net/hns3: add runtime config to select IO burst function
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51         uint16_t reg;
52         int ret;
53
54         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55         if (ret < 0) {
56                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57                              PCI_COMMAND);
58                 return ret;
59         }
60
61         if (op)
62                 /* set the master bit */
63                 reg |= PCI_COMMAND_MASTER;
64         else
65                 reg &= ~(PCI_COMMAND_MASTER);
66
67         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80         uint16_t status;
81         uint8_t pos;
82         uint8_t id;
83         int ttl;
84         int ret;
85
86         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87         if (ret < 0) {
88                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89                 return 0;
90         }
91
92         if (!(status & PCI_STATUS_CAP_LIST))
93                 return 0;
94
95         ttl = MAX_PCIE_CAPABILITY;
96         ret = rte_pci_read_config(device, &pos, sizeof(pos),
97                                   PCI_CAPABILITY_LIST);
98         if (ret < 0) {
99                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100                              PCI_CAPABILITY_LIST);
101                 return 0;
102         }
103
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 ret = rte_pci_read_config(device, &id, sizeof(id),
106                                           (pos + PCI_CAP_LIST_ID));
107                 if (ret < 0) {
108                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109                                      (pos + PCI_CAP_LIST_ID));
110                         break;
111                 }
112
113                 if (id == 0xFF)
114                         break;
115
116                 if (id == cap)
117                         return (int)pos;
118
119                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120                                           (pos + PCI_CAP_LIST_NEXT));
121                 if (ret < 0) {
122                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123                                      (pos + PCI_CAP_LIST_NEXT));
124                         break;
125                 }
126         }
127         return 0;
128 }
129
130 static int
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133         uint16_t control;
134         int pos;
135         int ret;
136
137         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138         if (pos) {
139                 ret = rte_pci_read_config(device, &control, sizeof(control),
140                                     (pos + PCI_MSIX_FLAGS));
141                 if (ret < 0) {
142                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143                                      (pos + PCI_MSIX_FLAGS));
144                         return -ENXIO;
145                 }
146
147                 if (op)
148                         control |= PCI_MSIX_FLAGS_ENABLE;
149                 else
150                         control &= ~PCI_MSIX_FLAGS_ENABLE;
151                 ret = rte_pci_write_config(device, &control, sizeof(control),
152                                           (pos + PCI_MSIX_FLAGS));
153                 if (ret < 0) {
154                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155                                     (pos + PCI_MSIX_FLAGS));
156                 }
157                 return 0;
158         }
159         return -ENXIO;
160 }
161
162 static int
163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165         /* mac address was checked by upper level interface */
166         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167         int ret;
168
169         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
172         if (ret) {
173                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174                                       mac_addr);
175                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176                          mac_str, ret);
177         }
178         return ret;
179 }
180
181 static int
182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184         /* mac address was checked by upper level interface */
185         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186         int ret;
187
188         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
190                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191                                 false, NULL, 0);
192         if (ret) {
193                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194                                       mac_addr);
195                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196                          mac_str, ret);
197         }
198         return ret;
199 }
200
201 static int
202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205         struct rte_ether_addr *addr;
206         int ret;
207         int i;
208
209         for (i = 0; i < hw->mc_addrs_num; i++) {
210                 addr = &hw->mc_addrs[i];
211                 /* Check if there are duplicate addresses */
212                 if (rte_is_same_ether_addr(addr, mac_addr)) {
213                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214                                               addr);
215                         hns3_err(hw, "failed to add mc mac addr, same addrs"
216                                  "(%s) is added by the set_mc_mac_addr_list "
217                                  "API", mac_str);
218                         return -EINVAL;
219                 }
220         }
221
222         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223         if (ret) {
224                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225                                       mac_addr);
226                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227                          mac_str, ret);
228         }
229         return ret;
230 }
231
232 static int
233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234                     __rte_unused uint32_t idx,
235                     __rte_unused uint32_t pool)
236 {
237         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239         int ret;
240
241         rte_spinlock_lock(&hw->lock);
242
243         /*
244          * In hns3 network engine adding UC and MC mac address with different
245          * commands with firmware. We need to determine whether the input
246          * address is a UC or a MC address to call different commands.
247          * By the way, it is recommended calling the API function named
248          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250          * may affect the specifications of UC mac addresses.
251          */
252         if (rte_is_multicast_ether_addr(mac_addr))
253                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254         else
255                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256
257         rte_spinlock_unlock(&hw->lock);
258         if (ret) {
259                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260                                       mac_addr);
261                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262                          ret);
263         }
264
265         return ret;
266 }
267
268 static void
269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272         /* index will be checked by upper level rte interface */
273         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275         int ret;
276
277         rte_spinlock_lock(&hw->lock);
278
279         if (rte_is_multicast_ether_addr(mac_addr))
280                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281         else
282                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283
284         rte_spinlock_unlock(&hw->lock);
285         if (ret) {
286                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287                                       mac_addr);
288                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289                          mac_str, ret);
290         }
291 }
292
293 static int
294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295                             struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299         struct rte_ether_addr *old_addr;
300         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302         int ret;
303
304         /*
305          * It has been guaranteed that input parameter named mac_addr is valid
306          * address in the rte layer of DPDK framework.
307          */
308         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309         rte_spinlock_lock(&hw->lock);
310         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312                RTE_ETHER_ADDR_LEN);
313
314         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317         if (ret) {
318                 /*
319                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320                  * driver. When user has configured a MAC address for VF device
321                  * by "ip link set ..." command based on the PF device, the hns3
322                  * PF kernel ethdev driver does not allow VF driver to request
323                  * reconfiguring a different default MAC address, and return
324                  * -EPREM to VF driver through mailbox.
325                  */
326                 if (ret == -EPERM) {
327                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328                                               old_addr);
329                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330                                   mac_str);
331                 } else {
332                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333                                               mac_addr);
334                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335                                  mac_str, ret);
336                 }
337         }
338
339         rte_ether_addr_copy(mac_addr,
340                             (struct rte_ether_addr *)hw->mac.mac_addr);
341         rte_spinlock_unlock(&hw->lock);
342
343         return ret;
344 }
345
346 static int
347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349         struct hns3_hw *hw = &hns->hw;
350         struct rte_ether_addr *addr;
351         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352         int err = 0;
353         int ret;
354         int i;
355
356         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357                 addr = &hw->data->mac_addrs[i];
358                 if (rte_is_zero_ether_addr(addr))
359                         continue;
360                 if (rte_is_multicast_ether_addr(addr))
361                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362                               hns3vf_add_mc_mac_addr(hw, addr);
363                 else
364                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365                               hns3vf_add_uc_mac_addr(hw, addr);
366
367                 if (ret) {
368                         err = ret;
369                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370                                               addr);
371                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372                                  "ret = %d.", del ? "remove" : "restore",
373                                  mac_str, i, ret);
374                 }
375         }
376         return err;
377 }
378
379 static int
380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381                        struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_ADD,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402                           struct rte_ether_addr *mac_addr)
403 {
404         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405         int ret;
406
407         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
409                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410                                 NULL, 0);
411         if (ret) {
412                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413                                       mac_addr);
414                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415                          mac_str, ret);
416         }
417
418         return ret;
419 }
420
421 static int
422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423                              struct rte_ether_addr *mc_addr_set,
424                              uint32_t nb_mc_addr)
425 {
426         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427         struct rte_ether_addr *addr;
428         uint32_t i;
429         uint32_t j;
430
431         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433                          "invalid. valid range: 0~%d",
434                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
435                 return -EINVAL;
436         }
437
438         /* Check if input mac addresses are valid */
439         for (i = 0; i < nb_mc_addr; i++) {
440                 addr = &mc_addr_set[i];
441                 if (!rte_is_multicast_ether_addr(addr)) {
442                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443                                               addr);
444                         hns3_err(hw,
445                                  "failed to set mc mac addr, addr(%s) invalid.",
446                                  mac_str);
447                         return -EINVAL;
448                 }
449
450                 /* Check if there are duplicate addresses */
451                 for (j = i + 1; j < nb_mc_addr; j++) {
452                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453                                 hns3_ether_format_addr(mac_str,
454                                                       RTE_ETHER_ADDR_FMT_SIZE,
455                                                       addr);
456                                 hns3_err(hw, "failed to set mc mac addr, "
457                                          "addrs invalid. two same addrs(%s).",
458                                          mac_str);
459                                 return -EINVAL;
460                         }
461                 }
462
463                 /*
464                  * Check if there are duplicate addresses between mac_addrs
465                  * and mc_addr_set
466                  */
467                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468                         if (rte_is_same_ether_addr(addr,
469                                                    &hw->data->mac_addrs[j])) {
470                                 hns3_ether_format_addr(mac_str,
471                                                       RTE_ETHER_ADDR_FMT_SIZE,
472                                                       addr);
473                                 hns3_err(hw, "failed to set mc mac addr, "
474                                          "addrs invalid. addrs(%s) has already "
475                                          "configured in mac_addr add API",
476                                          mac_str);
477                                 return -EINVAL;
478                         }
479                 }
480         }
481
482         return 0;
483 }
484
485 static int
486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487                             struct rte_ether_addr *mc_addr_set,
488                             uint32_t nb_mc_addr)
489 {
490         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491         struct rte_ether_addr *addr;
492         int cur_addr_num;
493         int set_addr_num;
494         int num;
495         int ret;
496         int i;
497
498         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499         if (ret)
500                 return ret;
501
502         rte_spinlock_lock(&hw->lock);
503         cur_addr_num = hw->mc_addrs_num;
504         for (i = 0; i < cur_addr_num; i++) {
505                 num = cur_addr_num - i - 1;
506                 addr = &hw->mc_addrs[num];
507                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
508                 if (ret) {
509                         rte_spinlock_unlock(&hw->lock);
510                         return ret;
511                 }
512
513                 hw->mc_addrs_num--;
514         }
515
516         set_addr_num = (int)nb_mc_addr;
517         for (i = 0; i < set_addr_num; i++) {
518                 addr = &mc_addr_set[i];
519                 ret = hns3vf_add_mc_mac_addr(hw, addr);
520                 if (ret) {
521                         rte_spinlock_unlock(&hw->lock);
522                         return ret;
523                 }
524
525                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526                 hw->mc_addrs_num++;
527         }
528         rte_spinlock_unlock(&hw->lock);
529
530         return 0;
531 }
532
533 static int
534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537         struct hns3_hw *hw = &hns->hw;
538         struct rte_ether_addr *addr;
539         int err = 0;
540         int ret;
541         int i;
542
543         for (i = 0; i < hw->mc_addrs_num; i++) {
544                 addr = &hw->mc_addrs[i];
545                 if (!rte_is_multicast_ether_addr(addr))
546                         continue;
547                 if (del)
548                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
549                 else
550                         ret = hns3vf_add_mc_mac_addr(hw, addr);
551                 if (ret) {
552                         err = ret;
553                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554                                               addr);
555                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556                                  del ? "Remove" : "Restore", mac_str, ret);
557                 }
558         }
559         return err;
560 }
561
562 static int
563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564                         bool en_uc_pmc, bool en_mc_pmc)
565 {
566         struct hns3_mbx_vf_to_pf_cmd *req;
567         struct hns3_cmd_desc desc;
568         int ret;
569
570         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571
572         /*
573          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574          * so there are some features for promiscuous/allmulticast mode in hns3
575          * VF PMD driver as below:
576          * 1. The promiscuous/allmulticast mode can be configured successfully
577          *    only based on the trusted VF device. If based on the non trusted
578          *    VF device, configuring promiscuous/allmulticast mode will fail.
579          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
580          *    kernel ethdev driver on the host by the following command:
581          *      "ip link set <eth num> vf <vf id> turst on"
582          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583          *    driver can receive the ingress and outgoing traffic. In the words,
584          *    all the ingress packets, all the packets sent from the PF and
585          *    other VFs on the same physical port.
586          * 3. Note: Because of the hardware constraints, By default vlan filter
587          *    is enabled and couldn't be turned off based on VF device, so vlan
588          *    filter is still effective even in promiscuous mode. If upper
589          *    applications don't call rte_eth_dev_vlan_filter API function to
590          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
591          *    the packets with vlan tag in promiscuoue mode.
592          */
593         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595         req->msg[1] = en_bc_pmc ? 1 : 0;
596         req->msg[2] = en_uc_pmc ? 1 : 0;
597         req->msg[3] = en_mc_pmc ? 1 : 0;
598         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599
600         ret = hns3_cmd_send(hw, &desc, 1);
601         if (ret)
602                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603
604         return ret;
605 }
606
607 static int
608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610         struct hns3_adapter *hns = dev->data->dev_private;
611         struct hns3_hw *hw = &hns->hw;
612         int ret;
613
614         ret = hns3vf_set_promisc_mode(hw, true, true, true);
615         if (ret)
616                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617                         ret);
618         return ret;
619 }
620
621 static int
622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624         bool allmulti = dev->data->all_multicast ? true : false;
625         struct hns3_adapter *hns = dev->data->dev_private;
626         struct hns3_hw *hw = &hns->hw;
627         int ret;
628
629         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630         if (ret)
631                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632                         ret);
633         return ret;
634 }
635
636 static int
637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639         struct hns3_adapter *hns = dev->data->dev_private;
640         struct hns3_hw *hw = &hns->hw;
641         int ret;
642
643         if (dev->data->promiscuous)
644                 return 0;
645
646         ret = hns3vf_set_promisc_mode(hw, true, false, true);
647         if (ret)
648                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649                         ret);
650         return ret;
651 }
652
653 static int
654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656         struct hns3_adapter *hns = dev->data->dev_private;
657         struct hns3_hw *hw = &hns->hw;
658         int ret;
659
660         if (dev->data->promiscuous)
661                 return 0;
662
663         ret = hns3vf_set_promisc_mode(hw, true, false, false);
664         if (ret)
665                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666                         ret);
667         return ret;
668 }
669
670 static int
671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673         struct hns3_hw *hw = &hns->hw;
674         bool allmulti = hw->data->all_multicast ? true : false;
675
676         if (hw->data->promiscuous)
677                 return hns3vf_set_promisc_mode(hw, true, true, true);
678
679         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681
682 static int
683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684                              bool mmap, enum hns3_ring_type queue_type,
685                              uint16_t queue_id)
686 {
687         struct hns3_vf_bind_vector_msg bind_msg;
688         const char *op_str;
689         uint16_t code;
690         int ret;
691
692         memset(&bind_msg, 0, sizeof(bind_msg));
693         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
695         bind_msg.vector_id = vector_id;
696
697         if (queue_type == HNS3_RING_TYPE_RX)
698                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699         else
700                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701
702         bind_msg.param[0].ring_type = queue_type;
703         bind_msg.ring_num = 1;
704         bind_msg.param[0].tqp_index = queue_id;
705         op_str = mmap ? "Map" : "Unmap";
706         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707                                 sizeof(bind_msg), false, NULL, 0);
708         if (ret)
709                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710                          op_str, queue_id, bind_msg.vector_id, ret);
711
712         return ret;
713 }
714
715 static int
716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718         uint16_t vec;
719         int ret;
720         int i;
721
722         /*
723          * In hns3 network engine, vector 0 is always the misc interrupt of this
724          * function, vector 1~N can be used respectively for the queues of the
725          * function. Tx and Rx queues with the same number share the interrupt
726          * vector. In the initialization clearing the all hardware mapping
727          * relationship configurations between queues and interrupt vectors is
728          * needed, so some error caused by the residual configurations, such as
729          * the unexpected Tx interrupt, can be avoid.
730          */
731         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733                 vec = vec - 1; /* the last interrupt is reserved */
734         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735         for (i = 0; i < hw->intr_tqps_num; i++) {
736                 /*
737                  * Set gap limiter/rate limiter/quanity limiter algorithm
738                  * configuration for interrupt coalesce of queue's interrupt.
739                  */
740                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741                                        HNS3_TQP_INTR_GL_DEFAULT);
742                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743                                        HNS3_TQP_INTR_GL_DEFAULT);
744                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745                 /*
746                  * QL(quantity limiter) is not used currently, just set 0 to
747                  * close it.
748                  */
749                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750
751                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752                                                    HNS3_RING_TYPE_TX, i);
753                 if (ret) {
754                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755                                           "vector: %u, ret=%d", i, vec, ret);
756                         return ret;
757                 }
758
759                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760                                                    HNS3_RING_TYPE_RX, i);
761                 if (ret) {
762                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763                                           "vector: %u, ret=%d", i, vec, ret);
764                         return ret;
765                 }
766         }
767
768         return 0;
769 }
770
771 static int
772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774         struct hns3_adapter *hns = dev->data->dev_private;
775         struct hns3_hw *hw = &hns->hw;
776         struct rte_eth_conf *conf = &dev->data->dev_conf;
777         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
778         uint16_t nb_rx_q = dev->data->nb_rx_queues;
779         uint16_t nb_tx_q = dev->data->nb_tx_queues;
780         struct rte_eth_rss_conf rss_conf;
781         uint32_t max_rx_pkt_len;
782         uint16_t mtu;
783         bool gro_en;
784         int ret;
785
786         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
787
788         /*
789          * Some versions of hardware network engine does not support
790          * individually enable/disable/reset the Tx or Rx queue. These devices
791          * must enable/disable/reset Tx and Rx queues at the same time. When the
792          * numbers of Tx queues allocated by upper applications are not equal to
793          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795          * work as usual. But these fake queues are imperceptible, and can not
796          * be used by upper applications.
797          */
798         if (!hns3_dev_indep_txrx_supported(hw)) {
799                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
800                 if (ret) {
801                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
802                                  ret);
803                         return ret;
804                 }
805         }
806
807         hw->adapter_state = HNS3_NIC_CONFIGURING;
808         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809                 hns3_err(hw, "setting link speed/duplex not supported");
810                 ret = -EINVAL;
811                 goto cfg_err;
812         }
813
814         /* When RSS is not configured, redirect the packet queue 0 */
815         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817                 hw->rss_dis_flag = false;
818                 rss_conf = conf->rx_adv_conf.rss_conf;
819                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
820                 if (ret)
821                         goto cfg_err;
822         }
823
824         /*
825          * If jumbo frames are enabled, MTU needs to be refreshed
826          * according to the maximum RX packet length.
827          */
828         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
829                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
830                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
831                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
832                         hns3_err(hw, "maximum Rx packet length must be greater "
833                                  "than %u and less than %u when jumbo frame enabled.",
834                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
835                                  (uint16_t)HNS3_MAX_FRAME_LEN);
836                         ret = -EINVAL;
837                         goto cfg_err;
838                 }
839
840                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
841                 ret = hns3vf_dev_mtu_set(dev, mtu);
842                 if (ret)
843                         goto cfg_err;
844                 dev->data->mtu = mtu;
845         }
846
847         ret = hns3vf_dev_configure_vlan(dev);
848         if (ret)
849                 goto cfg_err;
850
851         /* config hardware GRO */
852         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
853         ret = hns3_config_gro(hw, gro_en);
854         if (ret)
855                 goto cfg_err;
856
857         hns->rx_simple_allowed = true;
858         hns->rx_vec_allowed = true;
859         hns->tx_simple_allowed = true;
860         hns->tx_vec_allowed = true;
861
862         hns3_init_rx_ptype_tble(dev);
863
864         hw->adapter_state = HNS3_NIC_CONFIGURED;
865         return 0;
866
867 cfg_err:
868         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869         hw->adapter_state = HNS3_NIC_INITIALIZED;
870
871         return ret;
872 }
873
874 static int
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
876 {
877         int ret;
878
879         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880                                 sizeof(mtu), true, NULL, 0);
881         if (ret)
882                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
883
884         return ret;
885 }
886
887 static int
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
889 {
890         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
892         int ret;
893
894         /*
895          * The hns3 PF/VF devices on the same port share the hardware MTU
896          * configuration. Currently, we send mailbox to inform hns3 PF kernel
897          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898          * driver, there is no need to stop the port for hns3 VF device, and the
899          * MTU value issued by hns3 VF PMD driver must be less than or equal to
900          * PF's MTU.
901          */
902         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903                 hns3_err(hw, "Failed to set mtu during resetting");
904                 return -EIO;
905         }
906
907         /*
908          * when Rx of scattered packets is off, we have some possibility of
909          * using vector Rx process function or simple Rx functions in hns3 PMD
910          * driver. If the input MTU is increased and the maximum length of
911          * received packets is greater than the length of a buffer for Rx
912          * packet, the hardware network engine needs to use multiple BDs and
913          * buffers to store these packets. This will cause problems when still
914          * using vector Rx process function or simple Rx function to receiving
915          * packets. So, when Rx of scattered packets is off and device is
916          * started, it is not permitted to increase MTU so that the maximum
917          * length of Rx packets is greater than Rx buffer length.
918          */
919         if (dev->data->dev_started && !dev->data->scattered_rx &&
920             frame_size > hw->rx_buf_len) {
921                 hns3_err(hw, "failed to set mtu because current is "
922                         "not scattered rx mode");
923                 return -EOPNOTSUPP;
924         }
925
926         rte_spinlock_lock(&hw->lock);
927         ret = hns3vf_config_mtu(hw, mtu);
928         if (ret) {
929                 rte_spinlock_unlock(&hw->lock);
930                 return ret;
931         }
932         if (mtu > RTE_ETHER_MTU)
933                 dev->data->dev_conf.rxmode.offloads |=
934                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
935         else
936                 dev->data->dev_conf.rxmode.offloads &=
937                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
938         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939         rte_spinlock_unlock(&hw->lock);
940
941         return 0;
942 }
943
944 static int
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
946 {
947         struct hns3_adapter *hns = eth_dev->data->dev_private;
948         struct hns3_hw *hw = &hns->hw;
949         uint16_t q_num = hw->tqps_num;
950
951         /*
952          * In interrupt mode, 'max_rx_queues' is set based on the number of
953          * MSI-X interrupt resources of the hardware.
954          */
955         if (hw->data->dev_conf.intr_conf.rxq == 1)
956                 q_num = hw->intr_tqps_num;
957
958         info->max_rx_queues = q_num;
959         info->max_tx_queues = hw->tqps_num;
960         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
965
966         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967                                  DEV_RX_OFFLOAD_UDP_CKSUM |
968                                  DEV_RX_OFFLOAD_TCP_CKSUM |
969                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
970                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972                                  DEV_RX_OFFLOAD_SCATTER |
973                                  DEV_RX_OFFLOAD_VLAN_STRIP |
974                                  DEV_RX_OFFLOAD_VLAN_FILTER |
975                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
976                                  DEV_RX_OFFLOAD_RSS_HASH |
977                                  DEV_RX_OFFLOAD_TCP_LRO);
978         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
980                                  DEV_TX_OFFLOAD_TCP_CKSUM |
981                                  DEV_TX_OFFLOAD_UDP_CKSUM |
982                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
983                                  DEV_TX_OFFLOAD_MULTI_SEGS |
984                                  DEV_TX_OFFLOAD_TCP_TSO |
985                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
987                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989                                  hns3_txvlan_cap_get(hw));
990
991         if (hns3_dev_indep_txrx_supported(hw))
992                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
993                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
994
995         info->rx_desc_lim = (struct rte_eth_desc_lim) {
996                 .nb_max = HNS3_MAX_RING_DESC,
997                 .nb_min = HNS3_MIN_RING_DESC,
998                 .nb_align = HNS3_ALIGN_RING_DESC,
999         };
1000
1001         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1002                 .nb_max = HNS3_MAX_RING_DESC,
1003                 .nb_min = HNS3_MIN_RING_DESC,
1004                 .nb_align = HNS3_ALIGN_RING_DESC,
1005                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1006                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1007         };
1008
1009         info->default_rxconf = (struct rte_eth_rxconf) {
1010                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1011                 /*
1012                  * If there are no available Rx buffer descriptors, incoming
1013                  * packets are always dropped by hardware based on hns3 network
1014                  * engine.
1015                  */
1016                 .rx_drop_en = 1,
1017                 .offloads = 0,
1018         };
1019         info->default_txconf = (struct rte_eth_txconf) {
1020                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1021                 .offloads = 0,
1022         };
1023
1024         info->vmdq_queue_num = 0;
1025
1026         info->reta_size = hw->rss_ind_tbl_size;
1027         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1028         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1029         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1030         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1031
1032         return 0;
1033 }
1034
1035 static void
1036 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1037 {
1038         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1039 }
1040
1041 static void
1042 hns3vf_disable_irq0(struct hns3_hw *hw)
1043 {
1044         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1045 }
1046
1047 static void
1048 hns3vf_enable_irq0(struct hns3_hw *hw)
1049 {
1050         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1051 }
1052
1053 static enum hns3vf_evt_cause
1054 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1055 {
1056         struct hns3_hw *hw = &hns->hw;
1057         enum hns3vf_evt_cause ret;
1058         uint32_t cmdq_stat_reg;
1059         uint32_t rst_ing_reg;
1060         uint32_t val;
1061
1062         /* Fetch the events from their corresponding regs */
1063         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1064
1065         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1066                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1067                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1068                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1069                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1070                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1071                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1072                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1073                 if (clearval) {
1074                         hw->reset.stats.global_cnt++;
1075                         hns3_warn(hw, "Global reset detected, clear reset status");
1076                 } else {
1077                         hns3_schedule_delayed_reset(hns);
1078                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1079                 }
1080
1081                 ret = HNS3VF_VECTOR0_EVENT_RST;
1082                 goto out;
1083         }
1084
1085         /* Check for vector0 mailbox(=CMDQ RX) event source */
1086         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1087                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1088                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1089                 goto out;
1090         }
1091
1092         val = 0;
1093         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1094 out:
1095         if (clearval)
1096                 *clearval = val;
1097         return ret;
1098 }
1099
1100 static void
1101 hns3vf_interrupt_handler(void *param)
1102 {
1103         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1104         struct hns3_adapter *hns = dev->data->dev_private;
1105         struct hns3_hw *hw = &hns->hw;
1106         enum hns3vf_evt_cause event_cause;
1107         uint32_t clearval;
1108
1109         if (hw->irq_thread_id == 0)
1110                 hw->irq_thread_id = pthread_self();
1111
1112         /* Disable interrupt */
1113         hns3vf_disable_irq0(hw);
1114
1115         /* Read out interrupt causes */
1116         event_cause = hns3vf_check_event_cause(hns, &clearval);
1117
1118         switch (event_cause) {
1119         case HNS3VF_VECTOR0_EVENT_RST:
1120                 hns3_schedule_reset(hns);
1121                 break;
1122         case HNS3VF_VECTOR0_EVENT_MBX:
1123                 hns3_dev_handle_mbx_msg(hw);
1124                 break;
1125         default:
1126                 break;
1127         }
1128
1129         /* Clear interrupt causes */
1130         hns3vf_clear_event_cause(hw, clearval);
1131
1132         /* Enable interrupt */
1133         hns3vf_enable_irq0(hw);
1134 }
1135
1136 static void
1137 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1138 {
1139         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1140         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1141         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1142         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1143 }
1144
1145 static void
1146 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1147 {
1148         struct hns3_dev_specs_0_cmd *req0;
1149
1150         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1151
1152         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1153         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1154         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1155         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1156 }
1157
1158 static int
1159 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1160 {
1161         if (hw->rss_ind_tbl_size == 0 ||
1162             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1163                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1164                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1165                               HNS3_RSS_IND_TBL_SIZE_MAX);
1166                 return -EINVAL;
1167         }
1168
1169         return 0;
1170 }
1171
1172 static int
1173 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1174 {
1175         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1176         int ret;
1177         int i;
1178
1179         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1180                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1181                                           true);
1182                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1183         }
1184         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1185
1186         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1187         if (ret)
1188                 return ret;
1189
1190         hns3vf_parse_dev_specifications(hw, desc);
1191
1192         return hns3vf_check_dev_specifications(hw);
1193 }
1194
1195 static int
1196 hns3vf_get_capability(struct hns3_hw *hw)
1197 {
1198         struct rte_pci_device *pci_dev;
1199         struct rte_eth_dev *eth_dev;
1200         uint8_t revision;
1201         int ret;
1202
1203         eth_dev = &rte_eth_devices[hw->data->port_id];
1204         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1205
1206         /* Get PCI revision id */
1207         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1208                                   HNS3_PCI_REVISION_ID);
1209         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1210                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1211                              ret);
1212                 return -EIO;
1213         }
1214         hw->revision = revision;
1215
1216         if (revision < PCI_REVISION_ID_HIP09_A) {
1217                 hns3vf_set_default_dev_specifications(hw);
1218                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1219                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1220                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1221                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1222                 hw->rss_info.ipv6_sctp_offload_supported = false;
1223                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1224                 return 0;
1225         }
1226
1227         ret = hns3vf_query_dev_specifications(hw);
1228         if (ret) {
1229                 PMD_INIT_LOG(ERR,
1230                              "failed to query dev specifications, ret = %d",
1231                              ret);
1232                 return ret;
1233         }
1234
1235         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1236         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1237         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1238         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1239         hw->rss_info.ipv6_sctp_offload_supported = true;
1240         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1241
1242         return 0;
1243 }
1244
1245 static int
1246 hns3vf_check_tqp_info(struct hns3_hw *hw)
1247 {
1248         if (hw->tqps_num == 0) {
1249                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1250                 return -EINVAL;
1251         }
1252
1253         if (hw->rss_size_max == 0) {
1254                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1255                 return -EINVAL;
1256         }
1257
1258         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1259
1260         return 0;
1261 }
1262
1263 static int
1264 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1265 {
1266         uint8_t resp_msg;
1267         int ret;
1268
1269         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1270                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1271                                 true, &resp_msg, sizeof(resp_msg));
1272         if (ret) {
1273                 if (ret == -ETIME) {
1274                         /*
1275                          * Getting current port based VLAN state from PF driver
1276                          * will not affect VF driver's basic function. Because
1277                          * the VF driver relies on hns3 PF kernel ether driver,
1278                          * to avoid introducing compatibility issues with older
1279                          * version of PF driver, no failure will be returned
1280                          * when the return value is ETIME. This return value has
1281                          * the following scenarios:
1282                          * 1) Firmware didn't return the results in time
1283                          * 2) the result return by firmware is timeout
1284                          * 3) the older version of kernel side PF driver does
1285                          *    not support this mailbox message.
1286                          * For scenarios 1 and 2, it is most likely that a
1287                          * hardware error has occurred, or a hardware reset has
1288                          * occurred. In this case, these errors will be caught
1289                          * by other functions.
1290                          */
1291                         PMD_INIT_LOG(WARNING,
1292                                 "failed to get PVID state for timeout, maybe "
1293                                 "kernel side PF driver doesn't support this "
1294                                 "mailbox message, or firmware didn't respond.");
1295                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1296                 } else {
1297                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1298                                 " ret = %d", ret);
1299                         return ret;
1300                 }
1301         }
1302         hw->port_base_vlan_cfg.state = resp_msg ?
1303                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1304         return 0;
1305 }
1306
1307 static int
1308 hns3vf_get_queue_info(struct hns3_hw *hw)
1309 {
1310 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1311         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1312         int ret;
1313
1314         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1315                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1316         if (ret) {
1317                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1318                 return ret;
1319         }
1320
1321         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1322         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1323
1324         return hns3vf_check_tqp_info(hw);
1325 }
1326
1327 static int
1328 hns3vf_get_queue_depth(struct hns3_hw *hw)
1329 {
1330 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1331         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1332         int ret;
1333
1334         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1335                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1336         if (ret) {
1337                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1338                              ret);
1339                 return ret;
1340         }
1341
1342         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1343         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1344
1345         return 0;
1346 }
1347
1348 static int
1349 hns3vf_get_tc_info(struct hns3_hw *hw)
1350 {
1351         uint8_t resp_msg;
1352         int ret;
1353         uint32_t i;
1354
1355         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1356                                 true, &resp_msg, sizeof(resp_msg));
1357         if (ret) {
1358                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1359                          ret);
1360                 return ret;
1361         }
1362
1363         hw->hw_tc_map = resp_msg;
1364
1365         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1366                 if (hw->hw_tc_map & BIT(i))
1367                         hw->num_tc++;
1368         }
1369
1370         return 0;
1371 }
1372
1373 static int
1374 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1375 {
1376         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1377         int ret;
1378
1379         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1380                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1381         if (ret) {
1382                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1383                 return ret;
1384         }
1385
1386         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1387
1388         return 0;
1389 }
1390
1391 static int
1392 hns3vf_get_configuration(struct hns3_hw *hw)
1393 {
1394         int ret;
1395
1396         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1397         hw->rss_dis_flag = false;
1398
1399         /* Get device capability */
1400         ret = hns3vf_get_capability(hw);
1401         if (ret) {
1402                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1403                 return ret;
1404         }
1405
1406         /* Get queue configuration from PF */
1407         ret = hns3vf_get_queue_info(hw);
1408         if (ret)
1409                 return ret;
1410
1411         /* Get queue depth info from PF */
1412         ret = hns3vf_get_queue_depth(hw);
1413         if (ret)
1414                 return ret;
1415
1416         /* Get user defined VF MAC addr from PF */
1417         ret = hns3vf_get_host_mac_addr(hw);
1418         if (ret)
1419                 return ret;
1420
1421         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1422         if (ret)
1423                 return ret;
1424
1425         /* Get tc configuration from PF */
1426         return hns3vf_get_tc_info(hw);
1427 }
1428
1429 static int
1430 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1431                             uint16_t nb_tx_q)
1432 {
1433         struct hns3_hw *hw = &hns->hw;
1434
1435         if (nb_rx_q < hw->num_tc) {
1436                 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1437                          nb_rx_q, hw->num_tc);
1438                 return -EINVAL;
1439         }
1440
1441         if (nb_tx_q < hw->num_tc) {
1442                 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1443                          nb_tx_q, hw->num_tc);
1444                 return -EINVAL;
1445         }
1446
1447         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1448 }
1449
1450 static void
1451 hns3vf_request_link_info(struct hns3_hw *hw)
1452 {
1453         uint8_t resp_msg;
1454         int ret;
1455
1456         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1457                 return;
1458         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1459                                 &resp_msg, sizeof(resp_msg));
1460         if (ret)
1461                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1462 }
1463
1464 void
1465 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1466                           uint32_t link_speed, uint8_t link_duplex)
1467 {
1468         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1469         struct hns3_mac *mac = &hw->mac;
1470         bool report_lse;
1471         bool changed;
1472
1473         changed = mac->link_status != link_status ||
1474                   mac->link_speed != link_speed ||
1475                   mac->link_duplex != link_duplex;
1476         if (!changed)
1477                 return;
1478
1479         /*
1480          * VF's link status/speed/duplex were updated by polling from PF driver,
1481          * because the link status/speed/duplex may be changed in the polling
1482          * interval, so driver will report lse (lsc event) once any of the above
1483          * thress variables changed.
1484          * But if the PF's link status is down and driver saved link status is
1485          * also down, there are no need to report lse.
1486          */
1487         report_lse = true;
1488         if (link_status == ETH_LINK_DOWN && link_status == mac->link_status)
1489                 report_lse = false;
1490
1491         mac->link_status = link_status;
1492         mac->link_speed = link_speed;
1493         mac->link_duplex = link_duplex;
1494
1495         if (report_lse)
1496                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1497 }
1498
1499 static int
1500 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1501 {
1502 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1503         struct hns3_hw *hw = &hns->hw;
1504         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1505         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1506         uint8_t is_kill = on ? 0 : 1;
1507
1508         msg_data[0] = is_kill;
1509         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1510         memcpy(&msg_data[3], &proto, sizeof(proto));
1511
1512         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1513                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1514                                  0);
1515 }
1516
1517 static int
1518 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1519 {
1520         struct hns3_adapter *hns = dev->data->dev_private;
1521         struct hns3_hw *hw = &hns->hw;
1522         int ret;
1523
1524         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1525                 hns3_err(hw,
1526                          "vf set vlan id failed during resetting, vlan_id =%u",
1527                          vlan_id);
1528                 return -EIO;
1529         }
1530         rte_spinlock_lock(&hw->lock);
1531         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1532         rte_spinlock_unlock(&hw->lock);
1533         if (ret)
1534                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1535                          vlan_id, ret);
1536
1537         return ret;
1538 }
1539
1540 static int
1541 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1542 {
1543         uint8_t msg_data;
1544         int ret;
1545
1546         msg_data = enable ? 1 : 0;
1547         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1548                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1549         if (ret)
1550                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1551
1552         return ret;
1553 }
1554
1555 static int
1556 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1557 {
1558         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1559         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1560         unsigned int tmp_mask;
1561         int ret = 0;
1562
1563         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1564                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1565                              "mask = 0x%x", mask);
1566                 return -EIO;
1567         }
1568
1569         tmp_mask = (unsigned int)mask;
1570         /* Vlan stripping setting */
1571         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1572                 rte_spinlock_lock(&hw->lock);
1573                 /* Enable or disable VLAN stripping */
1574                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1575                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1576                 else
1577                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1578                 rte_spinlock_unlock(&hw->lock);
1579         }
1580
1581         return ret;
1582 }
1583
1584 static int
1585 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1586 {
1587         struct rte_vlan_filter_conf *vfc;
1588         struct hns3_hw *hw = &hns->hw;
1589         uint16_t vlan_id;
1590         uint64_t vbit;
1591         uint64_t ids;
1592         int ret = 0;
1593         uint32_t i;
1594
1595         vfc = &hw->data->vlan_filter_conf;
1596         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1597                 if (vfc->ids[i] == 0)
1598                         continue;
1599                 ids = vfc->ids[i];
1600                 while (ids) {
1601                         /*
1602                          * 64 means the num bits of ids, one bit corresponds to
1603                          * one vlan id
1604                          */
1605                         vlan_id = 64 * i;
1606                         /* count trailing zeroes */
1607                         vbit = ~ids & (ids - 1);
1608                         /* clear least significant bit set */
1609                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1610                         for (; vbit;) {
1611                                 vbit >>= 1;
1612                                 vlan_id++;
1613                         }
1614                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1615                         if (ret) {
1616                                 hns3_err(hw,
1617                                          "VF handle vlan table failed, ret =%d, on = %d",
1618                                          ret, on);
1619                                 return ret;
1620                         }
1621                 }
1622         }
1623
1624         return ret;
1625 }
1626
1627 static int
1628 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1629 {
1630         return hns3vf_handle_all_vlan_table(hns, 0);
1631 }
1632
1633 static int
1634 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1635 {
1636         struct hns3_hw *hw = &hns->hw;
1637         struct rte_eth_conf *dev_conf;
1638         bool en;
1639         int ret;
1640
1641         dev_conf = &hw->data->dev_conf;
1642         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1643                                                                    : false;
1644         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1645         if (ret)
1646                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1647                          ret);
1648         return ret;
1649 }
1650
1651 static int
1652 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1653 {
1654         struct hns3_adapter *hns = dev->data->dev_private;
1655         struct rte_eth_dev_data *data = dev->data;
1656         struct hns3_hw *hw = &hns->hw;
1657         int ret;
1658
1659         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1660             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1661             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1662                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1663                               "or hw_vlan_insert_pvid is not support!");
1664         }
1665
1666         /* Apply vlan offload setting */
1667         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1668         if (ret)
1669                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1670
1671         return ret;
1672 }
1673
1674 static int
1675 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1676 {
1677         uint8_t msg_data;
1678
1679         msg_data = alive ? 1 : 0;
1680         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1681                                  sizeof(msg_data), false, NULL, 0);
1682 }
1683
1684 static void
1685 hns3vf_keep_alive_handler(void *param)
1686 {
1687         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1688         struct hns3_adapter *hns = eth_dev->data->dev_private;
1689         struct hns3_hw *hw = &hns->hw;
1690         uint8_t respmsg;
1691         int ret;
1692
1693         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1694                                 false, &respmsg, sizeof(uint8_t));
1695         if (ret)
1696                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1697                          ret);
1698
1699         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1700                           eth_dev);
1701 }
1702
1703 static void
1704 hns3vf_service_handler(void *param)
1705 {
1706         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1707         struct hns3_adapter *hns = eth_dev->data->dev_private;
1708         struct hns3_hw *hw = &hns->hw;
1709
1710         /*
1711          * The query link status and reset processing are executed in the
1712          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1713          * and the query operation will time out after 30ms. In the case of
1714          * multiple PF/VFs, each query failure timeout causes the IMP reset
1715          * interrupt to fail to respond within 100ms.
1716          * Before querying the link status, check whether there is a reset
1717          * pending, and if so, abandon the query.
1718          */
1719         if (!hns3vf_is_reset_pending(hns))
1720                 hns3vf_request_link_info(hw);
1721         else
1722                 hns3_warn(hw, "Cancel the query when reset is pending");
1723
1724         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1725                           eth_dev);
1726 }
1727
1728 static int
1729 hns3_query_vf_resource(struct hns3_hw *hw)
1730 {
1731         struct hns3_vf_res_cmd *req;
1732         struct hns3_cmd_desc desc;
1733         uint16_t num_msi;
1734         int ret;
1735
1736         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1737         ret = hns3_cmd_send(hw, &desc, 1);
1738         if (ret) {
1739                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1740                 return ret;
1741         }
1742
1743         req = (struct hns3_vf_res_cmd *)desc.data;
1744         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1745                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1746         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1747                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1748                          num_msi, HNS3_MIN_VECTOR_NUM);
1749                 return -EINVAL;
1750         }
1751
1752         hw->num_msi = num_msi;
1753
1754         return 0;
1755 }
1756
1757 static int
1758 hns3vf_init_hardware(struct hns3_adapter *hns)
1759 {
1760         struct hns3_hw *hw = &hns->hw;
1761         uint16_t mtu = hw->data->mtu;
1762         int ret;
1763
1764         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1765         if (ret)
1766                 return ret;
1767
1768         ret = hns3vf_config_mtu(hw, mtu);
1769         if (ret)
1770                 goto err_init_hardware;
1771
1772         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1773         if (ret) {
1774                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1775                 goto err_init_hardware;
1776         }
1777
1778         ret = hns3_config_gro(hw, false);
1779         if (ret) {
1780                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1781                 goto err_init_hardware;
1782         }
1783
1784         /*
1785          * In the initialization clearing the all hardware mapping relationship
1786          * configurations between queues and interrupt vectors is needed, so
1787          * some error caused by the residual configurations, such as the
1788          * unexpected interrupt, can be avoid.
1789          */
1790         ret = hns3vf_init_ring_with_vector(hw);
1791         if (ret) {
1792                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1793                 goto err_init_hardware;
1794         }
1795
1796         ret = hns3vf_set_alive(hw, true);
1797         if (ret) {
1798                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1799                 goto err_init_hardware;
1800         }
1801
1802         return 0;
1803
1804 err_init_hardware:
1805         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1806         return ret;
1807 }
1808
1809 static int
1810 hns3vf_clear_vport_list(struct hns3_hw *hw)
1811 {
1812         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1813                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1814                                  NULL, 0);
1815 }
1816
1817 static int
1818 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1819 {
1820         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1821         struct hns3_adapter *hns = eth_dev->data->dev_private;
1822         struct hns3_hw *hw = &hns->hw;
1823         int ret;
1824
1825         PMD_INIT_FUNC_TRACE();
1826
1827         /* Get hardware io base address from pcie BAR2 IO space */
1828         hw->io_base = pci_dev->mem_resource[2].addr;
1829
1830         /* Firmware command queue initialize */
1831         ret = hns3_cmd_init_queue(hw);
1832         if (ret) {
1833                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1834                 goto err_cmd_init_queue;
1835         }
1836
1837         /* Firmware command initialize */
1838         ret = hns3_cmd_init(hw);
1839         if (ret) {
1840                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1841                 goto err_cmd_init;
1842         }
1843
1844         /* Get VF resource */
1845         ret = hns3_query_vf_resource(hw);
1846         if (ret)
1847                 goto err_cmd_init;
1848
1849         rte_spinlock_init(&hw->mbx_resp.lock);
1850
1851         hns3vf_clear_event_cause(hw, 0);
1852
1853         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1854                                          hns3vf_interrupt_handler, eth_dev);
1855         if (ret) {
1856                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1857                 goto err_intr_callback_register;
1858         }
1859
1860         /* Enable interrupt */
1861         rte_intr_enable(&pci_dev->intr_handle);
1862         hns3vf_enable_irq0(hw);
1863
1864         /* Get configuration from PF */
1865         ret = hns3vf_get_configuration(hw);
1866         if (ret) {
1867                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1868                 goto err_get_config;
1869         }
1870
1871         ret = hns3_tqp_stats_init(hw);
1872         if (ret)
1873                 goto err_get_config;
1874
1875         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1876         if (ret) {
1877                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1878                 goto err_set_tc_queue;
1879         }
1880
1881         ret = hns3vf_clear_vport_list(hw);
1882         if (ret) {
1883                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1884                 goto err_set_tc_queue;
1885         }
1886
1887         ret = hns3vf_init_hardware(hns);
1888         if (ret)
1889                 goto err_set_tc_queue;
1890
1891         hns3_rss_set_default_args(hw);
1892
1893         return 0;
1894
1895 err_set_tc_queue:
1896         hns3_tqp_stats_uninit(hw);
1897
1898 err_get_config:
1899         hns3vf_disable_irq0(hw);
1900         rte_intr_disable(&pci_dev->intr_handle);
1901         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1902                              eth_dev);
1903 err_intr_callback_register:
1904 err_cmd_init:
1905         hns3_cmd_uninit(hw);
1906         hns3_cmd_destroy_queue(hw);
1907 err_cmd_init_queue:
1908         hw->io_base = NULL;
1909
1910         return ret;
1911 }
1912
1913 static void
1914 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1915 {
1916         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1917         struct hns3_adapter *hns = eth_dev->data->dev_private;
1918         struct hns3_hw *hw = &hns->hw;
1919
1920         PMD_INIT_FUNC_TRACE();
1921
1922         hns3_rss_uninit(hns);
1923         (void)hns3_config_gro(hw, false);
1924         (void)hns3vf_set_alive(hw, false);
1925         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1926         hns3_tqp_stats_uninit(hw);
1927         hns3vf_disable_irq0(hw);
1928         rte_intr_disable(&pci_dev->intr_handle);
1929         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1930                              eth_dev);
1931         hns3_cmd_uninit(hw);
1932         hns3_cmd_destroy_queue(hw);
1933         hw->io_base = NULL;
1934 }
1935
1936 static int
1937 hns3vf_do_stop(struct hns3_adapter *hns)
1938 {
1939         struct hns3_hw *hw = &hns->hw;
1940         int ret;
1941
1942         hw->mac.link_status = ETH_LINK_DOWN;
1943
1944         /*
1945          * The "hns3vf_do_stop" function will also be called by .stop_service to
1946          * prepare reset. At the time of global or IMP reset, the command cannot
1947          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
1948          * accessed during the reset process. So the mbuf can not be released
1949          * during reset and is required to be released after the reset is
1950          * completed.
1951          */
1952         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
1953                 hns3_dev_release_mbufs(hns);
1954
1955         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
1956                 hns3vf_configure_mac_addr(hns, true);
1957                 ret = hns3_reset_all_tqps(hns);
1958                 if (ret) {
1959                         hns3_err(hw, "failed to reset all queues ret = %d",
1960                                  ret);
1961                         return ret;
1962                 }
1963         }
1964         return 0;
1965 }
1966
1967 static void
1968 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1969 {
1970         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1971         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1972         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1973         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1974         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1975         uint16_t q_id;
1976
1977         if (dev->data->dev_conf.intr_conf.rxq == 0)
1978                 return;
1979
1980         /* unmap the ring with vector */
1981         if (rte_intr_allow_others(intr_handle)) {
1982                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1983                 base = RTE_INTR_VEC_RXTX_OFFSET;
1984         }
1985         if (rte_intr_dp_is_en(intr_handle)) {
1986                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1987                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1988                                                            HNS3_RING_TYPE_RX,
1989                                                            q_id);
1990                         if (vec < base + intr_handle->nb_efd - 1)
1991                                 vec++;
1992                 }
1993         }
1994         /* Clean datapath event and queue/vec mapping */
1995         rte_intr_efd_disable(intr_handle);
1996         if (intr_handle->intr_vec) {
1997                 rte_free(intr_handle->intr_vec);
1998                 intr_handle->intr_vec = NULL;
1999         }
2000 }
2001
2002 static int
2003 hns3vf_dev_stop(struct rte_eth_dev *dev)
2004 {
2005         struct hns3_adapter *hns = dev->data->dev_private;
2006         struct hns3_hw *hw = &hns->hw;
2007
2008         PMD_INIT_FUNC_TRACE();
2009         dev->data->dev_started = 0;
2010
2011         hw->adapter_state = HNS3_NIC_STOPPING;
2012         hns3_set_rxtx_function(dev);
2013         rte_wmb();
2014         /* Disable datapath on secondary process. */
2015         hns3_mp_req_stop_rxtx(dev);
2016         /* Prevent crashes when queues are still in use. */
2017         rte_delay_ms(hw->tqps_num);
2018
2019         rte_spinlock_lock(&hw->lock);
2020         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2021                 hns3_stop_tqps(hw);
2022                 hns3vf_do_stop(hns);
2023                 hns3vf_unmap_rx_interrupt(dev);
2024                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2025         }
2026         hns3_rx_scattered_reset(dev);
2027         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
2028         rte_spinlock_unlock(&hw->lock);
2029
2030         return 0;
2031 }
2032
2033 static int
2034 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2035 {
2036         struct hns3_adapter *hns = eth_dev->data->dev_private;
2037         struct hns3_hw *hw = &hns->hw;
2038         int ret = 0;
2039
2040         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2041                 rte_free(eth_dev->process_private);
2042                 eth_dev->process_private = NULL;
2043                 return 0;
2044         }
2045
2046         if (hw->adapter_state == HNS3_NIC_STARTED)
2047                 ret = hns3vf_dev_stop(eth_dev);
2048
2049         hw->adapter_state = HNS3_NIC_CLOSING;
2050         hns3_reset_abort(hns);
2051         hw->adapter_state = HNS3_NIC_CLOSED;
2052         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2053         hns3vf_configure_all_mc_mac_addr(hns, true);
2054         hns3vf_remove_all_vlan_table(hns);
2055         hns3vf_uninit_vf(eth_dev);
2056         hns3_free_all_queues(eth_dev);
2057         rte_free(hw->reset.wait_data);
2058         rte_free(eth_dev->process_private);
2059         eth_dev->process_private = NULL;
2060         hns3_mp_uninit_primary();
2061         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2062
2063         return ret;
2064 }
2065
2066 static int
2067 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2068                       size_t fw_size)
2069 {
2070         struct hns3_adapter *hns = eth_dev->data->dev_private;
2071         struct hns3_hw *hw = &hns->hw;
2072         uint32_t version = hw->fw_version;
2073         int ret;
2074
2075         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2076                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2077                                       HNS3_FW_VERSION_BYTE3_S),
2078                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2079                                       HNS3_FW_VERSION_BYTE2_S),
2080                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2081                                       HNS3_FW_VERSION_BYTE1_S),
2082                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2083                                       HNS3_FW_VERSION_BYTE0_S));
2084         ret += 1; /* add the size of '\0' */
2085         if (fw_size < (uint32_t)ret)
2086                 return ret;
2087         else
2088                 return 0;
2089 }
2090
2091 static int
2092 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2093                        __rte_unused int wait_to_complete)
2094 {
2095         struct hns3_adapter *hns = eth_dev->data->dev_private;
2096         struct hns3_hw *hw = &hns->hw;
2097         struct hns3_mac *mac = &hw->mac;
2098         struct rte_eth_link new_link;
2099
2100         memset(&new_link, 0, sizeof(new_link));
2101         switch (mac->link_speed) {
2102         case ETH_SPEED_NUM_10M:
2103         case ETH_SPEED_NUM_100M:
2104         case ETH_SPEED_NUM_1G:
2105         case ETH_SPEED_NUM_10G:
2106         case ETH_SPEED_NUM_25G:
2107         case ETH_SPEED_NUM_40G:
2108         case ETH_SPEED_NUM_50G:
2109         case ETH_SPEED_NUM_100G:
2110         case ETH_SPEED_NUM_200G:
2111                 new_link.link_speed = mac->link_speed;
2112                 break;
2113         default:
2114                 new_link.link_speed = ETH_SPEED_NUM_100M;
2115                 break;
2116         }
2117
2118         new_link.link_duplex = mac->link_duplex;
2119         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2120         new_link.link_autoneg =
2121             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2122
2123         return rte_eth_linkstatus_set(eth_dev, &new_link);
2124 }
2125
2126 static int
2127 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2128 {
2129         struct hns3_hw *hw = &hns->hw;
2130         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2131         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2132         int ret;
2133
2134         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2135         if (ret)
2136                 return ret;
2137
2138         hns3_enable_rxd_adv_layout(hw);
2139
2140         ret = hns3_init_queues(hns, reset_queue);
2141         if (ret)
2142                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2143
2144         return ret;
2145 }
2146
2147 static int
2148 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2149 {
2150         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2151         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2152         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2153         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2154         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2155         uint32_t intr_vector;
2156         uint16_t q_id;
2157         int ret;
2158
2159         /*
2160          * hns3 needs a separate interrupt to be used as event interrupt which
2161          * could not be shared with task queue pair, so KERNEL drivers need
2162          * support multiple interrupt vectors.
2163          */
2164         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2165             !rte_intr_cap_multiple(intr_handle))
2166                 return 0;
2167
2168         rte_intr_disable(intr_handle);
2169         intr_vector = hw->used_rx_queues;
2170         /* It creates event fd for each intr vector when MSIX is used */
2171         if (rte_intr_efd_enable(intr_handle, intr_vector))
2172                 return -EINVAL;
2173
2174         if (intr_handle->intr_vec == NULL) {
2175                 intr_handle->intr_vec =
2176                         rte_zmalloc("intr_vec",
2177                                     hw->used_rx_queues * sizeof(int), 0);
2178                 if (intr_handle->intr_vec == NULL) {
2179                         hns3_err(hw, "Failed to allocate %u rx_queues"
2180                                      " intr_vec", hw->used_rx_queues);
2181                         ret = -ENOMEM;
2182                         goto vf_alloc_intr_vec_error;
2183                 }
2184         }
2185
2186         if (rte_intr_allow_others(intr_handle)) {
2187                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2188                 base = RTE_INTR_VEC_RXTX_OFFSET;
2189         }
2190
2191         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2192                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2193                                                    HNS3_RING_TYPE_RX, q_id);
2194                 if (ret)
2195                         goto vf_bind_vector_error;
2196                 intr_handle->intr_vec[q_id] = vec;
2197                 /*
2198                  * If there are not enough efds (e.g. not enough interrupt),
2199                  * remaining queues will be bond to the last interrupt.
2200                  */
2201                 if (vec < base + intr_handle->nb_efd - 1)
2202                         vec++;
2203         }
2204         rte_intr_enable(intr_handle);
2205         return 0;
2206
2207 vf_bind_vector_error:
2208         free(intr_handle->intr_vec);
2209         intr_handle->intr_vec = NULL;
2210 vf_alloc_intr_vec_error:
2211         rte_intr_efd_disable(intr_handle);
2212         return ret;
2213 }
2214
2215 static int
2216 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2217 {
2218         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2219         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2220         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2221         uint16_t q_id;
2222         int ret;
2223
2224         if (dev->data->dev_conf.intr_conf.rxq == 0)
2225                 return 0;
2226
2227         if (rte_intr_dp_is_en(intr_handle)) {
2228                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2229                         ret = hns3vf_bind_ring_with_vector(hw,
2230                                         intr_handle->intr_vec[q_id], true,
2231                                         HNS3_RING_TYPE_RX, q_id);
2232                         if (ret)
2233                                 return ret;
2234                 }
2235         }
2236
2237         return 0;
2238 }
2239
2240 static void
2241 hns3vf_restore_filter(struct rte_eth_dev *dev)
2242 {
2243         hns3_restore_rss_filter(dev);
2244 }
2245
2246 static int
2247 hns3vf_dev_start(struct rte_eth_dev *dev)
2248 {
2249         struct hns3_adapter *hns = dev->data->dev_private;
2250         struct hns3_hw *hw = &hns->hw;
2251         int ret;
2252
2253         PMD_INIT_FUNC_TRACE();
2254         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2255                 return -EBUSY;
2256
2257         rte_spinlock_lock(&hw->lock);
2258         hw->adapter_state = HNS3_NIC_STARTING;
2259         ret = hns3vf_do_start(hns, true);
2260         if (ret) {
2261                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2262                 rte_spinlock_unlock(&hw->lock);
2263                 return ret;
2264         }
2265         ret = hns3vf_map_rx_interrupt(dev);
2266         if (ret)
2267                 goto map_rx_inter_err;
2268
2269         /*
2270          * There are three register used to control the status of a TQP
2271          * (contains a pair of Tx queue and Rx queue) in the new version network
2272          * engine. One is used to control the enabling of Tx queue, the other is
2273          * used to control the enabling of Rx queue, and the last is the master
2274          * switch used to control the enabling of the tqp. The Tx register and
2275          * TQP register must be enabled at the same time to enable a Tx queue.
2276          * The same applies to the Rx queue. For the older network enginem, this
2277          * function only refresh the enabled flag, and it is used to update the
2278          * status of queue in the dpdk framework.
2279          */
2280         ret = hns3_start_all_txqs(dev);
2281         if (ret)
2282                 goto map_rx_inter_err;
2283
2284         ret = hns3_start_all_rxqs(dev);
2285         if (ret)
2286                 goto start_all_rxqs_fail;
2287
2288         hw->adapter_state = HNS3_NIC_STARTED;
2289         rte_spinlock_unlock(&hw->lock);
2290
2291         hns3_rx_scattered_calc(dev);
2292         hns3_set_rxtx_function(dev);
2293         hns3_mp_req_start_rxtx(dev);
2294         hns3vf_service_handler(dev);
2295
2296         hns3vf_restore_filter(dev);
2297
2298         /* Enable interrupt of all rx queues before enabling queues */
2299         hns3_dev_all_rx_queue_intr_enable(hw, true);
2300
2301         /*
2302          * After finished the initialization, start all tqps to receive/transmit
2303          * packets and refresh all queue status.
2304          */
2305         hns3_start_tqps(hw);
2306
2307         return ret;
2308
2309 start_all_rxqs_fail:
2310         hns3_stop_all_txqs(dev);
2311 map_rx_inter_err:
2312         (void)hns3vf_do_stop(hns);
2313         hw->adapter_state = HNS3_NIC_CONFIGURED;
2314         rte_spinlock_unlock(&hw->lock);
2315
2316         return ret;
2317 }
2318
2319 static bool
2320 is_vf_reset_done(struct hns3_hw *hw)
2321 {
2322 #define HNS3_FUN_RST_ING_BITS \
2323         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2324          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2325          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2326          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2327
2328         uint32_t val;
2329
2330         if (hw->reset.level == HNS3_VF_RESET) {
2331                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2332                 if (val & HNS3_VF_RST_ING_BIT)
2333                         return false;
2334         } else {
2335                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2336                 if (val & HNS3_FUN_RST_ING_BITS)
2337                         return false;
2338         }
2339         return true;
2340 }
2341
2342 bool
2343 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2344 {
2345         struct hns3_hw *hw = &hns->hw;
2346         enum hns3_reset_level reset;
2347
2348         /*
2349          * According to the protocol of PCIe, FLR to a PF device resets the PF
2350          * state as well as the SR-IOV extended capability including VF Enable
2351          * which means that VFs no longer exist.
2352          *
2353          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2354          * is in FLR stage, the register state of VF device is not reliable,
2355          * so register states detection can not be carried out. In this case,
2356          * we just ignore the register states and return false to indicate that
2357          * there are no other reset states that need to be processed by driver.
2358          */
2359         if (hw->reset.level == HNS3_VF_FULL_RESET)
2360                 return false;
2361
2362         /* Check the registers to confirm whether there is reset pending */
2363         hns3vf_check_event_cause(hns, NULL);
2364         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2365         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2366                 hns3_warn(hw, "High level reset %d is pending", reset);
2367                 return true;
2368         }
2369         return false;
2370 }
2371
2372 static int
2373 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2374 {
2375         struct hns3_hw *hw = &hns->hw;
2376         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2377         struct timeval tv;
2378
2379         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2380                 /*
2381                  * After vf reset is ready, the PF may not have completed
2382                  * the reset processing. The vf sending mbox to PF may fail
2383                  * during the pf reset, so it is better to add extra delay.
2384                  */
2385                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2386                     hw->reset.level == HNS3_FLR_RESET)
2387                         return 0;
2388                 /* Reset retry process, no need to add extra delay. */
2389                 if (hw->reset.attempts)
2390                         return 0;
2391                 if (wait_data->check_completion == NULL)
2392                         return 0;
2393
2394                 wait_data->check_completion = NULL;
2395                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2396                 wait_data->count = 1;
2397                 wait_data->result = HNS3_WAIT_REQUEST;
2398                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2399                                   wait_data);
2400                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2401                 return -EAGAIN;
2402         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2403                 gettimeofday(&tv, NULL);
2404                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2405                           tv.tv_sec, tv.tv_usec);
2406                 return -ETIME;
2407         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2408                 return -EAGAIN;
2409
2410         wait_data->hns = hns;
2411         wait_data->check_completion = is_vf_reset_done;
2412         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2413                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2414         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2415         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2416         wait_data->result = HNS3_WAIT_REQUEST;
2417         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2418         return -EAGAIN;
2419 }
2420
2421 static int
2422 hns3vf_prepare_reset(struct hns3_adapter *hns)
2423 {
2424         struct hns3_hw *hw = &hns->hw;
2425         int ret;
2426
2427         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2428                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2429                                         0, true, NULL, 0);
2430                 if (ret)
2431                         return ret;
2432         }
2433         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2434
2435         return 0;
2436 }
2437
2438 static int
2439 hns3vf_stop_service(struct hns3_adapter *hns)
2440 {
2441         struct hns3_hw *hw = &hns->hw;
2442         struct rte_eth_dev *eth_dev;
2443
2444         eth_dev = &rte_eth_devices[hw->data->port_id];
2445         if (hw->adapter_state == HNS3_NIC_STARTED) {
2446                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2447                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2448                         hw->mac.link_duplex);
2449         }
2450         hw->mac.link_status = ETH_LINK_DOWN;
2451
2452         hns3_set_rxtx_function(eth_dev);
2453         rte_wmb();
2454         /* Disable datapath on secondary process. */
2455         hns3_mp_req_stop_rxtx(eth_dev);
2456         rte_delay_ms(hw->tqps_num);
2457
2458         rte_spinlock_lock(&hw->lock);
2459         if (hw->adapter_state == HNS3_NIC_STARTED ||
2460             hw->adapter_state == HNS3_NIC_STOPPING) {
2461                 hns3_enable_all_queues(hw, false);
2462                 hns3vf_do_stop(hns);
2463                 hw->reset.mbuf_deferred_free = true;
2464         } else
2465                 hw->reset.mbuf_deferred_free = false;
2466
2467         /*
2468          * It is cumbersome for hardware to pick-and-choose entries for deletion
2469          * from table space. Hence, for function reset software intervention is
2470          * required to delete the entries.
2471          */
2472         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2473                 hns3vf_configure_all_mc_mac_addr(hns, true);
2474         rte_spinlock_unlock(&hw->lock);
2475
2476         return 0;
2477 }
2478
2479 static int
2480 hns3vf_start_service(struct hns3_adapter *hns)
2481 {
2482         struct hns3_hw *hw = &hns->hw;
2483         struct rte_eth_dev *eth_dev;
2484
2485         eth_dev = &rte_eth_devices[hw->data->port_id];
2486         hns3_set_rxtx_function(eth_dev);
2487         hns3_mp_req_start_rxtx(eth_dev);
2488         if (hw->adapter_state == HNS3_NIC_STARTED) {
2489                 hns3vf_service_handler(eth_dev);
2490
2491                 /* Enable interrupt of all rx queues before enabling queues */
2492                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2493                 /*
2494                  * Enable state of each rxq and txq will be recovered after
2495                  * reset, so we need to restore them before enable all tqps;
2496                  */
2497                 hns3_restore_tqp_enable_state(hw);
2498                 /*
2499                  * When finished the initialization, enable queues to receive
2500                  * and transmit packets.
2501                  */
2502                 hns3_enable_all_queues(hw, true);
2503         }
2504
2505         return 0;
2506 }
2507
2508 static int
2509 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2510 {
2511         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2512         struct rte_ether_addr *hw_mac;
2513         int ret;
2514
2515         /*
2516          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2517          * on the host by "ip link set ..." command. If the hns3 PF kernel
2518          * ethdev driver sets the MAC address for VF device after the
2519          * initialization of the related VF device, the PF driver will notify
2520          * VF driver to reset VF device to make the new MAC address effective
2521          * immediately. The hns3 VF PMD driver should check whether the MAC
2522          * address has been changed by the PF kernel ethdev driver, if changed
2523          * VF driver should configure hardware using the new MAC address in the
2524          * recovering hardware configuration stage of the reset process.
2525          */
2526         ret = hns3vf_get_host_mac_addr(hw);
2527         if (ret)
2528                 return ret;
2529
2530         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2531         ret = rte_is_zero_ether_addr(hw_mac);
2532         if (ret) {
2533                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2534         } else {
2535                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2536                 if (!ret) {
2537                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2538                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2539                                               &hw->data->mac_addrs[0]);
2540                         hns3_warn(hw, "Default MAC address has been changed to:"
2541                                   " %s by the host PF kernel ethdev driver",
2542                                   mac_str);
2543                 }
2544         }
2545
2546         return 0;
2547 }
2548
2549 static int
2550 hns3vf_restore_conf(struct hns3_adapter *hns)
2551 {
2552         struct hns3_hw *hw = &hns->hw;
2553         int ret;
2554
2555         ret = hns3vf_check_default_mac_change(hw);
2556         if (ret)
2557                 return ret;
2558
2559         ret = hns3vf_configure_mac_addr(hns, false);
2560         if (ret)
2561                 return ret;
2562
2563         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2564         if (ret)
2565                 goto err_mc_mac;
2566
2567         ret = hns3vf_restore_promisc(hns);
2568         if (ret)
2569                 goto err_vlan_table;
2570
2571         ret = hns3vf_restore_vlan_conf(hns);
2572         if (ret)
2573                 goto err_vlan_table;
2574
2575         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2576         if (ret)
2577                 goto err_vlan_table;
2578
2579         ret = hns3vf_restore_rx_interrupt(hw);
2580         if (ret)
2581                 goto err_vlan_table;
2582
2583         ret = hns3_restore_gro_conf(hw);
2584         if (ret)
2585                 goto err_vlan_table;
2586
2587         if (hw->adapter_state == HNS3_NIC_STARTED) {
2588                 ret = hns3vf_do_start(hns, false);
2589                 if (ret)
2590                         goto err_vlan_table;
2591                 hns3_info(hw, "hns3vf dev restart successful!");
2592         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2593                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2594         return 0;
2595
2596 err_vlan_table:
2597         hns3vf_configure_all_mc_mac_addr(hns, true);
2598 err_mc_mac:
2599         hns3vf_configure_mac_addr(hns, true);
2600         return ret;
2601 }
2602
2603 static enum hns3_reset_level
2604 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2605 {
2606         enum hns3_reset_level reset_level;
2607
2608         /* return the highest priority reset level amongst all */
2609         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2610                 reset_level = HNS3_VF_RESET;
2611         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2612                 reset_level = HNS3_VF_FULL_RESET;
2613         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2614                 reset_level = HNS3_VF_PF_FUNC_RESET;
2615         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2616                 reset_level = HNS3_VF_FUNC_RESET;
2617         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2618                 reset_level = HNS3_FLR_RESET;
2619         else
2620                 reset_level = HNS3_NONE_RESET;
2621
2622         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2623                 return HNS3_NONE_RESET;
2624
2625         return reset_level;
2626 }
2627
2628 static void
2629 hns3vf_reset_service(void *param)
2630 {
2631         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2632         struct hns3_hw *hw = &hns->hw;
2633         enum hns3_reset_level reset_level;
2634         struct timeval tv_delta;
2635         struct timeval tv_start;
2636         struct timeval tv;
2637         uint64_t msec;
2638
2639         /*
2640          * The interrupt is not triggered within the delay time.
2641          * The interrupt may have been lost. It is necessary to handle
2642          * the interrupt to recover from the error.
2643          */
2644         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2645                             SCHEDULE_DEFERRED) {
2646                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2647                                  __ATOMIC_RELAXED);
2648                 hns3_err(hw, "Handling interrupts in delayed tasks");
2649                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2650                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2651                 if (reset_level == HNS3_NONE_RESET) {
2652                         hns3_err(hw, "No reset level is set, try global reset");
2653                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2654                 }
2655         }
2656         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2657
2658         /*
2659          * Hardware reset has been notified, we now have to poll & check if
2660          * hardware has actually completed the reset sequence.
2661          */
2662         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2663         if (reset_level != HNS3_NONE_RESET) {
2664                 gettimeofday(&tv_start, NULL);
2665                 hns3_reset_process(hns, reset_level);
2666                 gettimeofday(&tv, NULL);
2667                 timersub(&tv, &tv_start, &tv_delta);
2668                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2669                        tv_delta.tv_usec / USEC_PER_MSEC;
2670                 if (msec > HNS3_RESET_PROCESS_MS)
2671                         hns3_err(hw, "%d handle long time delta %" PRIx64
2672                                  " ms time=%ld.%.6ld",
2673                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2674         }
2675 }
2676
2677 static int
2678 hns3vf_reinit_dev(struct hns3_adapter *hns)
2679 {
2680         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2681         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2682         struct hns3_hw *hw = &hns->hw;
2683         int ret;
2684
2685         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2686                 rte_intr_disable(&pci_dev->intr_handle);
2687                 ret = hns3vf_set_bus_master(pci_dev, true);
2688                 if (ret < 0) {
2689                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2690                         return ret;
2691                 }
2692         }
2693
2694         /* Firmware command initialize */
2695         ret = hns3_cmd_init(hw);
2696         if (ret) {
2697                 hns3_err(hw, "Failed to init cmd: %d", ret);
2698                 return ret;
2699         }
2700
2701         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2702                 /*
2703                  * UIO enables msix by writing the pcie configuration space
2704                  * vfio_pci enables msix in rte_intr_enable.
2705                  */
2706                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2707                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2708                         if (hns3vf_enable_msix(pci_dev, true))
2709                                 hns3_err(hw, "Failed to enable msix");
2710                 }
2711
2712                 rte_intr_enable(&pci_dev->intr_handle);
2713         }
2714
2715         ret = hns3_reset_all_tqps(hns);
2716         if (ret) {
2717                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2718                 return ret;
2719         }
2720
2721         ret = hns3vf_init_hardware(hns);
2722         if (ret) {
2723                 hns3_err(hw, "Failed to init hardware: %d", ret);
2724                 return ret;
2725         }
2726
2727         return 0;
2728 }
2729
2730 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2731         .dev_configure      = hns3vf_dev_configure,
2732         .dev_start          = hns3vf_dev_start,
2733         .dev_stop           = hns3vf_dev_stop,
2734         .dev_close          = hns3vf_dev_close,
2735         .mtu_set            = hns3vf_dev_mtu_set,
2736         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2737         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2738         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2739         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2740         .stats_get          = hns3_stats_get,
2741         .stats_reset        = hns3_stats_reset,
2742         .xstats_get         = hns3_dev_xstats_get,
2743         .xstats_get_names   = hns3_dev_xstats_get_names,
2744         .xstats_reset       = hns3_dev_xstats_reset,
2745         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2746         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2747         .dev_infos_get      = hns3vf_dev_infos_get,
2748         .fw_version_get     = hns3vf_fw_version_get,
2749         .rx_queue_setup     = hns3_rx_queue_setup,
2750         .tx_queue_setup     = hns3_tx_queue_setup,
2751         .rx_queue_release   = hns3_dev_rx_queue_release,
2752         .tx_queue_release   = hns3_dev_tx_queue_release,
2753         .rx_queue_start     = hns3_dev_rx_queue_start,
2754         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2755         .tx_queue_start     = hns3_dev_tx_queue_start,
2756         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2757         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2758         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2759         .rxq_info_get       = hns3_rxq_info_get,
2760         .txq_info_get       = hns3_txq_info_get,
2761         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2762         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2763         .mac_addr_add       = hns3vf_add_mac_addr,
2764         .mac_addr_remove    = hns3vf_remove_mac_addr,
2765         .mac_addr_set       = hns3vf_set_default_mac_addr,
2766         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2767         .link_update        = hns3vf_dev_link_update,
2768         .rss_hash_update    = hns3_dev_rss_hash_update,
2769         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2770         .reta_update        = hns3_dev_rss_reta_update,
2771         .reta_query         = hns3_dev_rss_reta_query,
2772         .filter_ctrl        = hns3_dev_filter_ctrl,
2773         .vlan_filter_set    = hns3vf_vlan_filter_set,
2774         .vlan_offload_set   = hns3vf_vlan_offload_set,
2775         .get_reg            = hns3_get_regs,
2776         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2777         .tx_done_cleanup    = hns3_tx_done_cleanup,
2778 };
2779
2780 static const struct hns3_reset_ops hns3vf_reset_ops = {
2781         .reset_service       = hns3vf_reset_service,
2782         .stop_service        = hns3vf_stop_service,
2783         .prepare_reset       = hns3vf_prepare_reset,
2784         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2785         .reinit_dev          = hns3vf_reinit_dev,
2786         .restore_conf        = hns3vf_restore_conf,
2787         .start_service       = hns3vf_start_service,
2788 };
2789
2790 static int
2791 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2792 {
2793         struct hns3_adapter *hns = eth_dev->data->dev_private;
2794         struct hns3_hw *hw = &hns->hw;
2795         int ret;
2796
2797         PMD_INIT_FUNC_TRACE();
2798
2799         eth_dev->process_private = (struct hns3_process_private *)
2800             rte_zmalloc_socket("hns3_filter_list",
2801                                sizeof(struct hns3_process_private),
2802                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2803         if (eth_dev->process_private == NULL) {
2804                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2805                 return -ENOMEM;
2806         }
2807
2808         /* initialize flow filter lists */
2809         hns3_filterlist_init(eth_dev);
2810
2811         hns3_set_rxtx_function(eth_dev);
2812         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2813         eth_dev->rx_queue_count = hns3_rx_queue_count;
2814         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2815                 ret = hns3_mp_init_secondary();
2816                 if (ret) {
2817                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2818                                           "process, ret = %d", ret);
2819                         goto err_mp_init_secondary;
2820                 }
2821
2822                 hw->secondary_cnt++;
2823                 return 0;
2824         }
2825
2826         ret = hns3_mp_init_primary();
2827         if (ret) {
2828                 PMD_INIT_LOG(ERR,
2829                              "Failed to init for primary process, ret = %d",
2830                              ret);
2831                 goto err_mp_init_primary;
2832         }
2833
2834         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2835         hns->is_vf = true;
2836         hw->data = eth_dev->data;
2837         hns3_parse_devargs(eth_dev);
2838
2839         ret = hns3_reset_init(hw);
2840         if (ret)
2841                 goto err_init_reset;
2842         hw->reset.ops = &hns3vf_reset_ops;
2843
2844         ret = hns3vf_init_vf(eth_dev);
2845         if (ret) {
2846                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2847                 goto err_init_vf;
2848         }
2849
2850         /* Allocate memory for storing MAC addresses */
2851         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2852                                                sizeof(struct rte_ether_addr) *
2853                                                HNS3_VF_UC_MACADDR_NUM, 0);
2854         if (eth_dev->data->mac_addrs == NULL) {
2855                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2856                              "to store MAC addresses",
2857                              sizeof(struct rte_ether_addr) *
2858                              HNS3_VF_UC_MACADDR_NUM);
2859                 ret = -ENOMEM;
2860                 goto err_rte_zmalloc;
2861         }
2862
2863         /*
2864          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2865          * on the host by "ip link set ..." command. To avoid some incorrect
2866          * scenes, for example, hns3 VF PMD driver fails to receive and send
2867          * packets after user configure the MAC address by using the
2868          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2869          * address strategy as the hns3 kernel ethdev driver in the
2870          * initialization. If user configure a MAC address by the ip command
2871          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2872          * start with a random MAC address in the initialization.
2873          */
2874         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2875                 rte_eth_random_addr(hw->mac.mac_addr);
2876         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2877                             &eth_dev->data->mac_addrs[0]);
2878
2879         hw->adapter_state = HNS3_NIC_INITIALIZED;
2880
2881         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2882                             SCHEDULE_PENDING) {
2883                 hns3_err(hw, "Reschedule reset service after dev_init");
2884                 hns3_schedule_reset(hns);
2885         } else {
2886                 /* IMP will wait ready flag before reset */
2887                 hns3_notify_reset_ready(hw, false);
2888         }
2889         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2890                           eth_dev);
2891         return 0;
2892
2893 err_rte_zmalloc:
2894         hns3vf_uninit_vf(eth_dev);
2895
2896 err_init_vf:
2897         rte_free(hw->reset.wait_data);
2898
2899 err_init_reset:
2900         hns3_mp_uninit_primary();
2901
2902 err_mp_init_primary:
2903 err_mp_init_secondary:
2904         eth_dev->dev_ops = NULL;
2905         eth_dev->rx_pkt_burst = NULL;
2906         eth_dev->tx_pkt_burst = NULL;
2907         eth_dev->tx_pkt_prepare = NULL;
2908         rte_free(eth_dev->process_private);
2909         eth_dev->process_private = NULL;
2910
2911         return ret;
2912 }
2913
2914 static int
2915 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2916 {
2917         struct hns3_adapter *hns = eth_dev->data->dev_private;
2918         struct hns3_hw *hw = &hns->hw;
2919
2920         PMD_INIT_FUNC_TRACE();
2921
2922         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2923                 rte_free(eth_dev->process_private);
2924                 eth_dev->process_private = NULL;
2925                 return 0;
2926         }
2927
2928         if (hw->adapter_state < HNS3_NIC_CLOSING)
2929                 hns3vf_dev_close(eth_dev);
2930
2931         hw->adapter_state = HNS3_NIC_REMOVED;
2932         return 0;
2933 }
2934
2935 static int
2936 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2937                      struct rte_pci_device *pci_dev)
2938 {
2939         return rte_eth_dev_pci_generic_probe(pci_dev,
2940                                              sizeof(struct hns3_adapter),
2941                                              hns3vf_dev_init);
2942 }
2943
2944 static int
2945 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2946 {
2947         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2948 }
2949
2950 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2951         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2952         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2953         { .vendor_id = 0, }, /* sentinel */
2954 };
2955
2956 static struct rte_pci_driver rte_hns3vf_pmd = {
2957         .id_table = pci_id_hns3vf_map,
2958         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2959         .probe = eth_hns3vf_pci_probe,
2960         .remove = eth_hns3vf_pci_remove,
2961 };
2962
2963 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2964 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2965 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2966 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
2967                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
2968                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");