bfe161f2c5c388690412440c68e7002a2d6a34ea
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "i40e_logs.h"
28 #include "base/i40e_prototype.h"
29 #include "base/i40e_type.h"
30 #include "i40e_ethdev.h"
31 #include "i40e_rxtx.h"
32
33 #define DEFAULT_TX_RS_THRESH   32
34 #define DEFAULT_TX_FREE_THRESH 32
35
36 #define I40E_TX_MAX_BURST  32
37
38 #define I40E_DMA_MEM_ALIGN 4096
39
40 /* Base address of the HW descriptor ring should be 128B aligned. */
41 #define I40E_RING_BASE_ALIGN    128
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 #ifdef RTE_LIBRTE_IEEE1588
46 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
47 #else
48 #define I40E_TX_IEEE1588_TMST 0
49 #endif
50
51 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
52                 PKT_TX_IP_CKSUM |                \
53                 PKT_TX_L4_MASK |                 \
54                 PKT_TX_TCP_SEG |                 \
55                 PKT_TX_OUTER_IP_CKSUM)
56
57 #define I40E_TX_OFFLOAD_MASK (  \
58                 PKT_TX_OUTER_IPV4 |     \
59                 PKT_TX_OUTER_IPV6 |     \
60                 PKT_TX_IPV4 |           \
61                 PKT_TX_IPV6 |           \
62                 PKT_TX_IP_CKSUM |       \
63                 PKT_TX_L4_MASK |        \
64                 PKT_TX_OUTER_IP_CKSUM | \
65                 PKT_TX_TCP_SEG |        \
66                 PKT_TX_QINQ_PKT |       \
67                 PKT_TX_VLAN_PKT |       \
68                 PKT_TX_TUNNEL_MASK |    \
69                 I40E_TX_IEEE1588_TMST)
70
71 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
72                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
73
74 static inline void
75 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
76 {
77         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
78                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
79                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
80                 mb->vlan_tci =
81                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
82                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
83                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
84         } else {
85                 mb->vlan_tci = 0;
86         }
87 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
88         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
89                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
90                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
91                         PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
92                 mb->vlan_tci_outer = mb->vlan_tci;
93                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
94                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
95                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
96                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
97         } else {
98                 mb->vlan_tci_outer = 0;
99         }
100 #endif
101         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
102                    mb->vlan_tci, mb->vlan_tci_outer);
103 }
104
105 /* Translate the rx descriptor status to pkt flags */
106 static inline uint64_t
107 i40e_rxd_status_to_pkt_flags(uint64_t qword)
108 {
109         uint64_t flags;
110
111         /* Check if RSS_HASH */
112         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
113                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
114                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
115
116         /* Check if FDIR Match */
117         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
118                                                         PKT_RX_FDIR : 0);
119
120         return flags;
121 }
122
123 static inline uint64_t
124 i40e_rxd_error_to_pkt_flags(uint64_t qword)
125 {
126         uint64_t flags = 0;
127         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
128
129 #define I40E_RX_ERR_BITS 0x3f
130         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
131                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
132                 return flags;
133         }
134
135         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
136                 flags |= PKT_RX_IP_CKSUM_BAD;
137         else
138                 flags |= PKT_RX_IP_CKSUM_GOOD;
139
140         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
141                 flags |= PKT_RX_L4_CKSUM_BAD;
142         else
143                 flags |= PKT_RX_L4_CKSUM_GOOD;
144
145         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
146                 flags |= PKT_RX_EIP_CKSUM_BAD;
147
148         return flags;
149 }
150
151 /* Function to check and set the ieee1588 timesync index and get the
152  * appropriate flags.
153  */
154 #ifdef RTE_LIBRTE_IEEE1588
155 static inline uint64_t
156 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
157 {
158         uint64_t pkt_flags = 0;
159         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
160                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
161                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
162
163         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
164                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
165                 pkt_flags = PKT_RX_IEEE1588_PTP;
166         if (tsyn & 0x04) {
167                 pkt_flags |= PKT_RX_IEEE1588_TMST;
168                 mb->timesync = tsyn & 0x03;
169         }
170
171         return pkt_flags;
172 }
173 #endif
174
175 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
176 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
177 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
178 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
179 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
180
181 static inline uint64_t
182 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
183 {
184         uint64_t flags = 0;
185 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
186         uint16_t flexbh, flexbl;
187
188         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
189                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
190                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
191         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
192                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
193                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
194
195
196         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
197                 mb->hash.fdir.hi =
198                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
199                 flags |= PKT_RX_FDIR_ID;
200         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
201                 mb->hash.fdir.hi =
202                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
203                 flags |= PKT_RX_FDIR_FLX;
204         }
205         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
206                 mb->hash.fdir.lo =
207                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
208                 flags |= PKT_RX_FDIR_FLX;
209         }
210 #else
211         mb->hash.fdir.hi =
212                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
213         flags |= PKT_RX_FDIR_ID;
214 #endif
215         return flags;
216 }
217
218 static inline void
219 i40e_parse_tunneling_params(uint64_t ol_flags,
220                             union i40e_tx_offload tx_offload,
221                             uint32_t *cd_tunneling)
222 {
223         /* EIPT: External (outer) IP header type */
224         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
225                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
226         else if (ol_flags & PKT_TX_OUTER_IPV4)
227                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
228         else if (ol_flags & PKT_TX_OUTER_IPV6)
229                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
230
231         /* EIPLEN: External (outer) IP header length, in DWords */
232         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
233                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
234
235         /* L4TUNT: L4 Tunneling Type */
236         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
237         case PKT_TX_TUNNEL_IPIP:
238                 /* for non UDP / GRE tunneling, set to 00b */
239                 break;
240         case PKT_TX_TUNNEL_VXLAN:
241         case PKT_TX_TUNNEL_GENEVE:
242                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
243                 break;
244         case PKT_TX_TUNNEL_GRE:
245                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
246                 break;
247         default:
248                 PMD_TX_LOG(ERR, "Tunnel type not supported");
249                 return;
250         }
251
252         /* L4TUNLEN: L4 Tunneling Length, in Words
253          *
254          * We depend on app to set rte_mbuf.l2_len correctly.
255          * For IP in GRE it should be set to the length of the GRE
256          * header;
257          * for MAC in GRE or MAC in UDP it should be set to the length
258          * of the GRE or UDP headers plus the inner MAC up to including
259          * its last Ethertype.
260          */
261         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
262                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
263 }
264
265 static inline void
266 i40e_txd_enable_checksum(uint64_t ol_flags,
267                         uint32_t *td_cmd,
268                         uint32_t *td_offset,
269                         union i40e_tx_offload tx_offload)
270 {
271         /* Set MACLEN */
272         if (ol_flags & PKT_TX_TUNNEL_MASK)
273                 *td_offset |= (tx_offload.outer_l2_len >> 1)
274                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
275         else
276                 *td_offset |= (tx_offload.l2_len >> 1)
277                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
278
279         /* Enable L3 checksum offloads */
280         if (ol_flags & PKT_TX_IP_CKSUM) {
281                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
282                 *td_offset |= (tx_offload.l3_len >> 2)
283                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
284         } else if (ol_flags & PKT_TX_IPV4) {
285                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
286                 *td_offset |= (tx_offload.l3_len >> 2)
287                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
288         } else if (ol_flags & PKT_TX_IPV6) {
289                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
290                 *td_offset |= (tx_offload.l3_len >> 2)
291                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
292         }
293
294         if (ol_flags & PKT_TX_TCP_SEG) {
295                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
296                 *td_offset |= (tx_offload.l4_len >> 2)
297                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
298                 return;
299         }
300
301         /* Enable L4 checksum offloads */
302         switch (ol_flags & PKT_TX_L4_MASK) {
303         case PKT_TX_TCP_CKSUM:
304                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
305                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
306                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
307                 break;
308         case PKT_TX_SCTP_CKSUM:
309                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
310                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
311                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
312                 break;
313         case PKT_TX_UDP_CKSUM:
314                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
315                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
316                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
317                 break;
318         default:
319                 break;
320         }
321 }
322
323 /* Construct the tx flags */
324 static inline uint64_t
325 i40e_build_ctob(uint32_t td_cmd,
326                 uint32_t td_offset,
327                 unsigned int size,
328                 uint32_t td_tag)
329 {
330         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
331                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
332                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
333                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
334                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
335 }
336
337 static inline int
338 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
339 {
340         struct i40e_tx_entry *sw_ring = txq->sw_ring;
341         volatile struct i40e_tx_desc *txd = txq->tx_ring;
342         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
343         uint16_t nb_tx_desc = txq->nb_tx_desc;
344         uint16_t desc_to_clean_to;
345         uint16_t nb_tx_to_clean;
346
347         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
348         if (desc_to_clean_to >= nb_tx_desc)
349                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
350
351         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
352         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
353                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
354                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
355                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
356                         "(port=%d queue=%d)", desc_to_clean_to,
357                                 txq->port_id, txq->queue_id);
358                 return -1;
359         }
360
361         if (last_desc_cleaned > desc_to_clean_to)
362                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
363                                                         desc_to_clean_to);
364         else
365                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
366                                         last_desc_cleaned);
367
368         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
369
370         txq->last_desc_cleaned = desc_to_clean_to;
371         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
372
373         return 0;
374 }
375
376 static inline int
377 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
378 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
379 #else
380 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
381 #endif
382 {
383         int ret = 0;
384
385 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
386         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
387                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
388                              "rxq->rx_free_thresh=%d, "
389                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
390                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
391                 ret = -EINVAL;
392         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
393                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
394                              "rxq->rx_free_thresh=%d, "
395                              "rxq->nb_rx_desc=%d",
396                              rxq->rx_free_thresh, rxq->nb_rx_desc);
397                 ret = -EINVAL;
398         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
399                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
400                              "rxq->nb_rx_desc=%d, "
401                              "rxq->rx_free_thresh=%d",
402                              rxq->nb_rx_desc, rxq->rx_free_thresh);
403                 ret = -EINVAL;
404         }
405 #else
406         ret = -EINVAL;
407 #endif
408
409         return ret;
410 }
411
412 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
413 #define I40E_LOOK_AHEAD 8
414 #if (I40E_LOOK_AHEAD != 8)
415 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
416 #endif
417 static inline int
418 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
419 {
420         volatile union i40e_rx_desc *rxdp;
421         struct i40e_rx_entry *rxep;
422         struct rte_mbuf *mb;
423         uint16_t pkt_len;
424         uint64_t qword1;
425         uint32_t rx_status;
426         int32_t s[I40E_LOOK_AHEAD], nb_dd;
427         int32_t i, j, nb_rx = 0;
428         uint64_t pkt_flags;
429         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
430
431         rxdp = &rxq->rx_ring[rxq->rx_tail];
432         rxep = &rxq->sw_ring[rxq->rx_tail];
433
434         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
435         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
436                                 I40E_RXD_QW1_STATUS_SHIFT;
437
438         /* Make sure there is at least 1 packet to receive */
439         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
440                 return 0;
441
442         /**
443          * Scan LOOK_AHEAD descriptors at a time to determine which
444          * descriptors reference packets that are ready to be received.
445          */
446         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
447                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
448                 /* Read desc statuses backwards to avoid race condition */
449                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
450                         qword1 = rte_le_to_cpu_64(\
451                                 rxdp[j].wb.qword1.status_error_len);
452                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
453                                         I40E_RXD_QW1_STATUS_SHIFT;
454                 }
455
456                 rte_smp_rmb();
457
458                 /* Compute how many status bits were set */
459                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
460                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
461
462                 nb_rx += nb_dd;
463
464                 /* Translate descriptor info to mbuf parameters */
465                 for (j = 0; j < nb_dd; j++) {
466                         mb = rxep[j].mbuf;
467                         qword1 = rte_le_to_cpu_64(\
468                                 rxdp[j].wb.qword1.status_error_len);
469                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
470                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
471                         mb->data_len = pkt_len;
472                         mb->pkt_len = pkt_len;
473                         mb->ol_flags = 0;
474                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
475                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
476                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
477                         mb->packet_type =
478                                 ptype_tbl[(uint8_t)((qword1 &
479                                 I40E_RXD_QW1_PTYPE_MASK) >>
480                                 I40E_RXD_QW1_PTYPE_SHIFT)];
481                         if (pkt_flags & PKT_RX_RSS_HASH)
482                                 mb->hash.rss = rte_le_to_cpu_32(\
483                                         rxdp[j].wb.qword0.hi_dword.rss);
484                         if (pkt_flags & PKT_RX_FDIR)
485                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
486
487 #ifdef RTE_LIBRTE_IEEE1588
488                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
489 #endif
490                         mb->ol_flags |= pkt_flags;
491
492                 }
493
494                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
495                         rxq->rx_stage[i + j] = rxep[j].mbuf;
496
497                 if (nb_dd != I40E_LOOK_AHEAD)
498                         break;
499         }
500
501         /* Clear software ring entries */
502         for (i = 0; i < nb_rx; i++)
503                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
504
505         return nb_rx;
506 }
507
508 static inline uint16_t
509 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
510                         struct rte_mbuf **rx_pkts,
511                         uint16_t nb_pkts)
512 {
513         uint16_t i;
514         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
515
516         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
517
518         for (i = 0; i < nb_pkts; i++)
519                 rx_pkts[i] = stage[i];
520
521         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
522         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
523
524         return nb_pkts;
525 }
526
527 static inline int
528 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
529 {
530         volatile union i40e_rx_desc *rxdp;
531         struct i40e_rx_entry *rxep;
532         struct rte_mbuf *mb;
533         uint16_t alloc_idx, i;
534         uint64_t dma_addr;
535         int diag;
536
537         /* Allocate buffers in bulk */
538         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
539                                 (rxq->rx_free_thresh - 1));
540         rxep = &(rxq->sw_ring[alloc_idx]);
541         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
542                                         rxq->rx_free_thresh);
543         if (unlikely(diag != 0)) {
544                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
545                 return -ENOMEM;
546         }
547
548         rxdp = &rxq->rx_ring[alloc_idx];
549         for (i = 0; i < rxq->rx_free_thresh; i++) {
550                 if (likely(i < (rxq->rx_free_thresh - 1)))
551                         /* Prefetch next mbuf */
552                         rte_prefetch0(rxep[i + 1].mbuf);
553
554                 mb = rxep[i].mbuf;
555                 rte_mbuf_refcnt_set(mb, 1);
556                 mb->next = NULL;
557                 mb->data_off = RTE_PKTMBUF_HEADROOM;
558                 mb->nb_segs = 1;
559                 mb->port = rxq->port_id;
560                 dma_addr = rte_cpu_to_le_64(\
561                         rte_mbuf_data_iova_default(mb));
562                 rxdp[i].read.hdr_addr = 0;
563                 rxdp[i].read.pkt_addr = dma_addr;
564         }
565
566         /* Update rx tail regsiter */
567         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
568
569         rxq->rx_free_trigger =
570                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
571         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
572                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
573
574         return 0;
575 }
576
577 static inline uint16_t
578 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
579 {
580         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
581         struct rte_eth_dev *dev;
582         uint16_t nb_rx = 0;
583
584         if (!nb_pkts)
585                 return 0;
586
587         if (rxq->rx_nb_avail)
588                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
589
590         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
591         rxq->rx_next_avail = 0;
592         rxq->rx_nb_avail = nb_rx;
593         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
594
595         if (rxq->rx_tail > rxq->rx_free_trigger) {
596                 if (i40e_rx_alloc_bufs(rxq) != 0) {
597                         uint16_t i, j;
598
599                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
600                         dev->data->rx_mbuf_alloc_failed +=
601                                 rxq->rx_free_thresh;
602
603                         rxq->rx_nb_avail = 0;
604                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
605                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
606                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
607
608                         return 0;
609                 }
610         }
611
612         if (rxq->rx_tail >= rxq->nb_rx_desc)
613                 rxq->rx_tail = 0;
614
615         if (rxq->rx_nb_avail)
616                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
617
618         return 0;
619 }
620
621 static uint16_t
622 i40e_recv_pkts_bulk_alloc(void *rx_queue,
623                           struct rte_mbuf **rx_pkts,
624                           uint16_t nb_pkts)
625 {
626         uint16_t nb_rx = 0, n, count;
627
628         if (unlikely(nb_pkts == 0))
629                 return 0;
630
631         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
632                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
633
634         while (nb_pkts) {
635                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
636                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
637                 nb_rx = (uint16_t)(nb_rx + count);
638                 nb_pkts = (uint16_t)(nb_pkts - count);
639                 if (count < n)
640                         break;
641         }
642
643         return nb_rx;
644 }
645 #else
646 static uint16_t
647 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
648                           struct rte_mbuf __rte_unused **rx_pkts,
649                           uint16_t __rte_unused nb_pkts)
650 {
651         return 0;
652 }
653 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
654
655 uint16_t
656 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
657 {
658         struct i40e_rx_queue *rxq;
659         volatile union i40e_rx_desc *rx_ring;
660         volatile union i40e_rx_desc *rxdp;
661         union i40e_rx_desc rxd;
662         struct i40e_rx_entry *sw_ring;
663         struct i40e_rx_entry *rxe;
664         struct rte_eth_dev *dev;
665         struct rte_mbuf *rxm;
666         struct rte_mbuf *nmb;
667         uint16_t nb_rx;
668         uint32_t rx_status;
669         uint64_t qword1;
670         uint16_t rx_packet_len;
671         uint16_t rx_id, nb_hold;
672         uint64_t dma_addr;
673         uint64_t pkt_flags;
674         uint32_t *ptype_tbl;
675
676         nb_rx = 0;
677         nb_hold = 0;
678         rxq = rx_queue;
679         rx_id = rxq->rx_tail;
680         rx_ring = rxq->rx_ring;
681         sw_ring = rxq->sw_ring;
682         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
683
684         while (nb_rx < nb_pkts) {
685                 rxdp = &rx_ring[rx_id];
686                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
687                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
688                                 >> I40E_RXD_QW1_STATUS_SHIFT;
689
690                 /* Check the DD bit first */
691                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
692                         break;
693
694                 nmb = rte_mbuf_raw_alloc(rxq->mp);
695                 if (unlikely(!nmb)) {
696                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
697                         dev->data->rx_mbuf_alloc_failed++;
698                         break;
699                 }
700
701                 rxd = *rxdp;
702                 nb_hold++;
703                 rxe = &sw_ring[rx_id];
704                 rx_id++;
705                 if (unlikely(rx_id == rxq->nb_rx_desc))
706                         rx_id = 0;
707
708                 /* Prefetch next mbuf */
709                 rte_prefetch0(sw_ring[rx_id].mbuf);
710
711                 /**
712                  * When next RX descriptor is on a cache line boundary,
713                  * prefetch the next 4 RX descriptors and next 8 pointers
714                  * to mbufs.
715                  */
716                 if ((rx_id & 0x3) == 0) {
717                         rte_prefetch0(&rx_ring[rx_id]);
718                         rte_prefetch0(&sw_ring[rx_id]);
719                 }
720                 rxm = rxe->mbuf;
721                 rxe->mbuf = nmb;
722                 dma_addr =
723                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
724                 rxdp->read.hdr_addr = 0;
725                 rxdp->read.pkt_addr = dma_addr;
726
727                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
728                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
729
730                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
731                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
732                 rxm->nb_segs = 1;
733                 rxm->next = NULL;
734                 rxm->pkt_len = rx_packet_len;
735                 rxm->data_len = rx_packet_len;
736                 rxm->port = rxq->port_id;
737                 rxm->ol_flags = 0;
738                 i40e_rxd_to_vlan_tci(rxm, &rxd);
739                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
740                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
741                 rxm->packet_type =
742                         ptype_tbl[(uint8_t)((qword1 &
743                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
744                 if (pkt_flags & PKT_RX_RSS_HASH)
745                         rxm->hash.rss =
746                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
747                 if (pkt_flags & PKT_RX_FDIR)
748                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
749
750 #ifdef RTE_LIBRTE_IEEE1588
751                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
752 #endif
753                 rxm->ol_flags |= pkt_flags;
754
755                 rx_pkts[nb_rx++] = rxm;
756         }
757         rxq->rx_tail = rx_id;
758
759         /**
760          * If the number of free RX descriptors is greater than the RX free
761          * threshold of the queue, advance the receive tail register of queue.
762          * Update that register with the value of the last processed RX
763          * descriptor minus 1.
764          */
765         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
766         if (nb_hold > rxq->rx_free_thresh) {
767                 rx_id = (uint16_t) ((rx_id == 0) ?
768                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
769                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
770                 nb_hold = 0;
771         }
772         rxq->nb_rx_hold = nb_hold;
773
774         return nb_rx;
775 }
776
777 uint16_t
778 i40e_recv_scattered_pkts(void *rx_queue,
779                          struct rte_mbuf **rx_pkts,
780                          uint16_t nb_pkts)
781 {
782         struct i40e_rx_queue *rxq = rx_queue;
783         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
784         volatile union i40e_rx_desc *rxdp;
785         union i40e_rx_desc rxd;
786         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
787         struct i40e_rx_entry *rxe;
788         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
789         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
790         struct rte_mbuf *nmb, *rxm;
791         uint16_t rx_id = rxq->rx_tail;
792         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
793         struct rte_eth_dev *dev;
794         uint32_t rx_status;
795         uint64_t qword1;
796         uint64_t dma_addr;
797         uint64_t pkt_flags;
798         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
799
800         while (nb_rx < nb_pkts) {
801                 rxdp = &rx_ring[rx_id];
802                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
803                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
804                                         I40E_RXD_QW1_STATUS_SHIFT;
805
806                 /* Check the DD bit */
807                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
808                         break;
809
810                 nmb = rte_mbuf_raw_alloc(rxq->mp);
811                 if (unlikely(!nmb)) {
812                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
813                         dev->data->rx_mbuf_alloc_failed++;
814                         break;
815                 }
816
817                 rxd = *rxdp;
818                 nb_hold++;
819                 rxe = &sw_ring[rx_id];
820                 rx_id++;
821                 if (rx_id == rxq->nb_rx_desc)
822                         rx_id = 0;
823
824                 /* Prefetch next mbuf */
825                 rte_prefetch0(sw_ring[rx_id].mbuf);
826
827                 /**
828                  * When next RX descriptor is on a cache line boundary,
829                  * prefetch the next 4 RX descriptors and next 8 pointers
830                  * to mbufs.
831                  */
832                 if ((rx_id & 0x3) == 0) {
833                         rte_prefetch0(&rx_ring[rx_id]);
834                         rte_prefetch0(&sw_ring[rx_id]);
835                 }
836
837                 rxm = rxe->mbuf;
838                 rxe->mbuf = nmb;
839                 dma_addr =
840                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
841
842                 /* Set data buffer address and data length of the mbuf */
843                 rxdp->read.hdr_addr = 0;
844                 rxdp->read.pkt_addr = dma_addr;
845                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
846                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
847                 rxm->data_len = rx_packet_len;
848                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
849
850                 /**
851                  * If this is the first buffer of the received packet, set the
852                  * pointer to the first mbuf of the packet and initialize its
853                  * context. Otherwise, update the total length and the number
854                  * of segments of the current scattered packet, and update the
855                  * pointer to the last mbuf of the current packet.
856                  */
857                 if (!first_seg) {
858                         first_seg = rxm;
859                         first_seg->nb_segs = 1;
860                         first_seg->pkt_len = rx_packet_len;
861                 } else {
862                         first_seg->pkt_len =
863                                 (uint16_t)(first_seg->pkt_len +
864                                                 rx_packet_len);
865                         first_seg->nb_segs++;
866                         last_seg->next = rxm;
867                 }
868
869                 /**
870                  * If this is not the last buffer of the received packet,
871                  * update the pointer to the last mbuf of the current scattered
872                  * packet and continue to parse the RX ring.
873                  */
874                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
875                         last_seg = rxm;
876                         continue;
877                 }
878
879                 /**
880                  * This is the last buffer of the received packet. If the CRC
881                  * is not stripped by the hardware:
882                  *  - Subtract the CRC length from the total packet length.
883                  *  - If the last buffer only contains the whole CRC or a part
884                  *  of it, free the mbuf associated to the last buffer. If part
885                  *  of the CRC is also contained in the previous mbuf, subtract
886                  *  the length of that CRC part from the data length of the
887                  *  previous mbuf.
888                  */
889                 rxm->next = NULL;
890                 if (unlikely(rxq->crc_len > 0)) {
891                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
892                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
893                                 rte_pktmbuf_free_seg(rxm);
894                                 first_seg->nb_segs--;
895                                 last_seg->data_len =
896                                         (uint16_t)(last_seg->data_len -
897                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
898                                 last_seg->next = NULL;
899                         } else
900                                 rxm->data_len = (uint16_t)(rx_packet_len -
901                                                         RTE_ETHER_CRC_LEN);
902                 }
903
904                 first_seg->port = rxq->port_id;
905                 first_seg->ol_flags = 0;
906                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
907                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
908                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
909                 first_seg->packet_type =
910                         ptype_tbl[(uint8_t)((qword1 &
911                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
912                 if (pkt_flags & PKT_RX_RSS_HASH)
913                         first_seg->hash.rss =
914                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
915                 if (pkt_flags & PKT_RX_FDIR)
916                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
917
918 #ifdef RTE_LIBRTE_IEEE1588
919                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
920 #endif
921                 first_seg->ol_flags |= pkt_flags;
922
923                 /* Prefetch data of first segment, if configured to do so. */
924                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
925                         first_seg->data_off));
926                 rx_pkts[nb_rx++] = first_seg;
927                 first_seg = NULL;
928         }
929
930         /* Record index of the next RX descriptor to probe. */
931         rxq->rx_tail = rx_id;
932         rxq->pkt_first_seg = first_seg;
933         rxq->pkt_last_seg = last_seg;
934
935         /**
936          * If the number of free RX descriptors is greater than the RX free
937          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
938          * register. Update the RDT with the value of the last processed RX
939          * descriptor minus 1, to guarantee that the RDT register is never
940          * equal to the RDH register, which creates a "full" ring situtation
941          * from the hardware point of view.
942          */
943         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
944         if (nb_hold > rxq->rx_free_thresh) {
945                 rx_id = (uint16_t)(rx_id == 0 ?
946                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
947                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
948                 nb_hold = 0;
949         }
950         rxq->nb_rx_hold = nb_hold;
951
952         return nb_rx;
953 }
954
955 /* Check if the context descriptor is needed for TX offloading */
956 static inline uint16_t
957 i40e_calc_context_desc(uint64_t flags)
958 {
959         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
960                 PKT_TX_TCP_SEG |
961                 PKT_TX_QINQ_PKT |
962                 PKT_TX_TUNNEL_MASK;
963
964 #ifdef RTE_LIBRTE_IEEE1588
965         mask |= PKT_TX_IEEE1588_TMST;
966 #endif
967
968         return (flags & mask) ? 1 : 0;
969 }
970
971 /* set i40e TSO context descriptor */
972 static inline uint64_t
973 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
974 {
975         uint64_t ctx_desc = 0;
976         uint32_t cd_cmd, hdr_len, cd_tso_len;
977
978         if (!tx_offload.l4_len) {
979                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
980                 return ctx_desc;
981         }
982
983         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
984         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
985                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
986
987         cd_cmd = I40E_TX_CTX_DESC_TSO;
988         cd_tso_len = mbuf->pkt_len - hdr_len;
989         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
990                 ((uint64_t)cd_tso_len <<
991                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
992                 ((uint64_t)mbuf->tso_segsz <<
993                  I40E_TXD_CTX_QW1_MSS_SHIFT);
994
995         return ctx_desc;
996 }
997
998 uint16_t
999 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1000 {
1001         struct i40e_tx_queue *txq;
1002         struct i40e_tx_entry *sw_ring;
1003         struct i40e_tx_entry *txe, *txn;
1004         volatile struct i40e_tx_desc *txd;
1005         volatile struct i40e_tx_desc *txr;
1006         struct rte_mbuf *tx_pkt;
1007         struct rte_mbuf *m_seg;
1008         uint32_t cd_tunneling_params;
1009         uint16_t tx_id;
1010         uint16_t nb_tx;
1011         uint32_t td_cmd;
1012         uint32_t td_offset;
1013         uint32_t td_tag;
1014         uint64_t ol_flags;
1015         uint16_t nb_used;
1016         uint16_t nb_ctx;
1017         uint16_t tx_last;
1018         uint16_t slen;
1019         uint64_t buf_dma_addr;
1020         union i40e_tx_offload tx_offload = {0};
1021
1022         txq = tx_queue;
1023         sw_ring = txq->sw_ring;
1024         txr = txq->tx_ring;
1025         tx_id = txq->tx_tail;
1026         txe = &sw_ring[tx_id];
1027
1028         /* Check if the descriptor ring needs to be cleaned. */
1029         if (txq->nb_tx_free < txq->tx_free_thresh)
1030                 i40e_xmit_cleanup(txq);
1031
1032         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1033                 td_cmd = 0;
1034                 td_tag = 0;
1035                 td_offset = 0;
1036
1037                 tx_pkt = *tx_pkts++;
1038                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1039
1040                 ol_flags = tx_pkt->ol_flags;
1041                 tx_offload.l2_len = tx_pkt->l2_len;
1042                 tx_offload.l3_len = tx_pkt->l3_len;
1043                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1044                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1045                 tx_offload.l4_len = tx_pkt->l4_len;
1046                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1047
1048                 /* Calculate the number of context descriptors needed. */
1049                 nb_ctx = i40e_calc_context_desc(ol_flags);
1050
1051                 /**
1052                  * The number of descriptors that must be allocated for
1053                  * a packet equals to the number of the segments of that
1054                  * packet plus 1 context descriptor if needed.
1055                  */
1056                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1057                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1058
1059                 /* Circular ring */
1060                 if (tx_last >= txq->nb_tx_desc)
1061                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1062
1063                 if (nb_used > txq->nb_tx_free) {
1064                         if (i40e_xmit_cleanup(txq) != 0) {
1065                                 if (nb_tx == 0)
1066                                         return 0;
1067                                 goto end_of_tx;
1068                         }
1069                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1070                                 while (nb_used > txq->nb_tx_free) {
1071                                         if (i40e_xmit_cleanup(txq) != 0) {
1072                                                 if (nb_tx == 0)
1073                                                         return 0;
1074                                                 goto end_of_tx;
1075                                         }
1076                                 }
1077                         }
1078                 }
1079
1080                 /* Descriptor based VLAN insertion */
1081                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1082                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1083                         td_tag = tx_pkt->vlan_tci;
1084                 }
1085
1086                 /* Always enable CRC offload insertion */
1087                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1088
1089                 /* Fill in tunneling parameters if necessary */
1090                 cd_tunneling_params = 0;
1091                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1092                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1093                                                     &cd_tunneling_params);
1094                 /* Enable checksum offloading */
1095                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1096                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1097                                                  &td_offset, tx_offload);
1098
1099                 if (nb_ctx) {
1100                         /* Setup TX context descriptor if required */
1101                         volatile struct i40e_tx_context_desc *ctx_txd =
1102                                 (volatile struct i40e_tx_context_desc *)\
1103                                                         &txr[tx_id];
1104                         uint16_t cd_l2tag2 = 0;
1105                         uint64_t cd_type_cmd_tso_mss =
1106                                 I40E_TX_DESC_DTYPE_CONTEXT;
1107
1108                         txn = &sw_ring[txe->next_id];
1109                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1110                         if (txe->mbuf != NULL) {
1111                                 rte_pktmbuf_free_seg(txe->mbuf);
1112                                 txe->mbuf = NULL;
1113                         }
1114
1115                         /* TSO enabled means no timestamp */
1116                         if (ol_flags & PKT_TX_TCP_SEG)
1117                                 cd_type_cmd_tso_mss |=
1118                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1119                         else {
1120 #ifdef RTE_LIBRTE_IEEE1588
1121                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1122                                         cd_type_cmd_tso_mss |=
1123                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1124                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1125 #endif
1126                         }
1127
1128                         ctx_txd->tunneling_params =
1129                                 rte_cpu_to_le_32(cd_tunneling_params);
1130                         if (ol_flags & PKT_TX_QINQ_PKT) {
1131                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1132                                 cd_type_cmd_tso_mss |=
1133                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1134                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1135                         }
1136                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1137                         ctx_txd->type_cmd_tso_mss =
1138                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1139
1140                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1141                                 "tunneling_params: %#x;\n"
1142                                 "l2tag2: %#hx;\n"
1143                                 "rsvd: %#hx;\n"
1144                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1145                                 tx_pkt, tx_id,
1146                                 ctx_txd->tunneling_params,
1147                                 ctx_txd->l2tag2,
1148                                 ctx_txd->rsvd,
1149                                 ctx_txd->type_cmd_tso_mss);
1150
1151                         txe->last_id = tx_last;
1152                         tx_id = txe->next_id;
1153                         txe = txn;
1154                 }
1155
1156                 m_seg = tx_pkt;
1157                 do {
1158                         txd = &txr[tx_id];
1159                         txn = &sw_ring[txe->next_id];
1160
1161                         if (txe->mbuf)
1162                                 rte_pktmbuf_free_seg(txe->mbuf);
1163                         txe->mbuf = m_seg;
1164
1165                         /* Setup TX Descriptor */
1166                         slen = m_seg->data_len;
1167                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1168
1169                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1170                                 "buf_dma_addr: %#"PRIx64";\n"
1171                                 "td_cmd: %#x;\n"
1172                                 "td_offset: %#x;\n"
1173                                 "td_len: %u;\n"
1174                                 "td_tag: %#x;\n",
1175                                 tx_pkt, tx_id, buf_dma_addr,
1176                                 td_cmd, td_offset, slen, td_tag);
1177
1178                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1179                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1180                                                 td_offset, slen, td_tag);
1181                         txe->last_id = tx_last;
1182                         tx_id = txe->next_id;
1183                         txe = txn;
1184                         m_seg = m_seg->next;
1185                 } while (m_seg != NULL);
1186
1187                 /* The last packet data descriptor needs End Of Packet (EOP) */
1188                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1189                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1190                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1191
1192                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1193                         PMD_TX_FREE_LOG(DEBUG,
1194                                         "Setting RS bit on TXD id="
1195                                         "%4u (port=%d queue=%d)",
1196                                         tx_last, txq->port_id, txq->queue_id);
1197
1198                         td_cmd |= I40E_TX_DESC_CMD_RS;
1199
1200                         /* Update txq RS bit counters */
1201                         txq->nb_tx_used = 0;
1202                 }
1203
1204                 txd->cmd_type_offset_bsz |=
1205                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1206                                         I40E_TXD_QW1_CMD_SHIFT);
1207         }
1208
1209 end_of_tx:
1210         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1211                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1212                    (unsigned) tx_id, (unsigned) nb_tx);
1213
1214         I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1215         txq->tx_tail = tx_id;
1216
1217         return nb_tx;
1218 }
1219
1220 static __rte_always_inline int
1221 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1222 {
1223         struct i40e_tx_entry *txep;
1224         uint16_t i;
1225
1226         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1227                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1228                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1229                 return 0;
1230
1231         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1232
1233         for (i = 0; i < txq->tx_rs_thresh; i++)
1234                 rte_prefetch0((txep + i)->mbuf);
1235
1236         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
1237                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1238                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1239                         txep->mbuf = NULL;
1240                 }
1241         } else {
1242                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1243                         rte_pktmbuf_free_seg(txep->mbuf);
1244                         txep->mbuf = NULL;
1245                 }
1246         }
1247
1248         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1249         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1250         if (txq->tx_next_dd >= txq->nb_tx_desc)
1251                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1252
1253         return txq->tx_rs_thresh;
1254 }
1255
1256 /* Populate 4 descriptors with data from 4 mbufs */
1257 static inline void
1258 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1259 {
1260         uint64_t dma_addr;
1261         uint32_t i;
1262
1263         for (i = 0; i < 4; i++, txdp++, pkts++) {
1264                 dma_addr = rte_mbuf_data_iova(*pkts);
1265                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1266                 txdp->cmd_type_offset_bsz =
1267                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1268                                         (*pkts)->data_len, 0);
1269         }
1270 }
1271
1272 /* Populate 1 descriptor with data from 1 mbuf */
1273 static inline void
1274 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1275 {
1276         uint64_t dma_addr;
1277
1278         dma_addr = rte_mbuf_data_iova(*pkts);
1279         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1280         txdp->cmd_type_offset_bsz =
1281                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1282                                 (*pkts)->data_len, 0);
1283 }
1284
1285 /* Fill hardware descriptor ring with mbuf data */
1286 static inline void
1287 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1288                      struct rte_mbuf **pkts,
1289                      uint16_t nb_pkts)
1290 {
1291         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1292         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1293         const int N_PER_LOOP = 4;
1294         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1295         int mainpart, leftover;
1296         int i, j;
1297
1298         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1299         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1300         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1301                 for (j = 0; j < N_PER_LOOP; ++j) {
1302                         (txep + i + j)->mbuf = *(pkts + i + j);
1303                 }
1304                 tx4(txdp + i, pkts + i);
1305         }
1306         if (unlikely(leftover > 0)) {
1307                 for (i = 0; i < leftover; ++i) {
1308                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1309                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1310                 }
1311         }
1312 }
1313
1314 static inline uint16_t
1315 tx_xmit_pkts(struct i40e_tx_queue *txq,
1316              struct rte_mbuf **tx_pkts,
1317              uint16_t nb_pkts)
1318 {
1319         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1320         uint16_t n = 0;
1321
1322         /**
1323          * Begin scanning the H/W ring for done descriptors when the number
1324          * of available descriptors drops below tx_free_thresh. For each done
1325          * descriptor, free the associated buffer.
1326          */
1327         if (txq->nb_tx_free < txq->tx_free_thresh)
1328                 i40e_tx_free_bufs(txq);
1329
1330         /* Use available descriptor only */
1331         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1332         if (unlikely(!nb_pkts))
1333                 return 0;
1334
1335         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1336         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1337                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1338                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1339                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1340                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1341                                                 I40E_TXD_QW1_CMD_SHIFT);
1342                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1343                 txq->tx_tail = 0;
1344         }
1345
1346         /* Fill hardware descriptor ring with mbuf data */
1347         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1348         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1349
1350         /* Determin if RS bit needs to be set */
1351         if (txq->tx_tail > txq->tx_next_rs) {
1352                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1353                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1354                                                 I40E_TXD_QW1_CMD_SHIFT);
1355                 txq->tx_next_rs =
1356                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1357                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1358                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1359         }
1360
1361         if (txq->tx_tail >= txq->nb_tx_desc)
1362                 txq->tx_tail = 0;
1363
1364         /* Update the tx tail register */
1365         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1366
1367         return nb_pkts;
1368 }
1369
1370 static uint16_t
1371 i40e_xmit_pkts_simple(void *tx_queue,
1372                       struct rte_mbuf **tx_pkts,
1373                       uint16_t nb_pkts)
1374 {
1375         uint16_t nb_tx = 0;
1376
1377         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1378                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1379                                                 tx_pkts, nb_pkts);
1380
1381         while (nb_pkts) {
1382                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1383                                                 I40E_TX_MAX_BURST);
1384
1385                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1386                                                 &tx_pkts[nb_tx], num);
1387                 nb_tx = (uint16_t)(nb_tx + ret);
1388                 nb_pkts = (uint16_t)(nb_pkts - ret);
1389                 if (ret < num)
1390                         break;
1391         }
1392
1393         return nb_tx;
1394 }
1395
1396 static uint16_t
1397 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1398                    uint16_t nb_pkts)
1399 {
1400         uint16_t nb_tx = 0;
1401         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1402
1403         while (nb_pkts) {
1404                 uint16_t ret, num;
1405
1406                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1407                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1408                                                 num);
1409                 nb_tx += ret;
1410                 nb_pkts -= ret;
1411                 if (ret < num)
1412                         break;
1413         }
1414
1415         return nb_tx;
1416 }
1417
1418 /*********************************************************************
1419  *
1420  *  TX prep functions
1421  *
1422  **********************************************************************/
1423 uint16_t
1424 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1425                 uint16_t nb_pkts)
1426 {
1427         int i, ret;
1428         uint64_t ol_flags;
1429         struct rte_mbuf *m;
1430
1431         for (i = 0; i < nb_pkts; i++) {
1432                 m = tx_pkts[i];
1433                 ol_flags = m->ol_flags;
1434
1435                 /* Check for m->nb_segs to not exceed the limits. */
1436                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1437                         if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1438                             m->pkt_len > I40E_FRAME_SIZE_MAX) {
1439                                 rte_errno = EINVAL;
1440                                 return i;
1441                         }
1442                 } else if (m->nb_segs > I40E_TX_MAX_SEG ||
1443                            m->tso_segsz < I40E_MIN_TSO_MSS ||
1444                            m->tso_segsz > I40E_MAX_TSO_MSS ||
1445                            m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1446                         /* MSS outside the range (256B - 9674B) are considered
1447                          * malicious
1448                          */
1449                         rte_errno = EINVAL;
1450                         return i;
1451                 }
1452
1453                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1454                         rte_errno = ENOTSUP;
1455                         return i;
1456                 }
1457
1458                 /* check the size of packet */
1459                 if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1460                         rte_errno = EINVAL;
1461                         return i;
1462                 }
1463
1464 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1465                 ret = rte_validate_tx_offload(m);
1466                 if (ret != 0) {
1467                         rte_errno = -ret;
1468                         return i;
1469                 }
1470 #endif
1471                 ret = rte_net_intel_cksum_prepare(m);
1472                 if (ret != 0) {
1473                         rte_errno = -ret;
1474                         return i;
1475                 }
1476         }
1477         return i;
1478 }
1479
1480 /*
1481  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1482  * application used, which assume having sequential ones. But from driver's
1483  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1484  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1485  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1486  * use queue_idx from 0 to 95 to access queues, while real queue would be
1487  * different. This function will do a queue mapping to find VSI the queue
1488  * belongs to.
1489  */
1490 static struct i40e_vsi*
1491 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1492 {
1493         /* the queue in MAIN VSI range */
1494         if (queue_idx < pf->main_vsi->nb_qps)
1495                 return pf->main_vsi;
1496
1497         queue_idx -= pf->main_vsi->nb_qps;
1498
1499         /* queue_idx is greater than VMDQ VSIs range */
1500         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1501                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1502                 return NULL;
1503         }
1504
1505         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1506 }
1507
1508 static uint16_t
1509 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1510 {
1511         /* the queue in MAIN VSI range */
1512         if (queue_idx < pf->main_vsi->nb_qps)
1513                 return queue_idx;
1514
1515         /* It's VMDQ queues */
1516         queue_idx -= pf->main_vsi->nb_qps;
1517
1518         if (pf->nb_cfg_vmdq_vsi)
1519                 return queue_idx % pf->vmdq_nb_qps;
1520         else {
1521                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1522                 return (uint16_t)(-1);
1523         }
1524 }
1525
1526 int
1527 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1528 {
1529         struct i40e_rx_queue *rxq;
1530         int err;
1531         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1532
1533         PMD_INIT_FUNC_TRACE();
1534
1535         rxq = dev->data->rx_queues[rx_queue_id];
1536
1537         err = i40e_alloc_rx_queue_mbufs(rxq);
1538         if (err) {
1539                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1540                 return err;
1541         }
1542
1543         /* Init the RX tail regieter. */
1544         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1545
1546         err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1547         if (err) {
1548                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1549                             rx_queue_id);
1550
1551                 i40e_rx_queue_release_mbufs(rxq);
1552                 i40e_reset_rx_queue(rxq);
1553                 return err;
1554         }
1555         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1556
1557         return 0;
1558 }
1559
1560 int
1561 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1562 {
1563         struct i40e_rx_queue *rxq;
1564         int err;
1565         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1566
1567         rxq = dev->data->rx_queues[rx_queue_id];
1568
1569         /*
1570          * rx_queue_id is queue id application refers to, while
1571          * rxq->reg_idx is the real queue index.
1572          */
1573         err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1574         if (err) {
1575                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1576                             rx_queue_id);
1577                 return err;
1578         }
1579         i40e_rx_queue_release_mbufs(rxq);
1580         i40e_reset_rx_queue(rxq);
1581         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1582
1583         return 0;
1584 }
1585
1586 int
1587 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1588 {
1589         int err;
1590         struct i40e_tx_queue *txq;
1591         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1592
1593         PMD_INIT_FUNC_TRACE();
1594
1595         txq = dev->data->tx_queues[tx_queue_id];
1596
1597         /*
1598          * tx_queue_id is queue id application refers to, while
1599          * rxq->reg_idx is the real queue index.
1600          */
1601         err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1602         if (err) {
1603                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1604                             tx_queue_id);
1605                 return err;
1606         }
1607         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1608
1609         return 0;
1610 }
1611
1612 int
1613 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1614 {
1615         struct i40e_tx_queue *txq;
1616         int err;
1617         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1618
1619         txq = dev->data->tx_queues[tx_queue_id];
1620
1621         /*
1622          * tx_queue_id is queue id application refers to, while
1623          * txq->reg_idx is the real queue index.
1624          */
1625         err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1626         if (err) {
1627                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1628                             tx_queue_id);
1629                 return err;
1630         }
1631
1632         i40e_tx_queue_release_mbufs(txq);
1633         i40e_reset_tx_queue(txq);
1634         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1635
1636         return 0;
1637 }
1638
1639 const uint32_t *
1640 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1641 {
1642         static const uint32_t ptypes[] = {
1643                 /* refers to i40e_rxd_pkt_type_mapping() */
1644                 RTE_PTYPE_L2_ETHER,
1645                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1646                 RTE_PTYPE_L2_ETHER_LLDP,
1647                 RTE_PTYPE_L2_ETHER_ARP,
1648                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1649                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1650                 RTE_PTYPE_L4_FRAG,
1651                 RTE_PTYPE_L4_ICMP,
1652                 RTE_PTYPE_L4_NONFRAG,
1653                 RTE_PTYPE_L4_SCTP,
1654                 RTE_PTYPE_L4_TCP,
1655                 RTE_PTYPE_L4_UDP,
1656                 RTE_PTYPE_TUNNEL_GRENAT,
1657                 RTE_PTYPE_TUNNEL_IP,
1658                 RTE_PTYPE_INNER_L2_ETHER,
1659                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1660                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1661                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1662                 RTE_PTYPE_INNER_L4_FRAG,
1663                 RTE_PTYPE_INNER_L4_ICMP,
1664                 RTE_PTYPE_INNER_L4_NONFRAG,
1665                 RTE_PTYPE_INNER_L4_SCTP,
1666                 RTE_PTYPE_INNER_L4_TCP,
1667                 RTE_PTYPE_INNER_L4_UDP,
1668                 RTE_PTYPE_UNKNOWN
1669         };
1670
1671         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1672 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1673             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1674 #endif
1675             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1676             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1677             dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1678             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1679             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1680                 return ptypes;
1681         return NULL;
1682 }
1683
1684 static int
1685 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1686 {
1687         uint16_t i;
1688
1689         for (i = 0; i < num; i++) {
1690                 if (i != idx && queues[i])
1691                         return 0;
1692         }
1693
1694         return 1;
1695 }
1696
1697 static int
1698 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1699                                 struct i40e_rx_queue *rxq)
1700 {
1701         struct i40e_adapter *ad =
1702                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1703         int use_def_burst_func =
1704                 check_rx_burst_bulk_alloc_preconditions(rxq);
1705         uint16_t buf_size =
1706                 (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1707                            RTE_PKTMBUF_HEADROOM);
1708         int use_scattered_rx =
1709                 (rxq->max_pkt_len > buf_size);
1710
1711         if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1712                 PMD_DRV_LOG(ERR,
1713                             "Failed to do RX queue initialization");
1714                 return -EINVAL;
1715         }
1716
1717         if (i40e_dev_first_queue(rxq->queue_id,
1718                                  dev->data->rx_queues,
1719                                  dev->data->nb_rx_queues)) {
1720                 /**
1721                  * If it is the first queue to setup,
1722                  * set all flags to default and call
1723                  * i40e_set_rx_function.
1724                  */
1725                 ad->rx_bulk_alloc_allowed = true;
1726                 ad->rx_vec_allowed = true;
1727                 dev->data->scattered_rx = use_scattered_rx;
1728                 if (use_def_burst_func)
1729                         ad->rx_bulk_alloc_allowed = false;
1730                 i40e_set_rx_function(dev);
1731                 return 0;
1732         } else if (ad->rx_vec_allowed && !rte_is_power_of_2(rxq->nb_rx_desc)) {
1733                 PMD_DRV_LOG(ERR, "Vector mode is allowed, but descriptor"
1734                             " number %d of queue %d isn't power of 2",
1735                             rxq->nb_rx_desc, rxq->queue_id);
1736                 return -EINVAL;
1737         }
1738
1739         /* check bulk alloc conflict */
1740         if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1741                 PMD_DRV_LOG(ERR, "Can't use default burst.");
1742                 return -EINVAL;
1743         }
1744         /* check scatterred conflict */
1745         if (!dev->data->scattered_rx && use_scattered_rx) {
1746                 PMD_DRV_LOG(ERR, "Scattered rx is required.");
1747                 return -EINVAL;
1748         }
1749         /* check vector conflict */
1750         if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1751                 PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1752                 return -EINVAL;
1753         }
1754
1755         return 0;
1756 }
1757
1758 int
1759 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1760                         uint16_t queue_idx,
1761                         uint16_t nb_desc,
1762                         unsigned int socket_id,
1763                         const struct rte_eth_rxconf *rx_conf,
1764                         struct rte_mempool *mp)
1765 {
1766         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1767         struct i40e_adapter *ad =
1768                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1769         struct i40e_vsi *vsi;
1770         struct i40e_pf *pf = NULL;
1771         struct i40e_vf *vf = NULL;
1772         struct i40e_rx_queue *rxq;
1773         const struct rte_memzone *rz;
1774         uint32_t ring_size;
1775         uint16_t len, i;
1776         uint16_t reg_idx, base, bsf, tc_mapping;
1777         int q_offset, use_def_burst_func = 1;
1778         uint64_t offloads;
1779
1780         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1781
1782         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1783                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1784                 vsi = &vf->vsi;
1785                 if (!vsi)
1786                         return -EINVAL;
1787                 reg_idx = queue_idx;
1788         } else {
1789                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1790                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1791                 if (!vsi)
1792                         return -EINVAL;
1793                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1794                 if (q_offset < 0)
1795                         return -EINVAL;
1796                 reg_idx = vsi->base_queue + q_offset;
1797         }
1798
1799         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1800             (nb_desc > I40E_MAX_RING_DESC) ||
1801             (nb_desc < I40E_MIN_RING_DESC)) {
1802                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1803                             "invalid", nb_desc);
1804                 return -EINVAL;
1805         }
1806
1807         /* Free memory if needed */
1808         if (dev->data->rx_queues[queue_idx]) {
1809                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1810                 dev->data->rx_queues[queue_idx] = NULL;
1811         }
1812
1813         /* Allocate the rx queue data structure */
1814         rxq = rte_zmalloc_socket("i40e rx queue",
1815                                  sizeof(struct i40e_rx_queue),
1816                                  RTE_CACHE_LINE_SIZE,
1817                                  socket_id);
1818         if (!rxq) {
1819                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1820                             "rx queue data structure");
1821                 return -ENOMEM;
1822         }
1823         rxq->mp = mp;
1824         rxq->nb_rx_desc = nb_desc;
1825         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1826         rxq->queue_id = queue_idx;
1827         rxq->reg_idx = reg_idx;
1828         rxq->port_id = dev->data->port_id;
1829         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1830                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1831         else
1832                 rxq->crc_len = 0;
1833         rxq->drop_en = rx_conf->rx_drop_en;
1834         rxq->vsi = vsi;
1835         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1836         rxq->offloads = offloads;
1837
1838         /* Allocate the maximun number of RX ring hardware descriptor. */
1839         len = I40E_MAX_RING_DESC;
1840
1841         /**
1842          * Allocating a little more memory because vectorized/bulk_alloc Rx
1843          * functions doesn't check boundaries each time.
1844          */
1845         len += RTE_PMD_I40E_RX_MAX_BURST;
1846
1847         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1848                               I40E_DMA_MEM_ALIGN);
1849
1850         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1851                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1852         if (!rz) {
1853                 i40e_dev_rx_queue_release(rxq);
1854                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1855                 return -ENOMEM;
1856         }
1857
1858         /* Zero all the descriptors in the ring. */
1859         memset(rz->addr, 0, ring_size);
1860
1861         rxq->rx_ring_phys_addr = rz->iova;
1862         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1863
1864         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1865
1866         /* Allocate the software ring. */
1867         rxq->sw_ring =
1868                 rte_zmalloc_socket("i40e rx sw ring",
1869                                    sizeof(struct i40e_rx_entry) * len,
1870                                    RTE_CACHE_LINE_SIZE,
1871                                    socket_id);
1872         if (!rxq->sw_ring) {
1873                 i40e_dev_rx_queue_release(rxq);
1874                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1875                 return -ENOMEM;
1876         }
1877
1878         i40e_reset_rx_queue(rxq);
1879         rxq->q_set = TRUE;
1880
1881         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1882                 if (!(vsi->enabled_tc & (1 << i)))
1883                         continue;
1884                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1885                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1886                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1887                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1888                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1889
1890                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1891                         rxq->dcb_tc = i;
1892         }
1893
1894         if (dev->data->dev_started) {
1895                 if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
1896                         i40e_dev_rx_queue_release(rxq);
1897                         return -EINVAL;
1898                 }
1899         } else {
1900                 use_def_burst_func =
1901                         check_rx_burst_bulk_alloc_preconditions(rxq);
1902                 if (!use_def_burst_func) {
1903 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1904                         PMD_INIT_LOG(DEBUG,
1905                           "Rx Burst Bulk Alloc Preconditions are "
1906                           "satisfied. Rx Burst Bulk Alloc function will be "
1907                           "used on port=%d, queue=%d.",
1908                           rxq->port_id, rxq->queue_id);
1909 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1910                 } else {
1911                         PMD_INIT_LOG(DEBUG,
1912                           "Rx Burst Bulk Alloc Preconditions are "
1913                           "not satisfied, Scattered Rx is requested, "
1914                           "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1915                           "not enabled on port=%d, queue=%d.",
1916                           rxq->port_id, rxq->queue_id);
1917                         ad->rx_bulk_alloc_allowed = false;
1918                 }
1919         }
1920
1921         dev->data->rx_queues[queue_idx] = rxq;
1922         return 0;
1923 }
1924
1925 void
1926 i40e_dev_rx_queue_release(void *rxq)
1927 {
1928         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1929
1930         if (!q) {
1931                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1932                 return;
1933         }
1934
1935         i40e_rx_queue_release_mbufs(q);
1936         rte_free(q->sw_ring);
1937         rte_free(q);
1938 }
1939
1940 uint32_t
1941 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1942 {
1943 #define I40E_RXQ_SCAN_INTERVAL 4
1944         volatile union i40e_rx_desc *rxdp;
1945         struct i40e_rx_queue *rxq;
1946         uint16_t desc = 0;
1947
1948         rxq = dev->data->rx_queues[rx_queue_id];
1949         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1950         while ((desc < rxq->nb_rx_desc) &&
1951                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1952                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1953                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1954                 /**
1955                  * Check the DD bit of a rx descriptor of each 4 in a group,
1956                  * to avoid checking too frequently and downgrading performance
1957                  * too much.
1958                  */
1959                 desc += I40E_RXQ_SCAN_INTERVAL;
1960                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1961                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1962                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1963                                         desc - rxq->nb_rx_desc]);
1964         }
1965
1966         return desc;
1967 }
1968
1969 int
1970 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1971 {
1972         volatile union i40e_rx_desc *rxdp;
1973         struct i40e_rx_queue *rxq = rx_queue;
1974         uint16_t desc;
1975         int ret;
1976
1977         if (unlikely(offset >= rxq->nb_rx_desc)) {
1978                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
1979                 return 0;
1980         }
1981
1982         desc = rxq->rx_tail + offset;
1983         if (desc >= rxq->nb_rx_desc)
1984                 desc -= rxq->nb_rx_desc;
1985
1986         rxdp = &(rxq->rx_ring[desc]);
1987
1988         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1989                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1990                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1991
1992         return ret;
1993 }
1994
1995 int
1996 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
1997 {
1998         struct i40e_rx_queue *rxq = rx_queue;
1999         volatile uint64_t *status;
2000         uint64_t mask;
2001         uint32_t desc;
2002
2003         if (unlikely(offset >= rxq->nb_rx_desc))
2004                 return -EINVAL;
2005
2006         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2007                 return RTE_ETH_RX_DESC_UNAVAIL;
2008
2009         desc = rxq->rx_tail + offset;
2010         if (desc >= rxq->nb_rx_desc)
2011                 desc -= rxq->nb_rx_desc;
2012
2013         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2014         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2015                 << I40E_RXD_QW1_STATUS_SHIFT);
2016         if (*status & mask)
2017                 return RTE_ETH_RX_DESC_DONE;
2018
2019         return RTE_ETH_RX_DESC_AVAIL;
2020 }
2021
2022 int
2023 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2024 {
2025         struct i40e_tx_queue *txq = tx_queue;
2026         volatile uint64_t *status;
2027         uint64_t mask, expect;
2028         uint32_t desc;
2029
2030         if (unlikely(offset >= txq->nb_tx_desc))
2031                 return -EINVAL;
2032
2033         desc = txq->tx_tail + offset;
2034         /* go to next desc that has the RS bit */
2035         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2036                 txq->tx_rs_thresh;
2037         if (desc >= txq->nb_tx_desc) {
2038                 desc -= txq->nb_tx_desc;
2039                 if (desc >= txq->nb_tx_desc)
2040                         desc -= txq->nb_tx_desc;
2041         }
2042
2043         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2044         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2045         expect = rte_cpu_to_le_64(
2046                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2047         if ((*status & mask) == expect)
2048                 return RTE_ETH_TX_DESC_DONE;
2049
2050         return RTE_ETH_TX_DESC_FULL;
2051 }
2052
2053 static int
2054 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2055                                 struct i40e_tx_queue *txq)
2056 {
2057         struct i40e_adapter *ad =
2058                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2059
2060         if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2061                 PMD_DRV_LOG(ERR,
2062                             "Failed to do TX queue initialization");
2063                 return -EINVAL;
2064         }
2065
2066         if (i40e_dev_first_queue(txq->queue_id,
2067                                  dev->data->tx_queues,
2068                                  dev->data->nb_tx_queues)) {
2069                 /**
2070                  * If it is the first queue to setup,
2071                  * set all flags and call
2072                  * i40e_set_tx_function.
2073                  */
2074                 i40e_set_tx_function_flag(dev, txq);
2075                 i40e_set_tx_function(dev);
2076                 return 0;
2077         }
2078
2079         /* check vector conflict */
2080         if (ad->tx_vec_allowed) {
2081                 if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2082                     i40e_txq_vec_setup(txq)) {
2083                         PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2084                         return -EINVAL;
2085                 }
2086         }
2087         /* check simple tx conflict */
2088         if (ad->tx_simple_allowed) {
2089                 if ((txq->offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2090                                 txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2091                         PMD_DRV_LOG(ERR, "No-simple tx is required.");
2092                         return -EINVAL;
2093                 }
2094         }
2095
2096         return 0;
2097 }
2098
2099 int
2100 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2101                         uint16_t queue_idx,
2102                         uint16_t nb_desc,
2103                         unsigned int socket_id,
2104                         const struct rte_eth_txconf *tx_conf)
2105 {
2106         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2107         struct i40e_vsi *vsi;
2108         struct i40e_pf *pf = NULL;
2109         struct i40e_vf *vf = NULL;
2110         struct i40e_tx_queue *txq;
2111         const struct rte_memzone *tz;
2112         uint32_t ring_size;
2113         uint16_t tx_rs_thresh, tx_free_thresh;
2114         uint16_t reg_idx, i, base, bsf, tc_mapping;
2115         int q_offset;
2116         uint64_t offloads;
2117
2118         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2119
2120         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2121                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2122                 vsi = &vf->vsi;
2123                 if (!vsi)
2124                         return -EINVAL;
2125                 reg_idx = queue_idx;
2126         } else {
2127                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2128                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2129                 if (!vsi)
2130                         return -EINVAL;
2131                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2132                 if (q_offset < 0)
2133                         return -EINVAL;
2134                 reg_idx = vsi->base_queue + q_offset;
2135         }
2136
2137         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2138             (nb_desc > I40E_MAX_RING_DESC) ||
2139             (nb_desc < I40E_MIN_RING_DESC)) {
2140                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2141                             "invalid", nb_desc);
2142                 return -EINVAL;
2143         }
2144
2145         /**
2146          * The following two parameters control the setting of the RS bit on
2147          * transmit descriptors. TX descriptors will have their RS bit set
2148          * after txq->tx_rs_thresh descriptors have been used. The TX
2149          * descriptor ring will be cleaned after txq->tx_free_thresh
2150          * descriptors are used or if the number of descriptors required to
2151          * transmit a packet is greater than the number of free TX descriptors.
2152          *
2153          * The following constraints must be satisfied:
2154          *  - tx_rs_thresh must be greater than 0.
2155          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2156          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2157          *  - tx_rs_thresh must be a divisor of the ring size.
2158          *  - tx_free_thresh must be greater than 0.
2159          *  - tx_free_thresh must be less than the size of the ring minus 3.
2160          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2161          *
2162          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2163          * race condition, hence the maximum threshold constraints. When set
2164          * to zero use default values.
2165          */
2166         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2167                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2168         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2169         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2170                 nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2171         if (tx_conf->tx_rs_thresh > 0)
2172                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2173         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2174                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2175                                 "exceed nb_desc. (tx_rs_thresh=%u "
2176                                 "tx_free_thresh=%u nb_desc=%u port=%d queue=%d)",
2177                                 (unsigned int)tx_rs_thresh,
2178                                 (unsigned int)tx_free_thresh,
2179                                 (unsigned int)nb_desc,
2180                                 (int)dev->data->port_id,
2181                                 (int)queue_idx);
2182                 return I40E_ERR_PARAM;
2183         }
2184         if (tx_rs_thresh >= (nb_desc - 2)) {
2185                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2186                              "number of TX descriptors minus 2. "
2187                              "(tx_rs_thresh=%u port=%d queue=%d)",
2188                              (unsigned int)tx_rs_thresh,
2189                              (int)dev->data->port_id,
2190                              (int)queue_idx);
2191                 return I40E_ERR_PARAM;
2192         }
2193         if (tx_free_thresh >= (nb_desc - 3)) {
2194                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2195                              "number of TX descriptors minus 3. "
2196                              "(tx_free_thresh=%u port=%d queue=%d)",
2197                              (unsigned int)tx_free_thresh,
2198                              (int)dev->data->port_id,
2199                              (int)queue_idx);
2200                 return I40E_ERR_PARAM;
2201         }
2202         if (tx_rs_thresh > tx_free_thresh) {
2203                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2204                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2205                              " tx_rs_thresh=%u port=%d queue=%d)",
2206                              (unsigned int)tx_free_thresh,
2207                              (unsigned int)tx_rs_thresh,
2208                              (int)dev->data->port_id,
2209                              (int)queue_idx);
2210                 return I40E_ERR_PARAM;
2211         }
2212         if ((nb_desc % tx_rs_thresh) != 0) {
2213                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2214                              "number of TX descriptors. (tx_rs_thresh=%u"
2215                              " port=%d queue=%d)",
2216                              (unsigned int)tx_rs_thresh,
2217                              (int)dev->data->port_id,
2218                              (int)queue_idx);
2219                 return I40E_ERR_PARAM;
2220         }
2221         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2222                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2223                              "tx_rs_thresh is greater than 1. "
2224                              "(tx_rs_thresh=%u port=%d queue=%d)",
2225                              (unsigned int)tx_rs_thresh,
2226                              (int)dev->data->port_id,
2227                              (int)queue_idx);
2228                 return I40E_ERR_PARAM;
2229         }
2230
2231         /* Free memory if needed. */
2232         if (dev->data->tx_queues[queue_idx]) {
2233                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2234                 dev->data->tx_queues[queue_idx] = NULL;
2235         }
2236
2237         /* Allocate the TX queue data structure. */
2238         txq = rte_zmalloc_socket("i40e tx queue",
2239                                   sizeof(struct i40e_tx_queue),
2240                                   RTE_CACHE_LINE_SIZE,
2241                                   socket_id);
2242         if (!txq) {
2243                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2244                             "tx queue structure");
2245                 return -ENOMEM;
2246         }
2247
2248         /* Allocate TX hardware ring descriptors. */
2249         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2250         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2251         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2252                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2253         if (!tz) {
2254                 i40e_dev_tx_queue_release(txq);
2255                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2256                 return -ENOMEM;
2257         }
2258
2259         txq->nb_tx_desc = nb_desc;
2260         txq->tx_rs_thresh = tx_rs_thresh;
2261         txq->tx_free_thresh = tx_free_thresh;
2262         txq->pthresh = tx_conf->tx_thresh.pthresh;
2263         txq->hthresh = tx_conf->tx_thresh.hthresh;
2264         txq->wthresh = tx_conf->tx_thresh.wthresh;
2265         txq->queue_id = queue_idx;
2266         txq->reg_idx = reg_idx;
2267         txq->port_id = dev->data->port_id;
2268         txq->offloads = offloads;
2269         txq->vsi = vsi;
2270         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2271
2272         txq->tx_ring_phys_addr = tz->iova;
2273         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2274
2275         /* Allocate software ring */
2276         txq->sw_ring =
2277                 rte_zmalloc_socket("i40e tx sw ring",
2278                                    sizeof(struct i40e_tx_entry) * nb_desc,
2279                                    RTE_CACHE_LINE_SIZE,
2280                                    socket_id);
2281         if (!txq->sw_ring) {
2282                 i40e_dev_tx_queue_release(txq);
2283                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2284                 return -ENOMEM;
2285         }
2286
2287         i40e_reset_tx_queue(txq);
2288         txq->q_set = TRUE;
2289
2290         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2291                 if (!(vsi->enabled_tc & (1 << i)))
2292                         continue;
2293                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2294                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2295                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2296                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2297                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2298
2299                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2300                         txq->dcb_tc = i;
2301         }
2302
2303         if (dev->data->dev_started) {
2304                 if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2305                         i40e_dev_tx_queue_release(txq);
2306                         return -EINVAL;
2307                 }
2308         } else {
2309                 /**
2310                  * Use a simple TX queue without offloads or
2311                  * multi segs if possible
2312                  */
2313                 i40e_set_tx_function_flag(dev, txq);
2314         }
2315         dev->data->tx_queues[queue_idx] = txq;
2316
2317         return 0;
2318 }
2319
2320 void
2321 i40e_dev_tx_queue_release(void *txq)
2322 {
2323         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2324
2325         if (!q) {
2326                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2327                 return;
2328         }
2329
2330         i40e_tx_queue_release_mbufs(q);
2331         rte_free(q->sw_ring);
2332         rte_free(q);
2333 }
2334
2335 const struct rte_memzone *
2336 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2337 {
2338         const struct rte_memzone *mz;
2339
2340         mz = rte_memzone_lookup(name);
2341         if (mz)
2342                 return mz;
2343
2344         mz = rte_memzone_reserve_aligned(name, len, socket_id,
2345                         RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2346         return mz;
2347 }
2348
2349 void
2350 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2351 {
2352         uint16_t i;
2353
2354         /* SSE Vector driver has a different way of releasing mbufs. */
2355         if (rxq->rx_using_sse) {
2356                 i40e_rx_queue_release_mbufs_vec(rxq);
2357                 return;
2358         }
2359
2360         if (!rxq->sw_ring) {
2361                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2362                 return;
2363         }
2364
2365         for (i = 0; i < rxq->nb_rx_desc; i++) {
2366                 if (rxq->sw_ring[i].mbuf) {
2367                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2368                         rxq->sw_ring[i].mbuf = NULL;
2369                 }
2370         }
2371 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2372         if (rxq->rx_nb_avail == 0)
2373                 return;
2374         for (i = 0; i < rxq->rx_nb_avail; i++) {
2375                 struct rte_mbuf *mbuf;
2376
2377                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2378                 rte_pktmbuf_free_seg(mbuf);
2379         }
2380         rxq->rx_nb_avail = 0;
2381 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2382 }
2383
2384 void
2385 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2386 {
2387         unsigned i;
2388         uint16_t len;
2389
2390         if (!rxq) {
2391                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2392                 return;
2393         }
2394
2395 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2396         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2397                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2398         else
2399 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2400                 len = rxq->nb_rx_desc;
2401
2402         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2403                 ((volatile char *)rxq->rx_ring)[i] = 0;
2404
2405         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2406         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2407                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2408
2409 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2410         rxq->rx_nb_avail = 0;
2411         rxq->rx_next_avail = 0;
2412         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2413 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2414         rxq->rx_tail = 0;
2415         rxq->nb_rx_hold = 0;
2416         rxq->pkt_first_seg = NULL;
2417         rxq->pkt_last_seg = NULL;
2418
2419         rxq->rxrearm_start = 0;
2420         rxq->rxrearm_nb = 0;
2421 }
2422
2423 void
2424 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2425 {
2426         struct rte_eth_dev *dev;
2427         uint16_t i;
2428
2429         if (!txq || !txq->sw_ring) {
2430                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
2431                 return;
2432         }
2433
2434         dev = &rte_eth_devices[txq->port_id];
2435
2436         /**
2437          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2438          *  so need to free remains more carefully.
2439          */
2440         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2441                         dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2442                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2443                 if (txq->tx_tail < i) {
2444                         for (; i < txq->nb_tx_desc; i++) {
2445                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2446                                 txq->sw_ring[i].mbuf = NULL;
2447                         }
2448                         i = 0;
2449                 }
2450                 for (; i < txq->tx_tail; i++) {
2451                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2452                         txq->sw_ring[i].mbuf = NULL;
2453                 }
2454         } else {
2455                 for (i = 0; i < txq->nb_tx_desc; i++) {
2456                         if (txq->sw_ring[i].mbuf) {
2457                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2458                                 txq->sw_ring[i].mbuf = NULL;
2459                         }
2460                 }
2461         }
2462 }
2463
2464 void
2465 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2466 {
2467         struct i40e_tx_entry *txe;
2468         uint16_t i, prev, size;
2469
2470         if (!txq) {
2471                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2472                 return;
2473         }
2474
2475         txe = txq->sw_ring;
2476         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2477         for (i = 0; i < size; i++)
2478                 ((volatile char *)txq->tx_ring)[i] = 0;
2479
2480         prev = (uint16_t)(txq->nb_tx_desc - 1);
2481         for (i = 0; i < txq->nb_tx_desc; i++) {
2482                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2483
2484                 txd->cmd_type_offset_bsz =
2485                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2486                 txe[i].mbuf =  NULL;
2487                 txe[i].last_id = i;
2488                 txe[prev].next_id = i;
2489                 prev = i;
2490         }
2491
2492         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2493         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2494
2495         txq->tx_tail = 0;
2496         txq->nb_tx_used = 0;
2497
2498         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2499         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2500 }
2501
2502 /* Init the TX queue in hardware */
2503 int
2504 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2505 {
2506         enum i40e_status_code err = I40E_SUCCESS;
2507         struct i40e_vsi *vsi = txq->vsi;
2508         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2509         uint16_t pf_q = txq->reg_idx;
2510         struct i40e_hmc_obj_txq tx_ctx;
2511         uint32_t qtx_ctl;
2512
2513         /* clear the context structure first */
2514         memset(&tx_ctx, 0, sizeof(tx_ctx));
2515         tx_ctx.new_context = 1;
2516         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2517         tx_ctx.qlen = txq->nb_tx_desc;
2518
2519 #ifdef RTE_LIBRTE_IEEE1588
2520         tx_ctx.timesync_ena = 1;
2521 #endif
2522         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2523         if (vsi->type == I40E_VSI_FDIR)
2524                 tx_ctx.fd_ena = TRUE;
2525
2526         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2527         if (err != I40E_SUCCESS) {
2528                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2529                 return err;
2530         }
2531
2532         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2533         if (err != I40E_SUCCESS) {
2534                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2535                 return err;
2536         }
2537
2538         /* Now associate this queue with this PCI function */
2539         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2540         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2541                                         I40E_QTX_CTL_PF_INDX_MASK);
2542         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2543         I40E_WRITE_FLUSH(hw);
2544
2545         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2546
2547         return err;
2548 }
2549
2550 int
2551 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2552 {
2553         struct i40e_rx_entry *rxe = rxq->sw_ring;
2554         uint64_t dma_addr;
2555         uint16_t i;
2556
2557         for (i = 0; i < rxq->nb_rx_desc; i++) {
2558                 volatile union i40e_rx_desc *rxd;
2559                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2560
2561                 if (unlikely(!mbuf)) {
2562                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2563                         return -ENOMEM;
2564                 }
2565
2566                 rte_mbuf_refcnt_set(mbuf, 1);
2567                 mbuf->next = NULL;
2568                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2569                 mbuf->nb_segs = 1;
2570                 mbuf->port = rxq->port_id;
2571
2572                 dma_addr =
2573                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2574
2575                 rxd = &rxq->rx_ring[i];
2576                 rxd->read.pkt_addr = dma_addr;
2577                 rxd->read.hdr_addr = 0;
2578 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2579                 rxd->read.rsvd1 = 0;
2580                 rxd->read.rsvd2 = 0;
2581 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2582
2583                 rxe[i].mbuf = mbuf;
2584         }
2585
2586         return 0;
2587 }
2588
2589 /*
2590  * Calculate the buffer length, and check the jumbo frame
2591  * and maximum packet length.
2592  */
2593 static int
2594 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2595 {
2596         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2597         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2598         struct rte_eth_dev_data *data = pf->dev_data;
2599         uint16_t buf_size, len;
2600
2601         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2602                 RTE_PKTMBUF_HEADROOM);
2603
2604         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2605                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2606         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2607                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2608                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2609                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2610                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2611                 rxq->hs_mode = i40e_header_split_enabled;
2612                 break;
2613         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2614         default:
2615                 rxq->rx_hdr_len = 0;
2616                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2617                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2618                 rxq->hs_mode = i40e_header_split_none;
2619                 break;
2620         }
2621
2622         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2623         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2624         if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2625                 if (rxq->max_pkt_len <= RTE_ETHER_MAX_LEN ||
2626                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2627                         PMD_DRV_LOG(ERR, "maximum packet length must "
2628                                     "be larger than %u and smaller than %u,"
2629                                     "as jumbo frame is enabled",
2630                                     (uint32_t)RTE_ETHER_MAX_LEN,
2631                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2632                         return I40E_ERR_CONFIG;
2633                 }
2634         } else {
2635                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
2636                         rxq->max_pkt_len > RTE_ETHER_MAX_LEN) {
2637                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2638                                     "larger than %u and smaller than %u, "
2639                                     "as jumbo frame is disabled",
2640                                     (uint32_t)RTE_ETHER_MIN_LEN,
2641                                     (uint32_t)RTE_ETHER_MAX_LEN);
2642                         return I40E_ERR_CONFIG;
2643                 }
2644         }
2645
2646         return 0;
2647 }
2648
2649 /* Init the RX queue in hardware */
2650 int
2651 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2652 {
2653         int err = I40E_SUCCESS;
2654         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2655         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2656         uint16_t pf_q = rxq->reg_idx;
2657         uint16_t buf_size;
2658         struct i40e_hmc_obj_rxq rx_ctx;
2659
2660         err = i40e_rx_queue_config(rxq);
2661         if (err < 0) {
2662                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2663                 return err;
2664         }
2665
2666         /* Clear the context structure first */
2667         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2668         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2669         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2670
2671         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2672         rx_ctx.qlen = rxq->nb_rx_desc;
2673 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2674         rx_ctx.dsize = 1;
2675 #endif
2676         rx_ctx.dtype = rxq->hs_mode;
2677         if (rxq->hs_mode)
2678                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2679         else
2680                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2681         rx_ctx.rxmax = rxq->max_pkt_len;
2682         rx_ctx.tphrdesc_ena = 1;
2683         rx_ctx.tphwdesc_ena = 1;
2684         rx_ctx.tphdata_ena = 1;
2685         rx_ctx.tphhead_ena = 1;
2686         rx_ctx.lrxqthresh = 2;
2687         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2688         rx_ctx.l2tsel = 1;
2689         /* showiv indicates if inner VLAN is stripped inside of tunnel
2690          * packet. When set it to 1, vlan information is stripped from
2691          * the inner header, but the hardware does not put it in the
2692          * descriptor. So set it zero by default.
2693          */
2694         rx_ctx.showiv = 0;
2695         rx_ctx.prefena = 1;
2696
2697         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2698         if (err != I40E_SUCCESS) {
2699                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2700                 return err;
2701         }
2702         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2703         if (err != I40E_SUCCESS) {
2704                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2705                 return err;
2706         }
2707
2708         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2709
2710         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2711                 RTE_PKTMBUF_HEADROOM);
2712
2713         /* Check if scattered RX needs to be used. */
2714         if (rxq->max_pkt_len > buf_size)
2715                 dev_data->scattered_rx = 1;
2716
2717         /* Init the RX tail regieter. */
2718         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2719
2720         return 0;
2721 }
2722
2723 void
2724 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2725 {
2726         uint16_t i;
2727
2728         PMD_INIT_FUNC_TRACE();
2729
2730         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2731                 if (!dev->data->tx_queues[i])
2732                         continue;
2733                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2734                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2735         }
2736
2737         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2738                 if (!dev->data->rx_queues[i])
2739                         continue;
2740                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2741                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2742         }
2743 }
2744
2745 void
2746 i40e_dev_free_queues(struct rte_eth_dev *dev)
2747 {
2748         uint16_t i;
2749
2750         PMD_INIT_FUNC_TRACE();
2751
2752         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2753                 if (!dev->data->rx_queues[i])
2754                         continue;
2755                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2756                 dev->data->rx_queues[i] = NULL;
2757         }
2758
2759         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2760                 if (!dev->data->tx_queues[i])
2761                         continue;
2762                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2763                 dev->data->tx_queues[i] = NULL;
2764         }
2765 }
2766
2767 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2768 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2769
2770 enum i40e_status_code
2771 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2772 {
2773         struct i40e_tx_queue *txq;
2774         const struct rte_memzone *tz = NULL;
2775         uint32_t ring_size;
2776         struct rte_eth_dev *dev;
2777
2778         if (!pf) {
2779                 PMD_DRV_LOG(ERR, "PF is not available");
2780                 return I40E_ERR_BAD_PTR;
2781         }
2782
2783         dev = pf->adapter->eth_dev;
2784
2785         /* Allocate the TX queue data structure. */
2786         txq = rte_zmalloc_socket("i40e fdir tx queue",
2787                                   sizeof(struct i40e_tx_queue),
2788                                   RTE_CACHE_LINE_SIZE,
2789                                   SOCKET_ID_ANY);
2790         if (!txq) {
2791                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2792                                         "tx queue structure.");
2793                 return I40E_ERR_NO_MEMORY;
2794         }
2795
2796         /* Allocate TX hardware ring descriptors. */
2797         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2798         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2799
2800         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2801                                       I40E_FDIR_QUEUE_ID, ring_size,
2802                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2803         if (!tz) {
2804                 i40e_dev_tx_queue_release(txq);
2805                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2806                 return I40E_ERR_NO_MEMORY;
2807         }
2808
2809         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2810         txq->queue_id = I40E_FDIR_QUEUE_ID;
2811         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2812         txq->vsi = pf->fdir.fdir_vsi;
2813
2814         txq->tx_ring_phys_addr = tz->iova;
2815         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2816         /*
2817          * don't need to allocate software ring and reset for the fdir
2818          * program queue just set the queue has been configured.
2819          */
2820         txq->q_set = TRUE;
2821         pf->fdir.txq = txq;
2822
2823         return I40E_SUCCESS;
2824 }
2825
2826 enum i40e_status_code
2827 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2828 {
2829         struct i40e_rx_queue *rxq;
2830         const struct rte_memzone *rz = NULL;
2831         uint32_t ring_size;
2832         struct rte_eth_dev *dev;
2833
2834         if (!pf) {
2835                 PMD_DRV_LOG(ERR, "PF is not available");
2836                 return I40E_ERR_BAD_PTR;
2837         }
2838
2839         dev = pf->adapter->eth_dev;
2840
2841         /* Allocate the RX queue data structure. */
2842         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2843                                   sizeof(struct i40e_rx_queue),
2844                                   RTE_CACHE_LINE_SIZE,
2845                                   SOCKET_ID_ANY);
2846         if (!rxq) {
2847                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2848                                         "rx queue structure.");
2849                 return I40E_ERR_NO_MEMORY;
2850         }
2851
2852         /* Allocate RX hardware ring descriptors. */
2853         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2854         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2855
2856         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2857                                       I40E_FDIR_QUEUE_ID, ring_size,
2858                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2859         if (!rz) {
2860                 i40e_dev_rx_queue_release(rxq);
2861                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2862                 return I40E_ERR_NO_MEMORY;
2863         }
2864
2865         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2866         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2867         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2868         rxq->vsi = pf->fdir.fdir_vsi;
2869
2870         rxq->rx_ring_phys_addr = rz->iova;
2871         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
2872         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2873
2874         /*
2875          * Don't need to allocate software ring and reset for the fdir
2876          * rx queue, just set the queue has been configured.
2877          */
2878         rxq->q_set = TRUE;
2879         pf->fdir.rxq = rxq;
2880
2881         return I40E_SUCCESS;
2882 }
2883
2884 void
2885 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2886         struct rte_eth_rxq_info *qinfo)
2887 {
2888         struct i40e_rx_queue *rxq;
2889
2890         rxq = dev->data->rx_queues[queue_id];
2891
2892         qinfo->mp = rxq->mp;
2893         qinfo->scattered_rx = dev->data->scattered_rx;
2894         qinfo->nb_desc = rxq->nb_rx_desc;
2895
2896         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2897         qinfo->conf.rx_drop_en = rxq->drop_en;
2898         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2899         qinfo->conf.offloads = rxq->offloads;
2900 }
2901
2902 void
2903 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2904         struct rte_eth_txq_info *qinfo)
2905 {
2906         struct i40e_tx_queue *txq;
2907
2908         txq = dev->data->tx_queues[queue_id];
2909
2910         qinfo->nb_desc = txq->nb_tx_desc;
2911
2912         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2913         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2914         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2915
2916         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2917         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2918         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2919         qinfo->conf.offloads = txq->offloads;
2920 }
2921
2922 static eth_rx_burst_t
2923 i40e_get_latest_rx_vec(bool scatter)
2924 {
2925 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
2926         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
2927                 return scatter ? i40e_recv_scattered_pkts_vec_avx2 :
2928                                  i40e_recv_pkts_vec_avx2;
2929 #endif
2930         return scatter ? i40e_recv_scattered_pkts_vec :
2931                          i40e_recv_pkts_vec;
2932 }
2933
2934 static eth_rx_burst_t
2935 i40e_get_recommend_rx_vec(bool scatter)
2936 {
2937 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
2938         /*
2939          * since AVX frequency can be different to base frequency, limit
2940          * use of AVX2 version to later plaforms, not all those that could
2941          * theoretically run it.
2942          */
2943         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
2944                 return scatter ? i40e_recv_scattered_pkts_vec_avx2 :
2945                                  i40e_recv_pkts_vec_avx2;
2946 #endif
2947         return scatter ? i40e_recv_scattered_pkts_vec :
2948                          i40e_recv_pkts_vec;
2949 }
2950
2951 void __attribute__((cold))
2952 i40e_set_rx_function(struct rte_eth_dev *dev)
2953 {
2954         struct i40e_adapter *ad =
2955                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2956         uint16_t rx_using_sse, i;
2957         /* In order to allow Vector Rx there are a few configuration
2958          * conditions to be met and Rx Bulk Allocation should be allowed.
2959          */
2960         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2961                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2962                     !ad->rx_bulk_alloc_allowed) {
2963                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2964                                      " Vector Rx preconditions",
2965                                      dev->data->port_id);
2966
2967                         ad->rx_vec_allowed = false;
2968                 }
2969                 if (ad->rx_vec_allowed) {
2970                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2971                                 struct i40e_rx_queue *rxq =
2972                                         dev->data->rx_queues[i];
2973
2974                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
2975                                         ad->rx_vec_allowed = false;
2976                                         break;
2977                                 }
2978                         }
2979                 }
2980         }
2981
2982         if (ad->rx_vec_allowed) {
2983                 /* Vec Rx path */
2984                 PMD_INIT_LOG(DEBUG, "Vector Rx path will be used on port=%d.",
2985                                 dev->data->port_id);
2986                 if (ad->use_latest_vec)
2987                         dev->rx_pkt_burst =
2988                         i40e_get_latest_rx_vec(dev->data->scattered_rx);
2989                 else
2990                         dev->rx_pkt_burst =
2991                         i40e_get_recommend_rx_vec(dev->data->scattered_rx);
2992         } else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) {
2993                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2994                                     "satisfied. Rx Burst Bulk Alloc function "
2995                                     "will be used on port=%d.",
2996                              dev->data->port_id);
2997
2998                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2999         } else {
3000                 /* Simple Rx Path. */
3001                 PMD_INIT_LOG(DEBUG, "Simple Rx path will be used on port=%d.",
3002                              dev->data->port_id);
3003                 dev->rx_pkt_burst = dev->data->scattered_rx ?
3004                                         i40e_recv_scattered_pkts :
3005                                         i40e_recv_pkts;
3006         }
3007
3008         /* Propagate information about RX function choice through all queues. */
3009         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3010                 rx_using_sse =
3011                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3012                          dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3013                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3014                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3015
3016                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3017                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3018
3019                         if (rxq)
3020                                 rxq->rx_using_sse = rx_using_sse;
3021                 }
3022         }
3023 }
3024
3025 void __attribute__((cold))
3026 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3027 {
3028         struct i40e_adapter *ad =
3029                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3030
3031         /* Use a simple Tx queue if possible (only fast free is allowed) */
3032         ad->tx_simple_allowed =
3033                 (txq->offloads ==
3034                  (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3035                  txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3036         ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3037                         txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3038
3039         if (ad->tx_vec_allowed)
3040                 PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3041                                 txq->queue_id);
3042         else if (ad->tx_simple_allowed)
3043                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3044                                 txq->queue_id);
3045         else
3046                 PMD_INIT_LOG(DEBUG,
3047                                 "Neither simple nor vector Tx enabled on Tx queue %u\n",
3048                                 txq->queue_id);
3049 }
3050
3051 static eth_tx_burst_t
3052 i40e_get_latest_tx_vec(void)
3053 {
3054 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
3055         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
3056                 return i40e_xmit_pkts_vec_avx2;
3057 #endif
3058         return i40e_xmit_pkts_vec;
3059 }
3060
3061 static eth_tx_burst_t
3062 i40e_get_recommend_tx_vec(void)
3063 {
3064 #if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
3065         /*
3066          * since AVX frequency can be different to base frequency, limit
3067          * use of AVX2 version to later plaforms, not all those that could
3068          * theoretically run it.
3069          */
3070         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
3071                 return i40e_xmit_pkts_vec_avx2;
3072 #endif
3073         return i40e_xmit_pkts_vec;
3074 }
3075
3076 void __attribute__((cold))
3077 i40e_set_tx_function(struct rte_eth_dev *dev)
3078 {
3079         struct i40e_adapter *ad =
3080                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3081         int i;
3082
3083         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3084                 if (ad->tx_vec_allowed) {
3085                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3086                                 struct i40e_tx_queue *txq =
3087                                         dev->data->tx_queues[i];
3088
3089                                 if (txq && i40e_txq_vec_setup(txq)) {
3090                                         ad->tx_vec_allowed = false;
3091                                         break;
3092                                 }
3093                         }
3094                 }
3095         }
3096
3097         if (ad->tx_simple_allowed) {
3098                 if (ad->tx_vec_allowed) {
3099                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
3100                         if (ad->use_latest_vec)
3101                                 dev->tx_pkt_burst =
3102                                         i40e_get_latest_tx_vec();
3103                         else
3104                                 dev->tx_pkt_burst =
3105                                         i40e_get_recommend_tx_vec();
3106                 } else {
3107                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3108                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3109                 }
3110                 dev->tx_pkt_prepare = NULL;
3111         } else {
3112                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3113                 dev->tx_pkt_burst = i40e_xmit_pkts;
3114                 dev->tx_pkt_prepare = i40e_prep_pkts;
3115         }
3116 }
3117
3118 void __attribute__((cold))
3119 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3120 {
3121         struct i40e_adapter *ad =
3122                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3123         int i;
3124
3125         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3126                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3127 }
3128
3129 void __attribute__((cold))
3130 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3131 {
3132         struct i40e_adapter *ad =
3133                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3134         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3135         int i;
3136
3137         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3138                 ad->pctypes_tbl[i] = 0ULL;
3139         ad->flow_types_mask = 0ULL;
3140         ad->pctypes_mask = 0ULL;
3141
3142         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3143                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3144         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3145                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3146         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3147                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3148         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3149                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3150         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3151                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3152         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3153                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3154         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3155                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3156         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3157                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3158         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3159                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3160         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3161                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3162         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3163                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3164
3165         if (hw->mac.type == I40E_MAC_X722 ||
3166                 hw->mac.type == I40E_MAC_X722_VF) {
3167                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3168                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3169                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3170                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3171                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3172                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3173                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3174                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3175                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3176                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3177                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3178                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3179         }
3180
3181         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3182                 if (ad->pctypes_tbl[i])
3183                         ad->flow_types_mask |= (1ULL << i);
3184                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3185         }
3186 }
3187
3188 #ifndef RTE_LIBRTE_I40E_INC_VECTOR
3189 /* Stubs needed for linkage when CONFIG_RTE_LIBRTE_I40E_INC_VECTOR is set to 'n' */
3190 int
3191 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3192 {
3193         return -1;
3194 }
3195
3196 uint16_t
3197 i40e_recv_pkts_vec(
3198         void __rte_unused *rx_queue,
3199         struct rte_mbuf __rte_unused **rx_pkts,
3200         uint16_t __rte_unused nb_pkts)
3201 {
3202         return 0;
3203 }
3204
3205 uint16_t
3206 i40e_recv_scattered_pkts_vec(
3207         void __rte_unused *rx_queue,
3208         struct rte_mbuf __rte_unused **rx_pkts,
3209         uint16_t __rte_unused nb_pkts)
3210 {
3211         return 0;
3212 }
3213
3214 int
3215 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3216 {
3217         return -1;
3218 }
3219
3220 int
3221 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3222 {
3223         return -1;
3224 }
3225
3226 void
3227 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3228 {
3229         return;
3230 }
3231
3232 uint16_t
3233 i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
3234                           struct rte_mbuf __rte_unused **tx_pkts,
3235                           uint16_t __rte_unused nb_pkts)
3236 {
3237         return 0;
3238 }
3239 #endif /* ifndef RTE_LIBRTE_I40E_INC_VECTOR */
3240
3241 #ifndef CC_AVX2_SUPPORT
3242 uint16_t
3243 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3244                         struct rte_mbuf __rte_unused **rx_pkts,
3245                         uint16_t __rte_unused nb_pkts)
3246 {
3247         return 0;
3248 }
3249
3250 uint16_t
3251 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3252                         struct rte_mbuf __rte_unused **rx_pkts,
3253                         uint16_t __rte_unused nb_pkts)
3254 {
3255         return 0;
3256 }
3257
3258 uint16_t
3259 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3260                           struct rte_mbuf __rte_unused **tx_pkts,
3261                           uint16_t __rte_unused nb_pkts)
3262 {
3263         return 0;
3264 }
3265 #endif /* ifndef CC_AVX2_SUPPORT */