bbaf513fc8fea21f823c5c9cb046b602617dac8b
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53
54 #include "i40e_logs.h"
55 #include "base/i40e_prototype.h"
56 #include "base/i40e_type.h"
57 #include "i40e_ethdev.h"
58 #include "i40e_rxtx.h"
59
60 #define DEFAULT_TX_RS_THRESH   32
61 #define DEFAULT_TX_FREE_THRESH 32
62 #define I40E_MAX_PKT_TYPE      256
63
64 #define I40E_TX_MAX_BURST  32
65
66 #define I40E_DMA_MEM_ALIGN 4096
67
68 /* Base address of the HW descriptor ring should be 128B aligned. */
69 #define I40E_RING_BASE_ALIGN    128
70
71 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
72                                         ETH_TXQ_FLAGS_NOOFFLOADS)
73
74 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
75
76 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
77                 PKT_TX_IP_CKSUM |                \
78                 PKT_TX_L4_MASK |                 \
79                 PKT_TX_TCP_SEG |                 \
80                 PKT_TX_OUTER_IP_CKSUM)
81
82 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
83                                       struct rte_mbuf **tx_pkts,
84                                       uint16_t nb_pkts);
85
86 static inline void
87 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
88 {
89         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
90                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
91                 mb->ol_flags |= PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED;
92                 mb->vlan_tci =
93                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
94                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
95                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
96         } else {
97                 mb->vlan_tci = 0;
98         }
99 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
100         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
101                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
102                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
103                 mb->vlan_tci_outer = mb->vlan_tci;
104                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
105                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
106                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
107                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
108         } else {
109                 mb->vlan_tci_outer = 0;
110         }
111 #endif
112         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
113                    mb->vlan_tci, mb->vlan_tci_outer);
114 }
115
116 /* Translate the rx descriptor status to pkt flags */
117 static inline uint64_t
118 i40e_rxd_status_to_pkt_flags(uint64_t qword)
119 {
120         uint64_t flags;
121
122         /* Check if RSS_HASH */
123         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
124                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
125                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
126
127         /* Check if FDIR Match */
128         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
129                                                         PKT_RX_FDIR : 0);
130
131         return flags;
132 }
133
134 static inline uint64_t
135 i40e_rxd_error_to_pkt_flags(uint64_t qword)
136 {
137         uint64_t flags = 0;
138         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
139
140 #define I40E_RX_ERR_BITS 0x3f
141         if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
142                 return flags;
143         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
144                 flags |= PKT_RX_IP_CKSUM_BAD;
145         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
146                 flags |= PKT_RX_L4_CKSUM_BAD;
147         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
148                 flags |= PKT_RX_EIP_CKSUM_BAD;
149
150         return flags;
151 }
152
153 /* Function to check and set the ieee1588 timesync index and get the
154  * appropriate flags.
155  */
156 #ifdef RTE_LIBRTE_IEEE1588
157 static inline uint64_t
158 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
159 {
160         uint64_t pkt_flags = 0;
161         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
162                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
163                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
164
165         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
166                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
167                 pkt_flags = PKT_RX_IEEE1588_PTP;
168         if (tsyn & 0x04) {
169                 pkt_flags |= PKT_RX_IEEE1588_TMST;
170                 mb->timesync = tsyn & 0x03;
171         }
172
173         return pkt_flags;
174 }
175 #endif
176
177 /* For each value it means, datasheet of hardware can tell more details
178  *
179  * @note: fix i40e_dev_supported_ptypes_get() if any change here.
180  */
181 static inline uint32_t
182 i40e_rxd_pkt_type_mapping(uint8_t ptype)
183 {
184         static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
185                 /* L2 types */
186                 /* [0] reserved */
187                 [1] = RTE_PTYPE_L2_ETHER,
188                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
189                 /* [3] - [5] reserved */
190                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
191                 /* [7] - [10] reserved */
192                 [11] = RTE_PTYPE_L2_ETHER_ARP,
193                 /* [12] - [21] reserved */
194
195                 /* Non tunneled IPv4 */
196                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
197                         RTE_PTYPE_L4_FRAG,
198                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
199                         RTE_PTYPE_L4_NONFRAG,
200                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
201                         RTE_PTYPE_L4_UDP,
202                 /* [25] reserved */
203                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                         RTE_PTYPE_L4_TCP,
205                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
206                         RTE_PTYPE_L4_SCTP,
207                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
208                         RTE_PTYPE_L4_ICMP,
209
210                 /* IPv4 --> IPv4 */
211                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
212                         RTE_PTYPE_TUNNEL_IP |
213                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214                         RTE_PTYPE_INNER_L4_FRAG,
215                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
216                         RTE_PTYPE_TUNNEL_IP |
217                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
218                         RTE_PTYPE_INNER_L4_NONFRAG,
219                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220                         RTE_PTYPE_TUNNEL_IP |
221                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
222                         RTE_PTYPE_INNER_L4_UDP,
223                 /* [32] reserved */
224                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                         RTE_PTYPE_TUNNEL_IP |
226                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
227                         RTE_PTYPE_INNER_L4_TCP,
228                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
229                         RTE_PTYPE_TUNNEL_IP |
230                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
231                         RTE_PTYPE_INNER_L4_SCTP,
232                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233                         RTE_PTYPE_TUNNEL_IP |
234                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
235                         RTE_PTYPE_INNER_L4_ICMP,
236
237                 /* IPv4 --> IPv6 */
238                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239                         RTE_PTYPE_TUNNEL_IP |
240                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
241                         RTE_PTYPE_INNER_L4_FRAG,
242                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
243                         RTE_PTYPE_TUNNEL_IP |
244                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
245                         RTE_PTYPE_INNER_L4_NONFRAG,
246                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
247                         RTE_PTYPE_TUNNEL_IP |
248                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
249                         RTE_PTYPE_INNER_L4_UDP,
250                 /* [39] reserved */
251                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                         RTE_PTYPE_TUNNEL_IP |
253                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
254                         RTE_PTYPE_INNER_L4_TCP,
255                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                         RTE_PTYPE_TUNNEL_IP |
257                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
258                         RTE_PTYPE_INNER_L4_SCTP,
259                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
260                         RTE_PTYPE_TUNNEL_IP |
261                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
262                         RTE_PTYPE_INNER_L4_ICMP,
263
264                 /* IPv4 --> GRE/Teredo/VXLAN */
265                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
266                         RTE_PTYPE_TUNNEL_GRENAT,
267
268                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
269                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
270                         RTE_PTYPE_TUNNEL_GRENAT |
271                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
272                         RTE_PTYPE_INNER_L4_FRAG,
273                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
274                         RTE_PTYPE_TUNNEL_GRENAT |
275                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
276                         RTE_PTYPE_INNER_L4_NONFRAG,
277                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
278                         RTE_PTYPE_TUNNEL_GRENAT |
279                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
280                         RTE_PTYPE_INNER_L4_UDP,
281                 /* [47] reserved */
282                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
283                         RTE_PTYPE_TUNNEL_GRENAT |
284                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
285                         RTE_PTYPE_INNER_L4_TCP,
286                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
287                         RTE_PTYPE_TUNNEL_GRENAT |
288                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
289                         RTE_PTYPE_INNER_L4_SCTP,
290                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
291                         RTE_PTYPE_TUNNEL_GRENAT |
292                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
293                         RTE_PTYPE_INNER_L4_ICMP,
294
295                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
296                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
297                         RTE_PTYPE_TUNNEL_GRENAT |
298                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
299                         RTE_PTYPE_INNER_L4_FRAG,
300                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
301                         RTE_PTYPE_TUNNEL_GRENAT |
302                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
303                         RTE_PTYPE_INNER_L4_NONFRAG,
304                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
305                         RTE_PTYPE_TUNNEL_GRENAT |
306                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
307                         RTE_PTYPE_INNER_L4_UDP,
308                 /* [54] reserved */
309                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
310                         RTE_PTYPE_TUNNEL_GRENAT |
311                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
312                         RTE_PTYPE_INNER_L4_TCP,
313                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
314                         RTE_PTYPE_TUNNEL_GRENAT |
315                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
316                         RTE_PTYPE_INNER_L4_SCTP,
317                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
318                         RTE_PTYPE_TUNNEL_GRENAT |
319                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
320                         RTE_PTYPE_INNER_L4_ICMP,
321
322                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
323                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
324                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
325
326                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
327                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
328                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
329                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
330                         RTE_PTYPE_INNER_L4_FRAG,
331                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
332                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
333                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
334                         RTE_PTYPE_INNER_L4_NONFRAG,
335                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
336                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
337                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
338                         RTE_PTYPE_INNER_L4_UDP,
339                 /* [62] reserved */
340                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
341                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
342                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
343                         RTE_PTYPE_INNER_L4_TCP,
344                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
345                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
346                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
347                         RTE_PTYPE_INNER_L4_SCTP,
348                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
349                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
350                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
351                         RTE_PTYPE_INNER_L4_ICMP,
352
353                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
354                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
355                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
356                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
357                         RTE_PTYPE_INNER_L4_FRAG,
358                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
359                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
360                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
361                         RTE_PTYPE_INNER_L4_NONFRAG,
362                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
363                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
364                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
365                         RTE_PTYPE_INNER_L4_UDP,
366                 /* [69] reserved */
367                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
368                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
369                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
370                         RTE_PTYPE_INNER_L4_TCP,
371                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
372                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
373                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
374                         RTE_PTYPE_INNER_L4_SCTP,
375                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
376                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
377                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
378                         RTE_PTYPE_INNER_L4_ICMP,
379
380                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
381                 [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
382                         RTE_PTYPE_TUNNEL_GRENAT |
383                         RTE_PTYPE_INNER_L2_ETHER_VLAN,
384
385                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
386                 [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
387                         RTE_PTYPE_TUNNEL_GRENAT |
388                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
389                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
390                         RTE_PTYPE_INNER_L4_FRAG,
391                 [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
392                         RTE_PTYPE_TUNNEL_GRENAT |
393                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
394                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
395                         RTE_PTYPE_INNER_L4_NONFRAG,
396                 [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
397                         RTE_PTYPE_TUNNEL_GRENAT |
398                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
399                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
400                         RTE_PTYPE_INNER_L4_UDP,
401                 /* [77] reserved */
402                 [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
403                         RTE_PTYPE_TUNNEL_GRENAT |
404                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
405                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
406                         RTE_PTYPE_INNER_L4_TCP,
407                 [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
408                         RTE_PTYPE_TUNNEL_GRENAT |
409                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
410                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
411                         RTE_PTYPE_INNER_L4_SCTP,
412                 [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
413                         RTE_PTYPE_TUNNEL_GRENAT |
414                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
415                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
416                         RTE_PTYPE_INNER_L4_ICMP,
417
418                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
419                 [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
420                         RTE_PTYPE_TUNNEL_GRENAT |
421                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
422                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
423                         RTE_PTYPE_INNER_L4_FRAG,
424                 [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
425                         RTE_PTYPE_TUNNEL_GRENAT |
426                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
427                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
428                         RTE_PTYPE_INNER_L4_NONFRAG,
429                 [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
430                         RTE_PTYPE_TUNNEL_GRENAT |
431                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
432                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
433                         RTE_PTYPE_INNER_L4_UDP,
434                 /* [84] reserved */
435                 [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
436                         RTE_PTYPE_TUNNEL_GRENAT |
437                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
438                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
439                         RTE_PTYPE_INNER_L4_TCP,
440                 [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
441                         RTE_PTYPE_TUNNEL_GRENAT |
442                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
443                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
444                         RTE_PTYPE_INNER_L4_SCTP,
445                 [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
446                         RTE_PTYPE_TUNNEL_GRENAT |
447                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
448                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
449                         RTE_PTYPE_INNER_L4_ICMP,
450
451                 /* Non tunneled IPv6 */
452                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
453                         RTE_PTYPE_L4_FRAG,
454                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
455                         RTE_PTYPE_L4_NONFRAG,
456                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
457                         RTE_PTYPE_L4_UDP,
458                 /* [91] reserved */
459                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
460                         RTE_PTYPE_L4_TCP,
461                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
462                         RTE_PTYPE_L4_SCTP,
463                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
464                         RTE_PTYPE_L4_ICMP,
465
466                 /* IPv6 --> IPv4 */
467                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
468                         RTE_PTYPE_TUNNEL_IP |
469                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
470                         RTE_PTYPE_INNER_L4_FRAG,
471                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
472                         RTE_PTYPE_TUNNEL_IP |
473                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
474                         RTE_PTYPE_INNER_L4_NONFRAG,
475                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
476                         RTE_PTYPE_TUNNEL_IP |
477                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
478                         RTE_PTYPE_INNER_L4_UDP,
479                 /* [98] reserved */
480                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
481                         RTE_PTYPE_TUNNEL_IP |
482                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
483                         RTE_PTYPE_INNER_L4_TCP,
484                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
485                         RTE_PTYPE_TUNNEL_IP |
486                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
487                         RTE_PTYPE_INNER_L4_SCTP,
488                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
489                         RTE_PTYPE_TUNNEL_IP |
490                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
491                         RTE_PTYPE_INNER_L4_ICMP,
492
493                 /* IPv6 --> IPv6 */
494                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
495                         RTE_PTYPE_TUNNEL_IP |
496                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
497                         RTE_PTYPE_INNER_L4_FRAG,
498                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
499                         RTE_PTYPE_TUNNEL_IP |
500                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
501                         RTE_PTYPE_INNER_L4_NONFRAG,
502                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
503                         RTE_PTYPE_TUNNEL_IP |
504                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
505                         RTE_PTYPE_INNER_L4_UDP,
506                 /* [105] reserved */
507                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
508                         RTE_PTYPE_TUNNEL_IP |
509                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
510                         RTE_PTYPE_INNER_L4_TCP,
511                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
512                         RTE_PTYPE_TUNNEL_IP |
513                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
514                         RTE_PTYPE_INNER_L4_SCTP,
515                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
516                         RTE_PTYPE_TUNNEL_IP |
517                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
518                         RTE_PTYPE_INNER_L4_ICMP,
519
520                 /* IPv6 --> GRE/Teredo/VXLAN */
521                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
522                         RTE_PTYPE_TUNNEL_GRENAT,
523
524                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
525                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
526                         RTE_PTYPE_TUNNEL_GRENAT |
527                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
528                         RTE_PTYPE_INNER_L4_FRAG,
529                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
530                         RTE_PTYPE_TUNNEL_GRENAT |
531                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
532                         RTE_PTYPE_INNER_L4_NONFRAG,
533                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
534                         RTE_PTYPE_TUNNEL_GRENAT |
535                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
536                         RTE_PTYPE_INNER_L4_UDP,
537                 /* [113] reserved */
538                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
539                         RTE_PTYPE_TUNNEL_GRENAT |
540                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
541                         RTE_PTYPE_INNER_L4_TCP,
542                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
543                         RTE_PTYPE_TUNNEL_GRENAT |
544                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
545                         RTE_PTYPE_INNER_L4_SCTP,
546                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
547                         RTE_PTYPE_TUNNEL_GRENAT |
548                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
549                         RTE_PTYPE_INNER_L4_ICMP,
550
551                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
552                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
553                         RTE_PTYPE_TUNNEL_GRENAT |
554                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
555                         RTE_PTYPE_INNER_L4_FRAG,
556                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
557                         RTE_PTYPE_TUNNEL_GRENAT |
558                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
559                         RTE_PTYPE_INNER_L4_NONFRAG,
560                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
561                         RTE_PTYPE_TUNNEL_GRENAT |
562                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
563                         RTE_PTYPE_INNER_L4_UDP,
564                 /* [120] reserved */
565                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
566                         RTE_PTYPE_TUNNEL_GRENAT |
567                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
568                         RTE_PTYPE_INNER_L4_TCP,
569                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
570                         RTE_PTYPE_TUNNEL_GRENAT |
571                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
572                         RTE_PTYPE_INNER_L4_SCTP,
573                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
574                         RTE_PTYPE_TUNNEL_GRENAT |
575                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
576                         RTE_PTYPE_INNER_L4_ICMP,
577
578                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
579                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
580                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
581
582                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
583                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
584                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
585                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
586                         RTE_PTYPE_INNER_L4_FRAG,
587                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
588                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
589                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
590                         RTE_PTYPE_INNER_L4_NONFRAG,
591                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
592                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
593                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
594                         RTE_PTYPE_INNER_L4_UDP,
595                 /* [128] reserved */
596                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
597                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
598                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
599                         RTE_PTYPE_INNER_L4_TCP,
600                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
601                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
602                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
603                         RTE_PTYPE_INNER_L4_SCTP,
604                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
605                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
606                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
607                         RTE_PTYPE_INNER_L4_ICMP,
608
609                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
610                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
611                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
612                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
613                         RTE_PTYPE_INNER_L4_FRAG,
614                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
615                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
616                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
617                         RTE_PTYPE_INNER_L4_NONFRAG,
618                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
619                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
620                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
621                         RTE_PTYPE_INNER_L4_UDP,
622                 /* [135] reserved */
623                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
624                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
625                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
626                         RTE_PTYPE_INNER_L4_TCP,
627                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
628                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
629                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
630                         RTE_PTYPE_INNER_L4_SCTP,
631                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
632                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
633                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
634                         RTE_PTYPE_INNER_L4_ICMP,
635
636                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
637                 [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
638                         RTE_PTYPE_TUNNEL_GRENAT |
639                         RTE_PTYPE_INNER_L2_ETHER_VLAN,
640
641                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
642                 [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
643                         RTE_PTYPE_TUNNEL_GRENAT |
644                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
645                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
646                         RTE_PTYPE_INNER_L4_FRAG,
647                 [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
648                         RTE_PTYPE_TUNNEL_GRENAT |
649                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
650                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
651                         RTE_PTYPE_INNER_L4_NONFRAG,
652                 [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
653                         RTE_PTYPE_TUNNEL_GRENAT |
654                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
655                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
656                         RTE_PTYPE_INNER_L4_UDP,
657                 /* [143] reserved */
658                 [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
659                         RTE_PTYPE_TUNNEL_GRENAT |
660                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
661                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
662                         RTE_PTYPE_INNER_L4_TCP,
663                 [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
664                         RTE_PTYPE_TUNNEL_GRENAT |
665                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
666                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
667                         RTE_PTYPE_INNER_L4_SCTP,
668                 [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
669                         RTE_PTYPE_TUNNEL_GRENAT |
670                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
671                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
672                         RTE_PTYPE_INNER_L4_ICMP,
673
674                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
675                 [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
676                         RTE_PTYPE_TUNNEL_GRENAT |
677                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
678                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
679                         RTE_PTYPE_INNER_L4_FRAG,
680                 [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
681                         RTE_PTYPE_TUNNEL_GRENAT |
682                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
683                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
684                         RTE_PTYPE_INNER_L4_NONFRAG,
685                 [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
686                         RTE_PTYPE_TUNNEL_GRENAT |
687                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
688                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
689                         RTE_PTYPE_INNER_L4_UDP,
690                 /* [150] reserved */
691                 [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
692                         RTE_PTYPE_TUNNEL_GRENAT |
693                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
694                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
695                         RTE_PTYPE_INNER_L4_TCP,
696                 [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
697                         RTE_PTYPE_TUNNEL_GRENAT |
698                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
699                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
700                         RTE_PTYPE_INNER_L4_SCTP,
701                 [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
702                         RTE_PTYPE_TUNNEL_GRENAT |
703                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
704                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
705                         RTE_PTYPE_INNER_L4_ICMP,
706
707                 /* L2 NSH packet type */
708                 [154] = RTE_PTYPE_L2_ETHER_NSH,
709                 [155] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
710                         RTE_PTYPE_L4_FRAG,
711                 [156] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
712                         RTE_PTYPE_L4_NONFRAG,
713                 [157] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
714                         RTE_PTYPE_L4_UDP,
715                 [158] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
716                         RTE_PTYPE_L4_TCP,
717                 [159] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
718                         RTE_PTYPE_L4_SCTP,
719                 [160] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
720                         RTE_PTYPE_L4_ICMP,
721                 [161] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
722                         RTE_PTYPE_L4_FRAG,
723                 [162] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
724                         RTE_PTYPE_L4_NONFRAG,
725                 [163] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
726                         RTE_PTYPE_L4_UDP,
727                 [164] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
728                         RTE_PTYPE_L4_TCP,
729                 [165] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
730                         RTE_PTYPE_L4_SCTP,
731                 [166] = RTE_PTYPE_L2_ETHER_NSH | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
732                         RTE_PTYPE_L4_ICMP,
733
734                 /* All others reserved */
735         };
736
737         return type_table[ptype];
738 }
739
740 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
741 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
742 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
743 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
744 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
745
746 static inline uint64_t
747 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
748 {
749         uint64_t flags = 0;
750 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
751         uint16_t flexbh, flexbl;
752
753         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
754                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
755                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
756         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
757                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
758                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
759
760
761         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
762                 mb->hash.fdir.hi =
763                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
764                 flags |= PKT_RX_FDIR_ID;
765         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
766                 mb->hash.fdir.hi =
767                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
768                 flags |= PKT_RX_FDIR_FLX;
769         }
770         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
771                 mb->hash.fdir.lo =
772                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
773                 flags |= PKT_RX_FDIR_FLX;
774         }
775 #else
776         mb->hash.fdir.hi =
777                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
778         flags |= PKT_RX_FDIR_ID;
779 #endif
780         return flags;
781 }
782 static inline void
783 i40e_txd_enable_checksum(uint64_t ol_flags,
784                         uint32_t *td_cmd,
785                         uint32_t *td_offset,
786                         union i40e_tx_offload tx_offload,
787                         uint32_t *cd_tunneling)
788 {
789         /* UDP tunneling packet TX checksum offload */
790         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
791
792                 *td_offset |= (tx_offload.outer_l2_len >> 1)
793                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
794
795                 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
796                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
797                 else if (ol_flags & PKT_TX_OUTER_IPV4)
798                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
799                 else if (ol_flags & PKT_TX_OUTER_IPV6)
800                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
801
802                 /* Now set the ctx descriptor fields */
803                 *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
804                                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
805                                 (tx_offload.l2_len >> 1) <<
806                                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
807
808         } else
809                 *td_offset |= (tx_offload.l2_len >> 1)
810                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
811
812         /* Enable L3 checksum offloads */
813         if (ol_flags & PKT_TX_IP_CKSUM) {
814                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
815                 *td_offset |= (tx_offload.l3_len >> 2)
816                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
817         } else if (ol_flags & PKT_TX_IPV4) {
818                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
819                 *td_offset |= (tx_offload.l3_len >> 2)
820                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
821         } else if (ol_flags & PKT_TX_IPV6) {
822                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
823                 *td_offset |= (tx_offload.l3_len >> 2)
824                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
825         }
826
827         if (ol_flags & PKT_TX_TCP_SEG) {
828                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
829                 *td_offset |= (tx_offload.l4_len >> 2)
830                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
831                 return;
832         }
833
834         /* Enable L4 checksum offloads */
835         switch (ol_flags & PKT_TX_L4_MASK) {
836         case PKT_TX_TCP_CKSUM:
837                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
838                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
839                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
840                 break;
841         case PKT_TX_SCTP_CKSUM:
842                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
843                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
844                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
845                 break;
846         case PKT_TX_UDP_CKSUM:
847                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
848                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
849                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
850                 break;
851         default:
852                 break;
853         }
854 }
855
856 /* Construct the tx flags */
857 static inline uint64_t
858 i40e_build_ctob(uint32_t td_cmd,
859                 uint32_t td_offset,
860                 unsigned int size,
861                 uint32_t td_tag)
862 {
863         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
864                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
865                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
866                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
867                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
868 }
869
870 static inline int
871 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
872 {
873         struct i40e_tx_entry *sw_ring = txq->sw_ring;
874         volatile struct i40e_tx_desc *txd = txq->tx_ring;
875         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
876         uint16_t nb_tx_desc = txq->nb_tx_desc;
877         uint16_t desc_to_clean_to;
878         uint16_t nb_tx_to_clean;
879
880         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
881         if (desc_to_clean_to >= nb_tx_desc)
882                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
883
884         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
885         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
886                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
887                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
888                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
889                         "(port=%d queue=%d)", desc_to_clean_to,
890                                 txq->port_id, txq->queue_id);
891                 return -1;
892         }
893
894         if (last_desc_cleaned > desc_to_clean_to)
895                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
896                                                         desc_to_clean_to);
897         else
898                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
899                                         last_desc_cleaned);
900
901         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
902
903         txq->last_desc_cleaned = desc_to_clean_to;
904         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
905
906         return 0;
907 }
908
909 static inline int
910 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
911 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
912 #else
913 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
914 #endif
915 {
916         int ret = 0;
917
918 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
919         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
920                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
921                              "rxq->rx_free_thresh=%d, "
922                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
923                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
924                 ret = -EINVAL;
925         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
926                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
927                              "rxq->rx_free_thresh=%d, "
928                              "rxq->nb_rx_desc=%d",
929                              rxq->rx_free_thresh, rxq->nb_rx_desc);
930                 ret = -EINVAL;
931         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
932                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
933                              "rxq->nb_rx_desc=%d, "
934                              "rxq->rx_free_thresh=%d",
935                              rxq->nb_rx_desc, rxq->rx_free_thresh);
936                 ret = -EINVAL;
937         } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
938                                 RTE_PMD_I40E_RX_MAX_BURST))) {
939                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
940                              "rxq->nb_rx_desc=%d, "
941                              "I40E_MAX_RING_DESC=%d, "
942                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
943                              rxq->nb_rx_desc, I40E_MAX_RING_DESC,
944                              RTE_PMD_I40E_RX_MAX_BURST);
945                 ret = -EINVAL;
946         }
947 #else
948         ret = -EINVAL;
949 #endif
950
951         return ret;
952 }
953
954 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
955 #define I40E_LOOK_AHEAD 8
956 #if (I40E_LOOK_AHEAD != 8)
957 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
958 #endif
959 static inline int
960 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
961 {
962         volatile union i40e_rx_desc *rxdp;
963         struct i40e_rx_entry *rxep;
964         struct rte_mbuf *mb;
965         uint16_t pkt_len;
966         uint64_t qword1;
967         uint32_t rx_status;
968         int32_t s[I40E_LOOK_AHEAD], nb_dd;
969         int32_t i, j, nb_rx = 0;
970         uint64_t pkt_flags;
971
972         rxdp = &rxq->rx_ring[rxq->rx_tail];
973         rxep = &rxq->sw_ring[rxq->rx_tail];
974
975         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
976         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
977                                 I40E_RXD_QW1_STATUS_SHIFT;
978
979         /* Make sure there is at least 1 packet to receive */
980         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
981                 return 0;
982
983         /**
984          * Scan LOOK_AHEAD descriptors at a time to determine which
985          * descriptors reference packets that are ready to be received.
986          */
987         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
988                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
989                 /* Read desc statuses backwards to avoid race condition */
990                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
991                         qword1 = rte_le_to_cpu_64(\
992                                 rxdp[j].wb.qword1.status_error_len);
993                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
994                                         I40E_RXD_QW1_STATUS_SHIFT;
995                 }
996
997                 rte_smp_rmb();
998
999                 /* Compute how many status bits were set */
1000                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
1001                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
1002
1003                 nb_rx += nb_dd;
1004
1005                 /* Translate descriptor info to mbuf parameters */
1006                 for (j = 0; j < nb_dd; j++) {
1007                         mb = rxep[j].mbuf;
1008                         qword1 = rte_le_to_cpu_64(\
1009                                 rxdp[j].wb.qword1.status_error_len);
1010                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1011                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1012                         mb->data_len = pkt_len;
1013                         mb->pkt_len = pkt_len;
1014                         mb->ol_flags = 0;
1015                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
1016                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1017                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1018                         mb->packet_type =
1019                                 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1020                                                 I40E_RXD_QW1_PTYPE_MASK) >>
1021                                                 I40E_RXD_QW1_PTYPE_SHIFT));
1022                         if (pkt_flags & PKT_RX_RSS_HASH)
1023                                 mb->hash.rss = rte_le_to_cpu_32(\
1024                                         rxdp[j].wb.qword0.hi_dword.rss);
1025                         if (pkt_flags & PKT_RX_FDIR)
1026                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
1027
1028 #ifdef RTE_LIBRTE_IEEE1588
1029                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
1030 #endif
1031                         mb->ol_flags |= pkt_flags;
1032
1033                 }
1034
1035                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
1036                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1037
1038                 if (nb_dd != I40E_LOOK_AHEAD)
1039                         break;
1040         }
1041
1042         /* Clear software ring entries */
1043         for (i = 0; i < nb_rx; i++)
1044                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1045
1046         return nb_rx;
1047 }
1048
1049 static inline uint16_t
1050 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
1051                         struct rte_mbuf **rx_pkts,
1052                         uint16_t nb_pkts)
1053 {
1054         uint16_t i;
1055         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1056
1057         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1058
1059         for (i = 0; i < nb_pkts; i++)
1060                 rx_pkts[i] = stage[i];
1061
1062         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1063         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1064
1065         return nb_pkts;
1066 }
1067
1068 static inline int
1069 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
1070 {
1071         volatile union i40e_rx_desc *rxdp;
1072         struct i40e_rx_entry *rxep;
1073         struct rte_mbuf *mb;
1074         uint16_t alloc_idx, i;
1075         uint64_t dma_addr;
1076         int diag;
1077
1078         /* Allocate buffers in bulk */
1079         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1080                                 (rxq->rx_free_thresh - 1));
1081         rxep = &(rxq->sw_ring[alloc_idx]);
1082         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1083                                         rxq->rx_free_thresh);
1084         if (unlikely(diag != 0)) {
1085                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
1086                 return -ENOMEM;
1087         }
1088
1089         rxdp = &rxq->rx_ring[alloc_idx];
1090         for (i = 0; i < rxq->rx_free_thresh; i++) {
1091                 if (likely(i < (rxq->rx_free_thresh - 1)))
1092                         /* Prefetch next mbuf */
1093                         rte_prefetch0(rxep[i + 1].mbuf);
1094
1095                 mb = rxep[i].mbuf;
1096                 rte_mbuf_refcnt_set(mb, 1);
1097                 mb->next = NULL;
1098                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1099                 mb->nb_segs = 1;
1100                 mb->port = rxq->port_id;
1101                 dma_addr = rte_cpu_to_le_64(\
1102                         rte_mbuf_data_dma_addr_default(mb));
1103                 rxdp[i].read.hdr_addr = 0;
1104                 rxdp[i].read.pkt_addr = dma_addr;
1105         }
1106
1107         /* Update rx tail regsiter */
1108         rte_wmb();
1109         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1110
1111         rxq->rx_free_trigger =
1112                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1113         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1114                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1115
1116         return 0;
1117 }
1118
1119 static inline uint16_t
1120 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1121 {
1122         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
1123         uint16_t nb_rx = 0;
1124
1125         if (!nb_pkts)
1126                 return 0;
1127
1128         if (rxq->rx_nb_avail)
1129                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1130
1131         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
1132         rxq->rx_next_avail = 0;
1133         rxq->rx_nb_avail = nb_rx;
1134         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1135
1136         if (rxq->rx_tail > rxq->rx_free_trigger) {
1137                 if (i40e_rx_alloc_bufs(rxq) != 0) {
1138                         uint16_t i, j;
1139
1140                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1141                                    "port_id=%u, queue_id=%u",
1142                                    rxq->port_id, rxq->queue_id);
1143                         rxq->rx_nb_avail = 0;
1144                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1145                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1146                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1147
1148                         return 0;
1149                 }
1150         }
1151
1152         if (rxq->rx_tail >= rxq->nb_rx_desc)
1153                 rxq->rx_tail = 0;
1154
1155         if (rxq->rx_nb_avail)
1156                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1157
1158         return 0;
1159 }
1160
1161 static uint16_t
1162 i40e_recv_pkts_bulk_alloc(void *rx_queue,
1163                           struct rte_mbuf **rx_pkts,
1164                           uint16_t nb_pkts)
1165 {
1166         uint16_t nb_rx = 0, n, count;
1167
1168         if (unlikely(nb_pkts == 0))
1169                 return 0;
1170
1171         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
1172                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1173
1174         while (nb_pkts) {
1175                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
1176                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1177                 nb_rx = (uint16_t)(nb_rx + count);
1178                 nb_pkts = (uint16_t)(nb_pkts - count);
1179                 if (count < n)
1180                         break;
1181         }
1182
1183         return nb_rx;
1184 }
1185 #else
1186 static uint16_t
1187 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
1188                           struct rte_mbuf __rte_unused **rx_pkts,
1189                           uint16_t __rte_unused nb_pkts)
1190 {
1191         return 0;
1192 }
1193 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1194
1195 uint16_t
1196 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1197 {
1198         struct i40e_rx_queue *rxq;
1199         volatile union i40e_rx_desc *rx_ring;
1200         volatile union i40e_rx_desc *rxdp;
1201         union i40e_rx_desc rxd;
1202         struct i40e_rx_entry *sw_ring;
1203         struct i40e_rx_entry *rxe;
1204         struct rte_mbuf *rxm;
1205         struct rte_mbuf *nmb;
1206         uint16_t nb_rx;
1207         uint32_t rx_status;
1208         uint64_t qword1;
1209         uint16_t rx_packet_len;
1210         uint16_t rx_id, nb_hold;
1211         uint64_t dma_addr;
1212         uint64_t pkt_flags;
1213
1214         nb_rx = 0;
1215         nb_hold = 0;
1216         rxq = rx_queue;
1217         rx_id = rxq->rx_tail;
1218         rx_ring = rxq->rx_ring;
1219         sw_ring = rxq->sw_ring;
1220
1221         while (nb_rx < nb_pkts) {
1222                 rxdp = &rx_ring[rx_id];
1223                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1224                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
1225                                 >> I40E_RXD_QW1_STATUS_SHIFT;
1226
1227                 /* Check the DD bit first */
1228                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1229                         break;
1230
1231                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1232                 if (unlikely(!nmb))
1233                         break;
1234                 rxd = *rxdp;
1235
1236                 nb_hold++;
1237                 rxe = &sw_ring[rx_id];
1238                 rx_id++;
1239                 if (unlikely(rx_id == rxq->nb_rx_desc))
1240                         rx_id = 0;
1241
1242                 /* Prefetch next mbuf */
1243                 rte_prefetch0(sw_ring[rx_id].mbuf);
1244
1245                 /**
1246                  * When next RX descriptor is on a cache line boundary,
1247                  * prefetch the next 4 RX descriptors and next 8 pointers
1248                  * to mbufs.
1249                  */
1250                 if ((rx_id & 0x3) == 0) {
1251                         rte_prefetch0(&rx_ring[rx_id]);
1252                         rte_prefetch0(&sw_ring[rx_id]);
1253                 }
1254                 rxm = rxe->mbuf;
1255                 rxe->mbuf = nmb;
1256                 dma_addr =
1257                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
1258                 rxdp->read.hdr_addr = 0;
1259                 rxdp->read.pkt_addr = dma_addr;
1260
1261                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1262                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1263
1264                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1265                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1266                 rxm->nb_segs = 1;
1267                 rxm->next = NULL;
1268                 rxm->pkt_len = rx_packet_len;
1269                 rxm->data_len = rx_packet_len;
1270                 rxm->port = rxq->port_id;
1271                 rxm->ol_flags = 0;
1272                 i40e_rxd_to_vlan_tci(rxm, &rxd);
1273                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1274                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1275                 rxm->packet_type =
1276                         i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1277                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
1278                 if (pkt_flags & PKT_RX_RSS_HASH)
1279                         rxm->hash.rss =
1280                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1281                 if (pkt_flags & PKT_RX_FDIR)
1282                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1283
1284 #ifdef RTE_LIBRTE_IEEE1588
1285                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
1286 #endif
1287                 rxm->ol_flags |= pkt_flags;
1288
1289                 rx_pkts[nb_rx++] = rxm;
1290         }
1291         rxq->rx_tail = rx_id;
1292
1293         /**
1294          * If the number of free RX descriptors is greater than the RX free
1295          * threshold of the queue, advance the receive tail register of queue.
1296          * Update that register with the value of the last processed RX
1297          * descriptor minus 1.
1298          */
1299         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1300         if (nb_hold > rxq->rx_free_thresh) {
1301                 rx_id = (uint16_t) ((rx_id == 0) ?
1302                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1303                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1304                 nb_hold = 0;
1305         }
1306         rxq->nb_rx_hold = nb_hold;
1307
1308         return nb_rx;
1309 }
1310
1311 uint16_t
1312 i40e_recv_scattered_pkts(void *rx_queue,
1313                          struct rte_mbuf **rx_pkts,
1314                          uint16_t nb_pkts)
1315 {
1316         struct i40e_rx_queue *rxq = rx_queue;
1317         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
1318         volatile union i40e_rx_desc *rxdp;
1319         union i40e_rx_desc rxd;
1320         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
1321         struct i40e_rx_entry *rxe;
1322         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1323         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1324         struct rte_mbuf *nmb, *rxm;
1325         uint16_t rx_id = rxq->rx_tail;
1326         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1327         uint32_t rx_status;
1328         uint64_t qword1;
1329         uint64_t dma_addr;
1330         uint64_t pkt_flags;
1331
1332         while (nb_rx < nb_pkts) {
1333                 rxdp = &rx_ring[rx_id];
1334                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1335                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1336                                         I40E_RXD_QW1_STATUS_SHIFT;
1337
1338                 /* Check the DD bit */
1339                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1340                         break;
1341
1342                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1343                 if (unlikely(!nmb))
1344                         break;
1345                 rxd = *rxdp;
1346                 nb_hold++;
1347                 rxe = &sw_ring[rx_id];
1348                 rx_id++;
1349                 if (rx_id == rxq->nb_rx_desc)
1350                         rx_id = 0;
1351
1352                 /* Prefetch next mbuf */
1353                 rte_prefetch0(sw_ring[rx_id].mbuf);
1354
1355                 /**
1356                  * When next RX descriptor is on a cache line boundary,
1357                  * prefetch the next 4 RX descriptors and next 8 pointers
1358                  * to mbufs.
1359                  */
1360                 if ((rx_id & 0x3) == 0) {
1361                         rte_prefetch0(&rx_ring[rx_id]);
1362                         rte_prefetch0(&sw_ring[rx_id]);
1363                 }
1364
1365                 rxm = rxe->mbuf;
1366                 rxe->mbuf = nmb;
1367                 dma_addr =
1368                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
1369
1370                 /* Set data buffer address and data length of the mbuf */
1371                 rxdp->read.hdr_addr = 0;
1372                 rxdp->read.pkt_addr = dma_addr;
1373                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1374                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1375                 rxm->data_len = rx_packet_len;
1376                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1377
1378                 /**
1379                  * If this is the first buffer of the received packet, set the
1380                  * pointer to the first mbuf of the packet and initialize its
1381                  * context. Otherwise, update the total length and the number
1382                  * of segments of the current scattered packet, and update the
1383                  * pointer to the last mbuf of the current packet.
1384                  */
1385                 if (!first_seg) {
1386                         first_seg = rxm;
1387                         first_seg->nb_segs = 1;
1388                         first_seg->pkt_len = rx_packet_len;
1389                 } else {
1390                         first_seg->pkt_len =
1391                                 (uint16_t)(first_seg->pkt_len +
1392                                                 rx_packet_len);
1393                         first_seg->nb_segs++;
1394                         last_seg->next = rxm;
1395                 }
1396
1397                 /**
1398                  * If this is not the last buffer of the received packet,
1399                  * update the pointer to the last mbuf of the current scattered
1400                  * packet and continue to parse the RX ring.
1401                  */
1402                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
1403                         last_seg = rxm;
1404                         continue;
1405                 }
1406
1407                 /**
1408                  * This is the last buffer of the received packet. If the CRC
1409                  * is not stripped by the hardware:
1410                  *  - Subtract the CRC length from the total packet length.
1411                  *  - If the last buffer only contains the whole CRC or a part
1412                  *  of it, free the mbuf associated to the last buffer. If part
1413                  *  of the CRC is also contained in the previous mbuf, subtract
1414                  *  the length of that CRC part from the data length of the
1415                  *  previous mbuf.
1416                  */
1417                 rxm->next = NULL;
1418                 if (unlikely(rxq->crc_len > 0)) {
1419                         first_seg->pkt_len -= ETHER_CRC_LEN;
1420                         if (rx_packet_len <= ETHER_CRC_LEN) {
1421                                 rte_pktmbuf_free_seg(rxm);
1422                                 first_seg->nb_segs--;
1423                                 last_seg->data_len =
1424                                         (uint16_t)(last_seg->data_len -
1425                                         (ETHER_CRC_LEN - rx_packet_len));
1426                                 last_seg->next = NULL;
1427                         } else
1428                                 rxm->data_len = (uint16_t)(rx_packet_len -
1429                                                                 ETHER_CRC_LEN);
1430                 }
1431
1432                 first_seg->port = rxq->port_id;
1433                 first_seg->ol_flags = 0;
1434                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
1435                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1436                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1437                 first_seg->packet_type =
1438                         i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1439                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
1440                 if (pkt_flags & PKT_RX_RSS_HASH)
1441                         first_seg->hash.rss =
1442                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1443                 if (pkt_flags & PKT_RX_FDIR)
1444                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
1445
1446 #ifdef RTE_LIBRTE_IEEE1588
1447                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
1448 #endif
1449                 first_seg->ol_flags |= pkt_flags;
1450
1451                 /* Prefetch data of first segment, if configured to do so. */
1452                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1453                         first_seg->data_off));
1454                 rx_pkts[nb_rx++] = first_seg;
1455                 first_seg = NULL;
1456         }
1457
1458         /* Record index of the next RX descriptor to probe. */
1459         rxq->rx_tail = rx_id;
1460         rxq->pkt_first_seg = first_seg;
1461         rxq->pkt_last_seg = last_seg;
1462
1463         /**
1464          * If the number of free RX descriptors is greater than the RX free
1465          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1466          * register. Update the RDT with the value of the last processed RX
1467          * descriptor minus 1, to guarantee that the RDT register is never
1468          * equal to the RDH register, which creates a "full" ring situtation
1469          * from the hardware point of view.
1470          */
1471         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1472         if (nb_hold > rxq->rx_free_thresh) {
1473                 rx_id = (uint16_t)(rx_id == 0 ?
1474                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1475                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1476                 nb_hold = 0;
1477         }
1478         rxq->nb_rx_hold = nb_hold;
1479
1480         return nb_rx;
1481 }
1482
1483 /* Check if the context descriptor is needed for TX offloading */
1484 static inline uint16_t
1485 i40e_calc_context_desc(uint64_t flags)
1486 {
1487         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
1488                 PKT_TX_TCP_SEG |
1489                 PKT_TX_QINQ_PKT;
1490
1491 #ifdef RTE_LIBRTE_IEEE1588
1492         mask |= PKT_TX_IEEE1588_TMST;
1493 #endif
1494
1495         return (flags & mask) ? 1 : 0;
1496 }
1497
1498 /* set i40e TSO context descriptor */
1499 static inline uint64_t
1500 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1501 {
1502         uint64_t ctx_desc = 0;
1503         uint32_t cd_cmd, hdr_len, cd_tso_len;
1504
1505         if (!tx_offload.l4_len) {
1506                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1507                 return ctx_desc;
1508         }
1509
1510         /**
1511          * in case of tunneling packet, the outer_l2_len and
1512          * outer_l3_len must be 0.
1513          */
1514         hdr_len = tx_offload.outer_l2_len +
1515                 tx_offload.outer_l3_len +
1516                 tx_offload.l2_len +
1517                 tx_offload.l3_len +
1518                 tx_offload.l4_len;
1519
1520         cd_cmd = I40E_TX_CTX_DESC_TSO;
1521         cd_tso_len = mbuf->pkt_len - hdr_len;
1522         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1523                 ((uint64_t)cd_tso_len <<
1524                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1525                 ((uint64_t)mbuf->tso_segsz <<
1526                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1527
1528         return ctx_desc;
1529 }
1530
1531 uint16_t
1532 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1533 {
1534         struct i40e_tx_queue *txq;
1535         struct i40e_tx_entry *sw_ring;
1536         struct i40e_tx_entry *txe, *txn;
1537         volatile struct i40e_tx_desc *txd;
1538         volatile struct i40e_tx_desc *txr;
1539         struct rte_mbuf *tx_pkt;
1540         struct rte_mbuf *m_seg;
1541         uint32_t cd_tunneling_params;
1542         uint16_t tx_id;
1543         uint16_t nb_tx;
1544         uint32_t td_cmd;
1545         uint32_t td_offset;
1546         uint32_t tx_flags;
1547         uint32_t td_tag;
1548         uint64_t ol_flags;
1549         uint16_t nb_used;
1550         uint16_t nb_ctx;
1551         uint16_t tx_last;
1552         uint16_t slen;
1553         uint64_t buf_dma_addr;
1554         union i40e_tx_offload tx_offload = {0};
1555
1556         txq = tx_queue;
1557         sw_ring = txq->sw_ring;
1558         txr = txq->tx_ring;
1559         tx_id = txq->tx_tail;
1560         txe = &sw_ring[tx_id];
1561
1562         /* Check if the descriptor ring needs to be cleaned. */
1563         if (txq->nb_tx_free < txq->tx_free_thresh)
1564                 i40e_xmit_cleanup(txq);
1565
1566         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1567                 td_cmd = 0;
1568                 td_tag = 0;
1569                 td_offset = 0;
1570                 tx_flags = 0;
1571
1572                 tx_pkt = *tx_pkts++;
1573                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1574
1575                 ol_flags = tx_pkt->ol_flags;
1576                 tx_offload.l2_len = tx_pkt->l2_len;
1577                 tx_offload.l3_len = tx_pkt->l3_len;
1578                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1579                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1580                 tx_offload.l4_len = tx_pkt->l4_len;
1581                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1582
1583                 /* Calculate the number of context descriptors needed. */
1584                 nb_ctx = i40e_calc_context_desc(ol_flags);
1585
1586                 /**
1587                  * The number of descriptors that must be allocated for
1588                  * a packet equals to the number of the segments of that
1589                  * packet plus 1 context descriptor if needed.
1590                  */
1591                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1592                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1593
1594                 /* Circular ring */
1595                 if (tx_last >= txq->nb_tx_desc)
1596                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1597
1598                 if (nb_used > txq->nb_tx_free) {
1599                         if (i40e_xmit_cleanup(txq) != 0) {
1600                                 if (nb_tx == 0)
1601                                         return 0;
1602                                 goto end_of_tx;
1603                         }
1604                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1605                                 while (nb_used > txq->nb_tx_free) {
1606                                         if (i40e_xmit_cleanup(txq) != 0) {
1607                                                 if (nb_tx == 0)
1608                                                         return 0;
1609                                                 goto end_of_tx;
1610                                         }
1611                                 }
1612                         }
1613                 }
1614
1615                 /* Descriptor based VLAN insertion */
1616                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1617                         tx_flags |= tx_pkt->vlan_tci <<
1618                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1619                         tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1620                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1621                         td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1622                                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1623                 }
1624
1625                 /* Always enable CRC offload insertion */
1626                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1627
1628                 /* Enable checksum offloading */
1629                 cd_tunneling_params = 0;
1630                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) {
1631                         i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
1632                                 tx_offload, &cd_tunneling_params);
1633                 }
1634
1635                 if (nb_ctx) {
1636                         /* Setup TX context descriptor if required */
1637                         volatile struct i40e_tx_context_desc *ctx_txd =
1638                                 (volatile struct i40e_tx_context_desc *)\
1639                                                         &txr[tx_id];
1640                         uint16_t cd_l2tag2 = 0;
1641                         uint64_t cd_type_cmd_tso_mss =
1642                                 I40E_TX_DESC_DTYPE_CONTEXT;
1643
1644                         txn = &sw_ring[txe->next_id];
1645                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1646                         if (txe->mbuf != NULL) {
1647                                 rte_pktmbuf_free_seg(txe->mbuf);
1648                                 txe->mbuf = NULL;
1649                         }
1650
1651                         /* TSO enabled means no timestamp */
1652                         if (ol_flags & PKT_TX_TCP_SEG)
1653                                 cd_type_cmd_tso_mss |=
1654                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1655                         else {
1656 #ifdef RTE_LIBRTE_IEEE1588
1657                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1658                                         cd_type_cmd_tso_mss |=
1659                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1660                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1661 #endif
1662                         }
1663
1664                         ctx_txd->tunneling_params =
1665                                 rte_cpu_to_le_32(cd_tunneling_params);
1666                         if (ol_flags & PKT_TX_QINQ_PKT) {
1667                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1668                                 cd_type_cmd_tso_mss |=
1669                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1670                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1671                         }
1672                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1673                         ctx_txd->type_cmd_tso_mss =
1674                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1675
1676                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1677                                 "tunneling_params: %#x;\n"
1678                                 "l2tag2: %#hx;\n"
1679                                 "rsvd: %#hx;\n"
1680                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1681                                 tx_pkt, tx_id,
1682                                 ctx_txd->tunneling_params,
1683                                 ctx_txd->l2tag2,
1684                                 ctx_txd->rsvd,
1685                                 ctx_txd->type_cmd_tso_mss);
1686
1687                         txe->last_id = tx_last;
1688                         tx_id = txe->next_id;
1689                         txe = txn;
1690                 }
1691
1692                 m_seg = tx_pkt;
1693                 do {
1694                         txd = &txr[tx_id];
1695                         txn = &sw_ring[txe->next_id];
1696
1697                         if (txe->mbuf)
1698                                 rte_pktmbuf_free_seg(txe->mbuf);
1699                         txe->mbuf = m_seg;
1700
1701                         /* Setup TX Descriptor */
1702                         slen = m_seg->data_len;
1703                         buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
1704
1705                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1706                                 "buf_dma_addr: %#"PRIx64";\n"
1707                                 "td_cmd: %#x;\n"
1708                                 "td_offset: %#x;\n"
1709                                 "td_len: %u;\n"
1710                                 "td_tag: %#x;\n",
1711                                 tx_pkt, tx_id, buf_dma_addr,
1712                                 td_cmd, td_offset, slen, td_tag);
1713
1714                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1715                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1716                                                 td_offset, slen, td_tag);
1717                         txe->last_id = tx_last;
1718                         tx_id = txe->next_id;
1719                         txe = txn;
1720                         m_seg = m_seg->next;
1721                 } while (m_seg != NULL);
1722
1723                 /* The last packet data descriptor needs End Of Packet (EOP) */
1724                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1725                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1726                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1727
1728                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1729                         PMD_TX_FREE_LOG(DEBUG,
1730                                         "Setting RS bit on TXD id="
1731                                         "%4u (port=%d queue=%d)",
1732                                         tx_last, txq->port_id, txq->queue_id);
1733
1734                         td_cmd |= I40E_TX_DESC_CMD_RS;
1735
1736                         /* Update txq RS bit counters */
1737                         txq->nb_tx_used = 0;
1738                 }
1739
1740                 txd->cmd_type_offset_bsz |=
1741                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1742                                         I40E_TXD_QW1_CMD_SHIFT);
1743         }
1744
1745 end_of_tx:
1746         rte_wmb();
1747
1748         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1749                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1750                    (unsigned) tx_id, (unsigned) nb_tx);
1751
1752         I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1753         txq->tx_tail = tx_id;
1754
1755         return nb_tx;
1756 }
1757
1758 static inline int __attribute__((always_inline))
1759 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1760 {
1761         struct i40e_tx_entry *txep;
1762         uint16_t i;
1763
1764         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1765                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1766                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1767                 return 0;
1768
1769         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1770
1771         for (i = 0; i < txq->tx_rs_thresh; i++)
1772                 rte_prefetch0((txep + i)->mbuf);
1773
1774         if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) {
1775                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1776                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1777                         txep->mbuf = NULL;
1778                 }
1779         } else {
1780                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1781                         rte_pktmbuf_free_seg(txep->mbuf);
1782                         txep->mbuf = NULL;
1783                 }
1784         }
1785
1786         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1787         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1788         if (txq->tx_next_dd >= txq->nb_tx_desc)
1789                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1790
1791         return txq->tx_rs_thresh;
1792 }
1793
1794 /* Populate 4 descriptors with data from 4 mbufs */
1795 static inline void
1796 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1797 {
1798         uint64_t dma_addr;
1799         uint32_t i;
1800
1801         for (i = 0; i < 4; i++, txdp++, pkts++) {
1802                 dma_addr = rte_mbuf_data_dma_addr(*pkts);
1803                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1804                 txdp->cmd_type_offset_bsz =
1805                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1806                                         (*pkts)->data_len, 0);
1807         }
1808 }
1809
1810 /* Populate 1 descriptor with data from 1 mbuf */
1811 static inline void
1812 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1813 {
1814         uint64_t dma_addr;
1815
1816         dma_addr = rte_mbuf_data_dma_addr(*pkts);
1817         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1818         txdp->cmd_type_offset_bsz =
1819                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1820                                 (*pkts)->data_len, 0);
1821 }
1822
1823 /* Fill hardware descriptor ring with mbuf data */
1824 static inline void
1825 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1826                      struct rte_mbuf **pkts,
1827                      uint16_t nb_pkts)
1828 {
1829         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1830         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1831         const int N_PER_LOOP = 4;
1832         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1833         int mainpart, leftover;
1834         int i, j;
1835
1836         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1837         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1838         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1839                 for (j = 0; j < N_PER_LOOP; ++j) {
1840                         (txep + i + j)->mbuf = *(pkts + i + j);
1841                 }
1842                 tx4(txdp + i, pkts + i);
1843         }
1844         if (unlikely(leftover > 0)) {
1845                 for (i = 0; i < leftover; ++i) {
1846                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1847                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1848                 }
1849         }
1850 }
1851
1852 static inline uint16_t
1853 tx_xmit_pkts(struct i40e_tx_queue *txq,
1854              struct rte_mbuf **tx_pkts,
1855              uint16_t nb_pkts)
1856 {
1857         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1858         uint16_t n = 0;
1859
1860         /**
1861          * Begin scanning the H/W ring for done descriptors when the number
1862          * of available descriptors drops below tx_free_thresh. For each done
1863          * descriptor, free the associated buffer.
1864          */
1865         if (txq->nb_tx_free < txq->tx_free_thresh)
1866                 i40e_tx_free_bufs(txq);
1867
1868         /* Use available descriptor only */
1869         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1870         if (unlikely(!nb_pkts))
1871                 return 0;
1872
1873         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1874         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1875                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1876                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1877                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1878                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1879                                                 I40E_TXD_QW1_CMD_SHIFT);
1880                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1881                 txq->tx_tail = 0;
1882         }
1883
1884         /* Fill hardware descriptor ring with mbuf data */
1885         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1886         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1887
1888         /* Determin if RS bit needs to be set */
1889         if (txq->tx_tail > txq->tx_next_rs) {
1890                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1891                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1892                                                 I40E_TXD_QW1_CMD_SHIFT);
1893                 txq->tx_next_rs =
1894                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1895                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1896                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1897         }
1898
1899         if (txq->tx_tail >= txq->nb_tx_desc)
1900                 txq->tx_tail = 0;
1901
1902         /* Update the tx tail register */
1903         rte_wmb();
1904         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1905
1906         return nb_pkts;
1907 }
1908
1909 static uint16_t
1910 i40e_xmit_pkts_simple(void *tx_queue,
1911                       struct rte_mbuf **tx_pkts,
1912                       uint16_t nb_pkts)
1913 {
1914         uint16_t nb_tx = 0;
1915
1916         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1917                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1918                                                 tx_pkts, nb_pkts);
1919
1920         while (nb_pkts) {
1921                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1922                                                 I40E_TX_MAX_BURST);
1923
1924                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1925                                                 &tx_pkts[nb_tx], num);
1926                 nb_tx = (uint16_t)(nb_tx + ret);
1927                 nb_pkts = (uint16_t)(nb_pkts - ret);
1928                 if (ret < num)
1929                         break;
1930         }
1931
1932         return nb_tx;
1933 }
1934
1935 /*
1936  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1937  * application used, which assume having sequential ones. But from driver's
1938  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1939  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1940  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1941  * use queue_idx from 0 to 95 to access queues, while real queue would be
1942  * different. This function will do a queue mapping to find VSI the queue
1943  * belongs to.
1944  */
1945 static struct i40e_vsi*
1946 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1947 {
1948         /* the queue in MAIN VSI range */
1949         if (queue_idx < pf->main_vsi->nb_qps)
1950                 return pf->main_vsi;
1951
1952         queue_idx -= pf->main_vsi->nb_qps;
1953
1954         /* queue_idx is greater than VMDQ VSIs range */
1955         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1956                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1957                 return NULL;
1958         }
1959
1960         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1961 }
1962
1963 static uint16_t
1964 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1965 {
1966         /* the queue in MAIN VSI range */
1967         if (queue_idx < pf->main_vsi->nb_qps)
1968                 return queue_idx;
1969
1970         /* It's VMDQ queues */
1971         queue_idx -= pf->main_vsi->nb_qps;
1972
1973         if (pf->nb_cfg_vmdq_vsi)
1974                 return queue_idx % pf->vmdq_nb_qps;
1975         else {
1976                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1977                 return (uint16_t)(-1);
1978         }
1979 }
1980
1981 int
1982 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1983 {
1984         struct i40e_rx_queue *rxq;
1985         int err = -1;
1986         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1987
1988         PMD_INIT_FUNC_TRACE();
1989
1990         if (rx_queue_id < dev->data->nb_rx_queues) {
1991                 rxq = dev->data->rx_queues[rx_queue_id];
1992
1993                 err = i40e_alloc_rx_queue_mbufs(rxq);
1994                 if (err) {
1995                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1996                         return err;
1997                 }
1998
1999                 rte_wmb();
2000
2001                 /* Init the RX tail regieter. */
2002                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2003
2004                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
2005
2006                 if (err) {
2007                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
2008                                     rx_queue_id);
2009
2010                         i40e_rx_queue_release_mbufs(rxq);
2011                         i40e_reset_rx_queue(rxq);
2012                 } else
2013                         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
2014         }
2015
2016         return err;
2017 }
2018
2019 int
2020 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2021 {
2022         struct i40e_rx_queue *rxq;
2023         int err;
2024         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2025
2026         if (rx_queue_id < dev->data->nb_rx_queues) {
2027                 rxq = dev->data->rx_queues[rx_queue_id];
2028
2029                 /*
2030                 * rx_queue_id is queue id aplication refers to, while
2031                 * rxq->reg_idx is the real queue index.
2032                 */
2033                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
2034
2035                 if (err) {
2036                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
2037                                     rx_queue_id);
2038                         return err;
2039                 }
2040                 i40e_rx_queue_release_mbufs(rxq);
2041                 i40e_reset_rx_queue(rxq);
2042                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
2043         }
2044
2045         return 0;
2046 }
2047
2048 int
2049 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
2050 {
2051         int err = -1;
2052         struct i40e_tx_queue *txq;
2053         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2054
2055         PMD_INIT_FUNC_TRACE();
2056
2057         if (tx_queue_id < dev->data->nb_tx_queues) {
2058                 txq = dev->data->tx_queues[tx_queue_id];
2059
2060                 /*
2061                 * tx_queue_id is queue id aplication refers to, while
2062                 * rxq->reg_idx is the real queue index.
2063                 */
2064                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
2065                 if (err)
2066                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
2067                                     tx_queue_id);
2068                 else
2069                         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
2070         }
2071
2072         return err;
2073 }
2074
2075 int
2076 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
2077 {
2078         struct i40e_tx_queue *txq;
2079         int err;
2080         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2081
2082         if (tx_queue_id < dev->data->nb_tx_queues) {
2083                 txq = dev->data->tx_queues[tx_queue_id];
2084
2085                 /*
2086                 * tx_queue_id is queue id aplication refers to, while
2087                 * txq->reg_idx is the real queue index.
2088                 */
2089                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
2090
2091                 if (err) {
2092                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
2093                                     tx_queue_id);
2094                         return err;
2095                 }
2096
2097                 i40e_tx_queue_release_mbufs(txq);
2098                 i40e_reset_tx_queue(txq);
2099                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
2100         }
2101
2102         return 0;
2103 }
2104
2105 const uint32_t *
2106 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
2107 {
2108         static const uint32_t ptypes[] = {
2109                 /* refers to i40e_rxd_pkt_type_mapping() */
2110                 RTE_PTYPE_L2_ETHER,
2111                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2112                 RTE_PTYPE_L2_ETHER_LLDP,
2113                 RTE_PTYPE_L2_ETHER_ARP,
2114                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2115                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2116                 RTE_PTYPE_L4_FRAG,
2117                 RTE_PTYPE_L4_ICMP,
2118                 RTE_PTYPE_L4_NONFRAG,
2119                 RTE_PTYPE_L4_SCTP,
2120                 RTE_PTYPE_L4_TCP,
2121                 RTE_PTYPE_L4_UDP,
2122                 RTE_PTYPE_TUNNEL_GRENAT,
2123                 RTE_PTYPE_TUNNEL_IP,
2124                 RTE_PTYPE_INNER_L2_ETHER,
2125                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
2126                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2127                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2128                 RTE_PTYPE_INNER_L4_FRAG,
2129                 RTE_PTYPE_INNER_L4_ICMP,
2130                 RTE_PTYPE_INNER_L4_NONFRAG,
2131                 RTE_PTYPE_INNER_L4_SCTP,
2132                 RTE_PTYPE_INNER_L4_TCP,
2133                 RTE_PTYPE_INNER_L4_UDP,
2134                 RTE_PTYPE_UNKNOWN
2135         };
2136
2137         if (dev->rx_pkt_burst == i40e_recv_pkts ||
2138 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2139             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
2140 #endif
2141             dev->rx_pkt_burst == i40e_recv_scattered_pkts)
2142                 return ptypes;
2143         return NULL;
2144 }
2145
2146 int
2147 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
2148                         uint16_t queue_idx,
2149                         uint16_t nb_desc,
2150                         unsigned int socket_id,
2151                         const struct rte_eth_rxconf *rx_conf,
2152                         struct rte_mempool *mp)
2153 {
2154         struct i40e_vsi *vsi;
2155         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2156         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2157         struct i40e_adapter *ad =
2158                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2159         struct i40e_rx_queue *rxq;
2160         const struct rte_memzone *rz;
2161         uint32_t ring_size;
2162         uint16_t len, i;
2163         uint16_t base, bsf, tc_mapping;
2164         int use_def_burst_func = 1;
2165
2166         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2167                 struct i40e_vf *vf =
2168                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2169                 vsi = &vf->vsi;
2170         } else
2171                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2172
2173         if (vsi == NULL) {
2174                 PMD_DRV_LOG(ERR, "VSI not available or queue "
2175                             "index exceeds the maximum");
2176                 return I40E_ERR_PARAM;
2177         }
2178         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2179                         (nb_desc > I40E_MAX_RING_DESC) ||
2180                         (nb_desc < I40E_MIN_RING_DESC)) {
2181                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
2182                             "invalid", nb_desc);
2183                 return I40E_ERR_PARAM;
2184         }
2185
2186         /* Free memory if needed */
2187         if (dev->data->rx_queues[queue_idx]) {
2188                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
2189                 dev->data->rx_queues[queue_idx] = NULL;
2190         }
2191
2192         /* Allocate the rx queue data structure */
2193         rxq = rte_zmalloc_socket("i40e rx queue",
2194                                  sizeof(struct i40e_rx_queue),
2195                                  RTE_CACHE_LINE_SIZE,
2196                                  socket_id);
2197         if (!rxq) {
2198                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2199                             "rx queue data structure");
2200                 return -ENOMEM;
2201         }
2202         rxq->mp = mp;
2203         rxq->nb_rx_desc = nb_desc;
2204         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2205         rxq->queue_id = queue_idx;
2206         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
2207                 rxq->reg_idx = queue_idx;
2208         else /* PF device */
2209                 rxq->reg_idx = vsi->base_queue +
2210                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2211
2212         rxq->port_id = dev->data->port_id;
2213         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
2214                                                         0 : ETHER_CRC_LEN);
2215         rxq->drop_en = rx_conf->rx_drop_en;
2216         rxq->vsi = vsi;
2217         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2218
2219         /* Allocate the maximun number of RX ring hardware descriptor. */
2220         ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
2221         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2222         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2223                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2224         if (!rz) {
2225                 i40e_dev_rx_queue_release(rxq);
2226                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
2227                 return -ENOMEM;
2228         }
2229
2230         /* Zero all the descriptors in the ring. */
2231         memset(rz->addr, 0, ring_size);
2232
2233         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2234         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2235
2236 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2237         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
2238 #else
2239         len = nb_desc;
2240 #endif
2241
2242         /* Allocate the software ring. */
2243         rxq->sw_ring =
2244                 rte_zmalloc_socket("i40e rx sw ring",
2245                                    sizeof(struct i40e_rx_entry) * len,
2246                                    RTE_CACHE_LINE_SIZE,
2247                                    socket_id);
2248         if (!rxq->sw_ring) {
2249                 i40e_dev_rx_queue_release(rxq);
2250                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
2251                 return -ENOMEM;
2252         }
2253
2254         i40e_reset_rx_queue(rxq);
2255         rxq->q_set = TRUE;
2256         dev->data->rx_queues[queue_idx] = rxq;
2257
2258         use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
2259
2260         if (!use_def_burst_func) {
2261 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2262                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2263                              "satisfied. Rx Burst Bulk Alloc function will be "
2264                              "used on port=%d, queue=%d.",
2265                              rxq->port_id, rxq->queue_id);
2266 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2267         } else {
2268                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2269                              "not satisfied, Scattered Rx is requested, "
2270                              "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2271                              "not enabled on port=%d, queue=%d.",
2272                              rxq->port_id, rxq->queue_id);
2273                 ad->rx_bulk_alloc_allowed = false;
2274         }
2275
2276         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2277                 if (!(vsi->enabled_tc & (1 << i)))
2278                         continue;
2279                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2280                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2281                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2282                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2283                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2284
2285                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2286                         rxq->dcb_tc = i;
2287         }
2288
2289         return 0;
2290 }
2291
2292 void
2293 i40e_dev_rx_queue_release(void *rxq)
2294 {
2295         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2296
2297         if (!q) {
2298                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2299                 return;
2300         }
2301
2302         i40e_rx_queue_release_mbufs(q);
2303         rte_free(q->sw_ring);
2304         rte_free(q);
2305 }
2306
2307 uint32_t
2308 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2309 {
2310 #define I40E_RXQ_SCAN_INTERVAL 4
2311         volatile union i40e_rx_desc *rxdp;
2312         struct i40e_rx_queue *rxq;
2313         uint16_t desc = 0;
2314
2315         if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
2316                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
2317                 return 0;
2318         }
2319
2320         rxq = dev->data->rx_queues[rx_queue_id];
2321         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2322         while ((desc < rxq->nb_rx_desc) &&
2323                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2324                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2325                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2326                 /**
2327                  * Check the DD bit of a rx descriptor of each 4 in a group,
2328                  * to avoid checking too frequently and downgrading performance
2329                  * too much.
2330                  */
2331                 desc += I40E_RXQ_SCAN_INTERVAL;
2332                 rxdp += I40E_RXQ_SCAN_INTERVAL;
2333                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2334                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2335                                         desc - rxq->nb_rx_desc]);
2336         }
2337
2338         return desc;
2339 }
2340
2341 int
2342 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2343 {
2344         volatile union i40e_rx_desc *rxdp;
2345         struct i40e_rx_queue *rxq = rx_queue;
2346         uint16_t desc;
2347         int ret;
2348
2349         if (unlikely(offset >= rxq->nb_rx_desc)) {
2350                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
2351                 return 0;
2352         }
2353
2354         desc = rxq->rx_tail + offset;
2355         if (desc >= rxq->nb_rx_desc)
2356                 desc -= rxq->nb_rx_desc;
2357
2358         rxdp = &(rxq->rx_ring[desc]);
2359
2360         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2361                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2362                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
2363
2364         return ret;
2365 }
2366
2367 int
2368 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2369                         uint16_t queue_idx,
2370                         uint16_t nb_desc,
2371                         unsigned int socket_id,
2372                         const struct rte_eth_txconf *tx_conf)
2373 {
2374         struct i40e_vsi *vsi;
2375         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2376         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2377         struct i40e_tx_queue *txq;
2378         const struct rte_memzone *tz;
2379         uint32_t ring_size;
2380         uint16_t tx_rs_thresh, tx_free_thresh;
2381         uint16_t i, base, bsf, tc_mapping;
2382
2383         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2384                 struct i40e_vf *vf =
2385                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2386                 vsi = &vf->vsi;
2387         } else
2388                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2389
2390         if (vsi == NULL) {
2391                 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
2392                             "exceeds the maximum", queue_idx);
2393                 return I40E_ERR_PARAM;
2394         }
2395
2396         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2397                         (nb_desc > I40E_MAX_RING_DESC) ||
2398                         (nb_desc < I40E_MIN_RING_DESC)) {
2399                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2400                             "invalid", nb_desc);
2401                 return I40E_ERR_PARAM;
2402         }
2403
2404         /**
2405          * The following two parameters control the setting of the RS bit on
2406          * transmit descriptors. TX descriptors will have their RS bit set
2407          * after txq->tx_rs_thresh descriptors have been used. The TX
2408          * descriptor ring will be cleaned after txq->tx_free_thresh
2409          * descriptors are used or if the number of descriptors required to
2410          * transmit a packet is greater than the number of free TX descriptors.
2411          *
2412          * The following constraints must be satisfied:
2413          *  - tx_rs_thresh must be greater than 0.
2414          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2415          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2416          *  - tx_rs_thresh must be a divisor of the ring size.
2417          *  - tx_free_thresh must be greater than 0.
2418          *  - tx_free_thresh must be less than the size of the ring minus 3.
2419          *
2420          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2421          * race condition, hence the maximum threshold constraints. When set
2422          * to zero use default values.
2423          */
2424         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2425                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2426         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2427                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2428         if (tx_rs_thresh >= (nb_desc - 2)) {
2429                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2430                              "number of TX descriptors minus 2. "
2431                              "(tx_rs_thresh=%u port=%d queue=%d)",
2432                              (unsigned int)tx_rs_thresh,
2433                              (int)dev->data->port_id,
2434                              (int)queue_idx);
2435                 return I40E_ERR_PARAM;
2436         }
2437         if (tx_free_thresh >= (nb_desc - 3)) {
2438                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2439                              "tx_free_thresh must be less than the "
2440                              "number of TX descriptors minus 3. "
2441                              "(tx_free_thresh=%u port=%d queue=%d)",
2442                              (unsigned int)tx_free_thresh,
2443                              (int)dev->data->port_id,
2444                              (int)queue_idx);
2445                 return I40E_ERR_PARAM;
2446         }
2447         if (tx_rs_thresh > tx_free_thresh) {
2448                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2449                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2450                              " tx_rs_thresh=%u port=%d queue=%d)",
2451                              (unsigned int)tx_free_thresh,
2452                              (unsigned int)tx_rs_thresh,
2453                              (int)dev->data->port_id,
2454                              (int)queue_idx);
2455                 return I40E_ERR_PARAM;
2456         }
2457         if ((nb_desc % tx_rs_thresh) != 0) {
2458                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2459                              "number of TX descriptors. (tx_rs_thresh=%u"
2460                              " port=%d queue=%d)",
2461                              (unsigned int)tx_rs_thresh,
2462                              (int)dev->data->port_id,
2463                              (int)queue_idx);
2464                 return I40E_ERR_PARAM;
2465         }
2466         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2467                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2468                              "tx_rs_thresh is greater than 1. "
2469                              "(tx_rs_thresh=%u port=%d queue=%d)",
2470                              (unsigned int)tx_rs_thresh,
2471                              (int)dev->data->port_id,
2472                              (int)queue_idx);
2473                 return I40E_ERR_PARAM;
2474         }
2475
2476         /* Free memory if needed. */
2477         if (dev->data->tx_queues[queue_idx]) {
2478                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2479                 dev->data->tx_queues[queue_idx] = NULL;
2480         }
2481
2482         /* Allocate the TX queue data structure. */
2483         txq = rte_zmalloc_socket("i40e tx queue",
2484                                   sizeof(struct i40e_tx_queue),
2485                                   RTE_CACHE_LINE_SIZE,
2486                                   socket_id);
2487         if (!txq) {
2488                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2489                             "tx queue structure");
2490                 return -ENOMEM;
2491         }
2492
2493         /* Allocate TX hardware ring descriptors. */
2494         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2495         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2496         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2497                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2498         if (!tz) {
2499                 i40e_dev_tx_queue_release(txq);
2500                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2501                 return -ENOMEM;
2502         }
2503
2504         txq->nb_tx_desc = nb_desc;
2505         txq->tx_rs_thresh = tx_rs_thresh;
2506         txq->tx_free_thresh = tx_free_thresh;
2507         txq->pthresh = tx_conf->tx_thresh.pthresh;
2508         txq->hthresh = tx_conf->tx_thresh.hthresh;
2509         txq->wthresh = tx_conf->tx_thresh.wthresh;
2510         txq->queue_id = queue_idx;
2511         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
2512                 txq->reg_idx = queue_idx;
2513         else /* PF device */
2514                 txq->reg_idx = vsi->base_queue +
2515                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2516
2517         txq->port_id = dev->data->port_id;
2518         txq->txq_flags = tx_conf->txq_flags;
2519         txq->vsi = vsi;
2520         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2521
2522         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2523         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2524
2525         /* Allocate software ring */
2526         txq->sw_ring =
2527                 rte_zmalloc_socket("i40e tx sw ring",
2528                                    sizeof(struct i40e_tx_entry) * nb_desc,
2529                                    RTE_CACHE_LINE_SIZE,
2530                                    socket_id);
2531         if (!txq->sw_ring) {
2532                 i40e_dev_tx_queue_release(txq);
2533                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2534                 return -ENOMEM;
2535         }
2536
2537         i40e_reset_tx_queue(txq);
2538         txq->q_set = TRUE;
2539         dev->data->tx_queues[queue_idx] = txq;
2540
2541         /* Use a simple TX queue without offloads or multi segs if possible */
2542         i40e_set_tx_function_flag(dev, txq);
2543
2544         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2545                 if (!(vsi->enabled_tc & (1 << i)))
2546                         continue;
2547                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2548                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2549                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2550                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2551                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2552
2553                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2554                         txq->dcb_tc = i;
2555         }
2556
2557         return 0;
2558 }
2559
2560 void
2561 i40e_dev_tx_queue_release(void *txq)
2562 {
2563         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2564
2565         if (!q) {
2566                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2567                 return;
2568         }
2569
2570         i40e_tx_queue_release_mbufs(q);
2571         rte_free(q->sw_ring);
2572         rte_free(q);
2573 }
2574
2575 const struct rte_memzone *
2576 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2577 {
2578         const struct rte_memzone *mz;
2579
2580         mz = rte_memzone_lookup(name);
2581         if (mz)
2582                 return mz;
2583
2584         if (rte_xen_dom0_supported())
2585                 mz = rte_memzone_reserve_bounded(name, len,
2586                                 socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
2587         else
2588                 mz = rte_memzone_reserve_aligned(name, len,
2589                                 socket_id, 0, I40E_RING_BASE_ALIGN);
2590         return mz;
2591 }
2592
2593 void
2594 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2595 {
2596         uint16_t i;
2597
2598         /* SSE Vector driver has a different way of releasing mbufs. */
2599         if (rxq->rx_using_sse) {
2600                 i40e_rx_queue_release_mbufs_vec(rxq);
2601                 return;
2602         }
2603
2604         if (!rxq->sw_ring) {
2605                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2606                 return;
2607         }
2608
2609         for (i = 0; i < rxq->nb_rx_desc; i++) {
2610                 if (rxq->sw_ring[i].mbuf) {
2611                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2612                         rxq->sw_ring[i].mbuf = NULL;
2613                 }
2614         }
2615 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2616         if (rxq->rx_nb_avail == 0)
2617                 return;
2618         for (i = 0; i < rxq->rx_nb_avail; i++) {
2619                 struct rte_mbuf *mbuf;
2620
2621                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2622                 rte_pktmbuf_free_seg(mbuf);
2623         }
2624         rxq->rx_nb_avail = 0;
2625 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2626 }
2627
2628 void
2629 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2630 {
2631         unsigned i;
2632         uint16_t len;
2633
2634         if (!rxq) {
2635                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2636                 return;
2637         }
2638
2639 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2640         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2641                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2642         else
2643 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2644                 len = rxq->nb_rx_desc;
2645
2646         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2647                 ((volatile char *)rxq->rx_ring)[i] = 0;
2648
2649 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2650         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2651         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2652                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2653
2654         rxq->rx_nb_avail = 0;
2655         rxq->rx_next_avail = 0;
2656         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2657 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2658         rxq->rx_tail = 0;
2659         rxq->nb_rx_hold = 0;
2660         rxq->pkt_first_seg = NULL;
2661         rxq->pkt_last_seg = NULL;
2662
2663         rxq->rxrearm_start = 0;
2664         rxq->rxrearm_nb = 0;
2665 }
2666
2667 void
2668 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2669 {
2670         uint16_t i;
2671
2672         if (!txq || !txq->sw_ring) {
2673                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2674                 return;
2675         }
2676
2677         for (i = 0; i < txq->nb_tx_desc; i++) {
2678                 if (txq->sw_ring[i].mbuf) {
2679                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2680                         txq->sw_ring[i].mbuf = NULL;
2681                 }
2682         }
2683 }
2684
2685 void
2686 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2687 {
2688         struct i40e_tx_entry *txe;
2689         uint16_t i, prev, size;
2690
2691         if (!txq) {
2692                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2693                 return;
2694         }
2695
2696         txe = txq->sw_ring;
2697         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2698         for (i = 0; i < size; i++)
2699                 ((volatile char *)txq->tx_ring)[i] = 0;
2700
2701         prev = (uint16_t)(txq->nb_tx_desc - 1);
2702         for (i = 0; i < txq->nb_tx_desc; i++) {
2703                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2704
2705                 txd->cmd_type_offset_bsz =
2706                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2707                 txe[i].mbuf =  NULL;
2708                 txe[i].last_id = i;
2709                 txe[prev].next_id = i;
2710                 prev = i;
2711         }
2712
2713         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2714         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2715
2716         txq->tx_tail = 0;
2717         txq->nb_tx_used = 0;
2718
2719         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2720         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2721 }
2722
2723 /* Init the TX queue in hardware */
2724 int
2725 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2726 {
2727         enum i40e_status_code err = I40E_SUCCESS;
2728         struct i40e_vsi *vsi = txq->vsi;
2729         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2730         uint16_t pf_q = txq->reg_idx;
2731         struct i40e_hmc_obj_txq tx_ctx;
2732         uint32_t qtx_ctl;
2733
2734         /* clear the context structure first */
2735         memset(&tx_ctx, 0, sizeof(tx_ctx));
2736         tx_ctx.new_context = 1;
2737         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2738         tx_ctx.qlen = txq->nb_tx_desc;
2739
2740 #ifdef RTE_LIBRTE_IEEE1588
2741         tx_ctx.timesync_ena = 1;
2742 #endif
2743         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2744         if (vsi->type == I40E_VSI_FDIR)
2745                 tx_ctx.fd_ena = TRUE;
2746
2747         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2748         if (err != I40E_SUCCESS) {
2749                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2750                 return err;
2751         }
2752
2753         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2754         if (err != I40E_SUCCESS) {
2755                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2756                 return err;
2757         }
2758
2759         /* Now associate this queue with this PCI function */
2760         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2761         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2762                                         I40E_QTX_CTL_PF_INDX_MASK);
2763         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2764         I40E_WRITE_FLUSH(hw);
2765
2766         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2767
2768         return err;
2769 }
2770
2771 int
2772 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2773 {
2774         struct i40e_rx_entry *rxe = rxq->sw_ring;
2775         uint64_t dma_addr;
2776         uint16_t i;
2777
2778         for (i = 0; i < rxq->nb_rx_desc; i++) {
2779                 volatile union i40e_rx_desc *rxd;
2780                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2781
2782                 if (unlikely(!mbuf)) {
2783                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2784                         return -ENOMEM;
2785                 }
2786
2787                 rte_mbuf_refcnt_set(mbuf, 1);
2788                 mbuf->next = NULL;
2789                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2790                 mbuf->nb_segs = 1;
2791                 mbuf->port = rxq->port_id;
2792
2793                 dma_addr =
2794                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
2795
2796                 rxd = &rxq->rx_ring[i];
2797                 rxd->read.pkt_addr = dma_addr;
2798                 rxd->read.hdr_addr = 0;
2799 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2800                 rxd->read.rsvd1 = 0;
2801                 rxd->read.rsvd2 = 0;
2802 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2803
2804                 rxe[i].mbuf = mbuf;
2805         }
2806
2807         return 0;
2808 }
2809
2810 /*
2811  * Calculate the buffer length, and check the jumbo frame
2812  * and maximum packet length.
2813  */
2814 static int
2815 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2816 {
2817         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2818         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2819         struct rte_eth_dev_data *data = pf->dev_data;
2820         uint16_t buf_size, len;
2821
2822         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2823                 RTE_PKTMBUF_HEADROOM);
2824
2825         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2826                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2827         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2828                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2829                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2830                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2831                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2832                 rxq->hs_mode = i40e_header_split_enabled;
2833                 break;
2834         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2835         default:
2836                 rxq->rx_hdr_len = 0;
2837                 rxq->rx_buf_len = RTE_ALIGN(buf_size,
2838                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2839                 rxq->hs_mode = i40e_header_split_none;
2840                 break;
2841         }
2842
2843         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2844         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2845         if (data->dev_conf.rxmode.jumbo_frame == 1) {
2846                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2847                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2848                         PMD_DRV_LOG(ERR, "maximum packet length must "
2849                                     "be larger than %u and smaller than %u,"
2850                                     "as jumbo frame is enabled",
2851                                     (uint32_t)ETHER_MAX_LEN,
2852                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2853                         return I40E_ERR_CONFIG;
2854                 }
2855         } else {
2856                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2857                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2858                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2859                                     "larger than %u and smaller than %u, "
2860                                     "as jumbo frame is disabled",
2861                                     (uint32_t)ETHER_MIN_LEN,
2862                                     (uint32_t)ETHER_MAX_LEN);
2863                         return I40E_ERR_CONFIG;
2864                 }
2865         }
2866
2867         return 0;
2868 }
2869
2870 /* Init the RX queue in hardware */
2871 int
2872 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2873 {
2874         int err = I40E_SUCCESS;
2875         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2876         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2877         uint16_t pf_q = rxq->reg_idx;
2878         uint16_t buf_size;
2879         struct i40e_hmc_obj_rxq rx_ctx;
2880
2881         err = i40e_rx_queue_config(rxq);
2882         if (err < 0) {
2883                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2884                 return err;
2885         }
2886
2887         /* Clear the context structure first */
2888         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2889         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2890         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2891
2892         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2893         rx_ctx.qlen = rxq->nb_rx_desc;
2894 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2895         rx_ctx.dsize = 1;
2896 #endif
2897         rx_ctx.dtype = rxq->hs_mode;
2898         if (rxq->hs_mode)
2899                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2900         else
2901                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2902         rx_ctx.rxmax = rxq->max_pkt_len;
2903         rx_ctx.tphrdesc_ena = 1;
2904         rx_ctx.tphwdesc_ena = 1;
2905         rx_ctx.tphdata_ena = 1;
2906         rx_ctx.tphhead_ena = 1;
2907         rx_ctx.lrxqthresh = 2;
2908         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2909         rx_ctx.l2tsel = 1;
2910         /* showiv indicates if inner VLAN is stripped inside of tunnel
2911          * packet. When set it to 1, vlan information is stripped from
2912          * the inner header, but the hardware does not put it in the
2913          * descriptor. So set it zero by default.
2914          */
2915         rx_ctx.showiv = 0;
2916         rx_ctx.prefena = 1;
2917
2918         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2919         if (err != I40E_SUCCESS) {
2920                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2921                 return err;
2922         }
2923         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2924         if (err != I40E_SUCCESS) {
2925                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2926                 return err;
2927         }
2928
2929         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2930
2931         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2932                 RTE_PKTMBUF_HEADROOM);
2933
2934         /* Check if scattered RX needs to be used. */
2935         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2936                 dev_data->scattered_rx = 1;
2937         }
2938
2939         /* Init the RX tail regieter. */
2940         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2941
2942         return 0;
2943 }
2944
2945 void
2946 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2947 {
2948         uint16_t i;
2949
2950         PMD_INIT_FUNC_TRACE();
2951
2952         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2953                 if (!dev->data->tx_queues[i])
2954                         continue;
2955                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2956                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2957         }
2958
2959         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2960                 if (!dev->data->rx_queues[i])
2961                         continue;
2962                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2963                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2964         }
2965 }
2966
2967 void
2968 i40e_dev_free_queues(struct rte_eth_dev *dev)
2969 {
2970         uint16_t i;
2971
2972         PMD_INIT_FUNC_TRACE();
2973
2974         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2975                 if (!dev->data->rx_queues[i])
2976                         continue;
2977                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2978                 dev->data->rx_queues[i] = NULL;
2979         }
2980         dev->data->nb_rx_queues = 0;
2981
2982         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2983                 if (!dev->data->tx_queues[i])
2984                         continue;
2985                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2986                 dev->data->tx_queues[i] = NULL;
2987         }
2988         dev->data->nb_tx_queues = 0;
2989 }
2990
2991 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2992 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2993
2994 enum i40e_status_code
2995 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2996 {
2997         struct i40e_tx_queue *txq;
2998         const struct rte_memzone *tz = NULL;
2999         uint32_t ring_size;
3000         struct rte_eth_dev *dev;
3001
3002         if (!pf) {
3003                 PMD_DRV_LOG(ERR, "PF is not available");
3004                 return I40E_ERR_BAD_PTR;
3005         }
3006
3007         dev = pf->adapter->eth_dev;
3008
3009         /* Allocate the TX queue data structure. */
3010         txq = rte_zmalloc_socket("i40e fdir tx queue",
3011                                   sizeof(struct i40e_tx_queue),
3012                                   RTE_CACHE_LINE_SIZE,
3013                                   SOCKET_ID_ANY);
3014         if (!txq) {
3015                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3016                                         "tx queue structure.");
3017                 return I40E_ERR_NO_MEMORY;
3018         }
3019
3020         /* Allocate TX hardware ring descriptors. */
3021         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
3022         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3023
3024         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
3025                                       I40E_FDIR_QUEUE_ID, ring_size,
3026                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3027         if (!tz) {
3028                 i40e_dev_tx_queue_release(txq);
3029                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3030                 return I40E_ERR_NO_MEMORY;
3031         }
3032
3033         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3034         txq->queue_id = I40E_FDIR_QUEUE_ID;
3035         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3036         txq->vsi = pf->fdir.fdir_vsi;
3037
3038         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
3039         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3040         /*
3041          * don't need to allocate software ring and reset for the fdir
3042          * program queue just set the queue has been configured.
3043          */
3044         txq->q_set = TRUE;
3045         pf->fdir.txq = txq;
3046
3047         return I40E_SUCCESS;
3048 }
3049
3050 enum i40e_status_code
3051 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3052 {
3053         struct i40e_rx_queue *rxq;
3054         const struct rte_memzone *rz = NULL;
3055         uint32_t ring_size;
3056         struct rte_eth_dev *dev;
3057
3058         if (!pf) {
3059                 PMD_DRV_LOG(ERR, "PF is not available");
3060                 return I40E_ERR_BAD_PTR;
3061         }
3062
3063         dev = pf->adapter->eth_dev;
3064
3065         /* Allocate the RX queue data structure. */
3066         rxq = rte_zmalloc_socket("i40e fdir rx queue",
3067                                   sizeof(struct i40e_rx_queue),
3068                                   RTE_CACHE_LINE_SIZE,
3069                                   SOCKET_ID_ANY);
3070         if (!rxq) {
3071                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3072                                         "rx queue structure.");
3073                 return I40E_ERR_NO_MEMORY;
3074         }
3075
3076         /* Allocate RX hardware ring descriptors. */
3077         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3078         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3079
3080         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
3081                                       I40E_FDIR_QUEUE_ID, ring_size,
3082                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3083         if (!rz) {
3084                 i40e_dev_rx_queue_release(rxq);
3085                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3086                 return I40E_ERR_NO_MEMORY;
3087         }
3088
3089         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3090         rxq->queue_id = I40E_FDIR_QUEUE_ID;
3091         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3092         rxq->vsi = pf->fdir.fdir_vsi;
3093
3094         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
3095         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3096
3097         /*
3098          * Don't need to allocate software ring and reset for the fdir
3099          * rx queue, just set the queue has been configured.
3100          */
3101         rxq->q_set = TRUE;
3102         pf->fdir.rxq = rxq;
3103
3104         return I40E_SUCCESS;
3105 }
3106
3107 void
3108 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3109         struct rte_eth_rxq_info *qinfo)
3110 {
3111         struct i40e_rx_queue *rxq;
3112
3113         rxq = dev->data->rx_queues[queue_id];
3114
3115         qinfo->mp = rxq->mp;
3116         qinfo->scattered_rx = dev->data->scattered_rx;
3117         qinfo->nb_desc = rxq->nb_rx_desc;
3118
3119         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3120         qinfo->conf.rx_drop_en = rxq->drop_en;
3121         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3122 }
3123
3124 void
3125 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3126         struct rte_eth_txq_info *qinfo)
3127 {
3128         struct i40e_tx_queue *txq;
3129
3130         txq = dev->data->tx_queues[queue_id];
3131
3132         qinfo->nb_desc = txq->nb_tx_desc;
3133
3134         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
3135         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
3136         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
3137
3138         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
3139         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
3140         qinfo->conf.txq_flags = txq->txq_flags;
3141         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3142 }
3143
3144 void __attribute__((cold))
3145 i40e_set_rx_function(struct rte_eth_dev *dev)
3146 {
3147         struct i40e_adapter *ad =
3148                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3149         uint16_t rx_using_sse, i;
3150         /* In order to allow Vector Rx there are a few configuration
3151          * conditions to be met and Rx Bulk Allocation should be allowed.
3152          */
3153         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3154                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
3155                     !ad->rx_bulk_alloc_allowed) {
3156                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
3157                                      " Vector Rx preconditions",
3158                                      dev->data->port_id);
3159
3160                         ad->rx_vec_allowed = false;
3161                 }
3162                 if (ad->rx_vec_allowed) {
3163                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3164                                 struct i40e_rx_queue *rxq =
3165                                         dev->data->rx_queues[i];
3166
3167                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
3168                                         ad->rx_vec_allowed = false;
3169                                         break;
3170                                 }
3171                         }
3172                 }
3173         }
3174
3175         if (dev->data->scattered_rx) {
3176                 /* Set the non-LRO scattered callback: there are Vector and
3177                  * single allocation versions.
3178                  */
3179                 if (ad->rx_vec_allowed) {
3180                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
3181                                             "callback (port=%d).",
3182                                      dev->data->port_id);
3183
3184                         dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
3185                 } else {
3186                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
3187                                            "allocation callback (port=%d).",
3188                                      dev->data->port_id);
3189                         dev->rx_pkt_burst = i40e_recv_scattered_pkts;
3190                 }
3191         /* If parameters allow we are going to choose between the following
3192          * callbacks:
3193          *    - Vector
3194          *    - Bulk Allocation
3195          *    - Single buffer allocation (the simplest one)
3196          */
3197         } else if (ad->rx_vec_allowed) {
3198                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
3199                                     "burst size no less than %d (port=%d).",
3200                              RTE_I40E_DESCS_PER_LOOP,
3201                              dev->data->port_id);
3202
3203                 dev->rx_pkt_burst = i40e_recv_pkts_vec;
3204         } else if (ad->rx_bulk_alloc_allowed) {
3205                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
3206                                     "satisfied. Rx Burst Bulk Alloc function "
3207                                     "will be used on port=%d.",
3208                              dev->data->port_id);
3209
3210                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3211         } else {
3212                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
3213                                     "satisfied, or Scattered Rx is requested "
3214                                     "(port=%d).",
3215                              dev->data->port_id);
3216
3217                 dev->rx_pkt_burst = i40e_recv_pkts;
3218         }
3219
3220         /* Propagate information about RX function choice through all queues. */
3221         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3222                 rx_using_sse =
3223                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3224                          dev->rx_pkt_burst == i40e_recv_pkts_vec);
3225
3226                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3227                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3228
3229                         if (rxq)
3230                                 rxq->rx_using_sse = rx_using_sse;
3231                 }
3232         }
3233 }
3234
3235 void __attribute__((cold))
3236 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3237 {
3238         struct i40e_adapter *ad =
3239                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3240
3241         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
3242         if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
3243                         && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
3244                 if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
3245                         PMD_INIT_LOG(DEBUG, "Vector tx"
3246                                      " can be enabled on this txq.");
3247
3248                 } else {
3249                         ad->tx_vec_allowed = false;
3250                 }
3251         } else {
3252                 ad->tx_simple_allowed = false;
3253         }
3254 }
3255
3256 void __attribute__((cold))
3257 i40e_set_tx_function(struct rte_eth_dev *dev)
3258 {
3259         struct i40e_adapter *ad =
3260                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3261         int i;
3262
3263         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3264                 if (ad->tx_vec_allowed) {
3265                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3266                                 struct i40e_tx_queue *txq =
3267                                         dev->data->tx_queues[i];
3268
3269                                 if (txq && i40e_txq_vec_setup(txq)) {
3270                                         ad->tx_vec_allowed = false;
3271                                         break;
3272                                 }
3273                         }
3274                 }
3275         }
3276
3277         if (ad->tx_simple_allowed) {
3278                 if (ad->tx_vec_allowed) {
3279                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
3280                         dev->tx_pkt_burst = i40e_xmit_pkts_vec;
3281                 } else {
3282                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3283                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3284                 }
3285         } else {
3286                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3287                 dev->tx_pkt_burst = i40e_xmit_pkts;
3288         }
3289 }
3290
3291 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
3292 int __attribute__((weak))
3293 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3294 {
3295         return -1;
3296 }
3297
3298 uint16_t __attribute__((weak))
3299 i40e_recv_pkts_vec(
3300         void __rte_unused *rx_queue,
3301         struct rte_mbuf __rte_unused **rx_pkts,
3302         uint16_t __rte_unused nb_pkts)
3303 {
3304         return 0;
3305 }
3306
3307 uint16_t __attribute__((weak))
3308 i40e_recv_scattered_pkts_vec(
3309         void __rte_unused *rx_queue,
3310         struct rte_mbuf __rte_unused **rx_pkts,
3311         uint16_t __rte_unused nb_pkts)
3312 {
3313         return 0;
3314 }
3315
3316 int __attribute__((weak))
3317 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3318 {
3319         return -1;
3320 }
3321
3322 int __attribute__((weak))
3323 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3324 {
3325         return -1;
3326 }
3327
3328 void __attribute__((weak))
3329 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3330 {
3331         return;
3332 }
3333
3334 uint16_t __attribute__((weak))
3335 i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
3336                    struct rte_mbuf __rte_unused **tx_pkts,
3337                    uint16_t __rte_unused nb_pkts)
3338 {
3339         return 0;
3340 }