rte_is_same_ether_addr(addr, mac_addr)) {
216                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
217                                               addr);
218                         hns3_err(hw, "failed to add mc mac addr, same addrs"
219                                  "(%s) is added by the set_mc_mac_addr_list "
220                                  "API", mac_str);
221                         return -EINVAL;
222                 }
223         }
224
225         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
226         if (ret) {
227                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
228                                       mac_addr);
229                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
230                          mac_str, ret);
231         }
232         return ret;
233 }
234
235 static int
236 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
237                     __rte_unused uint32_t idx,
238                     __rte_unused uint32_t pool)
239 {
240         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
241         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
242         int ret;
243
244         rte_spinlock_lock(&hw->lock);
245
246         /*
247          * In hns3 network engine adding UC and MC mac address with different
248          * commands with firmware. We need to determine whether the input
249          * address is a UC or a MC address to call different commands.
250          * By the way, it is recommended calling the API function named
251          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
252          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
253          * may affect the specifications of UC mac addresses.
254          */
255         if (rte_is_multicast_ether_addr(mac_addr))
256                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
257         else
258                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
259
260         rte_spinlock_unlock(&hw->lock);
261         if (ret) {
262                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
263                                       mac_addr);
264                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
265                          ret);
266         }
267
268         return ret;
269 }
270
271 static void
272 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
273 {
274         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
275         /* index will be checked by upper level rte interface */
276         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
277         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
278         int ret;
279
280         rte_spinlock_lock(&hw->lock);
281
282         if (rte_is_multicast_ether_addr(mac_addr))
283                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
284         else
285                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
286
287         rte_spinlock_unlock(&hw->lock);
288         if (ret) {
289                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
290                                       mac_addr);
291                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
292                          mac_str, ret);
293         }
294 }
295
296 static int
297 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
298                             struct rte_ether_addr *mac_addr)
299 {
300 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
301         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
302         struct rte_ether_addr *old_addr;
303         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
304         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
305         int ret;
306
307         /*
308          * It has been guaranteed that input parameter named mac_addr is valid
309          * address in the rte layer of DPDK framework.
310          */
311         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
312         rte_spinlock_lock(&hw->lock);
313         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
314         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
315                RTE_ETHER_ADDR_LEN);
316
317         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
318                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
319                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
320         if (ret) {
321                 /*
322                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
323                  * driver. When user has configured a MAC address for VF device
324                  * by "ip link set ..." command based on the PF device, the hns3
325                  * PF kernel ethdev driver does not allow VF driver to request
326                  * reconfiguring a different default MAC address, and return
327                  * -EPREM to VF driver through mailbox.
328                  */
329                 if (ret == -EPERM) {
330                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
331                                               old_addr);
332                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
333                                   mac_str);
334                 } else {
335                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
336                                               mac_addr);
337                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
338                                  mac_str, ret);
339                 }
340         }
341
342         rte_ether_addr_copy(mac_addr,
343                             (struct rte_ether_addr *)hw->mac.mac_addr);
344         rte_spinlock_unlock(&hw->lock);
345
346         return ret;
347 }
348
349 static int
350 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
351 {
352         struct hns3_hw *hw = &hns->hw;
353         struct rte_ether_addr *addr;
354         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
355         int err = 0;
356         int ret;
357         int i;
358
359         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
360                 addr = &hw->data->mac_addrs[i];
361                 if (rte_is_zero_ether_addr(addr))
362                         continue;
363                 if (rte_is_multicast_ether_addr(addr))
364                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
365                               hns3vf_add_mc_mac_addr(hw, addr);
366                 else
367                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
368                               hns3vf_add_uc_mac_addr(hw, addr);
369
370                 if (ret) {
371                         err = ret;
372                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
373                                               addr);
374                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
375                                  "ret = %d.", del ? "remove" : "restore",
376                                  mac_str, i, ret);
377                 }
378         }
379         return err;
380 }
381
382 static int
383 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
384                        struct rte_ether_addr *mac_addr)
385 {
386         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
387         int ret;
388
389         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
390                                 HNS3_MBX_MAC_VLAN_MC_ADD,
391                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
392                                 NULL, 0);
393         if (ret) {
394                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
395                                       mac_addr);
396                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
397                          mac_str, ret);
398         }
399
400         return ret;
401 }
402
403 static int
404 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
405                           struct rte_ether_addr *mac_addr)
406 {
407         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
408         int ret;
409
410         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
411                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
412                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
413                                 NULL, 0);
414         if (ret) {
415                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
416                                       mac_addr);
417                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
418                          mac_str, ret);
419         }
420
421         return ret;
422 }
423
424 static int
425 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
426                              struct rte_ether_addr *mc_addr_set,
427                              uint32_t nb_mc_addr)
428 {
429         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
430         struct rte_ether_addr *addr;
431         uint32_t i;
432         uint32_t j;
433
434         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
435                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
436                          "invalid. valid range: 0~%d",
437                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
438                 return -EINVAL;
439         }
440
441         /* Check if input mac addresses are valid */
442         for (i = 0; i < nb_mc_addr; i++) {
443                 addr = &mc_addr_set[i];
444                 if (!rte_is_multicast_ether_addr(addr)) {
445                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
446                                               addr);
447                         hns3_err(hw,
448                                  "failed to set mc mac addr, addr(%s) invalid.",
449                                  mac_str);
450                         return -EINVAL;
451                 }
452
453                 /* Check if there are duplicate addresses */
454                 for (j = i + 1; j < nb_mc_addr; j++) {
455                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
456                                 hns3_ether_format_addr(mac_str,
457                                                       RTE_ETHER_ADDR_FMT_SIZE,
458                                                       addr);
459                                 hns3_err(hw, "failed to set mc mac addr, "
460                                          "addrs invalid. two same addrs(%s).",
461                                          mac_str);
462                                 return -EINVAL;
463                         }
464                 }
465
466                 /*
467                  * Check if there are duplicate addresses between mac_addrs
468                  * and mc_addr_set
469                  */
470                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
471                         if (rte_is_same_ether_addr(addr,
472                                                    &hw->data->mac_addrs[j])) {
473                                 hns3_ether_format_addr(mac_str,
474                                                       RTE_ETHER_ADDR_FMT_SIZE,
475                                                       addr);
476                                 hns3_err(hw, "failed to set mc mac addr, "
477                                          "addrs invalid. addrs(%s) has already "
478                                          "configured in mac_addr add API",
479                                          mac_str);
480                                 return -EINVAL;
481                         }
482                 }
483         }
484
485         return 0;
486 }
487
488 static int
489 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
490                             struct rte_ether_addr *mc_addr_set,
491                             uint32_t nb_mc_addr)
492 {
493         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
494         struct rte_ether_addr *addr;
495         int cur_addr_num;
496         int set_addr_num;
497         int num;
498         int ret;
499         int i;
500
501         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
502         if (ret)
503                 return ret;
504
505         rte_spinlock_lock(&hw->lock);
506         cur_addr_num = hw->mc_addrs_num;
507         for (i = 0; i < cur_addr_num; i++) {
508                 num = cur_addr_num - i - 1;
509                 addr = &hw->mc_addrs[num];
510                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
511                 if (ret) {
512                         rte_spinlock_unlock(&hw->lock);
513                         return ret;
514                 }
515
516                 hw->mc_addrs_num--;
517         }
518
519         set_addr_num = (int)nb_mc_addr;
520         for (i = 0; i < set_addr_num; i++) {
521                 addr = &mc_addr_set[i];
522                 ret = hns3vf_add_mc_mac_addr(hw, addr);
523                 if (ret) {
524                         rte_spinlock_unlock(&hw->lock);
525                         return ret;
526                 }
527
528                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
529                 hw->mc_addrs_num++;
530         }
531         rte_spinlock_unlock(&hw->lock);
532
533         return 0;
534 }
535
536 static int
537 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
538 {
539         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
540         struct hns3_hw *hw = &hns->hw;
541         struct rte_ether_addr *addr;
542         int err = 0;
543         int ret;
544         int i;
545
546         for (i = 0; i < hw->mc_addrs_num; i++) {
547                 addr = &hw->mc_addrs[i];
548                 if (!rte_is_multicast_ether_addr(addr))
549                         continue;
550                 if (del)
551                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
552                 else
553                         ret = hns3vf_add_mc_mac_addr(hw, addr);
554                 if (ret) {
555                         err = ret;
556                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
557                                               addr);
558                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
559                                  del ? "Remove" : "Restore", mac_str, ret);
560                 }
561         }
562         return err;
563 }
564
565 static int
566 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
567                         bool en_uc_pmc, bool en_mc_pmc)
568 {
569         struct hns3_mbx_vf_to_pf_cmd *req;
570         struct hns3_cmd_desc desc;
571         int ret;
572
573         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
574
575         /*
576          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
577          * so there are some features for promiscuous/allmulticast mode in hns3
578          * VF PMD driver as below:
579          * 1. The promiscuous/allmulticast mode can be configured successfully
580          *    only based on the trusted VF device. If based on the non trusted
581          *    VF device, configuring promiscuous/allmulticast mode will fail.
582          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
583          *    kernel ethdev driver on the host by the following command:
584          *      "ip link set <eth num> vf <vf id> turst on"
585          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
586          *    driver can receive the ingress and outgoing traffic. In the words,
587          *    all the ingress packets, all the packets sent from the PF and
588          *    other VFs on the same physical port.
589          * 3. Note: Because of the hardware constraints, By default vlan filter
590          *    is enabled and couldn't be turned off based on VF device, so vlan
591          *    filter is still effective even in promiscuous mode. If upper
592          *    applications don't call rte_eth_dev_vlan_filter API function to
593          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
594          *    the packets with vlan tag in promiscuoue mode.
595          */
596         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
597         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
598         req->msg[1] = en_bc_pmc ? 1 : 0;
599         req->msg[2] = en_uc_pmc ? 1 : 0;
600         req->msg[3] = en_mc_pmc ? 1 : 0;
601         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
602
603         ret = hns3_cmd_send(hw, &desc, 1);
604         if (ret)
605                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
606
607         return ret;
608 }
609
610 static int
611 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
612 {
613         struct hns3_adapter *hns = dev->data->dev_private;
614         struct hns3_hw *hw = &hns->hw;
615         int ret;
616
617         ret = hns3vf_set_promisc_mode(hw, true, true, true);
618         if (ret)
619                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
620                         ret);
621         return ret;
622 }
623
624 static int
625 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
626 {
627         bool allmulti = dev->data->all_multicast ? true : false;
628         struct hns3_adapter *hns = dev->data->dev_private;
629         struct hns3_hw *hw = &hns->hw;
630         int ret;
631
632         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
633         if (ret)
634                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
635                         ret);
636         return ret;
637 }
638
639 static int
640 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
641 {
642         struct hns3_adapter *hns = dev->data->dev_private;
643         struct hns3_hw *hw = &hns->hw;
644         int ret;
645
646         if (dev->data->promiscuous)
647                 return 0;
648
649         ret = hns3vf_set_promisc_mode(hw, true, false, true);
650         if (ret)
651                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
652                         ret);
653         return ret;
654 }
655
656 static int
657 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
658 {
659         struct hns3_adapter *hns = dev->data->dev_private;
660         struct hns3_hw *hw = &hns->hw;
661         int ret;
662
663         if (dev->data->promiscuous)
664                 return 0;
665
666         ret = hns3vf_set_promisc_mode(hw, true, false, false);
667         if (ret)
668                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
669                         ret);
670         return ret;
671 }
672
673 static int
674 hns3vf_restore_promisc(struct hns3_adapter *hns)
675 {
676         struct hns3_hw *hw = &hns->hw;
677         bool allmulti = hw->data->all_multicast ? true : false;
678
679         if (hw->data->promiscuous)
680                 return hns3vf_set_promisc_mode(hw, true, true, true);
681
682         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
683 }
684
685 static int
686 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
687                              bool mmap, enum hns3_ring_type queue_type,
688                              uint16_t queue_id)
689 {
690         struct hns3_vf_bind_vector_msg bind_msg;
691         const char *op_str;
692         uint16_t code;
693         int ret;
694
695         memset(&bind_msg, 0, sizeof(bind_msg));
696         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
697                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
698         bind_msg.vector_id = vector_id;
699
700         if (queue_type == HNS3_RING_TYPE_RX)
701                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
702         else
703                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
704
705         bind_msg.param[0].ring_type = queue_type;
706         bind_msg.ring_num = 1;
707         bind_msg.param[0].tqp_index = queue_id;
708         op_str = mmap ? "Map" : "Unmap";
709         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
710                                 sizeof(bind_msg), false, NULL, 0);
711         if (ret)
712                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
713                          op_str, queue_id, bind_msg.vector_id, ret);
714
715         return ret;
716 }
717
718 static int
719 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
720 {
721         uint16_t vec;
722         int ret;
723         int i;
724
725         /*
726          * In hns3 network engine, vector 0 is always the misc interrupt of this
727          * function, vector 1~N can be used respectively for the queues of the
728          * function. Tx and Rx queues with the same number share the interrupt
729          * vector. In the initialization clearing the all hardware mapping
730          * relationship configurations between queues and interrupt vectors is
731          * needed, so some error caused by the residual configurations, such as
732          * the unexpected Tx interrupt, can be avoid.
733          */
734         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
735         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
736                 vec = vec - 1; /* the last interrupt is reserved */
737         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
738         for (i = 0; i < hw->intr_tqps_num; i++) {
739                 /*
740                  * Set gap limiter/rate limiter/quanity limiter algorithm
741                  * configuration for interrupt coalesce of queue's interrupt.
742                  */
743                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
744                                        HNS3_TQP_INTR_GL_DEFAULT);
745                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
746                                        HNS3_TQP_INTR_GL_DEFAULT);
747                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
748                 /*
749                  * QL(quantity limiter) is not used currently, just set 0 to
750                  * close it.
751                  */
752                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
753
754                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
755                                                    HNS3_RING_TYPE_TX, i);
756                 if (ret) {
757                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
758                                           "vector: %u, ret=%d", i, vec, ret);
759                         return ret;
760                 }
761
762                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
763                                                    HNS3_RING_TYPE_RX, i);
764                 if (ret) {
765                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
766                                           "vector: %u, ret=%d", i, vec, ret);
767                         return ret;
768                 }
769         }
770
771         return 0;
772 }
773
774 static int
775 hns3vf_dev_configure(struct rte_eth_dev *dev)
776 {
777         struct hns3_adapter *hns = dev->data->dev_private;
778         struct hns3_hw *hw = &hns->hw;
779         struct rte_eth_conf *conf = &dev->data->dev_conf;
780         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
781         uint16_t nb_rx_q = dev->data->nb_rx_queues;
782         uint16_t nb_tx_q = dev->data->nb_tx_queues;
783         struct rte_eth_rss_conf rss_conf;
784         uint32_t max_rx_pkt_len;
785         uint16_t mtu;
786         bool gro_en;
787         int ret;
788
789         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
790
791         /*
792          * Some versions of hardware network engine does not support
793          * individually enable/disable/reset the Tx or Rx queue. These devices
794          * must enable/disable/reset Tx and Rx queues at the same time. When the
795          * numbers of Tx queues allocated by upper applications are not equal to
796          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
797          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
798          * work as usual. But these fake queues are imperceptible, and can not
799          * be used by upper applications.
800          */
801         if (!hns3_dev_indep_txrx_supported(hw)) {
802                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
803                 if (ret) {
804                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
805                                  ret);
806                         return ret;
807                 }
808         }
809
810         hw->adapter_state = HNS3_NIC_CONFIGURING;
811         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
812                 hns3_err(hw, "setting link speed/duplex not supported");
813                 ret = -EINVAL;
814                 goto cfg_err;
815         }
816
817         /* When RSS is not configured, redirect the packet queue 0 */
818         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
819                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
820                 hw->rss_dis_flag = false;
821                 rss_conf = conf->rx_adv_conf.rss_conf;
822                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
823                 if (ret)
824                         goto cfg_err;
825         }
826
827         /*
828          * If jumbo frames are enabled, MTU needs to be refreshed
829          * according to the maximum RX packet length.
830          */
831         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
832                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
833                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
834                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
835                         hns3_err(hw, "maximum Rx packet length must be greater "
836                                  "than %u and less than %u when jumbo frame enabled.",
837                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
838                                  (uint16_t)HNS3_MAX_FRAME_LEN);
839                         ret = -EINVAL;
840                         goto cfg_err;
841                 }
842
843                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
844                 ret = hns3vf_dev_mtu_set(dev, mtu);
845                 if (ret)
846                         goto cfg_err;
847                 dev->data->mtu = mtu;
848         }
849
850         ret = hns3vf_dev_configure_vlan(dev);
851         if (ret)
852                 goto cfg_err;
853
854         /* config hardware GRO */
855         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
856         ret = hns3_config_gro(hw, gro_en);
857         if (ret)
858                 goto cfg_err;
859
860         hns3_init_rx_ptype_tble(dev);
861
862         hw->adapter_state = HNS3_NIC_CONFIGURED;
863         return 0;
864
865 cfg_err:
866         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
867         hw->adapter_state = HNS3_NIC_INITIALIZED;
868
869         return ret;
870 }
871
872 static int
873 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
874 {
875         int ret;
876
877         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
878                                 sizeof(mtu), true, NULL, 0);
879         if (ret)
880                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
881
882         return ret;
883 }
884
885 static int
886 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
887 {
888         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
889         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
890         int ret;
891
892         /*
893          * The hns3 PF/VF devices on the same port share the hardware MTU
894          * configuration. Currently, we send mailbox to inform hns3 PF kernel
895          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
896          * driver, there is no need to stop the port for hns3 VF device, and the
897          * MTU value issued by hns3 VF PMD driver must be less than or equal to
898          * PF's MTU.
899          */
900         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
901                 hns3_err(hw, "Failed to set mtu during resetting");
902                 return -EIO;
903         }
904
905         /*
906          * when Rx of scattered packets is off, we have some possibility of
907          * using vector Rx process function or simple Rx functions in hns3 PMD
908          * driver. If the input MTU is increased and the maximum length of
909          * received packets is greater than the length of a buffer for Rx
910          * packet, the hardware network engine needs to use multiple BDs and
911          * buffers to store these packets. This will cause problems when still
912          * using vector Rx process function or simple Rx function to receiving
913          * packets. So, when Rx of scattered packets is off and device is
914          * started, it is not permitted to increase MTU so that the maximum
915          * length of Rx packets is greater than Rx buffer length.
916          */
917         if (dev->data->dev_started && !dev->data->scattered_rx &&
918             frame_size > hw->rx_buf_len) {
919                 hns3_err(hw, "failed to set mtu because current is "
920                         "not scattered rx mode");
921                 return -EOPNOTSUPP;
922         }
923
924         rte_spinlock_lock(&hw->lock);
925         ret = hns3vf_config_mtu(hw, mtu);
926         if (ret) {
927                 rte_spinlock_unlock(&hw->lock);
928                 return ret;
929         }
930         if (mtu > RTE_ETHER_MTU)
931                 dev->data->dev_conf.rxmode.offloads |=
932                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
933         else
934                 dev->data->dev_conf.rxmode.offloads &=
935                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
936         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
937         rte_spinlock_unlock(&hw->lock);
938
939         return 0;
940 }
941
942 static int
943 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
944 {
945         struct hns3_adapter *hns = eth_dev->data->dev_private;
946         struct hns3_hw *hw = &hns->hw;
947         uint16_t q_num = hw->tqps_num;
948
949         /*
950          * In interrupt mode, 'max_rx_queues' is set based on the number of
951          * MSI-X interrupt resources of the hardware.
952          */
953         if (hw->data->dev_conf.intr_conf.rxq == 1)
954                 q_num = hw->intr_tqps_num;
955
956         info->max_rx_queues = q_num;
957         info->max_tx_queues = hw->tqps_num;
958         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
959         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
960         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
961         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
962         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
963
964         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
965                                  DEV_RX_OFFLOAD_UDP_CKSUM |
966                                  DEV_RX_OFFLOAD_TCP_CKSUM |
967                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
968                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
969                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
970                                  DEV_RX_OFFLOAD_SCATTER |
971                                  DEV_RX_OFFLOAD_VLAN_STRIP |
972                                  DEV_RX_OFFLOAD_VLAN_FILTER |
973                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
974                                  DEV_RX_OFFLOAD_RSS_HASH |
975                                  DEV_RX_OFFLOAD_TCP_LRO);
976         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
977                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
978                                  DEV_TX_OFFLOAD_TCP_CKSUM |
979                                  DEV_TX_OFFLOAD_UDP_CKSUM |
980                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
981                                  DEV_TX_OFFLOAD_MULTI_SEGS |
982                                  DEV_TX_OFFLOAD_TCP_TSO |
983                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
984                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
985                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
986                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
987                                  hns3_txvlan_cap_get(hw));
988
989         if (hns3_dev_outer_udp_cksum_supported(hw))
990                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
991
992         if (hns3_dev_indep_txrx_supported(hw))
993                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
994                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
995
996         info->rx_desc_lim = (struct rte_eth_desc_lim) {
997                 .nb_max = HNS3_MAX_RING_DESC,
998                 .nb_min = HNS3_MIN_RING_DESC,
999                 .nb_align = HNS3_ALIGN_RING_DESC,
1000         };
1001
1002         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1003                 .nb_max = HNS3_MAX_RING_DESC,
1004                 .nb_min = HNS3_MIN_RING_DESC,
1005                 .nb_align = HNS3_ALIGN_RING_DESC,
1006                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1007                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1008         };
1009
1010         info->default_rxconf = (struct rte_eth_rxconf) {
1011                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1012                 /*
1013                  * If there are no available Rx buffer descriptors, incoming
1014                  * packets are always dropped by hardware based on hns3 network
1015                  * engine.
1016                  */
1017                 .rx_drop_en = 1,
1018                 .offloads = 0,
1019         };
1020         info->default_txconf = (struct rte_eth_txconf) {
1021                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1022                 .offloads = 0,
1023         };
1024
1025         info->vmdq_queue_num = 0;
1026
1027         info->reta_size = hw->rss_ind_tbl_size;
1028         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1029         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1030         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1031         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1032
1033         return 0;
1034 }
1035
1036 static void
1037 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1038 {
1039         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1040 }
1041
1042 static void
1043 hns3vf_disable_irq0(struct hns3_hw *hw)
1044 {
1045         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1046 }
1047
1048 static void
1049 hns3vf_enable_irq0(struct hns3_hw *hw)
1050 {
1051         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1052 }
1053
1054 static enum hns3vf_evt_cause
1055 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1056 {
1057         struct hns3_hw *hw = &hns->hw;
1058         enum hns3vf_evt_cause ret;
1059         uint32_t cmdq_stat_reg;
1060         uint32_t rst_ing_reg;
1061         uint32_t val;
1062
1063         /* Fetch the events from their corresponding regs */
1064         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1065         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1066                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1067                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1068                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1069                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1070                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1071                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1072                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1073                 if (clearval) {
1074                         hw->reset.stats.global_cnt++;
1075                         hns3_warn(hw, "Global reset detected, clear reset status");
1076                 } else {
1077                         hns3_schedule_delayed_reset(hns);
1078                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1079                 }
1080
1081                 ret = HNS3VF_VECTOR0_EVENT_RST;
1082                 goto out;
1083         }
1084
1085         /* Check for vector0 mailbox(=CMDQ RX) event source */
1086         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1087                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1088                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1089                 goto out;
1090         }
1091
1092         val = 0;
1093         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1094 out:
1095         if (clearval)
1096                 *clearval = val;
1097         return ret;
1098 }
1099
1100 static void
1101 hns3vf_interrupt_handler(void *param)
1102 {
1103         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1104         struct hns3_adapter *hns = dev->data->dev_private;
1105         struct hns3_hw *hw = &hns->hw;
1106         enum hns3vf_evt_cause event_cause;
1107         uint32_t clearval;
1108
1109         /* Disable interrupt */
1110         hns3vf_disable_irq0(hw);
1111
1112         /* Read out interrupt causes */
1113         event_cause = hns3vf_check_event_cause(hns, &clearval);
1114
1115         switch (event_cause) {
1116         case HNS3VF_VECTOR0_EVENT_RST:
1117                 hns3_schedule_reset(hns);
1118                 break;
1119         case HNS3VF_VECTOR0_EVENT_MBX:
1120                 hns3_dev_handle_mbx_msg(hw);
1121                 break;
1122         default:
1123                 break;
1124         }
1125
1126         /* Clear interrupt causes */
1127         hns3vf_clear_event_cause(hw, clearval);
1128
1129         /* Enable interrupt */
1130         hns3vf_enable_irq0(hw);
1131 }
1132
1133 static void
1134 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1135 {
1136         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1137         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1138         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1139         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1140 }
1141
1142 static void
1143 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1144 {
1145         struct hns3_dev_specs_0_cmd *req0;
1146
1147         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1148
1149         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1150         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1151         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1152         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1153 }
1154
1155 static int
1156 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1157 {
1158         if (hw->rss_ind_tbl_size == 0 ||
1159             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1160                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1161                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1162                               HNS3_RSS_IND_TBL_SIZE_MAX);
1163                 return -EINVAL;
1164         }
1165
1166         return 0;
1167 }
1168
1169 static int
1170 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1171 {
1172         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1173         int ret;
1174         int i;
1175
1176         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1177                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1178                                           true);
1179                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1180         }
1181         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1182
1183         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1184         if (ret)
1185                 return ret;
1186
1187         hns3vf_parse_dev_specifications(hw, desc);
1188
1189         return hns3vf_check_dev_specifications(hw);
1190 }
1191
1192 void
1193 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1194 {
1195         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1196                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1197         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1198         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1199
1200         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1201                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1202                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1203 }
1204
1205 static void
1206 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1207 {
1208 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1209
1210         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1211         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1212         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1213         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1214         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1215
1216         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1217                          __ATOMIC_RELEASE);
1218
1219         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1220                                 NULL, 0);
1221
1222         while (remain_ms > 0) {
1223                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1224                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1225                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1226                         break;
1227                 remain_ms--;
1228         }
1229
1230         /*
1231          * When exit above loop, the pf_push_lsc_cap could be one of the three
1232          * state: unknown (means pf not ack), not_supported, supported.
1233          * Here config it as 'not_supported' when it's 'unknown' state.
1234          */
1235         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1236                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1237
1238         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1239                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1240                 hns3_info(hw, "detect PF support push link status change!");
1241         } else {
1242                 /*
1243                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1244                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1245                  * the RTE_ETH_DEV_INTR_LSC capability.
1246                  */
1247                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1248         }
1249 }
1250
1251 static int
1252 hns3vf_get_capability(struct hns3_hw *hw)
1253 {
1254         struct rte_pci_device *pci_dev;
1255         struct rte_eth_dev *eth_dev;
1256         uint8_t revision;
1257         int ret;
1258
1259         eth_dev = &rte_eth_devices[hw->data->port_id];
1260         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1261
1262         /* Get PCI revision id */
1263         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1264                                   HNS3_PCI_REVISION_ID);
1265         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1266                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1267                              ret);
1268                 return -EIO;
1269         }
1270         hw->revision = revision;
1271
1272         if (revision < PCI_REVISION_ID_HIP09_A) {
1273                 hns3vf_set_default_dev_specifications(hw);
1274                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1275                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1276                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1277                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1278                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1279                 hw->rss_info.ipv6_sctp_offload_supported = false;
1280                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1281                 return 0;
1282         }
1283
1284         ret = hns3vf_query_dev_specifications(hw);
1285         if (ret) {
1286                 PMD_INIT_LOG(ERR,
1287                              "failed to query dev specifications, ret = %d",
1288                              ret);
1289                 return ret;
1290         }
1291
1292         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1293         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1294         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1295         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1296         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1297         hw->rss_info.ipv6_sctp_offload_supported = true;
1298         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1299
1300         return 0;
1301 }
1302
1303 static int
1304 hns3vf_check_tqp_info(struct hns3_hw *hw)
1305 {
1306         if (hw->tqps_num == 0) {
1307                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1308                 return -EINVAL;
1309         }
1310
1311         if (hw->rss_size_max == 0) {
1312                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1313                 return -EINVAL;
1314         }
1315
1316         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1317
1318         return 0;
1319 }
1320
1321 static int
1322 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1323 {
1324         uint8_t resp_msg;
1325         int ret;
1326
1327         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1328                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1329                                 true, &resp_msg, sizeof(resp_msg));
1330         if (ret) {
1331                 if (ret == -ETIME) {
1332                         /*
1333                          * Getting current port based VLAN state from PF driver
1334                          * will not affect VF driver's basic function. Because
1335                          * the VF driver relies on hns3 PF kernel ether driver,
1336                          * to avoid introducing compatibility issues with older
1337                          * version of PF driver, no failure will be returned
1338                          * when the return value is ETIME. This return value has
1339                          * the following scenarios:
1340                          * 1) Firmware didn't return the results in time
1341                          * 2) the result return by firmware is timeout
1342                          * 3) the older version of kernel side PF driver does
1343                          *    not support this mailbox message.
1344                          * For scenarios 1 and 2, it is most likely that a
1345                          * hardware error has occurred, or a hardware reset has
1346                          * occurred. In this case, these errors will be caught
1347                          * by other functions.
1348                          */
1349                         PMD_INIT_LOG(WARNING,
1350                                 "failed to get PVID state for timeout, maybe "
1351                                 "kernel side PF driver doesn't support this "
1352                                 "mailbox message, or firmware didn't respond.");
1353                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1354                 } else {
1355                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1356                                 " ret = %d", ret);
1357                         return ret;
1358                 }
1359         }
1360         hw->port_base_vlan_cfg.state = resp_msg ?
1361                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1362         return 0;
1363 }
1364
1365 static int
1366 hns3vf_get_queue_info(struct hns3_hw *hw)
1367 {
1368 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1369         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1370         int ret;
1371
1372         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1373                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1374         if (ret) {
1375                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1376                 return ret;
1377         }
1378
1379         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1380         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1381
1382         return hns3vf_check_tqp_info(hw);
1383 }
1384
1385 static int
1386 hns3vf_get_queue_depth(struct hns3_hw *hw)
1387 {
1388 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1389         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1390         int ret;
1391
1392         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1393                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1394         if (ret) {
1395                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1396                              ret);
1397                 return ret;
1398         }
1399
1400         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1401         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1402
1403         return 0;
1404 }
1405
1406 static int
1407 hns3vf_get_tc_info(struct hns3_hw *hw)
1408 {
1409         uint8_t resp_msg;
1410         int ret;
1411         uint32_t i;
1412
1413         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1414                                 true, &resp_msg, sizeof(resp_msg));
1415         if (ret) {
1416                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1417                          ret);
1418                 return ret;
1419         }
1420
1421         hw->hw_tc_map = resp_msg;
1422
1423         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1424                 if (hw->hw_tc_map & BIT(i))
1425                         hw->num_tc++;
1426         }
1427
1428         return 0;
1429 }
1430
1431 static int
1432 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1433 {
1434         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1435         int ret;
1436
1437         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1438                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1439         if (ret) {
1440                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1441                 return ret;
1442         }
1443
1444         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1445
1446         return 0;
1447 }
1448
1449 static int
1450 hns3vf_get_configuration(struct hns3_hw *hw)
1451 {
1452         int ret;
1453
1454         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1455         hw->rss_dis_flag = false;
1456
1457         /* Get device capability */
1458         ret = hns3vf_get_capability(hw);
1459         if (ret) {
1460                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1461                 return ret;
1462         }
1463
1464         hns3vf_get_push_lsc_cap(hw);
1465
1466         /* Get queue configuration from PF */
1467         ret = hns3vf_get_queue_info(hw);
1468         if (ret)
1469                 return ret;
1470
1471         /* Get queue depth info from PF */
1472         ret = hns3vf_get_queue_depth(hw);
1473         if (ret)
1474                 return ret;
1475
1476         /* Get user defined VF MAC addr from PF */
1477         ret = hns3vf_get_host_mac_addr(hw);
1478         if (ret)
1479                 return ret;
1480
1481         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1482         if (ret)
1483                 return ret;
1484
1485         /* Get tc configuration from PF */
1486         return hns3vf_get_tc_info(hw);
1487 }
1488
1489 static int
1490 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1491                             uint16_t nb_tx_q)
1492 {
1493         struct hns3_hw *hw = &hns->hw;
1494
1495         if (nb_rx_q < hw->num_tc) {
1496                 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1497                          nb_rx_q, hw->num_tc);
1498                 return -EINVAL;
1499         }
1500
1501         if (nb_tx_q < hw->num_tc) {
1502                 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1503                          nb_tx_q, hw->num_tc);
1504                 return -EINVAL;
1505         }
1506
1507         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1508 }
1509
1510 static void
1511 hns3vf_request_link_info(struct hns3_hw *hw)
1512 {
1513         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1514         bool send_req;
1515         int ret;
1516
1517         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1518                 return;
1519
1520         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1521                    vf->req_link_info_cnt > 0;
1522         if (!send_req)
1523                 return;
1524
1525         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1526                                 NULL, 0);
1527         if (ret) {
1528                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1529                 return;
1530         }
1531
1532         if (vf->req_link_info_cnt > 0)
1533                 vf->req_link_info_cnt--;
1534 }
1535
1536 void
1537 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1538                           uint32_t link_speed, uint8_t link_duplex)
1539 {
1540         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1541         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1542         struct hns3_mac *mac = &hw->mac;
1543         int ret;
1544
1545         /*
1546          * PF kernel driver may push link status when VF driver is in resetting,
1547          * driver will stop polling job in this case, after resetting done
1548          * driver will start polling job again.
1549          * When polling job started, driver will get initial link status by
1550          * sending request to PF kernel driver, then could update link status by
1551          * process PF kernel driver's link status mailbox message.
1552          */
1553         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1554                 return;
1555
1556         if (hw->adapter_state != HNS3_NIC_STARTED)
1557                 return;
1558
1559         mac->link_status = link_status;
1560         mac->link_speed = link_speed;
1561         mac->link_duplex = link_duplex;
1562         ret = hns3vf_dev_link_update(dev, 0);
1563         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1564                 hns3_start_report_lse(dev);
1565 }
1566
1567 static int
1568 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1569 {
1570 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1571         struct hns3_hw *hw = &hns->hw;
1572         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1573         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1574         uint8_t is_kill = on ? 0 : 1;
1575
1576         msg_data[0] = is_kill;
1577         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1578         memcpy(&msg_data[3], &proto, sizeof(proto));
1579
1580         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1581                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1582                                  0);
1583 }
1584
1585 static int
1586 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1587 {
1588         struct hns3_adapter *hns = dev->data->dev_private;
1589         struct hns3_hw *hw = &hns->hw;
1590         int ret;
1591
1592         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1593                 hns3_err(hw,
1594                          "vf set vlan id failed during resetting, vlan_id =%u",
1595                          vlan_id);
1596                 return -EIO;
1597         }
1598         rte_spinlock_lock(&hw->lock);
1599         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1600         rte_spinlock_unlock(&hw->lock);
1601         if (ret)
1602                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1603                          vlan_id, ret);
1604
1605         return ret;
1606 }
1607
1608 static int
1609 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1610 {
1611         uint8_t msg_data;
1612         int ret;
1613
1614         msg_data = enable ? 1 : 0;
1615         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1616                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1617         if (ret)
1618                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1619
1620         return ret;
1621 }
1622
1623 static int
1624 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1625 {
1626         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1627         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1628         unsigned int tmp_mask;
1629         int ret = 0;
1630
1631         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1632                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1633                              "mask = 0x%x", mask);
1634                 return -EIO;
1635         }
1636
1637         tmp_mask = (unsigned int)mask;
1638         /* Vlan stripping setting */
1639         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1640                 rte_spinlock_lock(&hw->lock);
1641                 /* Enable or disable VLAN stripping */
1642                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1643                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1644                 else
1645                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1646                 rte_spinlock_unlock(&hw->lock);
1647         }
1648
1649         return ret;
1650 }
1651
1652 static int
1653 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1654 {
1655         struct rte_vlan_filter_conf *vfc;
1656         struct hns3_hw *hw = &hns->hw;
1657         uint16_t vlan_id;
1658         uint64_t vbit;
1659         uint64_t ids;
1660         int ret = 0;
1661         uint32_t i;
1662
1663         vfc = &hw->data->vlan_filter_conf;
1664         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1665                 if (vfc->ids[i] == 0)
1666                         continue;
1667                 ids = vfc->ids[i];
1668                 while (ids) {
1669                         /*
1670                          * 64 means the num bits of ids, one bit corresponds to
1671                          * one vlan id
1672                          */
1673                         vlan_id = 64 * i;
1674                         /* count trailing zeroes */
1675                         vbit = ~ids & (ids - 1);
1676                         /* clear least significant bit set */
1677                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1678                         for (; vbit;) {
1679                                 vbit >>= 1;
1680                                 vlan_id++;
1681                         }
1682                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1683                         if (ret) {
1684                                 hns3_err(hw,
1685                                          "VF handle vlan table failed, ret =%d, on = %d",
1686                                          ret, on);
1687                                 return ret;
1688                         }
1689                 }
1690         }
1691
1692         return ret;
1693 }
1694
1695 static int
1696 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1697 {
1698         return hns3vf_handle_all_vlan_table(hns, 0);
1699 }
1700
1701 static int
1702 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1703 {
1704         struct hns3_hw *hw = &hns->hw;
1705         struct rte_eth_conf *dev_conf;
1706         bool en;
1707         int ret;
1708
1709         dev_conf = &hw->data->dev_conf;
1710         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1711                                                                    : false;
1712         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1713         if (ret)
1714                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1715                          ret);
1716         return ret;
1717 }
1718
1719 static int
1720 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1721 {
1722         struct hns3_adapter *hns = dev->data->dev_private;
1723         struct rte_eth_dev_data *data = dev->data;
1724         struct hns3_hw *hw = &hns->hw;
1725         int ret;
1726
1727         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1728             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1729             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1730                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1731                               "or hw_vlan_insert_pvid is not support!");
1732         }
1733
1734         /* Apply vlan offload setting */
1735         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1736         if (ret)
1737                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1738
1739         return ret;
1740 }
1741
1742 static int
1743 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1744 {
1745         uint8_t msg_data;
1746
1747         msg_data = alive ? 1 : 0;
1748         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1749                                  sizeof(msg_data), false, NULL, 0);
1750 }
1751
1752 static void
1753 hns3vf_keep_alive_handler(void *param)
1754 {
1755         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1756         struct hns3_adapter *hns = eth_dev->data->dev_private;
1757         struct hns3_hw *hw = &hns->hw;
1758         int ret;
1759
1760         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1761                                 false, NULL, 0);
1762         if (ret)
1763                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1764                          ret);
1765
1766         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1767                           eth_dev);
1768 }
1769
1770 static void
1771 hns3vf_service_handler(void *param)
1772 {
1773         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1774         struct hns3_adapter *hns = eth_dev->data->dev_private;
1775         struct hns3_hw *hw = &hns->hw;
1776
1777         /*
1778          * The query link status and reset processing are executed in the
1779          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1780          * and the query operation will timeout after 30ms. In the case of
1781          * multiple PF/VFs, each query failure timeout causes the IMP reset
1782          * interrupt to fail to respond within 100ms.
1783          * Before querying the link status, check whether there is a reset
1784          * pending, and if so, abandon the query.
1785          */
1786         if (!hns3vf_is_reset_pending(hns))
1787                 hns3vf_request_link_info(hw);
1788         else
1789                 hns3_warn(hw, "Cancel the query when reset is pending");
1790
1791         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1792                           eth_dev);
1793 }
1794
1795 static void
1796 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1797 {
1798 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1799
1800         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1801
1802         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1803                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1804
1805         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1806
1807         hns3vf_service_handler(dev);
1808 }
1809
1810 static void
1811 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1812 {
1813         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1814
1815         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1816
1817         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1818 }
1819
1820 static int
1821 hns3_query_vf_resource(struct hns3_hw *hw)
1822 {
1823         struct hns3_vf_res_cmd *req;
1824         struct hns3_cmd_desc desc;
1825         uint16_t num_msi;
1826         int ret;
1827
1828         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1829         ret = hns3_cmd_send(hw, &desc, 1);
1830         if (ret) {
1831                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1832                 return ret;
1833         }
1834
1835         req = (struct hns3_vf_res_cmd *)desc.data;
1836         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1837                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1838         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1839                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1840                          num_msi, HNS3_MIN_VECTOR_NUM);
1841                 return -EINVAL;
1842         }
1843
1844         hw->num_msi = num_msi;
1845
1846         return 0;
1847 }
1848
1849 static int
1850 hns3vf_init_hardware(struct hns3_adapter *hns)
1851 {
1852         struct hns3_hw *hw = &hns->hw;
1853         uint16_t mtu = hw->data->mtu;
1854         int ret;
1855
1856         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1857         if (ret)
1858                 return ret;
1859
1860         ret = hns3vf_config_mtu(hw, mtu);
1861         if (ret)
1862                 goto err_init_hardware;
1863
1864         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1865         if (ret) {
1866                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1867                 goto err_init_hardware;
1868         }
1869
1870         ret = hns3_config_gro(hw, false);
1871         if (ret) {
1872                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1873                 goto err_init_hardware;
1874         }
1875
1876         /*
1877          * In the initialization clearing the all hardware mapping relationship
1878          * configurations between queues and interrupt vectors is needed, so
1879          * some error caused by the residual configurations, such as the
1880          * unexpected interrupt, can be avoid.
1881          */
1882         ret = hns3vf_init_ring_with_vector(hw);
1883         if (ret) {
1884                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1885                 goto err_init_hardware;
1886         }
1887
1888         ret = hns3vf_set_alive(hw, true);
1889         if (ret) {
1890                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1891                 goto err_init_hardware;
1892         }
1893
1894         return 0;
1895
1896 err_init_hardware:
1897         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1898         return ret;
1899 }
1900
1901 static int
1902 hns3vf_clear_vport_list(struct hns3_hw *hw)
1903 {
1904         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1905                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1906                                  NULL, 0);
1907 }
1908
1909 static int
1910 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1911 {
1912         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1913         struct hns3_adapter *hns = eth_dev->data->dev_private;
1914         struct hns3_hw *hw = &hns->hw;
1915         int ret;
1916
1917         PMD_INIT_FUNC_TRACE();
1918
1919         /* Get hardware io base address from pcie BAR2 IO space */
1920         hw->io_base = pci_dev->mem_resource[2].addr;
1921
1922         /* Firmware command queue initialize */
1923         ret = hns3_cmd_init_queue(hw);
1924         if (ret) {
1925                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1926                 goto err_cmd_init_queue;
1927         }
1928
1929         /* Firmware command initialize */
1930         ret = hns3_cmd_init(hw);
1931         if (ret) {
1932                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1933                 goto err_cmd_init;
1934         }
1935
1936         /* Get VF resource */
1937         ret = hns3_query_vf_resource(hw);
1938         if (ret)
1939                 goto err_cmd_init;
1940
1941         rte_spinlock_init(&hw->mbx_resp.lock);
1942
1943         hns3vf_clear_event_cause(hw, 0);
1944
1945         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1946                                          hns3vf_interrupt_handler, eth_dev);
1947         if (ret) {
1948                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1949                 goto err_intr_callback_register;
1950         }
1951
1952         /* Enable interrupt */
1953         rte_intr_enable(&pci_dev->intr_handle);
1954         hns3vf_enable_irq0(hw);
1955
1956         /* Get configuration from PF */
1957         ret = hns3vf_get_configuration(hw);
1958         if (ret) {
1959                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1960                 goto err_get_config;
1961         }
1962
1963         ret = hns3_tqp_stats_init(hw);
1964         if (ret)
1965                 goto err_get_config;
1966
1967         /* Hardware statistics of imissed registers cleared. */
1968         ret = hns3_update_imissed_stats(hw, true);
1969         if (ret) {
1970                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1971                 goto err_set_tc_queue;
1972         }
1973
1974         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1975         if (ret) {
1976                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1977                 goto err_set_tc_queue;
1978         }
1979
1980         ret = hns3vf_clear_vport_list(hw);
1981         if (ret) {
1982                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1983                 goto err_set_tc_queue;
1984         }
1985
1986         ret = hns3vf_init_hardware(hns);
1987         if (ret)
1988                 goto err_set_tc_queue;
1989
1990         hns3_rss_set_default_args(hw);
1991
1992         return 0;
1993
1994 err_set_tc_queue:
1995         hns3_tqp_stats_uninit(hw);
1996
1997 err_get_config:
1998         hns3vf_disable_irq0(hw);
1999         rte_intr_disable(&pci_dev->intr_handle);
2000         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2001                              eth_dev);
2002 err_intr_callback_register:
2003 err_cmd_init:
2004         hns3_cmd_uninit(hw);
2005         hns3_cmd_destroy_queue(hw);
2006 err_cmd_init_queue:
2007         hw->io_base = NULL;
2008
2009         return ret;
2010 }
2011
2012 static void
2013 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2014 {
2015         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2016         struct hns3_adapter *hns = eth_dev->data->dev_private;
2017         struct hns3_hw *hw = &hns->hw;
2018
2019         PMD_INIT_FUNC_TRACE();
2020
2021         hns3_rss_uninit(hns);
2022         (void)hns3_config_gro(hw, false);
2023         (void)hns3vf_set_alive(hw, false);
2024         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2025         hns3_tqp_stats_uninit(hw);
2026         hns3vf_disable_irq0(hw);
2027         rte_intr_disable(&pci_dev->intr_handle);
2028         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2029                              eth_dev);
2030         hns3_cmd_uninit(hw);
2031         hns3_cmd_destroy_queue(hw);
2032         hw->io_base = NULL;
2033 }
2034
2035 static int
2036 hns3vf_do_stop(struct hns3_adapter *hns)
2037 {
2038         struct hns3_hw *hw = &hns->hw;
2039         int ret;
2040
2041         hw->mac.link_status = ETH_LINK_DOWN;
2042
2043         /*
2044          * The "hns3vf_do_stop" function will also be called by .stop_service to
2045          * prepare reset. At the time of global or IMP reset, the command cannot
2046          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2047          * accessed during the reset process. So the mbuf can not be released
2048          * during reset and is required to be released after the reset is
2049          * completed.
2050          */
2051         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2052                 hns3_dev_release_mbufs(hns);
2053
2054         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2055                 hns3vf_configure_mac_addr(hns, true);
2056                 ret = hns3_reset_all_tqps(hns);
2057                 if (ret) {
2058                         hns3_err(hw, "failed to reset all queues ret = %d",
2059                                  ret);
2060                         return ret;
2061                 }
2062         }
2063         return 0;
2064 }
2065
2066 static void
2067 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2068 {
2069         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2070         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2071         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2072         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2073         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2074         uint16_t q_id;
2075
2076         if (dev->data->dev_conf.intr_conf.rxq == 0)
2077                 return;
2078
2079         /* unmap the ring with vector */
2080         if (rte_intr_allow_others(intr_handle)) {
2081                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2082                 base = RTE_INTR_VEC_RXTX_OFFSET;
2083         }
2084         if (rte_intr_dp_is_en(intr_handle)) {
2085                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2086                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2087                                                            HNS3_RING_TYPE_RX,
2088                                                            q_id);
2089                         if (vec < base + intr_handle->nb_efd - 1)
2090                                 vec++;
2091                 }
2092         }
2093         /* Clean datapath event and queue/vec mapping */
2094         rte_intr_efd_disable(intr_handle);
2095         if (intr_handle->intr_vec) {
2096                 rte_free(intr_handle->intr_vec);
2097                 intr_handle->intr_vec = NULL;
2098         }
2099 }
2100
2101 static int
2102 hns3vf_dev_stop(struct rte_eth_dev *dev)
2103 {
2104         struct hns3_adapter *hns = dev->data->dev_private;
2105         struct hns3_hw *hw = &hns->hw;
2106
2107         PMD_INIT_FUNC_TRACE();
2108         dev->data->dev_started = 0;
2109
2110         hw->adapter_state = HNS3_NIC_STOPPING;
2111         hns3_set_rxtx_function(dev);
2112         rte_wmb();
2113         /* Disable datapath on secondary process. */
2114         hns3_mp_req_stop_rxtx(dev);
2115         /* Prevent crashes when queues are still in use. */
2116         rte_delay_ms(hw->tqps_num);
2117
2118         rte_spinlock_lock(&hw->lock);
2119         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2120                 hns3_stop_tqps(hw);
2121                 hns3vf_do_stop(hns);
2122                 hns3vf_unmap_rx_interrupt(dev);
2123                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2124         }
2125         hns3_rx_scattered_reset(dev);
2126         hns3vf_stop_poll_job(dev);
2127         hns3_stop_report_lse(dev);
2128         rte_spinlock_unlock(&hw->lock);
2129
2130         return 0;
2131 }
2132
2133 static int
2134 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2135 {
2136         struct hns3_adapter *hns = eth_dev->data->dev_private;
2137         struct hns3_hw *hw = &hns->hw;
2138         int ret = 0;
2139
2140         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2141                 rte_free(eth_dev->process_private);
2142                 eth_dev->process_private = NULL;
2143                 return 0;
2144         }
2145
2146         if (hw->adapter_state == HNS3_NIC_STARTED)
2147                 ret = hns3vf_dev_stop(eth_dev);
2148
2149         hw->adapter_state = HNS3_NIC_CLOSING;
2150         hns3_reset_abort(hns);
2151         hw->adapter_state = HNS3_NIC_CLOSED;
2152         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2153         hns3vf_configure_all_mc_mac_addr(hns, true);
2154         hns3vf_remove_all_vlan_table(hns);
2155         hns3vf_uninit_vf(eth_dev);
2156         hns3_free_all_queues(eth_dev);
2157         rte_free(hw->reset.wait_data);
2158         rte_free(eth_dev->process_private);
2159         eth_dev->process_private = NULL;
2160         hns3_mp_uninit_primary();
2161         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2162
2163         return ret;
2164 }
2165
2166 static int
2167 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2168                       size_t fw_size)
2169 {
2170         struct hns3_adapter *hns = eth_dev->data->dev_private;
2171         struct hns3_hw *hw = &hns->hw;
2172         uint32_t version = hw->fw_version;
2173         int ret;
2174
2175         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2176                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2177                                       HNS3_FW_VERSION_BYTE3_S),
2178                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2179                                       HNS3_FW_VERSION_BYTE2_S),
2180                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2181                                       HNS3_FW_VERSION_BYTE1_S),
2182                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2183                                       HNS3_FW_VERSION_BYTE0_S));
2184         ret += 1; /* add the size of '\0' */
2185         if (fw_size < (uint32_t)ret)
2186                 return ret;
2187         else
2188                 return 0;
2189 }
2190
2191 static int
2192 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2193                        __rte_unused int wait_to_complete)
2194 {
2195         struct hns3_adapter *hns = eth_dev->data->dev_private;
2196         struct hns3_hw *hw = &hns->hw;
2197         struct hns3_mac *mac = &hw->mac;
2198         struct rte_eth_link new_link;
2199
2200         memset(&new_link, 0, sizeof(new_link));
2201         switch (mac->link_speed) {
2202         case ETH_SPEED_NUM_10M:
2203         case ETH_SPEED_NUM_100M:
2204         case ETH_SPEED_NUM_1G:
2205         case ETH_SPEED_NUM_10G:
2206         case ETH_SPEED_NUM_25G:
2207         case ETH_SPEED_NUM_40G:
2208         case ETH_SPEED_NUM_50G:
2209         case ETH_SPEED_NUM_100G:
2210         case ETH_SPEED_NUM_200G:
2211                 new_link.link_speed = mac->link_speed;
2212                 break;
2213         default:
2214                 if (mac->link_status)
2215                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2216                 else
2217                         new_link.link_speed = ETH_SPEED_NUM_NONE;
2218                 break;
2219         }
2220
2221         new_link.link_duplex = mac->link_duplex;
2222         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2223         new_link.link_autoneg =
2224             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2225
2226         return rte_eth_linkstatus_set(eth_dev, &new_link);
2227 }
2228
2229 static int
2230 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2231 {
2232         struct hns3_hw *hw = &hns->hw;
2233         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2234         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2235         int ret;
2236
2237         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2238         if (ret)
2239                 return ret;
2240
2241         hns3_enable_rxd_adv_layout(hw);
2242
2243         ret = hns3_init_queues(hns, reset_queue);
2244         if (ret)
2245                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2246
2247         return ret;
2248 }
2249
2250 static int
2251 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2252 {
2253         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2254         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2255         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2256         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2257         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2258         uint32_t intr_vector;
2259         uint16_t q_id;
2260         int ret;
2261
2262         /*
2263          * hns3 needs a separate interrupt to be used as event interrupt which
2264          * could not be shared with task queue pair, so KERNEL drivers need
2265          * support multiple interrupt vectors.
2266          */
2267         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2268             !rte_intr_cap_multiple(intr_handle))
2269                 return 0;
2270
2271         rte_intr_disable(intr_handle);
2272         intr_vector = hw->used_rx_queues;
2273         /* It creates event fd for each intr vector when MSIX is used */
2274         if (rte_intr_efd_enable(intr_handle, intr_vector))
2275                 return -EINVAL;
2276
2277         if (intr_handle->intr_vec == NULL) {
2278                 intr_handle->intr_vec =
2279                         rte_zmalloc("intr_vec",
2280                                     hw->used_rx_queues * sizeof(int), 0);
2281                 if (intr_handle->intr_vec == NULL) {
2282                         hns3_err(hw, "Failed to allocate %u rx_queues"
2283                                      " intr_vec", hw->used_rx_queues);
2284                         ret = -ENOMEM;
2285                         goto vf_alloc_intr_vec_error;
2286                 }
2287         }
2288
2289         if (rte_intr_allow_others(intr_handle)) {
2290                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2291                 base = RTE_INTR_VEC_RXTX_OFFSET;
2292         }
2293
2294         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2295                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2296                                                    HNS3_RING_TYPE_RX, q_id);
2297                 if (ret)
2298                         goto vf_bind_vector_error;
2299                 intr_handle->intr_vec[q_id] = vec;
2300                 /*
2301                  * If there are not enough efds (e.g. not enough interrupt),
2302                  * remaining queues will be bond to the last interrupt.
2303                  */
2304                 if (vec < base + intr_handle->nb_efd - 1)
2305                         vec++;
2306         }
2307         rte_intr_enable(intr_handle);
2308         return 0;
2309
2310 vf_bind_vector_error:
2311         free(intr_handle->intr_vec);
2312         intr_handle->intr_vec = NULL;
2313 vf_alloc_intr_vec_error:
2314         rte_intr_efd_disable(intr_handle);
2315         return ret;
2316 }
2317
2318 static int
2319 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2320 {
2321         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2322         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2323         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2324         uint16_t q_id;
2325         int ret;
2326
2327         if (dev->data->dev_conf.intr_conf.rxq == 0)
2328                 return 0;
2329
2330         if (rte_intr_dp_is_en(intr_handle)) {
2331                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2332                         ret = hns3vf_bind_ring_with_vector(hw,
2333                                         intr_handle->intr_vec[q_id], true,
2334                                         HNS3_RING_TYPE_RX, q_id);
2335                         if (ret)
2336                                 return ret;
2337                 }
2338         }
2339
2340         return 0;
2341 }
2342
2343 static void
2344 hns3vf_restore_filter(struct rte_eth_dev *dev)
2345 {
2346         hns3_restore_rss_filter(dev);
2347 }
2348
2349 static int
2350 hns3vf_dev_start(struct rte_eth_dev *dev)
2351 {
2352         struct hns3_adapter *hns = dev->data->dev_private;
2353         struct hns3_hw *hw = &hns->hw;
2354         int ret;
2355
2356         PMD_INIT_FUNC_TRACE();
2357         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2358                 return -EBUSY;
2359
2360         rte_spinlock_lock(&hw->lock);
2361         hw->adapter_state = HNS3_NIC_STARTING;
2362         ret = hns3vf_do_start(hns, true);
2363         if (ret) {
2364                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2365                 rte_spinlock_unlock(&hw->lock);
2366                 return ret;
2367         }
2368         ret = hns3vf_map_rx_interrupt(dev);
2369         if (ret)
2370                 goto map_rx_inter_err;
2371
2372         /*
2373          * There are three register used to control the status of a TQP
2374          * (contains a pair of Tx queue and Rx queue) in the new version network
2375          * engine. One is used to control the enabling of Tx queue, the other is
2376          * used to control the enabling of Rx queue, and the last is the master
2377          * switch used to control the enabling of the tqp. The Tx register and
2378          * TQP register must be enabled at the same time to enable a Tx queue.
2379          * The same applies to the Rx queue. For the older network enginem, this
2380          * function only refresh the enabled flag, and it is used to update the
2381          * status of queue in the dpdk framework.
2382          */
2383         ret = hns3_start_all_txqs(dev);
2384         if (ret)
2385                 goto map_rx_inter_err;
2386
2387         ret = hns3_start_all_rxqs(dev);
2388         if (ret)
2389                 goto start_all_rxqs_fail;
2390
2391         hw->adapter_state = HNS3_NIC_STARTED;
2392         rte_spinlock_unlock(&hw->lock);
2393
2394         hns3_rx_scattered_calc(dev);
2395         hns3_set_rxtx_function(dev);
2396         hns3_mp_req_start_rxtx(dev);
2397
2398         hns3vf_restore_filter(dev);
2399
2400         /* Enable interrupt of all rx queues before enabling queues */
2401         hns3_dev_all_rx_queue_intr_enable(hw, true);
2402         hns3_start_tqps(hw);
2403
2404         if (dev->data->dev_conf.intr_conf.lsc != 0)
2405                 hns3vf_dev_link_update(dev, 0);
2406         hns3vf_start_poll_job(dev);
2407
2408         return ret;
2409
2410 start_all_rxqs_fail:
2411         hns3_stop_all_txqs(dev);
2412 map_rx_inter_err:
2413         (void)hns3vf_do_stop(hns);
2414         hw->adapter_state = HNS3_NIC_CONFIGURED;
2415         rte_spinlock_unlock(&hw->lock);
2416
2417         return ret;
2418 }
2419
2420 static bool
2421 is_vf_reset_done(struct hns3_hw *hw)
2422 {
2423 #define HNS3_FUN_RST_ING_BITS \
2424         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2425          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2426          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2427          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2428
2429         uint32_t val;
2430
2431         if (hw->reset.level == HNS3_VF_RESET) {
2432                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2433                 if (val & HNS3_VF_RST_ING_BIT)
2434                         return false;
2435         } else {
2436                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2437                 if (val & HNS3_FUN_RST_ING_BITS)
2438                         return false;
2439         }
2440         return true;
2441 }
2442
2443 bool
2444 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2445 {
2446         struct hns3_hw *hw = &hns->hw;
2447         enum hns3_reset_level reset;
2448
2449         /*
2450          * According to the protocol of PCIe, FLR to a PF device resets the PF
2451          * state as well as the SR-IOV extended capability including VF Enable
2452          * which means that VFs no longer exist.
2453          *
2454          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2455          * is in FLR stage, the register state of VF device is not reliable,
2456          * so register states detection can not be carried out. In this case,
2457          * we just ignore the register states and return false to indicate that
2458          * there are no other reset states that need to be processed by driver.
2459          */
2460         if (hw->reset.level == HNS3_VF_FULL_RESET)
2461                 return false;
2462
2463         /* Check the registers to confirm whether there is reset pending */
2464         hns3vf_check_event_cause(hns, NULL);
2465         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2466         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2467             hw->reset.level < reset) {
2468                 hns3_warn(hw, "High level reset %d is pending", reset);
2469                 return true;
2470         }
2471         return false;
2472 }
2473
2474 static int
2475 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2476 {
2477         struct hns3_hw *hw = &hns->hw;
2478         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2479         struct timeval tv;
2480
2481         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2482                 /*
2483                  * After vf reset is ready, the PF may not have completed
2484                  * the reset processing. The vf sending mbox to PF may fail
2485                  * during the pf reset, so it is better to add extra delay.
2486                  */
2487                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2488                     hw->reset.level == HNS3_FLR_RESET)
2489                         return 0;
2490                 /* Reset retry process, no need to add extra delay. */
2491                 if (hw->reset.attempts)
2492                         return 0;
2493                 if (wait_data->check_completion == NULL)
2494                         return 0;
2495
2496                 wait_data->check_completion = NULL;
2497                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2498                 wait_data->count = 1;
2499                 wait_data->result = HNS3_WAIT_REQUEST;
2500                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2501                                   wait_data);
2502                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2503                 return -EAGAIN;
2504         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2505                 gettimeofday(&tv, NULL);
2506                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2507                           tv.tv_sec, tv.tv_usec);
2508                 return -ETIME;
2509         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2510                 return -EAGAIN;
2511
2512         wait_data->hns = hns;
2513         wait_data->check_completion = is_vf_reset_done;
2514         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2515                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2516         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2517         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2518         wait_data->result = HNS3_WAIT_REQUEST;
2519         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2520         return -EAGAIN;
2521 }
2522
2523 static int
2524 hns3vf_prepare_reset(struct hns3_adapter *hns)
2525 {
2526         struct hns3_hw *hw = &hns->hw;
2527         int ret;
2528
2529         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2530                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2531                                         0, true, NULL, 0);
2532                 if (ret)
2533                         return ret;
2534         }
2535         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2536
2537         return 0;
2538 }
2539
2540 static int
2541 hns3vf_stop_service(struct hns3_adapter *hns)
2542 {
2543         struct hns3_hw *hw = &hns->hw;
2544         struct rte_eth_dev *eth_dev;
2545
2546         eth_dev = &rte_eth_devices[hw->data->port_id];
2547         if (hw->adapter_state == HNS3_NIC_STARTED) {
2548                 /*
2549                  * Make sure call update link status before hns3vf_stop_poll_job
2550                  * because update link status depend on polling job exist.
2551                  */
2552                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2553                                           hw->mac.link_duplex);
2554                 hns3vf_stop_poll_job(eth_dev);
2555         }
2556         hw->mac.link_status = ETH_LINK_DOWN;
2557
2558         hns3_set_rxtx_function(eth_dev);
2559         rte_wmb();
2560         /* Disable datapath on secondary process. */
2561         hns3_mp_req_stop_rxtx(eth_dev);
2562         rte_delay_ms(hw->tqps_num);
2563
2564         rte_spinlock_lock(&hw->lock);
2565         if (hw->adapter_state == HNS3_NIC_STARTED ||
2566             hw->adapter_state == HNS3_NIC_STOPPING) {
2567                 hns3_enable_all_queues(hw, false);
2568                 hns3vf_do_stop(hns);
2569                 hw->reset.mbuf_deferred_free = true;
2570         } else
2571                 hw->reset.mbuf_deferred_free = false;
2572
2573         /*
2574          * It is cumbersome for hardware to pick-and-choose entries for deletion
2575          * from table space. Hence, for function reset software intervention is
2576          * required to delete the entries.
2577          */
2578         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2579                 hns3vf_configure_all_mc_mac_addr(hns, true);
2580         rte_spinlock_unlock(&hw->lock);
2581
2582         return 0;
2583 }
2584
2585 static int
2586 hns3vf_start_service(struct hns3_adapter *hns)
2587 {
2588         struct hns3_hw *hw = &hns->hw;
2589         struct rte_eth_dev *eth_dev;
2590
2591         eth_dev = &rte_eth_devices[hw->data->port_id];
2592         hns3_set_rxtx_function(eth_dev);
2593         hns3_mp_req_start_rxtx(eth_dev);
2594         if (hw->adapter_state == HNS3_NIC_STARTED) {
2595                 hns3vf_start_poll_job(eth_dev);
2596
2597                 /* Enable interrupt of all rx queues before enabling queues */
2598                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2599                 /*
2600                  * Enable state of each rxq and txq will be recovered after
2601                  * reset, so we need to restore them before enable all tqps;
2602                  */
2603                 hns3_restore_tqp_enable_state(hw);
2604                 /*
2605                  * When finished the initialization, enable queues to receive
2606                  * and transmit packets.
2607                  */
2608                 hns3_enable_all_queues(hw, true);
2609         }
2610
2611         return 0;
2612 }
2613
2614 static int
2615 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2616 {
2617         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2618         struct rte_ether_addr *hw_mac;
2619         int ret;
2620
2621         /*
2622          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2623          * on the host by "ip link set ..." command. If the hns3 PF kernel
2624          * ethdev driver sets the MAC address for VF device after the
2625          * initialization of the related VF device, the PF driver will notify
2626          * VF driver to reset VF device to make the new MAC address effective
2627          * immediately. The hns3 VF PMD driver should check whether the MAC
2628          * address has been changed by the PF kernel ethdev driver, if changed
2629          * VF driver should configure hardware using the new MAC address in the
2630          * recovering hardware configuration stage of the reset process.
2631          */
2632         ret = hns3vf_get_host_mac_addr(hw);
2633         if (ret)
2634                 return ret;
2635
2636         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2637         ret = rte_is_zero_ether_addr(hw_mac);
2638         if (ret) {
2639                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2640         } else {
2641                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2642                 if (!ret) {
2643                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2644                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2645                                               &hw->data->mac_addrs[0]);
2646                         hns3_warn(hw, "Default MAC address has been changed to:"
2647                                   " %s by the host PF kernel ethdev driver",
2648                                   mac_str);
2649                 }
2650         }
2651
2652         return 0;
2653 }
2654
2655 static int
2656 hns3vf_restore_conf(struct hns3_adapter *hns)
2657 {
2658         struct hns3_hw *hw = &hns->hw;
2659         int ret;
2660
2661         ret = hns3vf_check_default_mac_change(hw);
2662         if (ret)
2663                 return ret;
2664
2665         ret = hns3vf_configure_mac_addr(hns, false);
2666         if (ret)
2667                 return ret;
2668
2669         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2670         if (ret)
2671                 goto err_mc_mac;
2672
2673         ret = hns3vf_restore_promisc(hns);
2674         if (ret)
2675                 goto err_vlan_table;
2676
2677         ret = hns3vf_restore_vlan_conf(hns);
2678         if (ret)
2679                 goto err_vlan_table;
2680
2681         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2682         if (ret)
2683                 goto err_vlan_table;
2684
2685         ret = hns3vf_restore_rx_interrupt(hw);
2686         if (ret)
2687                 goto err_vlan_table;
2688
2689         ret = hns3_restore_gro_conf(hw);
2690         if (ret)
2691                 goto err_vlan_table;
2692
2693         if (hw->adapter_state == HNS3_NIC_STARTED) {
2694                 ret = hns3vf_do_start(hns, false);
2695                 if (ret)
2696                         goto err_vlan_table;
2697                 hns3_info(hw, "hns3vf dev restart successful!");
2698         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2699                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2700         return 0;
2701
2702 err_vlan_table:
2703         hns3vf_configure_all_mc_mac_addr(hns, true);
2704 err_mc_mac:
2705         hns3vf_configure_mac_addr(hns, true);
2706         return ret;
2707 }
2708
2709 static enum hns3_reset_level
2710 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2711 {
2712         enum hns3_reset_level reset_level;
2713
2714         /* return the highest priority reset level amongst all */
2715         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2716                 reset_level = HNS3_VF_RESET;
2717         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2718                 reset_level = HNS3_VF_FULL_RESET;
2719         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2720                 reset_level = HNS3_VF_PF_FUNC_RESET;
2721         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2722                 reset_level = HNS3_VF_FUNC_RESET;
2723         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2724                 reset_level = HNS3_FLR_RESET;
2725         else
2726                 reset_level = HNS3_NONE_RESET;
2727
2728         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2729                 return HNS3_NONE_RESET;
2730
2731         return reset_level;
2732 }
2733
2734 static void
2735 hns3vf_reset_service(void *param)
2736 {
2737         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2738         struct hns3_hw *hw = &hns->hw;
2739         enum hns3_reset_level reset_level;
2740         struct timeval tv_delta;
2741         struct timeval tv_start;
2742         struct timeval tv;
2743         uint64_t msec;
2744
2745         /*
2746          * The interrupt is not triggered within the delay time.
2747          * The interrupt may have been lost. It is necessary to handle
2748          * the interrupt to recover from the error.
2749          */
2750         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2751                             SCHEDULE_DEFERRED) {
2752                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2753                                  __ATOMIC_RELAXED);
2754                 hns3_err(hw, "Handling interrupts in delayed tasks");
2755                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2756                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2757                 if (reset_level == HNS3_NONE_RESET) {
2758                         hns3_err(hw, "No reset level is set, try global reset");
2759                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2760                 }
2761         }
2762         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2763
2764         /*
2765          * Hardware reset has been notified, we now have to poll & check if
2766          * hardware has actually completed the reset sequence.
2767          */
2768         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2769         if (reset_level != HNS3_NONE_RESET) {
2770                 gettimeofday(&tv_start, NULL);
2771                 hns3_reset_process(hns, reset_level);
2772                 gettimeofday(&tv, NULL);
2773                 timersub(&tv, &tv_start, &tv_delta);
2774                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2775                        tv_delta.tv_usec / USEC_PER_MSEC;
2776                 if (msec > HNS3_RESET_PROCESS_MS)
2777                         hns3_err(hw, "%d handle long time delta %" PRIx64
2778                                  " ms time=%ld.%.6ld",
2779                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2780         }
2781 }
2782
2783 static int
2784 hns3vf_reinit_dev(struct hns3_adapter *hns)
2785 {
2786         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2787         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2788         struct hns3_hw *hw = &hns->hw;
2789         int ret;
2790
2791         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2792                 rte_intr_disable(&pci_dev->intr_handle);
2793                 ret = hns3vf_set_bus_master(pci_dev, true);
2794                 if (ret < 0) {
2795                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2796                         return ret;
2797                 }
2798         }
2799
2800         /* Firmware command initialize */
2801         ret = hns3_cmd_init(hw);
2802         if (ret) {
2803                 hns3_err(hw, "Failed to init cmd: %d", ret);
2804                 return ret;
2805         }
2806
2807         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2808                 /*
2809                  * UIO enables msix by writing the pcie configuration space
2810                  * vfio_pci enables msix in rte_intr_enable.
2811                  */
2812                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2813                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2814                         if (hns3vf_enable_msix(pci_dev, true))
2815                                 hns3_err(hw, "Failed to enable msix");
2816                 }
2817
2818                 rte_intr_enable(&pci_dev->intr_handle);
2819         }
2820
2821         ret = hns3_reset_all_tqps(hns);
2822         if (ret) {
2823                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2824                 return ret;
2825         }
2826
2827         ret = hns3vf_init_hardware(hns);
2828         if (ret) {
2829                 hns3_err(hw, "Failed to init hardware: %d", ret);
2830                 return ret;
2831         }
2832
2833         return 0;
2834 }
2835
2836 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2837         .dev_configure      = hns3vf_dev_configure,
2838         .dev_start          = hns3vf_dev_start,
2839         .dev_stop           = hns3vf_dev_stop,
2840         .dev_close          = hns3vf_dev_close,
2841         .mtu_set            = hns3vf_dev_mtu_set,
2842         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2843         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2844         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2845         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2846         .stats_get          = hns3_stats_get,
2847         .stats_reset        = hns3_stats_reset,
2848         .xstats_get         = hns3_dev_xstats_get,
2849         .xstats_get_names   = hns3_dev_xstats_get_names,
2850         .xstats_reset       = hns3_dev_xstats_reset,
2851         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2852         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2853         .dev_infos_get      = hns3vf_dev_infos_get,
2854         .fw_version_get     = hns3vf_fw_version_get,
2855         .rx_queue_setup     = hns3_rx_queue_setup,
2856         .tx_queue_setup     = hns3_tx_queue_setup,
2857         .rx_queue_release   = hns3_dev_rx_queue_release,
2858         .tx_queue_release   = hns3_dev_tx_queue_release,
2859         .rx_queue_start     = hns3_dev_rx_queue_start,
2860         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2861         .tx_queue_start     = hns3_dev_tx_queue_start,
2862         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2863         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2864         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2865         .rxq_info_get       = hns3_rxq_info_get,
2866         .txq_info_get       = hns3_txq_info_get,
2867         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2868         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2869         .mac_addr_add       = hns3vf_add_mac_addr,
2870         .mac_addr_remove    = hns3vf_remove_mac_addr,
2871         .mac_addr_set       = hns3vf_set_default_mac_addr,
2872         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2873         .link_update        = hns3vf_dev_link_update,
2874         .rss_hash_update    = hns3_dev_rss_hash_update,
2875         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2876         .reta_update        = hns3_dev_rss_reta_update,
2877         .reta_query         = hns3_dev_rss_reta_query,
2878         .flow_ops_get       = hns3_dev_flow_ops_get,
2879         .vlan_filter_set    = hns3vf_vlan_filter_set,
2880         .vlan_offload_set   = hns3vf_vlan_offload_set,
2881         .get_reg            = hns3_get_regs,
2882         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2883         .tx_done_cleanup    = hns3_tx_done_cleanup,
2884 };
2885
2886 static const struct hns3_reset_ops hns3vf_reset_ops = {
2887         .reset_service       = hns3vf_reset_service,
2888         .stop_service        = hns3vf_stop_service,
2889         .prepare_reset       = hns3vf_prepare_reset,
2890         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2891         .reinit_dev          = hns3vf_reinit_dev,
2892         .restore_conf        = hns3vf_restore_conf,
2893         .start_service       = hns3vf_start_service,
2894 };
2895
2896 static int
2897 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2898 {
2899         struct hns3_adapter *hns = eth_dev->data->dev_private;
2900         struct hns3_hw *hw = &hns->hw;
2901         int ret;
2902
2903         PMD_INIT_FUNC_TRACE();
2904
2905         eth_dev->process_private = (struct hns3_process_private *)
2906             rte_zmalloc_socket("hns3_filter_list",
2907                                sizeof(struct hns3_process_private),
2908                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2909         if (eth_dev->process_private == NULL) {
2910                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2911                 return -ENOMEM;
2912         }
2913
2914         hns3_flow_init(eth_dev);
2915
2916         hns3_set_rxtx_function(eth_dev);
2917         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2918         eth_dev->rx_queue_count = hns3_rx_queue_count;
2919         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2920                 ret = hns3_mp_init_secondary();
2921                 if (ret) {
2922                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2923                                           "process, ret = %d", ret);
2924                         goto err_mp_init_secondary;
2925                 }
2926
2927                 hw->secondary_cnt++;
2928                 return 0;
2929         }
2930
2931         ret = hns3_mp_init_primary();
2932         if (ret) {
2933                 PMD_INIT_LOG(ERR,
2934                              "Failed to init for primary process, ret = %d",
2935                              ret);
2936                 goto err_mp_init_primary;
2937         }
2938
2939         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2940         hns->is_vf = true;
2941         hw->data = eth_dev->data;
2942         hns3_parse_devargs(eth_dev);
2943
2944         ret = hns3_reset_init(hw);
2945         if (ret)
2946                 goto err_init_reset;
2947         hw->reset.ops = &hns3vf_reset_ops;
2948
2949         ret = hns3vf_init_vf(eth_dev);
2950         if (ret) {
2951                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2952                 goto err_init_vf;
2953         }
2954
2955         /* Allocate memory for storing MAC addresses */
2956         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2957                                                sizeof(struct rte_ether_addr) *
2958                                                HNS3_VF_UC_MACADDR_NUM, 0);
2959         if (eth_dev->data->mac_addrs == NULL) {
2960                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2961                              "to store MAC addresses",
2962                              sizeof(struct rte_ether_addr) *
2963                              HNS3_VF_UC_MACADDR_NUM);
2964                 ret = -ENOMEM;
2965                 goto err_rte_zmalloc;
2966         }
2967
2968         /*
2969          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2970          * on the host by "ip link set ..." command. To avoid some incorrect
2971          * scenes, for example, hns3 VF PMD driver fails to receive and send
2972          * packets after user configure the MAC address by using the
2973          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2974          * address strategy as the hns3 kernel ethdev driver in the
2975          * initialization. If user configure a MAC address by the ip command
2976          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2977          * start with a random MAC address in the initialization.
2978          */
2979         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2980                 rte_eth_random_addr(hw->mac.mac_addr);
2981         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2982                             &eth_dev->data->mac_addrs[0]);
2983
2984         hw->adapter_state = HNS3_NIC_INITIALIZED;
2985
2986         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2987                             SCHEDULE_PENDING) {
2988                 hns3_err(hw, "Reschedule reset service after dev_init");
2989                 hns3_schedule_reset(hns);
2990         } else {
2991                 /* IMP will wait ready flag before reset */
2992                 hns3_notify_reset_ready(hw, false);
2993         }
2994         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2995                           eth_dev);
2996         return 0;
2997
2998 err_rte_zmalloc:
2999         hns3vf_uninit_vf(eth_dev);
3000
3001 err_init_vf:
3002         rte_free(hw->reset.wait_data);
3003
3004 err_init_reset:
3005         hns3_mp_uninit_primary();
3006
3007 err_mp_init_primary:
3008 err_mp_init_secondary:
3009         eth_dev->dev_ops = NULL;
3010         eth_dev->rx_pkt_burst = NULL;
3011         eth_dev->rx_descriptor_status = NULL;
3012         eth_dev->tx_pkt_burst = NULL;
3013         eth_dev->tx_pkt_prepare = NULL;
3014         eth_dev->tx_descriptor_status = NULL;
3015         rte_free(eth_dev->process_private);
3016         eth_dev->process_private = NULL;
3017
3018         return ret;
3019 }
3020
3021 static int
3022 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3023 {
3024         struct hns3_adapter *hns = eth_dev->data->dev_private;
3025         struct hns3_hw *hw = &hns->hw;
3026
3027         PMD_INIT_FUNC_TRACE();
3028
3029         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
3030                 rte_free(eth_dev->process_private);
3031                 eth_dev->process_private = NULL;
3032                 return 0;
3033         }
3034
3035         if (hw->adapter_state < HNS3_NIC_CLOSING)
3036                 hns3vf_dev_close(eth_dev);
3037
3038         hw->adapter_state = HNS3_NIC_REMOVED;
3039         return 0;
3040 }
3041
3042 static int
3043 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3044                      struct rte_pci_device *pci_dev)
3045 {
3046         return rte_eth_dev_pci_generic_probe(pci_dev,
3047                                              sizeof(struct hns3_adapter),
3048                                              hns3vf_dev_init);
3049 }
3050
3051 static int
3052 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3053 {
3054         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3055 }
3056
3057 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3058         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3059         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3060         { .vendor_id = 0, }, /* sentinel */
3061 };
3062
3063 static struct rte_pci_driver rte_hns3vf_pmd = {
3064         .id_table = pci_id_hns3vf_map,
3065         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3066         .probe = eth_hns3vf_pci_probe,
3067         .remove = eth_hns3vf_pci_remove,
3068 };
3069
3070 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3071 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3072 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3073 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3074                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3075                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3076                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");