i40e: fix alignment of HW descriptors number
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53
54 #include "i40e_logs.h"
55 #include "base/i40e_prototype.h"
56 #include "base/i40e_type.h"
57 #include "i40e_ethdev.h"
58 #include "i40e_rxtx.h"
59
60 #define DEFAULT_TX_RS_THRESH   32
61 #define DEFAULT_TX_FREE_THRESH 32
62 #define I40E_MAX_PKT_TYPE      256
63
64 #define I40E_TX_MAX_BURST  32
65
66 #define I40E_DMA_MEM_ALIGN 4096
67
68 /* Base address of the HW descriptor ring should be 128B aligned. */
69 #define I40E_RING_BASE_ALIGN    128
70
71 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
72                                         ETH_TXQ_FLAGS_NOOFFLOADS)
73
74 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
75
76 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
77                 PKT_TX_IP_CKSUM |                \
78                 PKT_TX_L4_MASK |                 \
79                 PKT_TX_OUTER_IP_CKSUM)
80
81 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
82         (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
83
84 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
85         ((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
86
87 static const struct rte_memzone *
88 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
89                            const char *ring_name,
90                            uint16_t queue_id,
91                            uint32_t ring_size,
92                            int socket_id);
93 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
94                                       struct rte_mbuf **tx_pkts,
95                                       uint16_t nb_pkts);
96
97 static inline void
98 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
99 {
100         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
101                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
102                 mb->ol_flags |= PKT_RX_VLAN_PKT;
103                 mb->vlan_tci =
104                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
105                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
106                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
107         } else {
108                 mb->vlan_tci = 0;
109         }
110 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
111         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
112                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
113                 mb->ol_flags |= PKT_RX_QINQ_PKT;
114                 mb->vlan_tci_outer = mb->vlan_tci;
115                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
116                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
117                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
118                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
119         } else {
120                 mb->vlan_tci_outer = 0;
121         }
122 #endif
123         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
124                    mb->vlan_tci, mb->vlan_tci_outer);
125 }
126
127 /* Translate the rx descriptor status to pkt flags */
128 static inline uint64_t
129 i40e_rxd_status_to_pkt_flags(uint64_t qword)
130 {
131         uint64_t flags;
132
133         /* Check if RSS_HASH */
134         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
135                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
136                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
137
138         /* Check if FDIR Match */
139         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
140                                                         PKT_RX_FDIR : 0);
141
142         return flags;
143 }
144
145 static inline uint64_t
146 i40e_rxd_error_to_pkt_flags(uint64_t qword)
147 {
148         uint64_t flags = 0;
149         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
150
151 #define I40E_RX_ERR_BITS 0x3f
152         if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
153                 return flags;
154         /* If RXE bit set, all other status bits are meaningless */
155         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
156                 flags |= PKT_RX_MAC_ERR;
157                 return flags;
158         }
159
160         /* If RECIPE bit set, all other status indications should be ignored */
161         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
162                 flags |= PKT_RX_RECIP_ERR;
163                 return flags;
164         }
165         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
166                 flags |= PKT_RX_HBUF_OVERFLOW;
167         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
168                 flags |= PKT_RX_IP_CKSUM_BAD;
169         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
170                 flags |= PKT_RX_L4_CKSUM_BAD;
171         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
172                 flags |= PKT_RX_EIP_CKSUM_BAD;
173         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
174                 flags |= PKT_RX_OVERSIZE;
175
176         return flags;
177 }
178
179 /* Function to check and set the ieee1588 timesync index and get the
180  * appropriate flags.
181  */
182 #ifdef RTE_LIBRTE_IEEE1588
183 static inline uint64_t
184 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
185 {
186         uint64_t pkt_flags = 0;
187         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
188                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
189                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
190
191         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
192                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
193                 pkt_flags = PKT_RX_IEEE1588_PTP;
194         if (tsyn & 0x04) {
195                 pkt_flags |= PKT_RX_IEEE1588_TMST;
196                 mb->timesync = tsyn & 0x03;
197         }
198
199         return pkt_flags;
200 }
201 #endif
202
203 /* For each value it means, datasheet of hardware can tell more details */
204 static inline uint32_t
205 i40e_rxd_pkt_type_mapping(uint8_t ptype)
206 {
207         static const uint32_t ptype_table[UINT8_MAX] __rte_cache_aligned = {
208                 /* L2 types */
209                 /* [0] reserved */
210                 [1] = RTE_PTYPE_L2_ETHER,
211                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
212                 /* [3] - [5] reserved */
213                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
214                 /* [7] - [10] reserved */
215                 [11] = RTE_PTYPE_L2_ETHER_ARP,
216                 /* [12] - [21] reserved */
217
218                 /* Non tunneled IPv4 */
219                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220                         RTE_PTYPE_L4_FRAG,
221                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
222                         RTE_PTYPE_L4_NONFRAG,
223                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
224                         RTE_PTYPE_L4_UDP,
225                 /* [25] reserved */
226                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
227                         RTE_PTYPE_L4_TCP,
228                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
229                         RTE_PTYPE_L4_SCTP,
230                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                         RTE_PTYPE_L4_ICMP,
232
233                 /* IPv4 --> IPv4 */
234                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
235                         RTE_PTYPE_TUNNEL_IP |
236                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
237                         RTE_PTYPE_INNER_L4_FRAG,
238                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239                         RTE_PTYPE_TUNNEL_IP |
240                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
241                         RTE_PTYPE_INNER_L4_NONFRAG,
242                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
243                         RTE_PTYPE_TUNNEL_IP |
244                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
245                         RTE_PTYPE_INNER_L4_UDP,
246                 /* [32] reserved */
247                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
248                         RTE_PTYPE_TUNNEL_IP |
249                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
250                         RTE_PTYPE_INNER_L4_TCP,
251                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                         RTE_PTYPE_TUNNEL_IP |
253                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
254                         RTE_PTYPE_INNER_L4_SCTP,
255                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                         RTE_PTYPE_TUNNEL_IP |
257                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
258                         RTE_PTYPE_INNER_L4_ICMP,
259
260                 /* IPv4 --> IPv6 */
261                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
262                         RTE_PTYPE_TUNNEL_IP |
263                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
264                         RTE_PTYPE_INNER_L4_FRAG,
265                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
266                         RTE_PTYPE_TUNNEL_IP |
267                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
268                         RTE_PTYPE_INNER_L4_NONFRAG,
269                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
270                         RTE_PTYPE_TUNNEL_IP |
271                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
272                         RTE_PTYPE_INNER_L4_UDP,
273                 /* [39] reserved */
274                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
275                         RTE_PTYPE_TUNNEL_IP |
276                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
277                         RTE_PTYPE_INNER_L4_TCP,
278                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
279                         RTE_PTYPE_TUNNEL_IP |
280                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
281                         RTE_PTYPE_INNER_L4_SCTP,
282                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
283                         RTE_PTYPE_TUNNEL_IP |
284                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
285                         RTE_PTYPE_INNER_L4_ICMP,
286
287                 /* IPv4 --> GRE/Teredo/VXLAN */
288                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
289                         RTE_PTYPE_TUNNEL_GRENAT,
290
291                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
292                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
293                         RTE_PTYPE_TUNNEL_GRENAT |
294                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
295                         RTE_PTYPE_INNER_L4_FRAG,
296                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
297                         RTE_PTYPE_TUNNEL_GRENAT |
298                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
299                         RTE_PTYPE_INNER_L4_NONFRAG,
300                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
301                         RTE_PTYPE_TUNNEL_GRENAT |
302                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
303                         RTE_PTYPE_INNER_L4_UDP,
304                 /* [47] reserved */
305                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
306                         RTE_PTYPE_TUNNEL_GRENAT |
307                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
308                         RTE_PTYPE_INNER_L4_TCP,
309                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
310                         RTE_PTYPE_TUNNEL_GRENAT |
311                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
312                         RTE_PTYPE_INNER_L4_SCTP,
313                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
314                         RTE_PTYPE_TUNNEL_GRENAT |
315                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
316                         RTE_PTYPE_INNER_L4_ICMP,
317
318                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
319                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
320                         RTE_PTYPE_TUNNEL_GRENAT |
321                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
322                         RTE_PTYPE_INNER_L4_FRAG,
323                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
324                         RTE_PTYPE_TUNNEL_GRENAT |
325                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
326                         RTE_PTYPE_INNER_L4_NONFRAG,
327                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
328                         RTE_PTYPE_TUNNEL_GRENAT |
329                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
330                         RTE_PTYPE_INNER_L4_UDP,
331                 /* [54] reserved */
332                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
333                         RTE_PTYPE_TUNNEL_GRENAT |
334                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
335                         RTE_PTYPE_INNER_L4_TCP,
336                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
337                         RTE_PTYPE_TUNNEL_GRENAT |
338                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
339                         RTE_PTYPE_INNER_L4_SCTP,
340                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
341                         RTE_PTYPE_TUNNEL_GRENAT |
342                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
343                         RTE_PTYPE_INNER_L4_ICMP,
344
345                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
346                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
347                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
348
349                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
350                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
351                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
352                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
353                         RTE_PTYPE_INNER_L4_FRAG,
354                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
355                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
356                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
357                         RTE_PTYPE_INNER_L4_NONFRAG,
358                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
359                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
360                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
361                         RTE_PTYPE_INNER_L4_UDP,
362                 /* [62] reserved */
363                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
364                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
365                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
366                         RTE_PTYPE_INNER_L4_TCP,
367                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
368                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
369                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
370                         RTE_PTYPE_INNER_L4_SCTP,
371                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
372                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
373                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
374                         RTE_PTYPE_INNER_L4_ICMP,
375
376                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
377                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
378                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
379                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
380                         RTE_PTYPE_INNER_L4_FRAG,
381                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
382                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
383                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
384                         RTE_PTYPE_INNER_L4_NONFRAG,
385                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
386                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
387                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
388                         RTE_PTYPE_INNER_L4_UDP,
389                 /* [69] reserved */
390                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
391                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
392                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
393                         RTE_PTYPE_INNER_L4_TCP,
394                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
395                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
396                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
397                         RTE_PTYPE_INNER_L4_SCTP,
398                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
399                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
400                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
401                         RTE_PTYPE_INNER_L4_ICMP,
402
403                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
404                 [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
405                         RTE_PTYPE_TUNNEL_GRENAT |
406                         RTE_PTYPE_INNER_L2_ETHER_VLAN,
407
408                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
409                 [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
410                         RTE_PTYPE_TUNNEL_GRENAT |
411                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
412                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
413                         RTE_PTYPE_INNER_L4_FRAG,
414                 [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
415                         RTE_PTYPE_TUNNEL_GRENAT |
416                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
417                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
418                         RTE_PTYPE_INNER_L4_NONFRAG,
419                 [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
420                         RTE_PTYPE_TUNNEL_GRENAT |
421                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
422                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
423                         RTE_PTYPE_INNER_L4_UDP,
424                 /* [77] reserved */
425                 [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
426                         RTE_PTYPE_TUNNEL_GRENAT |
427                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
428                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
429                         RTE_PTYPE_INNER_L4_TCP,
430                 [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
431                         RTE_PTYPE_TUNNEL_GRENAT |
432                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
433                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
434                         RTE_PTYPE_INNER_L4_SCTP,
435                 [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
436                         RTE_PTYPE_TUNNEL_GRENAT |
437                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
438                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
439                         RTE_PTYPE_INNER_L4_ICMP,
440
441                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
442                 [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
443                         RTE_PTYPE_TUNNEL_GRENAT |
444                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
445                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
446                         RTE_PTYPE_INNER_L4_FRAG,
447                 [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
448                         RTE_PTYPE_TUNNEL_GRENAT |
449                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
450                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
451                         RTE_PTYPE_INNER_L4_NONFRAG,
452                 [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
453                         RTE_PTYPE_TUNNEL_GRENAT |
454                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
455                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
456                         RTE_PTYPE_INNER_L4_UDP,
457                 /* [84] reserved */
458                 [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
459                         RTE_PTYPE_TUNNEL_GRENAT |
460                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
461                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
462                         RTE_PTYPE_INNER_L4_TCP,
463                 [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
464                         RTE_PTYPE_TUNNEL_GRENAT |
465                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
466                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
467                         RTE_PTYPE_INNER_L4_SCTP,
468                 [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
469                         RTE_PTYPE_TUNNEL_GRENAT |
470                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
471                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
472                         RTE_PTYPE_INNER_L4_ICMP,
473
474                 /* Non tunneled IPv6 */
475                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
476                         RTE_PTYPE_L4_FRAG,
477                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
478                         RTE_PTYPE_L4_NONFRAG,
479                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
480                         RTE_PTYPE_L4_UDP,
481                 /* [91] reserved */
482                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
483                         RTE_PTYPE_L4_TCP,
484                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
485                         RTE_PTYPE_L4_SCTP,
486                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
487                         RTE_PTYPE_L4_ICMP,
488
489                 /* IPv6 --> IPv4 */
490                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
491                         RTE_PTYPE_TUNNEL_IP |
492                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
493                         RTE_PTYPE_INNER_L4_FRAG,
494                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
495                         RTE_PTYPE_TUNNEL_IP |
496                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
497                         RTE_PTYPE_INNER_L4_NONFRAG,
498                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
499                         RTE_PTYPE_TUNNEL_IP |
500                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
501                         RTE_PTYPE_INNER_L4_UDP,
502                 /* [98] reserved */
503                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
504                         RTE_PTYPE_TUNNEL_IP |
505                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
506                         RTE_PTYPE_INNER_L4_TCP,
507                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
508                         RTE_PTYPE_TUNNEL_IP |
509                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
510                         RTE_PTYPE_INNER_L4_SCTP,
511                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
512                         RTE_PTYPE_TUNNEL_IP |
513                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
514                         RTE_PTYPE_INNER_L4_ICMP,
515
516                 /* IPv6 --> IPv6 */
517                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
518                         RTE_PTYPE_TUNNEL_IP |
519                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
520                         RTE_PTYPE_INNER_L4_FRAG,
521                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
522                         RTE_PTYPE_TUNNEL_IP |
523                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
524                         RTE_PTYPE_INNER_L4_NONFRAG,
525                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
526                         RTE_PTYPE_TUNNEL_IP |
527                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
528                         RTE_PTYPE_INNER_L4_UDP,
529                 /* [105] reserved */
530                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
531                         RTE_PTYPE_TUNNEL_IP |
532                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
533                         RTE_PTYPE_INNER_L4_TCP,
534                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
535                         RTE_PTYPE_TUNNEL_IP |
536                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
537                         RTE_PTYPE_INNER_L4_SCTP,
538                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
539                         RTE_PTYPE_TUNNEL_IP |
540                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
541                         RTE_PTYPE_INNER_L4_ICMP,
542
543                 /* IPv6 --> GRE/Teredo/VXLAN */
544                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
545                         RTE_PTYPE_TUNNEL_GRENAT,
546
547                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
548                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
549                         RTE_PTYPE_TUNNEL_GRENAT |
550                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
551                         RTE_PTYPE_INNER_L4_FRAG,
552                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
553                         RTE_PTYPE_TUNNEL_GRENAT |
554                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
555                         RTE_PTYPE_INNER_L4_NONFRAG,
556                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
557                         RTE_PTYPE_TUNNEL_GRENAT |
558                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
559                         RTE_PTYPE_INNER_L4_UDP,
560                 /* [113] reserved */
561                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
562                         RTE_PTYPE_TUNNEL_GRENAT |
563                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
564                         RTE_PTYPE_INNER_L4_TCP,
565                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
566                         RTE_PTYPE_TUNNEL_GRENAT |
567                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
568                         RTE_PTYPE_INNER_L4_SCTP,
569                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
570                         RTE_PTYPE_TUNNEL_GRENAT |
571                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
572                         RTE_PTYPE_INNER_L4_ICMP,
573
574                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
575                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
576                         RTE_PTYPE_TUNNEL_GRENAT |
577                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
578                         RTE_PTYPE_INNER_L4_FRAG,
579                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
580                         RTE_PTYPE_TUNNEL_GRENAT |
581                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
582                         RTE_PTYPE_INNER_L4_NONFRAG,
583                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
584                         RTE_PTYPE_TUNNEL_GRENAT |
585                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
586                         RTE_PTYPE_INNER_L4_UDP,
587                 /* [120] reserved */
588                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
589                         RTE_PTYPE_TUNNEL_GRENAT |
590                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
591                         RTE_PTYPE_INNER_L4_TCP,
592                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
593                         RTE_PTYPE_TUNNEL_GRENAT |
594                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
595                         RTE_PTYPE_INNER_L4_SCTP,
596                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
597                         RTE_PTYPE_TUNNEL_GRENAT |
598                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
599                         RTE_PTYPE_INNER_L4_ICMP,
600
601                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
602                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
603                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
604
605                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
606                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
607                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
608                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
609                         RTE_PTYPE_INNER_L4_FRAG,
610                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
611                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
612                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
613                         RTE_PTYPE_INNER_L4_NONFRAG,
614                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
615                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
616                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
617                         RTE_PTYPE_INNER_L4_UDP,
618                 /* [128] reserved */
619                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
620                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
621                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
622                         RTE_PTYPE_INNER_L4_TCP,
623                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
624                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
625                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
626                         RTE_PTYPE_INNER_L4_SCTP,
627                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
628                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
629                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
630                         RTE_PTYPE_INNER_L4_ICMP,
631
632                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
633                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
634                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
635                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
636                         RTE_PTYPE_INNER_L4_FRAG,
637                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
638                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
639                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
640                         RTE_PTYPE_INNER_L4_NONFRAG,
641                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
642                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
643                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
644                         RTE_PTYPE_INNER_L4_UDP,
645                 /* [135] reserved */
646                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
647                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
648                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
649                         RTE_PTYPE_INNER_L4_TCP,
650                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
651                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
652                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
653                         RTE_PTYPE_INNER_L4_SCTP,
654                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
655                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
656                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
657                         RTE_PTYPE_INNER_L4_ICMP,
658
659                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
660                 [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
661                         RTE_PTYPE_TUNNEL_GRENAT |
662                         RTE_PTYPE_INNER_L2_ETHER_VLAN,
663
664                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
665                 [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
666                         RTE_PTYPE_TUNNEL_GRENAT |
667                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
668                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
669                         RTE_PTYPE_INNER_L4_FRAG,
670                 [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
671                         RTE_PTYPE_TUNNEL_GRENAT |
672                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
673                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
674                         RTE_PTYPE_INNER_L4_NONFRAG,
675                 [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
676                         RTE_PTYPE_TUNNEL_GRENAT |
677                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
678                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
679                         RTE_PTYPE_INNER_L4_UDP,
680                 /* [143] reserved */
681                 [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
682                         RTE_PTYPE_TUNNEL_GRENAT |
683                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
684                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
685                         RTE_PTYPE_INNER_L4_TCP,
686                 [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
687                         RTE_PTYPE_TUNNEL_GRENAT |
688                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
689                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
690                         RTE_PTYPE_INNER_L4_SCTP,
691                 [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
692                         RTE_PTYPE_TUNNEL_GRENAT |
693                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
694                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
695                         RTE_PTYPE_INNER_L4_ICMP,
696
697                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
698                 [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
699                         RTE_PTYPE_TUNNEL_GRENAT |
700                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
701                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
702                         RTE_PTYPE_INNER_L4_FRAG,
703                 [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
704                         RTE_PTYPE_TUNNEL_GRENAT |
705                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
706                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
707                         RTE_PTYPE_INNER_L4_NONFRAG,
708                 [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
709                         RTE_PTYPE_TUNNEL_GRENAT |
710                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
711                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
712                         RTE_PTYPE_INNER_L4_UDP,
713                 /* [150] reserved */
714                 [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
715                         RTE_PTYPE_TUNNEL_GRENAT |
716                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
717                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
718                         RTE_PTYPE_INNER_L4_TCP,
719                 [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
720                         RTE_PTYPE_TUNNEL_GRENAT |
721                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
722                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
723                         RTE_PTYPE_INNER_L4_SCTP,
724                 [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
725                         RTE_PTYPE_TUNNEL_GRENAT |
726                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
727                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
728                         RTE_PTYPE_INNER_L4_ICMP,
729
730                 /* All others reserved */
731         };
732
733         return ptype_table[ptype];
734 }
735
736 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
737 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
738 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
739 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
740 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
741
742 static inline uint64_t
743 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
744 {
745         uint64_t flags = 0;
746 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
747         uint16_t flexbh, flexbl;
748
749         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
750                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
751                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
752         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
753                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
754                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
755
756
757         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
758                 mb->hash.fdir.hi =
759                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
760                 flags |= PKT_RX_FDIR_ID;
761         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
762                 mb->hash.fdir.hi =
763                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
764                 flags |= PKT_RX_FDIR_FLX;
765         }
766         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
767                 mb->hash.fdir.lo =
768                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
769                 flags |= PKT_RX_FDIR_FLX;
770         }
771 #else
772         mb->hash.fdir.hi =
773                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
774         flags |= PKT_RX_FDIR_ID;
775 #endif
776         return flags;
777 }
778 static inline void
779 i40e_txd_enable_checksum(uint64_t ol_flags,
780                         uint32_t *td_cmd,
781                         uint32_t *td_offset,
782                         union i40e_tx_offload tx_offload,
783                         uint32_t *cd_tunneling)
784 {
785         /* UDP tunneling packet TX checksum offload */
786         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
787
788                 *td_offset |= (tx_offload.outer_l2_len >> 1)
789                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
790
791                 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
792                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
793                 else if (ol_flags & PKT_TX_OUTER_IPV4)
794                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
795                 else if (ol_flags & PKT_TX_OUTER_IPV6)
796                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
797
798                 /* Now set the ctx descriptor fields */
799                 *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
800                                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
801                                 (tx_offload.l2_len >> 1) <<
802                                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
803
804         } else
805                 *td_offset |= (tx_offload.l2_len >> 1)
806                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
807
808         /* Enable L3 checksum offloads */
809         if (ol_flags & PKT_TX_IP_CKSUM) {
810                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
811                 *td_offset |= (tx_offload.l3_len >> 2)
812                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
813         } else if (ol_flags & PKT_TX_IPV4) {
814                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
815                 *td_offset |= (tx_offload.l3_len >> 2)
816                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
817         } else if (ol_flags & PKT_TX_IPV6) {
818                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
819                 *td_offset |= (tx_offload.l3_len >> 2)
820                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
821         }
822
823         if (ol_flags & PKT_TX_TCP_SEG) {
824                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
825                 *td_offset |= (tx_offload.l4_len >> 2)
826                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
827                 return;
828         }
829
830         /* Enable L4 checksum offloads */
831         switch (ol_flags & PKT_TX_L4_MASK) {
832         case PKT_TX_TCP_CKSUM:
833                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
834                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
835                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
836                 break;
837         case PKT_TX_SCTP_CKSUM:
838                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
839                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
840                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
841                 break;
842         case PKT_TX_UDP_CKSUM:
843                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
844                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
845                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
846                 break;
847         default:
848                 break;
849         }
850 }
851
852 static inline struct rte_mbuf *
853 rte_rxmbuf_alloc(struct rte_mempool *mp)
854 {
855         struct rte_mbuf *m;
856
857         m = __rte_mbuf_raw_alloc(mp);
858         __rte_mbuf_sanity_check_raw(m, 0);
859
860         return m;
861 }
862
863 /* Construct the tx flags */
864 static inline uint64_t
865 i40e_build_ctob(uint32_t td_cmd,
866                 uint32_t td_offset,
867                 unsigned int size,
868                 uint32_t td_tag)
869 {
870         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
871                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
872                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
873                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
874                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
875 }
876
877 static inline int
878 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
879 {
880         struct i40e_tx_entry *sw_ring = txq->sw_ring;
881         volatile struct i40e_tx_desc *txd = txq->tx_ring;
882         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
883         uint16_t nb_tx_desc = txq->nb_tx_desc;
884         uint16_t desc_to_clean_to;
885         uint16_t nb_tx_to_clean;
886
887         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
888         if (desc_to_clean_to >= nb_tx_desc)
889                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
890
891         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
892         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
893                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
894                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
895                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
896                         "(port=%d queue=%d)", desc_to_clean_to,
897                                 txq->port_id, txq->queue_id);
898                 return -1;
899         }
900
901         if (last_desc_cleaned > desc_to_clean_to)
902                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
903                                                         desc_to_clean_to);
904         else
905                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
906                                         last_desc_cleaned);
907
908         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
909
910         txq->last_desc_cleaned = desc_to_clean_to;
911         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
912
913         return 0;
914 }
915
916 static inline int
917 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
918 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
919 #else
920 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
921 #endif
922 {
923         int ret = 0;
924
925 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
926         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
927                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
928                              "rxq->rx_free_thresh=%d, "
929                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
930                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
931                 ret = -EINVAL;
932         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
933                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
934                              "rxq->rx_free_thresh=%d, "
935                              "rxq->nb_rx_desc=%d",
936                              rxq->rx_free_thresh, rxq->nb_rx_desc);
937                 ret = -EINVAL;
938         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
939                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
940                              "rxq->nb_rx_desc=%d, "
941                              "rxq->rx_free_thresh=%d",
942                              rxq->nb_rx_desc, rxq->rx_free_thresh);
943                 ret = -EINVAL;
944         } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
945                                 RTE_PMD_I40E_RX_MAX_BURST))) {
946                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
947                              "rxq->nb_rx_desc=%d, "
948                              "I40E_MAX_RING_DESC=%d, "
949                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
950                              rxq->nb_rx_desc, I40E_MAX_RING_DESC,
951                              RTE_PMD_I40E_RX_MAX_BURST);
952                 ret = -EINVAL;
953         }
954 #else
955         ret = -EINVAL;
956 #endif
957
958         return ret;
959 }
960
961 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
962 #define I40E_LOOK_AHEAD 8
963 #if (I40E_LOOK_AHEAD != 8)
964 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
965 #endif
966 static inline int
967 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
968 {
969         volatile union i40e_rx_desc *rxdp;
970         struct i40e_rx_entry *rxep;
971         struct rte_mbuf *mb;
972         uint16_t pkt_len;
973         uint64_t qword1;
974         uint32_t rx_status;
975         int32_t s[I40E_LOOK_AHEAD], nb_dd;
976         int32_t i, j, nb_rx = 0;
977         uint64_t pkt_flags;
978
979         rxdp = &rxq->rx_ring[rxq->rx_tail];
980         rxep = &rxq->sw_ring[rxq->rx_tail];
981
982         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
983         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
984                                 I40E_RXD_QW1_STATUS_SHIFT;
985
986         /* Make sure there is at least 1 packet to receive */
987         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
988                 return 0;
989
990         /**
991          * Scan LOOK_AHEAD descriptors at a time to determine which
992          * descriptors reference packets that are ready to be received.
993          */
994         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
995                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
996                 /* Read desc statuses backwards to avoid race condition */
997                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
998                         qword1 = rte_le_to_cpu_64(\
999                                 rxdp[j].wb.qword1.status_error_len);
1000                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1001                                         I40E_RXD_QW1_STATUS_SHIFT;
1002                 }
1003
1004                 /* Compute how many status bits were set */
1005                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
1006                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
1007
1008                 nb_rx += nb_dd;
1009
1010                 /* Translate descriptor info to mbuf parameters */
1011                 for (j = 0; j < nb_dd; j++) {
1012                         mb = rxep[j].mbuf;
1013                         qword1 = rte_le_to_cpu_64(\
1014                                 rxdp[j].wb.qword1.status_error_len);
1015                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1016                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1017                         mb->data_len = pkt_len;
1018                         mb->pkt_len = pkt_len;
1019                         mb->ol_flags = 0;
1020                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
1021                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1022                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1023                         mb->packet_type =
1024                                 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1025                                                 I40E_RXD_QW1_PTYPE_MASK) >>
1026                                                 I40E_RXD_QW1_PTYPE_SHIFT));
1027                         if (pkt_flags & PKT_RX_RSS_HASH)
1028                                 mb->hash.rss = rte_le_to_cpu_32(\
1029                                         rxdp[j].wb.qword0.hi_dword.rss);
1030                         if (pkt_flags & PKT_RX_FDIR)
1031                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
1032
1033 #ifdef RTE_LIBRTE_IEEE1588
1034                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
1035 #endif
1036                         mb->ol_flags |= pkt_flags;
1037
1038                 }
1039
1040                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
1041                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1042
1043                 if (nb_dd != I40E_LOOK_AHEAD)
1044                         break;
1045         }
1046
1047         /* Clear software ring entries */
1048         for (i = 0; i < nb_rx; i++)
1049                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1050
1051         return nb_rx;
1052 }
1053
1054 static inline uint16_t
1055 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
1056                         struct rte_mbuf **rx_pkts,
1057                         uint16_t nb_pkts)
1058 {
1059         uint16_t i;
1060         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1061
1062         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1063
1064         for (i = 0; i < nb_pkts; i++)
1065                 rx_pkts[i] = stage[i];
1066
1067         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1068         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1069
1070         return nb_pkts;
1071 }
1072
1073 static inline int
1074 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
1075 {
1076         volatile union i40e_rx_desc *rxdp;
1077         struct i40e_rx_entry *rxep;
1078         struct rte_mbuf *mb;
1079         uint16_t alloc_idx, i;
1080         uint64_t dma_addr;
1081         int diag;
1082
1083         /* Allocate buffers in bulk */
1084         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1085                                 (rxq->rx_free_thresh - 1));
1086         rxep = &(rxq->sw_ring[alloc_idx]);
1087         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1088                                         rxq->rx_free_thresh);
1089         if (unlikely(diag != 0)) {
1090                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
1091                 return -ENOMEM;
1092         }
1093
1094         rxdp = &rxq->rx_ring[alloc_idx];
1095         for (i = 0; i < rxq->rx_free_thresh; i++) {
1096                 if (likely(i < (rxq->rx_free_thresh - 1)))
1097                         /* Prefetch next mbuf */
1098                         rte_prefetch0(rxep[i + 1].mbuf);
1099
1100                 mb = rxep[i].mbuf;
1101                 rte_mbuf_refcnt_set(mb, 1);
1102                 mb->next = NULL;
1103                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1104                 mb->nb_segs = 1;
1105                 mb->port = rxq->port_id;
1106                 dma_addr = rte_cpu_to_le_64(\
1107                         RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
1108                 rxdp[i].read.hdr_addr = 0;
1109                 rxdp[i].read.pkt_addr = dma_addr;
1110         }
1111
1112         /* Update rx tail regsiter */
1113         rte_wmb();
1114         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1115
1116         rxq->rx_free_trigger =
1117                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1118         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1119                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1120
1121         return 0;
1122 }
1123
1124 static inline uint16_t
1125 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1126 {
1127         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
1128         uint16_t nb_rx = 0;
1129
1130         if (!nb_pkts)
1131                 return 0;
1132
1133         if (rxq->rx_nb_avail)
1134                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1135
1136         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
1137         rxq->rx_next_avail = 0;
1138         rxq->rx_nb_avail = nb_rx;
1139         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1140
1141         if (rxq->rx_tail > rxq->rx_free_trigger) {
1142                 if (i40e_rx_alloc_bufs(rxq) != 0) {
1143                         uint16_t i, j;
1144
1145                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1146                                    "port_id=%u, queue_id=%u",
1147                                    rxq->port_id, rxq->queue_id);
1148                         rxq->rx_nb_avail = 0;
1149                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1150                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1151                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1152
1153                         return 0;
1154                 }
1155         }
1156
1157         if (rxq->rx_tail >= rxq->nb_rx_desc)
1158                 rxq->rx_tail = 0;
1159
1160         if (rxq->rx_nb_avail)
1161                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1162
1163         return 0;
1164 }
1165
1166 static uint16_t
1167 i40e_recv_pkts_bulk_alloc(void *rx_queue,
1168                           struct rte_mbuf **rx_pkts,
1169                           uint16_t nb_pkts)
1170 {
1171         uint16_t nb_rx = 0, n, count;
1172
1173         if (unlikely(nb_pkts == 0))
1174                 return 0;
1175
1176         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
1177                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1178
1179         while (nb_pkts) {
1180                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
1181                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1182                 nb_rx = (uint16_t)(nb_rx + count);
1183                 nb_pkts = (uint16_t)(nb_pkts - count);
1184                 if (count < n)
1185                         break;
1186         }
1187
1188         return nb_rx;
1189 }
1190 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1191
1192 uint16_t
1193 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1194 {
1195         struct i40e_rx_queue *rxq;
1196         volatile union i40e_rx_desc *rx_ring;
1197         volatile union i40e_rx_desc *rxdp;
1198         union i40e_rx_desc rxd;
1199         struct i40e_rx_entry *sw_ring;
1200         struct i40e_rx_entry *rxe;
1201         struct rte_mbuf *rxm;
1202         struct rte_mbuf *nmb;
1203         uint16_t nb_rx;
1204         uint32_t rx_status;
1205         uint64_t qword1;
1206         uint16_t rx_packet_len;
1207         uint16_t rx_id, nb_hold;
1208         uint64_t dma_addr;
1209         uint64_t pkt_flags;
1210
1211         nb_rx = 0;
1212         nb_hold = 0;
1213         rxq = rx_queue;
1214         rx_id = rxq->rx_tail;
1215         rx_ring = rxq->rx_ring;
1216         sw_ring = rxq->sw_ring;
1217
1218         while (nb_rx < nb_pkts) {
1219                 rxdp = &rx_ring[rx_id];
1220                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1221                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
1222                                 >> I40E_RXD_QW1_STATUS_SHIFT;
1223
1224                 /* Check the DD bit first */
1225                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1226                         break;
1227
1228                 nmb = rte_rxmbuf_alloc(rxq->mp);
1229                 if (unlikely(!nmb))
1230                         break;
1231                 rxd = *rxdp;
1232
1233                 nb_hold++;
1234                 rxe = &sw_ring[rx_id];
1235                 rx_id++;
1236                 if (unlikely(rx_id == rxq->nb_rx_desc))
1237                         rx_id = 0;
1238
1239                 /* Prefetch next mbuf */
1240                 rte_prefetch0(sw_ring[rx_id].mbuf);
1241
1242                 /**
1243                  * When next RX descriptor is on a cache line boundary,
1244                  * prefetch the next 4 RX descriptors and next 8 pointers
1245                  * to mbufs.
1246                  */
1247                 if ((rx_id & 0x3) == 0) {
1248                         rte_prefetch0(&rx_ring[rx_id]);
1249                         rte_prefetch0(&sw_ring[rx_id]);
1250                 }
1251                 rxm = rxe->mbuf;
1252                 rxe->mbuf = nmb;
1253                 dma_addr =
1254                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1255                 rxdp->read.hdr_addr = 0;
1256                 rxdp->read.pkt_addr = dma_addr;
1257
1258                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1259                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1260
1261                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1262                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1263                 rxm->nb_segs = 1;
1264                 rxm->next = NULL;
1265                 rxm->pkt_len = rx_packet_len;
1266                 rxm->data_len = rx_packet_len;
1267                 rxm->port = rxq->port_id;
1268                 rxm->ol_flags = 0;
1269                 i40e_rxd_to_vlan_tci(rxm, &rxd);
1270                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1271                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1272                 rxm->packet_type =
1273                         i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1274                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
1275                 if (pkt_flags & PKT_RX_RSS_HASH)
1276                         rxm->hash.rss =
1277                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1278                 if (pkt_flags & PKT_RX_FDIR)
1279                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1280
1281 #ifdef RTE_LIBRTE_IEEE1588
1282                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
1283 #endif
1284                 rxm->ol_flags |= pkt_flags;
1285
1286                 rx_pkts[nb_rx++] = rxm;
1287         }
1288         rxq->rx_tail = rx_id;
1289
1290         /**
1291          * If the number of free RX descriptors is greater than the RX free
1292          * threshold of the queue, advance the receive tail register of queue.
1293          * Update that register with the value of the last processed RX
1294          * descriptor minus 1.
1295          */
1296         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1297         if (nb_hold > rxq->rx_free_thresh) {
1298                 rx_id = (uint16_t) ((rx_id == 0) ?
1299                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1300                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1301                 nb_hold = 0;
1302         }
1303         rxq->nb_rx_hold = nb_hold;
1304
1305         return nb_rx;
1306 }
1307
1308 uint16_t
1309 i40e_recv_scattered_pkts(void *rx_queue,
1310                          struct rte_mbuf **rx_pkts,
1311                          uint16_t nb_pkts)
1312 {
1313         struct i40e_rx_queue *rxq = rx_queue;
1314         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
1315         volatile union i40e_rx_desc *rxdp;
1316         union i40e_rx_desc rxd;
1317         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
1318         struct i40e_rx_entry *rxe;
1319         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1320         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1321         struct rte_mbuf *nmb, *rxm;
1322         uint16_t rx_id = rxq->rx_tail;
1323         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1324         uint32_t rx_status;
1325         uint64_t qword1;
1326         uint64_t dma_addr;
1327         uint64_t pkt_flags;
1328
1329         while (nb_rx < nb_pkts) {
1330                 rxdp = &rx_ring[rx_id];
1331                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1332                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1333                                         I40E_RXD_QW1_STATUS_SHIFT;
1334
1335                 /* Check the DD bit */
1336                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1337                         break;
1338
1339                 nmb = rte_rxmbuf_alloc(rxq->mp);
1340                 if (unlikely(!nmb))
1341                         break;
1342                 rxd = *rxdp;
1343                 nb_hold++;
1344                 rxe = &sw_ring[rx_id];
1345                 rx_id++;
1346                 if (rx_id == rxq->nb_rx_desc)
1347                         rx_id = 0;
1348
1349                 /* Prefetch next mbuf */
1350                 rte_prefetch0(sw_ring[rx_id].mbuf);
1351
1352                 /**
1353                  * When next RX descriptor is on a cache line boundary,
1354                  * prefetch the next 4 RX descriptors and next 8 pointers
1355                  * to mbufs.
1356                  */
1357                 if ((rx_id & 0x3) == 0) {
1358                         rte_prefetch0(&rx_ring[rx_id]);
1359                         rte_prefetch0(&sw_ring[rx_id]);
1360                 }
1361
1362                 rxm = rxe->mbuf;
1363                 rxe->mbuf = nmb;
1364                 dma_addr =
1365                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1366
1367                 /* Set data buffer address and data length of the mbuf */
1368                 rxdp->read.hdr_addr = 0;
1369                 rxdp->read.pkt_addr = dma_addr;
1370                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1371                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1372                 rxm->data_len = rx_packet_len;
1373                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1374
1375                 /**
1376                  * If this is the first buffer of the received packet, set the
1377                  * pointer to the first mbuf of the packet and initialize its
1378                  * context. Otherwise, update the total length and the number
1379                  * of segments of the current scattered packet, and update the
1380                  * pointer to the last mbuf of the current packet.
1381                  */
1382                 if (!first_seg) {
1383                         first_seg = rxm;
1384                         first_seg->nb_segs = 1;
1385                         first_seg->pkt_len = rx_packet_len;
1386                 } else {
1387                         first_seg->pkt_len =
1388                                 (uint16_t)(first_seg->pkt_len +
1389                                                 rx_packet_len);
1390                         first_seg->nb_segs++;
1391                         last_seg->next = rxm;
1392                 }
1393
1394                 /**
1395                  * If this is not the last buffer of the received packet,
1396                  * update the pointer to the last mbuf of the current scattered
1397                  * packet and continue to parse the RX ring.
1398                  */
1399                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
1400                         last_seg = rxm;
1401                         continue;
1402                 }
1403
1404                 /**
1405                  * This is the last buffer of the received packet. If the CRC
1406                  * is not stripped by the hardware:
1407                  *  - Subtract the CRC length from the total packet length.
1408                  *  - If the last buffer only contains the whole CRC or a part
1409                  *  of it, free the mbuf associated to the last buffer. If part
1410                  *  of the CRC is also contained in the previous mbuf, subtract
1411                  *  the length of that CRC part from the data length of the
1412                  *  previous mbuf.
1413                  */
1414                 rxm->next = NULL;
1415                 if (unlikely(rxq->crc_len > 0)) {
1416                         first_seg->pkt_len -= ETHER_CRC_LEN;
1417                         if (rx_packet_len <= ETHER_CRC_LEN) {
1418                                 rte_pktmbuf_free_seg(rxm);
1419                                 first_seg->nb_segs--;
1420                                 last_seg->data_len =
1421                                         (uint16_t)(last_seg->data_len -
1422                                         (ETHER_CRC_LEN - rx_packet_len));
1423                                 last_seg->next = NULL;
1424                         } else
1425                                 rxm->data_len = (uint16_t)(rx_packet_len -
1426                                                                 ETHER_CRC_LEN);
1427                 }
1428
1429                 first_seg->port = rxq->port_id;
1430                 first_seg->ol_flags = 0;
1431                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
1432                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1433                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1434                 first_seg->packet_type =
1435                         i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1436                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
1437                 if (pkt_flags & PKT_RX_RSS_HASH)
1438                         rxm->hash.rss =
1439                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1440                 if (pkt_flags & PKT_RX_FDIR)
1441                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1442
1443 #ifdef RTE_LIBRTE_IEEE1588
1444                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
1445 #endif
1446                 first_seg->ol_flags |= pkt_flags;
1447
1448                 /* Prefetch data of first segment, if configured to do so. */
1449                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1450                         first_seg->data_off));
1451                 rx_pkts[nb_rx++] = first_seg;
1452                 first_seg = NULL;
1453         }
1454
1455         /* Record index of the next RX descriptor to probe. */
1456         rxq->rx_tail = rx_id;
1457         rxq->pkt_first_seg = first_seg;
1458         rxq->pkt_last_seg = last_seg;
1459
1460         /**
1461          * If the number of free RX descriptors is greater than the RX free
1462          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1463          * register. Update the RDT with the value of the last processed RX
1464          * descriptor minus 1, to guarantee that the RDT register is never
1465          * equal to the RDH register, which creates a "full" ring situtation
1466          * from the hardware point of view.
1467          */
1468         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1469         if (nb_hold > rxq->rx_free_thresh) {
1470                 rx_id = (uint16_t)(rx_id == 0 ?
1471                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1472                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1473                 nb_hold = 0;
1474         }
1475         rxq->nb_rx_hold = nb_hold;
1476
1477         return nb_rx;
1478 }
1479
1480 /* Check if the context descriptor is needed for TX offloading */
1481 static inline uint16_t
1482 i40e_calc_context_desc(uint64_t flags)
1483 {
1484         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
1485                 PKT_TX_TCP_SEG |
1486                 PKT_TX_QINQ_PKT;
1487
1488 #ifdef RTE_LIBRTE_IEEE1588
1489         mask |= PKT_TX_IEEE1588_TMST;
1490 #endif
1491
1492         return ((flags & mask) ? 1 : 0);
1493 }
1494
1495 /* set i40e TSO context descriptor */
1496 static inline uint64_t
1497 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1498 {
1499         uint64_t ctx_desc = 0;
1500         uint32_t cd_cmd, hdr_len, cd_tso_len;
1501
1502         if (!tx_offload.l4_len) {
1503                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1504                 return ctx_desc;
1505         }
1506
1507         /**
1508          * in case of tunneling packet, the outer_l2_len and
1509          * outer_l3_len must be 0.
1510          */
1511         hdr_len = tx_offload.outer_l2_len +
1512                 tx_offload.outer_l3_len +
1513                 tx_offload.l2_len +
1514                 tx_offload.l3_len +
1515                 tx_offload.l4_len;
1516
1517         cd_cmd = I40E_TX_CTX_DESC_TSO;
1518         cd_tso_len = mbuf->pkt_len - hdr_len;
1519         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1520                 ((uint64_t)cd_tso_len <<
1521                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1522                 ((uint64_t)mbuf->tso_segsz <<
1523                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1524
1525         return ctx_desc;
1526 }
1527
1528 uint16_t
1529 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1530 {
1531         struct i40e_tx_queue *txq;
1532         struct i40e_tx_entry *sw_ring;
1533         struct i40e_tx_entry *txe, *txn;
1534         volatile struct i40e_tx_desc *txd;
1535         volatile struct i40e_tx_desc *txr;
1536         struct rte_mbuf *tx_pkt;
1537         struct rte_mbuf *m_seg;
1538         uint32_t cd_tunneling_params;
1539         uint16_t tx_id;
1540         uint16_t nb_tx;
1541         uint32_t td_cmd;
1542         uint32_t td_offset;
1543         uint32_t tx_flags;
1544         uint32_t td_tag;
1545         uint64_t ol_flags;
1546         uint16_t nb_used;
1547         uint16_t nb_ctx;
1548         uint16_t tx_last;
1549         uint16_t slen;
1550         uint64_t buf_dma_addr;
1551         union i40e_tx_offload tx_offload = {0};
1552
1553         txq = tx_queue;
1554         sw_ring = txq->sw_ring;
1555         txr = txq->tx_ring;
1556         tx_id = txq->tx_tail;
1557         txe = &sw_ring[tx_id];
1558
1559         /* Check if the descriptor ring needs to be cleaned. */
1560         if (txq->nb_tx_free < txq->tx_free_thresh)
1561                 i40e_xmit_cleanup(txq);
1562
1563         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1564                 td_cmd = 0;
1565                 td_tag = 0;
1566                 td_offset = 0;
1567                 tx_flags = 0;
1568
1569                 tx_pkt = *tx_pkts++;
1570                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1571
1572                 ol_flags = tx_pkt->ol_flags;
1573                 tx_offload.l2_len = tx_pkt->l2_len;
1574                 tx_offload.l3_len = tx_pkt->l3_len;
1575                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1576                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1577                 tx_offload.l4_len = tx_pkt->l4_len;
1578                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1579
1580                 /* Calculate the number of context descriptors needed. */
1581                 nb_ctx = i40e_calc_context_desc(ol_flags);
1582
1583                 /**
1584                  * The number of descriptors that must be allocated for
1585                  * a packet equals to the number of the segments of that
1586                  * packet plus 1 context descriptor if needed.
1587                  */
1588                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1589                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1590
1591                 /* Circular ring */
1592                 if (tx_last >= txq->nb_tx_desc)
1593                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1594
1595                 if (nb_used > txq->nb_tx_free) {
1596                         if (i40e_xmit_cleanup(txq) != 0) {
1597                                 if (nb_tx == 0)
1598                                         return 0;
1599                                 goto end_of_tx;
1600                         }
1601                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1602                                 while (nb_used > txq->nb_tx_free) {
1603                                         if (i40e_xmit_cleanup(txq) != 0) {
1604                                                 if (nb_tx == 0)
1605                                                         return 0;
1606                                                 goto end_of_tx;
1607                                         }
1608                                 }
1609                         }
1610                 }
1611
1612                 /* Descriptor based VLAN insertion */
1613                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1614                         tx_flags |= tx_pkt->vlan_tci <<
1615                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1616                         tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1617                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1618                         td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1619                                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1620                 }
1621
1622                 /* Always enable CRC offload insertion */
1623                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1624
1625                 /* Enable checksum offloading */
1626                 cd_tunneling_params = 0;
1627                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) {
1628                         i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
1629                                 tx_offload, &cd_tunneling_params);
1630                 }
1631
1632                 if (nb_ctx) {
1633                         /* Setup TX context descriptor if required */
1634                         volatile struct i40e_tx_context_desc *ctx_txd =
1635                                 (volatile struct i40e_tx_context_desc *)\
1636                                                         &txr[tx_id];
1637                         uint16_t cd_l2tag2 = 0;
1638                         uint64_t cd_type_cmd_tso_mss =
1639                                 I40E_TX_DESC_DTYPE_CONTEXT;
1640
1641                         txn = &sw_ring[txe->next_id];
1642                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1643                         if (txe->mbuf != NULL) {
1644                                 rte_pktmbuf_free_seg(txe->mbuf);
1645                                 txe->mbuf = NULL;
1646                         }
1647
1648                         /* TSO enabled means no timestamp */
1649                         if (ol_flags & PKT_TX_TCP_SEG)
1650                                 cd_type_cmd_tso_mss |=
1651                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1652                         else {
1653 #ifdef RTE_LIBRTE_IEEE1588
1654                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1655                                         cd_type_cmd_tso_mss |=
1656                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1657                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1658 #endif
1659                         }
1660
1661                         ctx_txd->tunneling_params =
1662                                 rte_cpu_to_le_32(cd_tunneling_params);
1663                         if (ol_flags & PKT_TX_QINQ_PKT) {
1664                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1665                                 cd_type_cmd_tso_mss |=
1666                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1667                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1668                         }
1669                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1670                         ctx_txd->type_cmd_tso_mss =
1671                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1672
1673                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1674                                 "tunneling_params: %#x;\n"
1675                                 "l2tag2: %#hx;\n"
1676                                 "rsvd: %#hx;\n"
1677                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1678                                 tx_pkt, tx_id,
1679                                 ctx_txd->tunneling_params,
1680                                 ctx_txd->l2tag2,
1681                                 ctx_txd->rsvd,
1682                                 ctx_txd->type_cmd_tso_mss);
1683
1684                         txe->last_id = tx_last;
1685                         tx_id = txe->next_id;
1686                         txe = txn;
1687                 }
1688
1689                 m_seg = tx_pkt;
1690                 do {
1691                         txd = &txr[tx_id];
1692                         txn = &sw_ring[txe->next_id];
1693
1694                         if (txe->mbuf)
1695                                 rte_pktmbuf_free_seg(txe->mbuf);
1696                         txe->mbuf = m_seg;
1697
1698                         /* Setup TX Descriptor */
1699                         slen = m_seg->data_len;
1700                         buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
1701
1702                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1703                                 "buf_dma_addr: %#"PRIx64";\n"
1704                                 "td_cmd: %#x;\n"
1705                                 "td_offset: %#x;\n"
1706                                 "td_len: %u;\n"
1707                                 "td_tag: %#x;\n",
1708                                 tx_pkt, tx_id, buf_dma_addr,
1709                                 td_cmd, td_offset, slen, td_tag);
1710
1711                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1712                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1713                                                 td_offset, slen, td_tag);
1714                         txe->last_id = tx_last;
1715                         tx_id = txe->next_id;
1716                         txe = txn;
1717                         m_seg = m_seg->next;
1718                 } while (m_seg != NULL);
1719
1720                 /* The last packet data descriptor needs End Of Packet (EOP) */
1721                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1722                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1723                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1724
1725                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1726                         PMD_TX_FREE_LOG(DEBUG,
1727                                         "Setting RS bit on TXD id="
1728                                         "%4u (port=%d queue=%d)",
1729                                         tx_last, txq->port_id, txq->queue_id);
1730
1731                         td_cmd |= I40E_TX_DESC_CMD_RS;
1732
1733                         /* Update txq RS bit counters */
1734                         txq->nb_tx_used = 0;
1735                 }
1736
1737                 txd->cmd_type_offset_bsz |=
1738                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1739                                         I40E_TXD_QW1_CMD_SHIFT);
1740         }
1741
1742 end_of_tx:
1743         rte_wmb();
1744
1745         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1746                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1747                    (unsigned) tx_id, (unsigned) nb_tx);
1748
1749         I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1750         txq->tx_tail = tx_id;
1751
1752         return nb_tx;
1753 }
1754
1755 static inline int __attribute__((always_inline))
1756 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1757 {
1758         struct i40e_tx_entry *txep;
1759         uint16_t i;
1760
1761         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1762                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1763                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1764                 return 0;
1765
1766         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1767
1768         for (i = 0; i < txq->tx_rs_thresh; i++)
1769                 rte_prefetch0((txep + i)->mbuf);
1770
1771         if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
1772                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1773                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1774                         txep->mbuf = NULL;
1775                 }
1776         } else {
1777                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1778                         rte_pktmbuf_free_seg(txep->mbuf);
1779                         txep->mbuf = NULL;
1780                 }
1781         }
1782
1783         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1784         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1785         if (txq->tx_next_dd >= txq->nb_tx_desc)
1786                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1787
1788         return txq->tx_rs_thresh;
1789 }
1790
1791 /* Populate 4 descriptors with data from 4 mbufs */
1792 static inline void
1793 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1794 {
1795         uint64_t dma_addr;
1796         uint32_t i;
1797
1798         for (i = 0; i < 4; i++, txdp++, pkts++) {
1799                 dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
1800                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1801                 txdp->cmd_type_offset_bsz =
1802                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1803                                         (*pkts)->data_len, 0);
1804         }
1805 }
1806
1807 /* Populate 1 descriptor with data from 1 mbuf */
1808 static inline void
1809 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1810 {
1811         uint64_t dma_addr;
1812
1813         dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
1814         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1815         txdp->cmd_type_offset_bsz =
1816                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1817                                 (*pkts)->data_len, 0);
1818 }
1819
1820 /* Fill hardware descriptor ring with mbuf data */
1821 static inline void
1822 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1823                      struct rte_mbuf **pkts,
1824                      uint16_t nb_pkts)
1825 {
1826         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1827         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1828         const int N_PER_LOOP = 4;
1829         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1830         int mainpart, leftover;
1831         int i, j;
1832
1833         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1834         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1835         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1836                 for (j = 0; j < N_PER_LOOP; ++j) {
1837                         (txep + i + j)->mbuf = *(pkts + i + j);
1838                 }
1839                 tx4(txdp + i, pkts + i);
1840         }
1841         if (unlikely(leftover > 0)) {
1842                 for (i = 0; i < leftover; ++i) {
1843                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1844                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1845                 }
1846         }
1847 }
1848
1849 static inline uint16_t
1850 tx_xmit_pkts(struct i40e_tx_queue *txq,
1851              struct rte_mbuf **tx_pkts,
1852              uint16_t nb_pkts)
1853 {
1854         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1855         uint16_t n = 0;
1856
1857         /**
1858          * Begin scanning the H/W ring for done descriptors when the number
1859          * of available descriptors drops below tx_free_thresh. For each done
1860          * descriptor, free the associated buffer.
1861          */
1862         if (txq->nb_tx_free < txq->tx_free_thresh)
1863                 i40e_tx_free_bufs(txq);
1864
1865         /* Use available descriptor only */
1866         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1867         if (unlikely(!nb_pkts))
1868                 return 0;
1869
1870         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1871         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1872                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1873                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1874                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1875                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1876                                                 I40E_TXD_QW1_CMD_SHIFT);
1877                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1878                 txq->tx_tail = 0;
1879         }
1880
1881         /* Fill hardware descriptor ring with mbuf data */
1882         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1883         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1884
1885         /* Determin if RS bit needs to be set */
1886         if (txq->tx_tail > txq->tx_next_rs) {
1887                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1888                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1889                                                 I40E_TXD_QW1_CMD_SHIFT);
1890                 txq->tx_next_rs =
1891                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1892                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1893                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1894         }
1895
1896         if (txq->tx_tail >= txq->nb_tx_desc)
1897                 txq->tx_tail = 0;
1898
1899         /* Update the tx tail register */
1900         rte_wmb();
1901         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1902
1903         return nb_pkts;
1904 }
1905
1906 static uint16_t
1907 i40e_xmit_pkts_simple(void *tx_queue,
1908                       struct rte_mbuf **tx_pkts,
1909                       uint16_t nb_pkts)
1910 {
1911         uint16_t nb_tx = 0;
1912
1913         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1914                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1915                                                 tx_pkts, nb_pkts);
1916
1917         while (nb_pkts) {
1918                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1919                                                 I40E_TX_MAX_BURST);
1920
1921                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1922                                                 &tx_pkts[nb_tx], num);
1923                 nb_tx = (uint16_t)(nb_tx + ret);
1924                 nb_pkts = (uint16_t)(nb_pkts - ret);
1925                 if (ret < num)
1926                         break;
1927         }
1928
1929         return nb_tx;
1930 }
1931
1932 /*
1933  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1934  * application used, which assume having sequential ones. But from driver's
1935  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1936  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1937  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1938  * use queue_idx from 0 to 95 to access queues, while real queue would be
1939  * different. This function will do a queue mapping to find VSI the queue
1940  * belongs to.
1941  */
1942 static struct i40e_vsi*
1943 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1944 {
1945         /* the queue in MAIN VSI range */
1946         if (queue_idx < pf->main_vsi->nb_qps)
1947                 return pf->main_vsi;
1948
1949         queue_idx -= pf->main_vsi->nb_qps;
1950
1951         /* queue_idx is greater than VMDQ VSIs range */
1952         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1953                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1954                 return NULL;
1955         }
1956
1957         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1958 }
1959
1960 static uint16_t
1961 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1962 {
1963         /* the queue in MAIN VSI range */
1964         if (queue_idx < pf->main_vsi->nb_qps)
1965                 return queue_idx;
1966
1967         /* It's VMDQ queues */
1968         queue_idx -= pf->main_vsi->nb_qps;
1969
1970         if (pf->nb_cfg_vmdq_vsi)
1971                 return queue_idx % pf->vmdq_nb_qps;
1972         else {
1973                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1974                 return (uint16_t)(-1);
1975         }
1976 }
1977
1978 int
1979 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1980 {
1981         struct i40e_rx_queue *rxq;
1982         int err = -1;
1983         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1984
1985         PMD_INIT_FUNC_TRACE();
1986
1987         if (rx_queue_id < dev->data->nb_rx_queues) {
1988                 rxq = dev->data->rx_queues[rx_queue_id];
1989
1990                 err = i40e_alloc_rx_queue_mbufs(rxq);
1991                 if (err) {
1992                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1993                         return err;
1994                 }
1995
1996                 rte_wmb();
1997
1998                 /* Init the RX tail regieter. */
1999                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2000
2001                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
2002
2003                 if (err) {
2004                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
2005                                     rx_queue_id);
2006
2007                         i40e_rx_queue_release_mbufs(rxq);
2008                         i40e_reset_rx_queue(rxq);
2009                 }
2010         }
2011
2012         return err;
2013 }
2014
2015 int
2016 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2017 {
2018         struct i40e_rx_queue *rxq;
2019         int err;
2020         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2021
2022         if (rx_queue_id < dev->data->nb_rx_queues) {
2023                 rxq = dev->data->rx_queues[rx_queue_id];
2024
2025                 /*
2026                 * rx_queue_id is queue id aplication refers to, while
2027                 * rxq->reg_idx is the real queue index.
2028                 */
2029                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
2030
2031                 if (err) {
2032                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
2033                                     rx_queue_id);
2034                         return err;
2035                 }
2036                 i40e_rx_queue_release_mbufs(rxq);
2037                 i40e_reset_rx_queue(rxq);
2038         }
2039
2040         return 0;
2041 }
2042
2043 int
2044 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
2045 {
2046         int err = -1;
2047         struct i40e_tx_queue *txq;
2048         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2049
2050         PMD_INIT_FUNC_TRACE();
2051
2052         if (tx_queue_id < dev->data->nb_tx_queues) {
2053                 txq = dev->data->tx_queues[tx_queue_id];
2054
2055                 /*
2056                 * tx_queue_id is queue id aplication refers to, while
2057                 * rxq->reg_idx is the real queue index.
2058                 */
2059                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
2060                 if (err)
2061                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
2062                                     tx_queue_id);
2063         }
2064
2065         return err;
2066 }
2067
2068 int
2069 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
2070 {
2071         struct i40e_tx_queue *txq;
2072         int err;
2073         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2074
2075         if (tx_queue_id < dev->data->nb_tx_queues) {
2076                 txq = dev->data->tx_queues[tx_queue_id];
2077
2078                 /*
2079                 * tx_queue_id is queue id aplication refers to, while
2080                 * txq->reg_idx is the real queue index.
2081                 */
2082                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
2083
2084                 if (err) {
2085                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
2086                                     tx_queue_id);
2087                         return err;
2088                 }
2089
2090                 i40e_tx_queue_release_mbufs(txq);
2091                 i40e_reset_tx_queue(txq);
2092         }
2093
2094         return 0;
2095 }
2096
2097 int
2098 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
2099                         uint16_t queue_idx,
2100                         uint16_t nb_desc,
2101                         unsigned int socket_id,
2102                         const struct rte_eth_rxconf *rx_conf,
2103                         struct rte_mempool *mp)
2104 {
2105         struct i40e_vsi *vsi;
2106         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2107         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2108         struct i40e_adapter *ad =
2109                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2110         struct i40e_rx_queue *rxq;
2111         const struct rte_memzone *rz;
2112         uint32_t ring_size;
2113         uint16_t len, i;
2114         uint16_t base, bsf, tc_mapping;
2115         int use_def_burst_func = 1;
2116
2117         if (hw->mac.type == I40E_MAC_VF) {
2118                 struct i40e_vf *vf =
2119                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2120                 vsi = &vf->vsi;
2121         } else
2122                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2123
2124         if (vsi == NULL) {
2125                 PMD_DRV_LOG(ERR, "VSI not available or queue "
2126                             "index exceeds the maximum");
2127                 return I40E_ERR_PARAM;
2128         }
2129         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2130                         (nb_desc > I40E_MAX_RING_DESC) ||
2131                         (nb_desc < I40E_MIN_RING_DESC)) {
2132                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
2133                             "invalid", nb_desc);
2134                 return I40E_ERR_PARAM;
2135         }
2136
2137         /* Free memory if needed */
2138         if (dev->data->rx_queues[queue_idx]) {
2139                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
2140                 dev->data->rx_queues[queue_idx] = NULL;
2141         }
2142
2143         /* Allocate the rx queue data structure */
2144         rxq = rte_zmalloc_socket("i40e rx queue",
2145                                  sizeof(struct i40e_rx_queue),
2146                                  RTE_CACHE_LINE_SIZE,
2147                                  socket_id);
2148         if (!rxq) {
2149                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2150                             "rx queue data structure");
2151                 return (-ENOMEM);
2152         }
2153         rxq->mp = mp;
2154         rxq->nb_rx_desc = nb_desc;
2155         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2156         rxq->queue_id = queue_idx;
2157         if (hw->mac.type == I40E_MAC_VF)
2158                 rxq->reg_idx = queue_idx;
2159         else /* PF device */
2160                 rxq->reg_idx = vsi->base_queue +
2161                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2162
2163         rxq->port_id = dev->data->port_id;
2164         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
2165                                                         0 : ETHER_CRC_LEN);
2166         rxq->drop_en = rx_conf->rx_drop_en;
2167         rxq->vsi = vsi;
2168         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2169
2170         /* Allocate the maximun number of RX ring hardware descriptor. */
2171         ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
2172         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2173         rz = i40e_ring_dma_zone_reserve(dev,
2174                                         "rx_ring",
2175                                         queue_idx,
2176                                         ring_size,
2177                                         socket_id);
2178         if (!rz) {
2179                 i40e_dev_rx_queue_release(rxq);
2180                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
2181                 return (-ENOMEM);
2182         }
2183
2184         /* Zero all the descriptors in the ring. */
2185         memset(rz->addr, 0, ring_size);
2186
2187 #ifdef RTE_LIBRTE_XEN_DOM0
2188         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2189 #else
2190         rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
2191 #endif
2192
2193         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2194
2195 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2196         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
2197 #else
2198         len = nb_desc;
2199 #endif
2200
2201         /* Allocate the software ring. */
2202         rxq->sw_ring =
2203                 rte_zmalloc_socket("i40e rx sw ring",
2204                                    sizeof(struct i40e_rx_entry) * len,
2205                                    RTE_CACHE_LINE_SIZE,
2206                                    socket_id);
2207         if (!rxq->sw_ring) {
2208                 i40e_dev_rx_queue_release(rxq);
2209                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
2210                 return (-ENOMEM);
2211         }
2212
2213         i40e_reset_rx_queue(rxq);
2214         rxq->q_set = TRUE;
2215         dev->data->rx_queues[queue_idx] = rxq;
2216
2217         use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
2218
2219         if (!use_def_burst_func) {
2220 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2221                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2222                              "satisfied. Rx Burst Bulk Alloc function will be "
2223                              "used on port=%d, queue=%d.",
2224                              rxq->port_id, rxq->queue_id);
2225 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2226         } else {
2227                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2228                              "not satisfied, Scattered Rx is requested, "
2229                              "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2230                              "not enabled on port=%d, queue=%d.",
2231                              rxq->port_id, rxq->queue_id);
2232                 ad->rx_bulk_alloc_allowed = false;
2233         }
2234
2235         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2236                 if (!(vsi->enabled_tc & (1 << i)))
2237                         continue;
2238                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2239                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2240                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2241                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2242                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2243
2244                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2245                         rxq->dcb_tc = i;
2246         }
2247
2248         return 0;
2249 }
2250
2251 void
2252 i40e_dev_rx_queue_release(void *rxq)
2253 {
2254         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2255
2256         if (!q) {
2257                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2258                 return;
2259         }
2260
2261         i40e_rx_queue_release_mbufs(q);
2262         rte_free(q->sw_ring);
2263         rte_free(q);
2264 }
2265
2266 uint32_t
2267 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2268 {
2269 #define I40E_RXQ_SCAN_INTERVAL 4
2270         volatile union i40e_rx_desc *rxdp;
2271         struct i40e_rx_queue *rxq;
2272         uint16_t desc = 0;
2273
2274         if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
2275                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
2276                 return 0;
2277         }
2278
2279         rxq = dev->data->rx_queues[rx_queue_id];
2280         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2281         while ((desc < rxq->nb_rx_desc) &&
2282                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2283                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2284                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2285                 /**
2286                  * Check the DD bit of a rx descriptor of each 4 in a group,
2287                  * to avoid checking too frequently and downgrading performance
2288                  * too much.
2289                  */
2290                 desc += I40E_RXQ_SCAN_INTERVAL;
2291                 rxdp += I40E_RXQ_SCAN_INTERVAL;
2292                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2293                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2294                                         desc - rxq->nb_rx_desc]);
2295         }
2296
2297         return desc;
2298 }
2299
2300 int
2301 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2302 {
2303         volatile union i40e_rx_desc *rxdp;
2304         struct i40e_rx_queue *rxq = rx_queue;
2305         uint16_t desc;
2306         int ret;
2307
2308         if (unlikely(offset >= rxq->nb_rx_desc)) {
2309                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
2310                 return 0;
2311         }
2312
2313         desc = rxq->rx_tail + offset;
2314         if (desc >= rxq->nb_rx_desc)
2315                 desc -= rxq->nb_rx_desc;
2316
2317         rxdp = &(rxq->rx_ring[desc]);
2318
2319         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2320                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2321                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
2322
2323         return ret;
2324 }
2325
2326 int
2327 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2328                         uint16_t queue_idx,
2329                         uint16_t nb_desc,
2330                         unsigned int socket_id,
2331                         const struct rte_eth_txconf *tx_conf)
2332 {
2333         struct i40e_vsi *vsi;
2334         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2335         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2336         struct i40e_tx_queue *txq;
2337         const struct rte_memzone *tz;
2338         uint32_t ring_size;
2339         uint16_t tx_rs_thresh, tx_free_thresh;
2340         uint16_t i, base, bsf, tc_mapping;
2341
2342         if (hw->mac.type == I40E_MAC_VF) {
2343                 struct i40e_vf *vf =
2344                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2345                 vsi = &vf->vsi;
2346         } else
2347                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2348
2349         if (vsi == NULL) {
2350                 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
2351                             "exceeds the maximum", queue_idx);
2352                 return I40E_ERR_PARAM;
2353         }
2354
2355         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2356                         (nb_desc > I40E_MAX_RING_DESC) ||
2357                         (nb_desc < I40E_MIN_RING_DESC)) {
2358                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2359                             "invalid", nb_desc);
2360                 return I40E_ERR_PARAM;
2361         }
2362
2363         /**
2364          * The following two parameters control the setting of the RS bit on
2365          * transmit descriptors. TX descriptors will have their RS bit set
2366          * after txq->tx_rs_thresh descriptors have been used. The TX
2367          * descriptor ring will be cleaned after txq->tx_free_thresh
2368          * descriptors are used or if the number of descriptors required to
2369          * transmit a packet is greater than the number of free TX descriptors.
2370          *
2371          * The following constraints must be satisfied:
2372          *  - tx_rs_thresh must be greater than 0.
2373          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2374          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2375          *  - tx_rs_thresh must be a divisor of the ring size.
2376          *  - tx_free_thresh must be greater than 0.
2377          *  - tx_free_thresh must be less than the size of the ring minus 3.
2378          *
2379          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2380          * race condition, hence the maximum threshold constraints. When set
2381          * to zero use default values.
2382          */
2383         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2384                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2385         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2386                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2387         if (tx_rs_thresh >= (nb_desc - 2)) {
2388                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2389                              "number of TX descriptors minus 2. "
2390                              "(tx_rs_thresh=%u port=%d queue=%d)",
2391                              (unsigned int)tx_rs_thresh,
2392                              (int)dev->data->port_id,
2393                              (int)queue_idx);
2394                 return I40E_ERR_PARAM;
2395         }
2396         if (tx_free_thresh >= (nb_desc - 3)) {
2397                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2398                              "tx_free_thresh must be less than the "
2399                              "number of TX descriptors minus 3. "
2400                              "(tx_free_thresh=%u port=%d queue=%d)",
2401                              (unsigned int)tx_free_thresh,
2402                              (int)dev->data->port_id,
2403                              (int)queue_idx);
2404                 return I40E_ERR_PARAM;
2405         }
2406         if (tx_rs_thresh > tx_free_thresh) {
2407                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2408                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2409                              " tx_rs_thresh=%u port=%d queue=%d)",
2410                              (unsigned int)tx_free_thresh,
2411                              (unsigned int)tx_rs_thresh,
2412                              (int)dev->data->port_id,
2413                              (int)queue_idx);
2414                 return I40E_ERR_PARAM;
2415         }
2416         if ((nb_desc % tx_rs_thresh) != 0) {
2417                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2418                              "number of TX descriptors. (tx_rs_thresh=%u"
2419                              " port=%d queue=%d)",
2420                              (unsigned int)tx_rs_thresh,
2421                              (int)dev->data->port_id,
2422                              (int)queue_idx);
2423                 return I40E_ERR_PARAM;
2424         }
2425         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2426                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2427                              "tx_rs_thresh is greater than 1. "
2428                              "(tx_rs_thresh=%u port=%d queue=%d)",
2429                              (unsigned int)tx_rs_thresh,
2430                              (int)dev->data->port_id,
2431                              (int)queue_idx);
2432                 return I40E_ERR_PARAM;
2433         }
2434
2435         /* Free memory if needed. */
2436         if (dev->data->tx_queues[queue_idx]) {
2437                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2438                 dev->data->tx_queues[queue_idx] = NULL;
2439         }
2440
2441         /* Allocate the TX queue data structure. */
2442         txq = rte_zmalloc_socket("i40e tx queue",
2443                                   sizeof(struct i40e_tx_queue),
2444                                   RTE_CACHE_LINE_SIZE,
2445                                   socket_id);
2446         if (!txq) {
2447                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2448                             "tx queue structure");
2449                 return (-ENOMEM);
2450         }
2451
2452         /* Allocate TX hardware ring descriptors. */
2453         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2454         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2455         tz = i40e_ring_dma_zone_reserve(dev,
2456                                         "tx_ring",
2457                                         queue_idx,
2458                                         ring_size,
2459                                         socket_id);
2460         if (!tz) {
2461                 i40e_dev_tx_queue_release(txq);
2462                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2463                 return (-ENOMEM);
2464         }
2465
2466         txq->nb_tx_desc = nb_desc;
2467         txq->tx_rs_thresh = tx_rs_thresh;
2468         txq->tx_free_thresh = tx_free_thresh;
2469         txq->pthresh = tx_conf->tx_thresh.pthresh;
2470         txq->hthresh = tx_conf->tx_thresh.hthresh;
2471         txq->wthresh = tx_conf->tx_thresh.wthresh;
2472         txq->queue_id = queue_idx;
2473         if (hw->mac.type == I40E_MAC_VF)
2474                 txq->reg_idx = queue_idx;
2475         else /* PF device */
2476                 txq->reg_idx = vsi->base_queue +
2477                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2478
2479         txq->port_id = dev->data->port_id;
2480         txq->txq_flags = tx_conf->txq_flags;
2481         txq->vsi = vsi;
2482         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2483
2484 #ifdef RTE_LIBRTE_XEN_DOM0
2485         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2486 #else
2487         txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
2488 #endif
2489         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2490
2491         /* Allocate software ring */
2492         txq->sw_ring =
2493                 rte_zmalloc_socket("i40e tx sw ring",
2494                                    sizeof(struct i40e_tx_entry) * nb_desc,
2495                                    RTE_CACHE_LINE_SIZE,
2496                                    socket_id);
2497         if (!txq->sw_ring) {
2498                 i40e_dev_tx_queue_release(txq);
2499                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2500                 return (-ENOMEM);
2501         }
2502
2503         i40e_reset_tx_queue(txq);
2504         txq->q_set = TRUE;
2505         dev->data->tx_queues[queue_idx] = txq;
2506
2507         /* Use a simple TX queue without offloads or multi segs if possible */
2508         i40e_set_tx_function_flag(dev, txq);
2509
2510         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2511                 if (!(vsi->enabled_tc & (1 << i)))
2512                         continue;
2513                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2514                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2515                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2516                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2517                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2518
2519                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2520                         txq->dcb_tc = i;
2521         }
2522
2523         return 0;
2524 }
2525
2526 void
2527 i40e_dev_tx_queue_release(void *txq)
2528 {
2529         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2530
2531         if (!q) {
2532                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2533                 return;
2534         }
2535
2536         i40e_tx_queue_release_mbufs(q);
2537         rte_free(q->sw_ring);
2538         rte_free(q);
2539 }
2540
2541 static const struct rte_memzone *
2542 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
2543                            const char *ring_name,
2544                            uint16_t queue_id,
2545                            uint32_t ring_size,
2546                            int socket_id)
2547 {
2548         char z_name[RTE_MEMZONE_NAMESIZE];
2549         const struct rte_memzone *mz;
2550
2551         snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
2552                         dev->driver->pci_drv.name, ring_name,
2553                                 dev->data->port_id, queue_id);
2554         mz = rte_memzone_lookup(z_name);
2555         if (mz)
2556                 return mz;
2557
2558 #ifdef RTE_LIBRTE_XEN_DOM0
2559         return rte_memzone_reserve_bounded(z_name, ring_size,
2560                 socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
2561 #else
2562         return rte_memzone_reserve_aligned(z_name, ring_size,
2563                                 socket_id, 0, I40E_RING_BASE_ALIGN);
2564 #endif
2565 }
2566
2567 const struct rte_memzone *
2568 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2569 {
2570         const struct rte_memzone *mz = NULL;
2571
2572         mz = rte_memzone_lookup(name);
2573         if (mz)
2574                 return mz;
2575 #ifdef RTE_LIBRTE_XEN_DOM0
2576         mz = rte_memzone_reserve_bounded(name, len,
2577                 socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
2578 #else
2579         mz = rte_memzone_reserve_aligned(name, len,
2580                                 socket_id, 0, I40E_RING_BASE_ALIGN);
2581 #endif
2582         return mz;
2583 }
2584
2585 void
2586 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2587 {
2588         uint16_t i;
2589
2590         /* SSE Vector driver has a different way of releasing mbufs. */
2591         if (rxq->rx_using_sse) {
2592                 i40e_rx_queue_release_mbufs_vec(rxq);
2593                 return;
2594         }
2595
2596         if (!rxq || !rxq->sw_ring) {
2597                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2598                 return;
2599         }
2600
2601         for (i = 0; i < rxq->nb_rx_desc; i++) {
2602                 if (rxq->sw_ring[i].mbuf) {
2603                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2604                         rxq->sw_ring[i].mbuf = NULL;
2605                 }
2606         }
2607 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2608         if (rxq->rx_nb_avail == 0)
2609                 return;
2610         for (i = 0; i < rxq->rx_nb_avail; i++) {
2611                 struct rte_mbuf *mbuf;
2612
2613                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2614                 rte_pktmbuf_free_seg(mbuf);
2615         }
2616         rxq->rx_nb_avail = 0;
2617 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2618 }
2619
2620 void
2621 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2622 {
2623         unsigned i;
2624         uint16_t len;
2625
2626         if (!rxq) {
2627                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2628                 return;
2629         }
2630
2631 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2632         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2633                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2634         else
2635 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2636                 len = rxq->nb_rx_desc;
2637
2638         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2639                 ((volatile char *)rxq->rx_ring)[i] = 0;
2640
2641 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2642         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2643         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2644                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2645
2646         rxq->rx_nb_avail = 0;
2647         rxq->rx_next_avail = 0;
2648         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2649 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2650         rxq->rx_tail = 0;
2651         rxq->nb_rx_hold = 0;
2652         rxq->pkt_first_seg = NULL;
2653         rxq->pkt_last_seg = NULL;
2654
2655         rxq->rxrearm_start = 0;
2656         rxq->rxrearm_nb = 0;
2657 }
2658
2659 void
2660 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2661 {
2662         uint16_t i;
2663
2664         if (!txq || !txq->sw_ring) {
2665                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2666                 return;
2667         }
2668
2669         for (i = 0; i < txq->nb_tx_desc; i++) {
2670                 if (txq->sw_ring[i].mbuf) {
2671                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2672                         txq->sw_ring[i].mbuf = NULL;
2673                 }
2674         }
2675 }
2676
2677 void
2678 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2679 {
2680         struct i40e_tx_entry *txe;
2681         uint16_t i, prev, size;
2682
2683         if (!txq) {
2684                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2685                 return;
2686         }
2687
2688         txe = txq->sw_ring;
2689         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2690         for (i = 0; i < size; i++)
2691                 ((volatile char *)txq->tx_ring)[i] = 0;
2692
2693         prev = (uint16_t)(txq->nb_tx_desc - 1);
2694         for (i = 0; i < txq->nb_tx_desc; i++) {
2695                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2696
2697                 txd->cmd_type_offset_bsz =
2698                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2699                 txe[i].mbuf =  NULL;
2700                 txe[i].last_id = i;
2701                 txe[prev].next_id = i;
2702                 prev = i;
2703         }
2704
2705         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2706         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2707
2708         txq->tx_tail = 0;
2709         txq->nb_tx_used = 0;
2710
2711         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2712         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2713 }
2714
2715 /* Init the TX queue in hardware */
2716 int
2717 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2718 {
2719         enum i40e_status_code err = I40E_SUCCESS;
2720         struct i40e_vsi *vsi = txq->vsi;
2721         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2722         uint16_t pf_q = txq->reg_idx;
2723         struct i40e_hmc_obj_txq tx_ctx;
2724         uint32_t qtx_ctl;
2725
2726         /* clear the context structure first */
2727         memset(&tx_ctx, 0, sizeof(tx_ctx));
2728         tx_ctx.new_context = 1;
2729         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2730         tx_ctx.qlen = txq->nb_tx_desc;
2731
2732 #ifdef RTE_LIBRTE_IEEE1588
2733         tx_ctx.timesync_ena = 1;
2734 #endif
2735         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2736         if (vsi->type == I40E_VSI_FDIR)
2737                 tx_ctx.fd_ena = TRUE;
2738
2739         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2740         if (err != I40E_SUCCESS) {
2741                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2742                 return err;
2743         }
2744
2745         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2746         if (err != I40E_SUCCESS) {
2747                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2748                 return err;
2749         }
2750
2751         /* Now associate this queue with this PCI function */
2752         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2753         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2754                                         I40E_QTX_CTL_PF_INDX_MASK);
2755         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2756         I40E_WRITE_FLUSH(hw);
2757
2758         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2759
2760         return err;
2761 }
2762
2763 int
2764 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2765 {
2766         struct i40e_rx_entry *rxe = rxq->sw_ring;
2767         uint64_t dma_addr;
2768         uint16_t i;
2769
2770         for (i = 0; i < rxq->nb_rx_desc; i++) {
2771                 volatile union i40e_rx_desc *rxd;
2772                 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
2773
2774                 if (unlikely(!mbuf)) {
2775                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2776                         return -ENOMEM;
2777                 }
2778
2779                 rte_mbuf_refcnt_set(mbuf, 1);
2780                 mbuf->next = NULL;
2781                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2782                 mbuf->nb_segs = 1;
2783                 mbuf->port = rxq->port_id;
2784
2785                 dma_addr =
2786                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
2787
2788                 rxd = &rxq->rx_ring[i];
2789                 rxd->read.pkt_addr = dma_addr;
2790                 rxd->read.hdr_addr = 0;
2791 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2792                 rxd->read.rsvd1 = 0;
2793                 rxd->read.rsvd2 = 0;
2794 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2795
2796                 rxe[i].mbuf = mbuf;
2797         }
2798
2799         return 0;
2800 }
2801
2802 /*
2803  * Calculate the buffer length, and check the jumbo frame
2804  * and maximum packet length.
2805  */
2806 static int
2807 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2808 {
2809         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2810         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2811         struct rte_eth_dev_data *data = pf->dev_data;
2812         uint16_t buf_size, len;
2813
2814         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2815                 RTE_PKTMBUF_HEADROOM);
2816
2817         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2818                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2819         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2820                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2821                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2822                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2823                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2824                 rxq->hs_mode = i40e_header_split_enabled;
2825                 break;
2826         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2827         default:
2828                 rxq->rx_hdr_len = 0;
2829                 rxq->rx_buf_len = RTE_ALIGN(buf_size,
2830                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2831                 rxq->hs_mode = i40e_header_split_none;
2832                 break;
2833         }
2834
2835         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2836         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2837         if (data->dev_conf.rxmode.jumbo_frame == 1) {
2838                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2839                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2840                         PMD_DRV_LOG(ERR, "maximum packet length must "
2841                                     "be larger than %u and smaller than %u,"
2842                                     "as jumbo frame is enabled",
2843                                     (uint32_t)ETHER_MAX_LEN,
2844                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2845                         return I40E_ERR_CONFIG;
2846                 }
2847         } else {
2848                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2849                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2850                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2851                                     "larger than %u and smaller than %u, "
2852                                     "as jumbo frame is disabled",
2853                                     (uint32_t)ETHER_MIN_LEN,
2854                                     (uint32_t)ETHER_MAX_LEN);
2855                         return I40E_ERR_CONFIG;
2856                 }
2857         }
2858
2859         return 0;
2860 }
2861
2862 /* Init the RX queue in hardware */
2863 int
2864 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2865 {
2866         int err = I40E_SUCCESS;
2867         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2868         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2869         uint16_t pf_q = rxq->reg_idx;
2870         uint16_t buf_size;
2871         struct i40e_hmc_obj_rxq rx_ctx;
2872
2873         err = i40e_rx_queue_config(rxq);
2874         if (err < 0) {
2875                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2876                 return err;
2877         }
2878
2879         /* Clear the context structure first */
2880         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2881         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2882         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2883
2884         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2885         rx_ctx.qlen = rxq->nb_rx_desc;
2886 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2887         rx_ctx.dsize = 1;
2888 #endif
2889         rx_ctx.dtype = rxq->hs_mode;
2890         if (rxq->hs_mode)
2891                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2892         else
2893                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2894         rx_ctx.rxmax = rxq->max_pkt_len;
2895         rx_ctx.tphrdesc_ena = 1;
2896         rx_ctx.tphwdesc_ena = 1;
2897         rx_ctx.tphdata_ena = 1;
2898         rx_ctx.tphhead_ena = 1;
2899         rx_ctx.lrxqthresh = 2;
2900         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2901         rx_ctx.l2tsel = 1;
2902         rx_ctx.showiv = 1;
2903         rx_ctx.prefena = 1;
2904
2905         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2906         if (err != I40E_SUCCESS) {
2907                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2908                 return err;
2909         }
2910         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2911         if (err != I40E_SUCCESS) {
2912                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2913                 return err;
2914         }
2915
2916         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2917
2918         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2919                 RTE_PKTMBUF_HEADROOM);
2920
2921         /* Check if scattered RX needs to be used. */
2922         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2923                 dev_data->scattered_rx = 1;
2924         }
2925
2926         /* Init the RX tail regieter. */
2927         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2928
2929         return 0;
2930 }
2931
2932 void
2933 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2934 {
2935         uint16_t i;
2936
2937         PMD_INIT_FUNC_TRACE();
2938
2939         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2940                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2941                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2942         }
2943
2944         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2945                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2946                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2947         }
2948 }
2949
2950 void
2951 i40e_dev_free_queues(struct rte_eth_dev *dev)
2952 {
2953         uint16_t i;
2954
2955         PMD_INIT_FUNC_TRACE();
2956
2957         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2958                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2959                 dev->data->rx_queues[i] = NULL;
2960         }
2961         dev->data->nb_rx_queues = 0;
2962
2963         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2964                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2965                 dev->data->tx_queues[i] = NULL;
2966         }
2967         dev->data->nb_tx_queues = 0;
2968 }
2969
2970 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2971 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2972
2973 enum i40e_status_code
2974 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2975 {
2976         struct i40e_tx_queue *txq;
2977         const struct rte_memzone *tz = NULL;
2978         uint32_t ring_size;
2979         struct rte_eth_dev *dev = pf->adapter->eth_dev;
2980
2981         if (!pf) {
2982                 PMD_DRV_LOG(ERR, "PF is not available");
2983                 return I40E_ERR_BAD_PTR;
2984         }
2985
2986         /* Allocate the TX queue data structure. */
2987         txq = rte_zmalloc_socket("i40e fdir tx queue",
2988                                   sizeof(struct i40e_tx_queue),
2989                                   RTE_CACHE_LINE_SIZE,
2990                                   SOCKET_ID_ANY);
2991         if (!txq) {
2992                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2993                                         "tx queue structure.");
2994                 return I40E_ERR_NO_MEMORY;
2995         }
2996
2997         /* Allocate TX hardware ring descriptors. */
2998         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2999         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3000
3001         tz = i40e_ring_dma_zone_reserve(dev,
3002                                         "fdir_tx_ring",
3003                                         I40E_FDIR_QUEUE_ID,
3004                                         ring_size,
3005                                         SOCKET_ID_ANY);
3006         if (!tz) {
3007                 i40e_dev_tx_queue_release(txq);
3008                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3009                 return I40E_ERR_NO_MEMORY;
3010         }
3011
3012         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3013         txq->queue_id = I40E_FDIR_QUEUE_ID;
3014         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3015         txq->vsi = pf->fdir.fdir_vsi;
3016
3017 #ifdef RTE_LIBRTE_XEN_DOM0
3018         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
3019 #else
3020         txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
3021 #endif
3022         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3023         /*
3024          * don't need to allocate software ring and reset for the fdir
3025          * program queue just set the queue has been configured.
3026          */
3027         txq->q_set = TRUE;
3028         pf->fdir.txq = txq;
3029
3030         return I40E_SUCCESS;
3031 }
3032
3033 enum i40e_status_code
3034 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3035 {
3036         struct i40e_rx_queue *rxq;
3037         const struct rte_memzone *rz = NULL;
3038         uint32_t ring_size;
3039         struct rte_eth_dev *dev = pf->adapter->eth_dev;
3040
3041         if (!pf) {
3042                 PMD_DRV_LOG(ERR, "PF is not available");
3043                 return I40E_ERR_BAD_PTR;
3044         }
3045
3046         /* Allocate the RX queue data structure. */
3047         rxq = rte_zmalloc_socket("i40e fdir rx queue",
3048                                   sizeof(struct i40e_rx_queue),
3049                                   RTE_CACHE_LINE_SIZE,
3050                                   SOCKET_ID_ANY);
3051         if (!rxq) {
3052                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3053                                         "rx queue structure.");
3054                 return I40E_ERR_NO_MEMORY;
3055         }
3056
3057         /* Allocate RX hardware ring descriptors. */
3058         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3059         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3060
3061         rz = i40e_ring_dma_zone_reserve(dev,
3062                                         "fdir_rx_ring",
3063                                         I40E_FDIR_QUEUE_ID,
3064                                         ring_size,
3065                                         SOCKET_ID_ANY);
3066         if (!rz) {
3067                 i40e_dev_rx_queue_release(rxq);
3068                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3069                 return I40E_ERR_NO_MEMORY;
3070         }
3071
3072         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3073         rxq->queue_id = I40E_FDIR_QUEUE_ID;
3074         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3075         rxq->vsi = pf->fdir.fdir_vsi;
3076
3077 #ifdef RTE_LIBRTE_XEN_DOM0
3078         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
3079 #else
3080         rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
3081 #endif
3082         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3083
3084         /*
3085          * Don't need to allocate software ring and reset for the fdir
3086          * rx queue, just set the queue has been configured.
3087          */
3088         rxq->q_set = TRUE;
3089         pf->fdir.rxq = rxq;
3090
3091         return I40E_SUCCESS;
3092 }
3093
3094 void __attribute__((cold))
3095 i40e_set_rx_function(struct rte_eth_dev *dev)
3096 {
3097         struct i40e_adapter *ad =
3098                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3099         uint16_t rx_using_sse, i;
3100         /* In order to allow Vector Rx there are a few configuration
3101          * conditions to be met and Rx Bulk Allocation should be allowed.
3102          */
3103         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3104                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
3105                     !ad->rx_bulk_alloc_allowed) {
3106                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
3107                                      " Vector Rx preconditions",
3108                                      dev->data->port_id);
3109
3110                         ad->rx_vec_allowed = false;
3111                 }
3112                 if (ad->rx_vec_allowed) {
3113                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3114                                 struct i40e_rx_queue *rxq =
3115                                         dev->data->rx_queues[i];
3116
3117                                 if (i40e_rxq_vec_setup(rxq)) {
3118                                         ad->rx_vec_allowed = false;
3119                                         break;
3120                                 }
3121                         }
3122                 }
3123         }
3124
3125         if (dev->data->scattered_rx) {
3126                 /* Set the non-LRO scattered callback: there are Vector and
3127                  * single allocation versions.
3128                  */
3129                 if (ad->rx_vec_allowed) {
3130                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
3131                                             "callback (port=%d).",
3132                                      dev->data->port_id);
3133
3134                         dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
3135                 } else {
3136                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
3137                                            "allocation callback (port=%d).",
3138                                      dev->data->port_id);
3139                         dev->rx_pkt_burst = i40e_recv_scattered_pkts;
3140                 }
3141         /* If parameters allow we are going to choose between the following
3142          * callbacks:
3143          *    - Vector
3144          *    - Bulk Allocation
3145          *    - Single buffer allocation (the simplest one)
3146          */
3147         } else if (ad->rx_vec_allowed) {
3148                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
3149                                     "burst size no less than %d (port=%d).",
3150                              RTE_I40E_DESCS_PER_LOOP,
3151                              dev->data->port_id);
3152
3153                 dev->rx_pkt_burst = i40e_recv_pkts_vec;
3154         } else if (ad->rx_bulk_alloc_allowed) {
3155                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
3156                                     "satisfied. Rx Burst Bulk Alloc function "
3157                                     "will be used on port=%d.",
3158                              dev->data->port_id);
3159
3160                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3161         } else {
3162                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
3163                                     "satisfied, or Scattered Rx is requested "
3164                                     "(port=%d).",
3165                              dev->data->port_id);
3166
3167                 dev->rx_pkt_burst = i40e_recv_pkts;
3168         }
3169
3170         /* Propagate information about RX function choice through all queues. */
3171         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3172                 rx_using_sse =
3173                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3174                          dev->rx_pkt_burst == i40e_recv_pkts_vec);
3175
3176                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3177                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3178
3179                         rxq->rx_using_sse = rx_using_sse;
3180                 }
3181         }
3182 }
3183
3184 void __attribute__((cold))
3185 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3186 {
3187         struct i40e_adapter *ad =
3188                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3189
3190         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
3191         if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
3192                         && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
3193                 if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
3194                         PMD_INIT_LOG(DEBUG, "Vector tx"
3195                                      " can be enabled on this txq.");
3196
3197                 } else {
3198                         ad->tx_vec_allowed = false;
3199                 }
3200         } else {
3201                 ad->tx_simple_allowed = false;
3202         }
3203 }
3204
3205 void __attribute__((cold))
3206 i40e_set_tx_function(struct rte_eth_dev *dev)
3207 {
3208         struct i40e_adapter *ad =
3209                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3210         int i;
3211
3212         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3213                 if (ad->tx_vec_allowed) {
3214                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3215                                 struct i40e_tx_queue *txq =
3216                                         dev->data->tx_queues[i];
3217
3218                                 if (i40e_txq_vec_setup(txq)) {
3219                                         ad->tx_vec_allowed = false;
3220                                         break;
3221                                 }
3222                         }
3223                 }
3224         }
3225
3226         if (ad->tx_simple_allowed) {
3227                 if (ad->tx_vec_allowed) {
3228                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
3229                         dev->tx_pkt_burst = i40e_xmit_pkts_vec;
3230                 } else {
3231                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3232                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3233                 }
3234         } else {
3235                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3236                 dev->tx_pkt_burst = i40e_xmit_pkts;
3237         }
3238 }
3239
3240 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
3241 int __attribute__((weak))
3242 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3243 {
3244         return -1;
3245 }
3246
3247 uint16_t __attribute__((weak))
3248 i40e_recv_pkts_vec(
3249         void __rte_unused *rx_queue,
3250         struct rte_mbuf __rte_unused **rx_pkts,
3251         uint16_t __rte_unused nb_pkts)
3252 {
3253         return 0;
3254 }
3255
3256 uint16_t __attribute__((weak))
3257 i40e_recv_scattered_pkts_vec(
3258         void __rte_unused *rx_queue,
3259         struct rte_mbuf __rte_unused **rx_pkts,
3260         uint16_t __rte_unused nb_pkts)
3261 {
3262         return 0;
3263 }
3264
3265 int __attribute__((weak))
3266 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3267 {
3268         return -1;
3269 }
3270
3271 int __attribute__((weak))
3272 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3273 {
3274         return -1;
3275 }
3276
3277 void __attribute__((weak))
3278 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3279 {
3280         return;
3281 }
3282
3283 uint16_t __attribute__((weak))
3284 i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
3285                    struct rte_mbuf __rte_unused **tx_pkts,
3286                    uint16_t __rte_unused nb_pkts)
3287 {
3288         return 0;
3289 }
3290