net/i40e: fix missing mbuf fast free offload
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "i40e_logs.h"
28 #include "base/i40e_prototype.h"
29 #include "base/i40e_type.h"
30 #include "i40e_ethdev.h"
31 #include "i40e_rxtx.h"
32
33 #define DEFAULT_TX_RS_THRESH   32
34 #define DEFAULT_TX_FREE_THRESH 32
35
36 #define I40E_TX_MAX_BURST  32
37
38 #define I40E_DMA_MEM_ALIGN 4096
39
40 /* Base address of the HW descriptor ring should be 128B aligned. */
41 #define I40E_RING_BASE_ALIGN    128
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45 #ifdef RTE_LIBRTE_IEEE1588
46 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
47 #else
48 #define I40E_TX_IEEE1588_TMST 0
49 #endif
50
51 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
52                 PKT_TX_IP_CKSUM |                \
53                 PKT_TX_L4_MASK |                 \
54                 PKT_TX_TCP_SEG |                 \
55                 PKT_TX_OUTER_IP_CKSUM)
56
57 #define I40E_TX_OFFLOAD_MASK (  \
58                 PKT_TX_IP_CKSUM |       \
59                 PKT_TX_L4_MASK |        \
60                 PKT_TX_OUTER_IP_CKSUM | \
61                 PKT_TX_TCP_SEG |        \
62                 PKT_TX_QINQ_PKT |       \
63                 PKT_TX_VLAN_PKT |       \
64                 PKT_TX_TUNNEL_MASK |    \
65                 I40E_TX_IEEE1588_TMST)
66
67 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
68                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
69
70 static inline void
71 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
72 {
73         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
74                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
75                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
76                 mb->vlan_tci =
77                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
78                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
79                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
80         } else {
81                 mb->vlan_tci = 0;
82         }
83 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
84         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
85                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
86                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
87                 mb->vlan_tci_outer = mb->vlan_tci;
88                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
89                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
90                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
91                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
92         } else {
93                 mb->vlan_tci_outer = 0;
94         }
95 #endif
96         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
97                    mb->vlan_tci, mb->vlan_tci_outer);
98 }
99
100 /* Translate the rx descriptor status to pkt flags */
101 static inline uint64_t
102 i40e_rxd_status_to_pkt_flags(uint64_t qword)
103 {
104         uint64_t flags;
105
106         /* Check if RSS_HASH */
107         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
108                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
109                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
110
111         /* Check if FDIR Match */
112         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
113                                                         PKT_RX_FDIR : 0);
114
115         return flags;
116 }
117
118 static inline uint64_t
119 i40e_rxd_error_to_pkt_flags(uint64_t qword)
120 {
121         uint64_t flags = 0;
122         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
123
124 #define I40E_RX_ERR_BITS 0x3f
125         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
126                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
127                 return flags;
128         }
129
130         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
131                 flags |= PKT_RX_IP_CKSUM_BAD;
132         else
133                 flags |= PKT_RX_IP_CKSUM_GOOD;
134
135         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
136                 flags |= PKT_RX_L4_CKSUM_BAD;
137         else
138                 flags |= PKT_RX_L4_CKSUM_GOOD;
139
140         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
141                 flags |= PKT_RX_EIP_CKSUM_BAD;
142
143         return flags;
144 }
145
146 /* Function to check and set the ieee1588 timesync index and get the
147  * appropriate flags.
148  */
149 #ifdef RTE_LIBRTE_IEEE1588
150 static inline uint64_t
151 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
152 {
153         uint64_t pkt_flags = 0;
154         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
155                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
156                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
157
158         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
159                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
160                 pkt_flags = PKT_RX_IEEE1588_PTP;
161         if (tsyn & 0x04) {
162                 pkt_flags |= PKT_RX_IEEE1588_TMST;
163                 mb->timesync = tsyn & 0x03;
164         }
165
166         return pkt_flags;
167 }
168 #endif
169
170 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
171 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
172 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
173 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
174 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
175
176 static inline uint64_t
177 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
178 {
179         uint64_t flags = 0;
180 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
181         uint16_t flexbh, flexbl;
182
183         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
184                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
185                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
186         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
187                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
188                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
189
190
191         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
192                 mb->hash.fdir.hi =
193                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
194                 flags |= PKT_RX_FDIR_ID;
195         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
196                 mb->hash.fdir.hi =
197                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
198                 flags |= PKT_RX_FDIR_FLX;
199         }
200         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
201                 mb->hash.fdir.lo =
202                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
203                 flags |= PKT_RX_FDIR_FLX;
204         }
205 #else
206         mb->hash.fdir.hi =
207                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
208         flags |= PKT_RX_FDIR_ID;
209 #endif
210         return flags;
211 }
212
213 static inline void
214 i40e_parse_tunneling_params(uint64_t ol_flags,
215                             union i40e_tx_offload tx_offload,
216                             uint32_t *cd_tunneling)
217 {
218         /* EIPT: External (outer) IP header type */
219         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
220                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
221         else if (ol_flags & PKT_TX_OUTER_IPV4)
222                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
223         else if (ol_flags & PKT_TX_OUTER_IPV6)
224                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
225
226         /* EIPLEN: External (outer) IP header length, in DWords */
227         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
228                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
229
230         /* L4TUNT: L4 Tunneling Type */
231         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
232         case PKT_TX_TUNNEL_IPIP:
233                 /* for non UDP / GRE tunneling, set to 00b */
234                 break;
235         case PKT_TX_TUNNEL_VXLAN:
236         case PKT_TX_TUNNEL_GENEVE:
237                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
238                 break;
239         case PKT_TX_TUNNEL_GRE:
240                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
241                 break;
242         default:
243                 PMD_TX_LOG(ERR, "Tunnel type not supported");
244                 return;
245         }
246
247         /* L4TUNLEN: L4 Tunneling Length, in Words
248          *
249          * We depend on app to set rte_mbuf.l2_len correctly.
250          * For IP in GRE it should be set to the length of the GRE
251          * header;
252          * for MAC in GRE or MAC in UDP it should be set to the length
253          * of the GRE or UDP headers plus the inner MAC up to including
254          * its last Ethertype.
255          */
256         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
257                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
258 }
259
260 static inline void
261 i40e_txd_enable_checksum(uint64_t ol_flags,
262                         uint32_t *td_cmd,
263                         uint32_t *td_offset,
264                         union i40e_tx_offload tx_offload)
265 {
266         /* Set MACLEN */
267         if (ol_flags & PKT_TX_TUNNEL_MASK)
268                 *td_offset |= (tx_offload.outer_l2_len >> 1)
269                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
270         else
271                 *td_offset |= (tx_offload.l2_len >> 1)
272                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
273
274         /* Enable L3 checksum offloads */
275         if (ol_flags & PKT_TX_IP_CKSUM) {
276                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
277                 *td_offset |= (tx_offload.l3_len >> 2)
278                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
279         } else if (ol_flags & PKT_TX_IPV4) {
280                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
281                 *td_offset |= (tx_offload.l3_len >> 2)
282                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
283         } else if (ol_flags & PKT_TX_IPV6) {
284                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
285                 *td_offset |= (tx_offload.l3_len >> 2)
286                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
287         }
288
289         if (ol_flags & PKT_TX_TCP_SEG) {
290                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
291                 *td_offset |= (tx_offload.l4_len >> 2)
292                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
293                 return;
294         }
295
296         /* Enable L4 checksum offloads */
297         switch (ol_flags & PKT_TX_L4_MASK) {
298         case PKT_TX_TCP_CKSUM:
299                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
300                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
301                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
302                 break;
303         case PKT_TX_SCTP_CKSUM:
304                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
305                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
306                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
307                 break;
308         case PKT_TX_UDP_CKSUM:
309                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
310                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
311                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
312                 break;
313         default:
314                 break;
315         }
316 }
317
318 /* Construct the tx flags */
319 static inline uint64_t
320 i40e_build_ctob(uint32_t td_cmd,
321                 uint32_t td_offset,
322                 unsigned int size,
323                 uint32_t td_tag)
324 {
325         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
326                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
327                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
328                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
329                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
330 }
331
332 static inline int
333 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
334 {
335         struct i40e_tx_entry *sw_ring = txq->sw_ring;
336         volatile struct i40e_tx_desc *txd = txq->tx_ring;
337         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
338         uint16_t nb_tx_desc = txq->nb_tx_desc;
339         uint16_t desc_to_clean_to;
340         uint16_t nb_tx_to_clean;
341
342         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
343         if (desc_to_clean_to >= nb_tx_desc)
344                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
345
346         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
347         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
348                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
349                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
350                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
351                         "(port=%d queue=%d)", desc_to_clean_to,
352                                 txq->port_id, txq->queue_id);
353                 return -1;
354         }
355
356         if (last_desc_cleaned > desc_to_clean_to)
357                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
358                                                         desc_to_clean_to);
359         else
360                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
361                                         last_desc_cleaned);
362
363         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
364
365         txq->last_desc_cleaned = desc_to_clean_to;
366         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
367
368         return 0;
369 }
370
371 static inline int
372 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
373 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
374 #else
375 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
376 #endif
377 {
378         int ret = 0;
379
380 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
381         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
382                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
383                              "rxq->rx_free_thresh=%d, "
384                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
385                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
386                 ret = -EINVAL;
387         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
388                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
389                              "rxq->rx_free_thresh=%d, "
390                              "rxq->nb_rx_desc=%d",
391                              rxq->rx_free_thresh, rxq->nb_rx_desc);
392                 ret = -EINVAL;
393         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
394                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
395                              "rxq->nb_rx_desc=%d, "
396                              "rxq->rx_free_thresh=%d",
397                              rxq->nb_rx_desc, rxq->rx_free_thresh);
398                 ret = -EINVAL;
399         }
400 #else
401         ret = -EINVAL;
402 #endif
403
404         return ret;
405 }
406
407 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
408 #define I40E_LOOK_AHEAD 8
409 #if (I40E_LOOK_AHEAD != 8)
410 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
411 #endif
412 static inline int
413 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
414 {
415         volatile union i40e_rx_desc *rxdp;
416         struct i40e_rx_entry *rxep;
417         struct rte_mbuf *mb;
418         uint16_t pkt_len;
419         uint64_t qword1;
420         uint32_t rx_status;
421         int32_t s[I40E_LOOK_AHEAD], nb_dd;
422         int32_t i, j, nb_rx = 0;
423         uint64_t pkt_flags;
424         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
425
426         rxdp = &rxq->rx_ring[rxq->rx_tail];
427         rxep = &rxq->sw_ring[rxq->rx_tail];
428
429         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
430         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
431                                 I40E_RXD_QW1_STATUS_SHIFT;
432
433         /* Make sure there is at least 1 packet to receive */
434         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
435                 return 0;
436
437         /**
438          * Scan LOOK_AHEAD descriptors at a time to determine which
439          * descriptors reference packets that are ready to be received.
440          */
441         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
442                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
443                 /* Read desc statuses backwards to avoid race condition */
444                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
445                         qword1 = rte_le_to_cpu_64(\
446                                 rxdp[j].wb.qword1.status_error_len);
447                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
448                                         I40E_RXD_QW1_STATUS_SHIFT;
449                 }
450
451                 rte_smp_rmb();
452
453                 /* Compute how many status bits were set */
454                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
455                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
456
457                 nb_rx += nb_dd;
458
459                 /* Translate descriptor info to mbuf parameters */
460                 for (j = 0; j < nb_dd; j++) {
461                         mb = rxep[j].mbuf;
462                         qword1 = rte_le_to_cpu_64(\
463                                 rxdp[j].wb.qword1.status_error_len);
464                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
465                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
466                         mb->data_len = pkt_len;
467                         mb->pkt_len = pkt_len;
468                         mb->ol_flags = 0;
469                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
470                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
471                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
472                         mb->packet_type =
473                                 ptype_tbl[(uint8_t)((qword1 &
474                                 I40E_RXD_QW1_PTYPE_MASK) >>
475                                 I40E_RXD_QW1_PTYPE_SHIFT)];
476                         if (pkt_flags & PKT_RX_RSS_HASH)
477                                 mb->hash.rss = rte_le_to_cpu_32(\
478                                         rxdp[j].wb.qword0.hi_dword.rss);
479                         if (pkt_flags & PKT_RX_FDIR)
480                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
481
482 #ifdef RTE_LIBRTE_IEEE1588
483                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
484 #endif
485                         mb->ol_flags |= pkt_flags;
486
487                 }
488
489                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
490                         rxq->rx_stage[i + j] = rxep[j].mbuf;
491
492                 if (nb_dd != I40E_LOOK_AHEAD)
493                         break;
494         }
495
496         /* Clear software ring entries */
497         for (i = 0; i < nb_rx; i++)
498                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
499
500         return nb_rx;
501 }
502
503 static inline uint16_t
504 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
505                         struct rte_mbuf **rx_pkts,
506                         uint16_t nb_pkts)
507 {
508         uint16_t i;
509         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
510
511         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
512
513         for (i = 0; i < nb_pkts; i++)
514                 rx_pkts[i] = stage[i];
515
516         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
517         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
518
519         return nb_pkts;
520 }
521
522 static inline int
523 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
524 {
525         volatile union i40e_rx_desc *rxdp;
526         struct i40e_rx_entry *rxep;
527         struct rte_mbuf *mb;
528         uint16_t alloc_idx, i;
529         uint64_t dma_addr;
530         int diag;
531
532         /* Allocate buffers in bulk */
533         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
534                                 (rxq->rx_free_thresh - 1));
535         rxep = &(rxq->sw_ring[alloc_idx]);
536         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
537                                         rxq->rx_free_thresh);
538         if (unlikely(diag != 0)) {
539                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
540                 return -ENOMEM;
541         }
542
543         rxdp = &rxq->rx_ring[alloc_idx];
544         for (i = 0; i < rxq->rx_free_thresh; i++) {
545                 if (likely(i < (rxq->rx_free_thresh - 1)))
546                         /* Prefetch next mbuf */
547                         rte_prefetch0(rxep[i + 1].mbuf);
548
549                 mb = rxep[i].mbuf;
550                 rte_mbuf_refcnt_set(mb, 1);
551                 mb->next = NULL;
552                 mb->data_off = RTE_PKTMBUF_HEADROOM;
553                 mb->nb_segs = 1;
554                 mb->port = rxq->port_id;
555                 dma_addr = rte_cpu_to_le_64(\
556                         rte_mbuf_data_iova_default(mb));
557                 rxdp[i].read.hdr_addr = 0;
558                 rxdp[i].read.pkt_addr = dma_addr;
559         }
560
561         /* Update rx tail regsiter */
562         rte_wmb();
563         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
564
565         rxq->rx_free_trigger =
566                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
567         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
568                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
569
570         return 0;
571 }
572
573 static inline uint16_t
574 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
575 {
576         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
577         struct rte_eth_dev *dev;
578         uint16_t nb_rx = 0;
579
580         if (!nb_pkts)
581                 return 0;
582
583         if (rxq->rx_nb_avail)
584                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
585
586         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
587         rxq->rx_next_avail = 0;
588         rxq->rx_nb_avail = nb_rx;
589         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
590
591         if (rxq->rx_tail > rxq->rx_free_trigger) {
592                 if (i40e_rx_alloc_bufs(rxq) != 0) {
593                         uint16_t i, j;
594
595                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
596                         dev->data->rx_mbuf_alloc_failed +=
597                                 rxq->rx_free_thresh;
598
599                         rxq->rx_nb_avail = 0;
600                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
601                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
602                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
603
604                         return 0;
605                 }
606         }
607
608         if (rxq->rx_tail >= rxq->nb_rx_desc)
609                 rxq->rx_tail = 0;
610
611         if (rxq->rx_nb_avail)
612                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
613
614         return 0;
615 }
616
617 static uint16_t
618 i40e_recv_pkts_bulk_alloc(void *rx_queue,
619                           struct rte_mbuf **rx_pkts,
620                           uint16_t nb_pkts)
621 {
622         uint16_t nb_rx = 0, n, count;
623
624         if (unlikely(nb_pkts == 0))
625                 return 0;
626
627         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
628                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
629
630         while (nb_pkts) {
631                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
632                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
633                 nb_rx = (uint16_t)(nb_rx + count);
634                 nb_pkts = (uint16_t)(nb_pkts - count);
635                 if (count < n)
636                         break;
637         }
638
639         return nb_rx;
640 }
641 #else
642 static uint16_t
643 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
644                           struct rte_mbuf __rte_unused **rx_pkts,
645                           uint16_t __rte_unused nb_pkts)
646 {
647         return 0;
648 }
649 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
650
651 uint16_t
652 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
653 {
654         struct i40e_rx_queue *rxq;
655         volatile union i40e_rx_desc *rx_ring;
656         volatile union i40e_rx_desc *rxdp;
657         union i40e_rx_desc rxd;
658         struct i40e_rx_entry *sw_ring;
659         struct i40e_rx_entry *rxe;
660         struct rte_eth_dev *dev;
661         struct rte_mbuf *rxm;
662         struct rte_mbuf *nmb;
663         uint16_t nb_rx;
664         uint32_t rx_status;
665         uint64_t qword1;
666         uint16_t rx_packet_len;
667         uint16_t rx_id, nb_hold;
668         uint64_t dma_addr;
669         uint64_t pkt_flags;
670         uint32_t *ptype_tbl;
671
672         nb_rx = 0;
673         nb_hold = 0;
674         rxq = rx_queue;
675         rx_id = rxq->rx_tail;
676         rx_ring = rxq->rx_ring;
677         sw_ring = rxq->sw_ring;
678         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
679
680         while (nb_rx < nb_pkts) {
681                 rxdp = &rx_ring[rx_id];
682                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
683                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
684                                 >> I40E_RXD_QW1_STATUS_SHIFT;
685
686                 /* Check the DD bit first */
687                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
688                         break;
689
690                 nmb = rte_mbuf_raw_alloc(rxq->mp);
691                 if (unlikely(!nmb)) {
692                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
693                         dev->data->rx_mbuf_alloc_failed++;
694                         break;
695                 }
696
697                 rxd = *rxdp;
698                 nb_hold++;
699                 rxe = &sw_ring[rx_id];
700                 rx_id++;
701                 if (unlikely(rx_id == rxq->nb_rx_desc))
702                         rx_id = 0;
703
704                 /* Prefetch next mbuf */
705                 rte_prefetch0(sw_ring[rx_id].mbuf);
706
707                 /**
708                  * When next RX descriptor is on a cache line boundary,
709                  * prefetch the next 4 RX descriptors and next 8 pointers
710                  * to mbufs.
711                  */
712                 if ((rx_id & 0x3) == 0) {
713                         rte_prefetch0(&rx_ring[rx_id]);
714                         rte_prefetch0(&sw_ring[rx_id]);
715                 }
716                 rxm = rxe->mbuf;
717                 rxe->mbuf = nmb;
718                 dma_addr =
719                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
720                 rxdp->read.hdr_addr = 0;
721                 rxdp->read.pkt_addr = dma_addr;
722
723                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
724                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
725
726                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
727                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
728                 rxm->nb_segs = 1;
729                 rxm->next = NULL;
730                 rxm->pkt_len = rx_packet_len;
731                 rxm->data_len = rx_packet_len;
732                 rxm->port = rxq->port_id;
733                 rxm->ol_flags = 0;
734                 i40e_rxd_to_vlan_tci(rxm, &rxd);
735                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
736                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
737                 rxm->packet_type =
738                         ptype_tbl[(uint8_t)((qword1 &
739                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
740                 if (pkt_flags & PKT_RX_RSS_HASH)
741                         rxm->hash.rss =
742                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
743                 if (pkt_flags & PKT_RX_FDIR)
744                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
745
746 #ifdef RTE_LIBRTE_IEEE1588
747                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
748 #endif
749                 rxm->ol_flags |= pkt_flags;
750
751                 rx_pkts[nb_rx++] = rxm;
752         }
753         rxq->rx_tail = rx_id;
754
755         /**
756          * If the number of free RX descriptors is greater than the RX free
757          * threshold of the queue, advance the receive tail register of queue.
758          * Update that register with the value of the last processed RX
759          * descriptor minus 1.
760          */
761         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
762         if (nb_hold > rxq->rx_free_thresh) {
763                 rx_id = (uint16_t) ((rx_id == 0) ?
764                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
765                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
766                 nb_hold = 0;
767         }
768         rxq->nb_rx_hold = nb_hold;
769
770         return nb_rx;
771 }
772
773 uint16_t
774 i40e_recv_scattered_pkts(void *rx_queue,
775                          struct rte_mbuf **rx_pkts,
776                          uint16_t nb_pkts)
777 {
778         struct i40e_rx_queue *rxq = rx_queue;
779         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
780         volatile union i40e_rx_desc *rxdp;
781         union i40e_rx_desc rxd;
782         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
783         struct i40e_rx_entry *rxe;
784         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
785         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
786         struct rte_mbuf *nmb, *rxm;
787         uint16_t rx_id = rxq->rx_tail;
788         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
789         struct rte_eth_dev *dev;
790         uint32_t rx_status;
791         uint64_t qword1;
792         uint64_t dma_addr;
793         uint64_t pkt_flags;
794         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
795
796         while (nb_rx < nb_pkts) {
797                 rxdp = &rx_ring[rx_id];
798                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
799                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
800                                         I40E_RXD_QW1_STATUS_SHIFT;
801
802                 /* Check the DD bit */
803                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
804                         break;
805
806                 nmb = rte_mbuf_raw_alloc(rxq->mp);
807                 if (unlikely(!nmb)) {
808                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
809                         dev->data->rx_mbuf_alloc_failed++;
810                         break;
811                 }
812
813                 rxd = *rxdp;
814                 nb_hold++;
815                 rxe = &sw_ring[rx_id];
816                 rx_id++;
817                 if (rx_id == rxq->nb_rx_desc)
818                         rx_id = 0;
819
820                 /* Prefetch next mbuf */
821                 rte_prefetch0(sw_ring[rx_id].mbuf);
822
823                 /**
824                  * When next RX descriptor is on a cache line boundary,
825                  * prefetch the next 4 RX descriptors and next 8 pointers
826                  * to mbufs.
827                  */
828                 if ((rx_id & 0x3) == 0) {
829                         rte_prefetch0(&rx_ring[rx_id]);
830                         rte_prefetch0(&sw_ring[rx_id]);
831                 }
832
833                 rxm = rxe->mbuf;
834                 rxe->mbuf = nmb;
835                 dma_addr =
836                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
837
838                 /* Set data buffer address and data length of the mbuf */
839                 rxdp->read.hdr_addr = 0;
840                 rxdp->read.pkt_addr = dma_addr;
841                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
842                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
843                 rxm->data_len = rx_packet_len;
844                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
845
846                 /**
847                  * If this is the first buffer of the received packet, set the
848                  * pointer to the first mbuf of the packet and initialize its
849                  * context. Otherwise, update the total length and the number
850                  * of segments of the current scattered packet, and update the
851                  * pointer to the last mbuf of the current packet.
852                  */
853                 if (!first_seg) {
854                         first_seg = rxm;
855                         first_seg->nb_segs = 1;
856                         first_seg->pkt_len = rx_packet_len;
857                 } else {
858                         first_seg->pkt_len =
859                                 (uint16_t)(first_seg->pkt_len +
860                                                 rx_packet_len);
861                         first_seg->nb_segs++;
862                         last_seg->next = rxm;
863                 }
864
865                 /**
866                  * If this is not the last buffer of the received packet,
867                  * update the pointer to the last mbuf of the current scattered
868                  * packet and continue to parse the RX ring.
869                  */
870                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
871                         last_seg = rxm;
872                         continue;
873                 }
874
875                 /**
876                  * This is the last buffer of the received packet. If the CRC
877                  * is not stripped by the hardware:
878                  *  - Subtract the CRC length from the total packet length.
879                  *  - If the last buffer only contains the whole CRC or a part
880                  *  of it, free the mbuf associated to the last buffer. If part
881                  *  of the CRC is also contained in the previous mbuf, subtract
882                  *  the length of that CRC part from the data length of the
883                  *  previous mbuf.
884                  */
885                 rxm->next = NULL;
886                 if (unlikely(rxq->crc_len > 0)) {
887                         first_seg->pkt_len -= ETHER_CRC_LEN;
888                         if (rx_packet_len <= ETHER_CRC_LEN) {
889                                 rte_pktmbuf_free_seg(rxm);
890                                 first_seg->nb_segs--;
891                                 last_seg->data_len =
892                                         (uint16_t)(last_seg->data_len -
893                                         (ETHER_CRC_LEN - rx_packet_len));
894                                 last_seg->next = NULL;
895                         } else
896                                 rxm->data_len = (uint16_t)(rx_packet_len -
897                                                                 ETHER_CRC_LEN);
898                 }
899
900                 first_seg->port = rxq->port_id;
901                 first_seg->ol_flags = 0;
902                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
903                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
904                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
905                 first_seg->packet_type =
906                         ptype_tbl[(uint8_t)((qword1 &
907                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
908                 if (pkt_flags & PKT_RX_RSS_HASH)
909                         first_seg->hash.rss =
910                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
911                 if (pkt_flags & PKT_RX_FDIR)
912                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
913
914 #ifdef RTE_LIBRTE_IEEE1588
915                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
916 #endif
917                 first_seg->ol_flags |= pkt_flags;
918
919                 /* Prefetch data of first segment, if configured to do so. */
920                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
921                         first_seg->data_off));
922                 rx_pkts[nb_rx++] = first_seg;
923                 first_seg = NULL;
924         }
925
926         /* Record index of the next RX descriptor to probe. */
927         rxq->rx_tail = rx_id;
928         rxq->pkt_first_seg = first_seg;
929         rxq->pkt_last_seg = last_seg;
930
931         /**
932          * If the number of free RX descriptors is greater than the RX free
933          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
934          * register. Update the RDT with the value of the last processed RX
935          * descriptor minus 1, to guarantee that the RDT register is never
936          * equal to the RDH register, which creates a "full" ring situtation
937          * from the hardware point of view.
938          */
939         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
940         if (nb_hold > rxq->rx_free_thresh) {
941                 rx_id = (uint16_t)(rx_id == 0 ?
942                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
943                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
944                 nb_hold = 0;
945         }
946         rxq->nb_rx_hold = nb_hold;
947
948         return nb_rx;
949 }
950
951 /* Check if the context descriptor is needed for TX offloading */
952 static inline uint16_t
953 i40e_calc_context_desc(uint64_t flags)
954 {
955         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
956                 PKT_TX_TCP_SEG |
957                 PKT_TX_QINQ_PKT |
958                 PKT_TX_TUNNEL_MASK;
959
960 #ifdef RTE_LIBRTE_IEEE1588
961         mask |= PKT_TX_IEEE1588_TMST;
962 #endif
963
964         return (flags & mask) ? 1 : 0;
965 }
966
967 /* set i40e TSO context descriptor */
968 static inline uint64_t
969 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
970 {
971         uint64_t ctx_desc = 0;
972         uint32_t cd_cmd, hdr_len, cd_tso_len;
973
974         if (!tx_offload.l4_len) {
975                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
976                 return ctx_desc;
977         }
978
979         /**
980          * in case of non tunneling packet, the outer_l2_len and
981          * outer_l3_len must be 0.
982          */
983         hdr_len = tx_offload.outer_l2_len +
984                 tx_offload.outer_l3_len +
985                 tx_offload.l2_len +
986                 tx_offload.l3_len +
987                 tx_offload.l4_len;
988
989         cd_cmd = I40E_TX_CTX_DESC_TSO;
990         cd_tso_len = mbuf->pkt_len - hdr_len;
991         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
992                 ((uint64_t)cd_tso_len <<
993                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
994                 ((uint64_t)mbuf->tso_segsz <<
995                  I40E_TXD_CTX_QW1_MSS_SHIFT);
996
997         return ctx_desc;
998 }
999
1000 uint16_t
1001 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1002 {
1003         struct i40e_tx_queue *txq;
1004         struct i40e_tx_entry *sw_ring;
1005         struct i40e_tx_entry *txe, *txn;
1006         volatile struct i40e_tx_desc *txd;
1007         volatile struct i40e_tx_desc *txr;
1008         struct rte_mbuf *tx_pkt;
1009         struct rte_mbuf *m_seg;
1010         uint32_t cd_tunneling_params;
1011         uint16_t tx_id;
1012         uint16_t nb_tx;
1013         uint32_t td_cmd;
1014         uint32_t td_offset;
1015         uint32_t td_tag;
1016         uint64_t ol_flags;
1017         uint16_t nb_used;
1018         uint16_t nb_ctx;
1019         uint16_t tx_last;
1020         uint16_t slen;
1021         uint64_t buf_dma_addr;
1022         union i40e_tx_offload tx_offload = {0};
1023
1024         txq = tx_queue;
1025         sw_ring = txq->sw_ring;
1026         txr = txq->tx_ring;
1027         tx_id = txq->tx_tail;
1028         txe = &sw_ring[tx_id];
1029
1030         /* Check if the descriptor ring needs to be cleaned. */
1031         if (txq->nb_tx_free < txq->tx_free_thresh)
1032                 i40e_xmit_cleanup(txq);
1033
1034         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1035                 td_cmd = 0;
1036                 td_tag = 0;
1037                 td_offset = 0;
1038
1039                 tx_pkt = *tx_pkts++;
1040                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1041
1042                 ol_flags = tx_pkt->ol_flags;
1043                 tx_offload.l2_len = tx_pkt->l2_len;
1044                 tx_offload.l3_len = tx_pkt->l3_len;
1045                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1046                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1047                 tx_offload.l4_len = tx_pkt->l4_len;
1048                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1049
1050                 /* Calculate the number of context descriptors needed. */
1051                 nb_ctx = i40e_calc_context_desc(ol_flags);
1052
1053                 /**
1054                  * The number of descriptors that must be allocated for
1055                  * a packet equals to the number of the segments of that
1056                  * packet plus 1 context descriptor if needed.
1057                  */
1058                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1059                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1060
1061                 /* Circular ring */
1062                 if (tx_last >= txq->nb_tx_desc)
1063                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1064
1065                 if (nb_used > txq->nb_tx_free) {
1066                         if (i40e_xmit_cleanup(txq) != 0) {
1067                                 if (nb_tx == 0)
1068                                         return 0;
1069                                 goto end_of_tx;
1070                         }
1071                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1072                                 while (nb_used > txq->nb_tx_free) {
1073                                         if (i40e_xmit_cleanup(txq) != 0) {
1074                                                 if (nb_tx == 0)
1075                                                         return 0;
1076                                                 goto end_of_tx;
1077                                         }
1078                                 }
1079                         }
1080                 }
1081
1082                 /* Descriptor based VLAN insertion */
1083                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1084                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1085                         td_tag = tx_pkt->vlan_tci;
1086                 }
1087
1088                 /* Always enable CRC offload insertion */
1089                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1090
1091                 /* Fill in tunneling parameters if necessary */
1092                 cd_tunneling_params = 0;
1093                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1094                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1095                                                     &cd_tunneling_params);
1096                 /* Enable checksum offloading */
1097                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1098                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1099                                                  &td_offset, tx_offload);
1100
1101                 if (nb_ctx) {
1102                         /* Setup TX context descriptor if required */
1103                         volatile struct i40e_tx_context_desc *ctx_txd =
1104                                 (volatile struct i40e_tx_context_desc *)\
1105                                                         &txr[tx_id];
1106                         uint16_t cd_l2tag2 = 0;
1107                         uint64_t cd_type_cmd_tso_mss =
1108                                 I40E_TX_DESC_DTYPE_CONTEXT;
1109
1110                         txn = &sw_ring[txe->next_id];
1111                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1112                         if (txe->mbuf != NULL) {
1113                                 rte_pktmbuf_free_seg(txe->mbuf);
1114                                 txe->mbuf = NULL;
1115                         }
1116
1117                         /* TSO enabled means no timestamp */
1118                         if (ol_flags & PKT_TX_TCP_SEG)
1119                                 cd_type_cmd_tso_mss |=
1120                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1121                         else {
1122 #ifdef RTE_LIBRTE_IEEE1588
1123                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1124                                         cd_type_cmd_tso_mss |=
1125                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1126                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1127 #endif
1128                         }
1129
1130                         ctx_txd->tunneling_params =
1131                                 rte_cpu_to_le_32(cd_tunneling_params);
1132                         if (ol_flags & PKT_TX_QINQ_PKT) {
1133                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1134                                 cd_type_cmd_tso_mss |=
1135                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1136                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1137                         }
1138                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1139                         ctx_txd->type_cmd_tso_mss =
1140                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1141
1142                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1143                                 "tunneling_params: %#x;\n"
1144                                 "l2tag2: %#hx;\n"
1145                                 "rsvd: %#hx;\n"
1146                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1147                                 tx_pkt, tx_id,
1148                                 ctx_txd->tunneling_params,
1149                                 ctx_txd->l2tag2,
1150                                 ctx_txd->rsvd,
1151                                 ctx_txd->type_cmd_tso_mss);
1152
1153                         txe->last_id = tx_last;
1154                         tx_id = txe->next_id;
1155                         txe = txn;
1156                 }
1157
1158                 m_seg = tx_pkt;
1159                 do {
1160                         txd = &txr[tx_id];
1161                         txn = &sw_ring[txe->next_id];
1162
1163                         if (txe->mbuf)
1164                                 rte_pktmbuf_free_seg(txe->mbuf);
1165                         txe->mbuf = m_seg;
1166
1167                         /* Setup TX Descriptor */
1168                         slen = m_seg->data_len;
1169                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1170
1171                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1172                                 "buf_dma_addr: %#"PRIx64";\n"
1173                                 "td_cmd: %#x;\n"
1174                                 "td_offset: %#x;\n"
1175                                 "td_len: %u;\n"
1176                                 "td_tag: %#x;\n",
1177                                 tx_pkt, tx_id, buf_dma_addr,
1178                                 td_cmd, td_offset, slen, td_tag);
1179
1180                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1181                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1182                                                 td_offset, slen, td_tag);
1183                         txe->last_id = tx_last;
1184                         tx_id = txe->next_id;
1185                         txe = txn;
1186                         m_seg = m_seg->next;
1187                 } while (m_seg != NULL);
1188
1189                 /* The last packet data descriptor needs End Of Packet (EOP) */
1190                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1191                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1192                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1193
1194                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1195                         PMD_TX_FREE_LOG(DEBUG,
1196                                         "Setting RS bit on TXD id="
1197                                         "%4u (port=%d queue=%d)",
1198                                         tx_last, txq->port_id, txq->queue_id);
1199
1200                         td_cmd |= I40E_TX_DESC_CMD_RS;
1201
1202                         /* Update txq RS bit counters */
1203                         txq->nb_tx_used = 0;
1204                 }
1205
1206                 txd->cmd_type_offset_bsz |=
1207                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1208                                         I40E_TXD_QW1_CMD_SHIFT);
1209         }
1210
1211 end_of_tx:
1212         rte_wmb();
1213
1214         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1215                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1216                    (unsigned) tx_id, (unsigned) nb_tx);
1217
1218         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1219         txq->tx_tail = tx_id;
1220
1221         return nb_tx;
1222 }
1223
1224 static __rte_always_inline int
1225 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1226 {
1227         struct i40e_tx_entry *txep;
1228         uint16_t i;
1229
1230         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1231                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1232                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1233                 return 0;
1234
1235         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1236
1237         for (i = 0; i < txq->tx_rs_thresh; i++)
1238                 rte_prefetch0((txep + i)->mbuf);
1239
1240         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
1241                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1242                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1243                         txep->mbuf = NULL;
1244                 }
1245         } else {
1246                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1247                         rte_pktmbuf_free_seg(txep->mbuf);
1248                         txep->mbuf = NULL;
1249                 }
1250         }
1251
1252         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1253         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1254         if (txq->tx_next_dd >= txq->nb_tx_desc)
1255                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1256
1257         return txq->tx_rs_thresh;
1258 }
1259
1260 /* Populate 4 descriptors with data from 4 mbufs */
1261 static inline void
1262 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1263 {
1264         uint64_t dma_addr;
1265         uint32_t i;
1266
1267         for (i = 0; i < 4; i++, txdp++, pkts++) {
1268                 dma_addr = rte_mbuf_data_iova(*pkts);
1269                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1270                 txdp->cmd_type_offset_bsz =
1271                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1272                                         (*pkts)->data_len, 0);
1273         }
1274 }
1275
1276 /* Populate 1 descriptor with data from 1 mbuf */
1277 static inline void
1278 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1279 {
1280         uint64_t dma_addr;
1281
1282         dma_addr = rte_mbuf_data_iova(*pkts);
1283         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1284         txdp->cmd_type_offset_bsz =
1285                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1286                                 (*pkts)->data_len, 0);
1287 }
1288
1289 /* Fill hardware descriptor ring with mbuf data */
1290 static inline void
1291 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1292                      struct rte_mbuf **pkts,
1293                      uint16_t nb_pkts)
1294 {
1295         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1296         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1297         const int N_PER_LOOP = 4;
1298         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1299         int mainpart, leftover;
1300         int i, j;
1301
1302         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1303         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1304         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1305                 for (j = 0; j < N_PER_LOOP; ++j) {
1306                         (txep + i + j)->mbuf = *(pkts + i + j);
1307                 }
1308                 tx4(txdp + i, pkts + i);
1309         }
1310         if (unlikely(leftover > 0)) {
1311                 for (i = 0; i < leftover; ++i) {
1312                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1313                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1314                 }
1315         }
1316 }
1317
1318 static inline uint16_t
1319 tx_xmit_pkts(struct i40e_tx_queue *txq,
1320              struct rte_mbuf **tx_pkts,
1321              uint16_t nb_pkts)
1322 {
1323         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1324         uint16_t n = 0;
1325
1326         /**
1327          * Begin scanning the H/W ring for done descriptors when the number
1328          * of available descriptors drops below tx_free_thresh. For each done
1329          * descriptor, free the associated buffer.
1330          */
1331         if (txq->nb_tx_free < txq->tx_free_thresh)
1332                 i40e_tx_free_bufs(txq);
1333
1334         /* Use available descriptor only */
1335         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1336         if (unlikely(!nb_pkts))
1337                 return 0;
1338
1339         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1340         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1341                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1342                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1343                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1344                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1345                                                 I40E_TXD_QW1_CMD_SHIFT);
1346                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1347                 txq->tx_tail = 0;
1348         }
1349
1350         /* Fill hardware descriptor ring with mbuf data */
1351         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1352         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1353
1354         /* Determin if RS bit needs to be set */
1355         if (txq->tx_tail > txq->tx_next_rs) {
1356                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1357                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1358                                                 I40E_TXD_QW1_CMD_SHIFT);
1359                 txq->tx_next_rs =
1360                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1361                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1362                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1363         }
1364
1365         if (txq->tx_tail >= txq->nb_tx_desc)
1366                 txq->tx_tail = 0;
1367
1368         /* Update the tx tail register */
1369         rte_wmb();
1370         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, txq->tx_tail);
1371
1372         return nb_pkts;
1373 }
1374
1375 static uint16_t
1376 i40e_xmit_pkts_simple(void *tx_queue,
1377                       struct rte_mbuf **tx_pkts,
1378                       uint16_t nb_pkts)
1379 {
1380         uint16_t nb_tx = 0;
1381
1382         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1383                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1384                                                 tx_pkts, nb_pkts);
1385
1386         while (nb_pkts) {
1387                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1388                                                 I40E_TX_MAX_BURST);
1389
1390                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1391                                                 &tx_pkts[nb_tx], num);
1392                 nb_tx = (uint16_t)(nb_tx + ret);
1393                 nb_pkts = (uint16_t)(nb_pkts - ret);
1394                 if (ret < num)
1395                         break;
1396         }
1397
1398         return nb_tx;
1399 }
1400
1401 static uint16_t
1402 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1403                    uint16_t nb_pkts)
1404 {
1405         uint16_t nb_tx = 0;
1406         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1407
1408         while (nb_pkts) {
1409                 uint16_t ret, num;
1410
1411                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1412                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1413                                                 num);
1414                 nb_tx += ret;
1415                 nb_pkts -= ret;
1416                 if (ret < num)
1417                         break;
1418         }
1419
1420         return nb_tx;
1421 }
1422
1423 /*********************************************************************
1424  *
1425  *  TX prep functions
1426  *
1427  **********************************************************************/
1428 uint16_t
1429 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1430                 uint16_t nb_pkts)
1431 {
1432         int i, ret;
1433         uint64_t ol_flags;
1434         struct rte_mbuf *m;
1435
1436         for (i = 0; i < nb_pkts; i++) {
1437                 m = tx_pkts[i];
1438                 ol_flags = m->ol_flags;
1439
1440                 /* Check for m->nb_segs to not exceed the limits. */
1441                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1442                         if (m->nb_segs > I40E_TX_MAX_SEG ||
1443                             m->nb_segs > I40E_TX_MAX_MTU_SEG) {
1444                                 rte_errno = -EINVAL;
1445                                 return i;
1446                         }
1447                 } else if ((m->tso_segsz < I40E_MIN_TSO_MSS) ||
1448                                 (m->tso_segsz > I40E_MAX_TSO_MSS)) {
1449                         /* MSS outside the range (256B - 9674B) are considered
1450                          * malicious
1451                          */
1452                         rte_errno = -EINVAL;
1453                         return i;
1454                 }
1455
1456                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1457                         rte_errno = -ENOTSUP;
1458                         return i;
1459                 }
1460
1461 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1462                 ret = rte_validate_tx_offload(m);
1463                 if (ret != 0) {
1464                         rte_errno = ret;
1465                         return i;
1466                 }
1467 #endif
1468                 ret = rte_net_intel_cksum_prepare(m);
1469                 if (ret != 0) {
1470                         rte_errno = ret;
1471                         return i;
1472                 }
1473         }
1474         return i;
1475 }
1476
1477 /*
1478  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1479  * application used, which assume having sequential ones. But from driver's
1480  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1481  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1482  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1483  * use queue_idx from 0 to 95 to access queues, while real queue would be
1484  * different. This function will do a queue mapping to find VSI the queue
1485  * belongs to.
1486  */
1487 static struct i40e_vsi*
1488 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1489 {
1490         /* the queue in MAIN VSI range */
1491         if (queue_idx < pf->main_vsi->nb_qps)
1492                 return pf->main_vsi;
1493
1494         queue_idx -= pf->main_vsi->nb_qps;
1495
1496         /* queue_idx is greater than VMDQ VSIs range */
1497         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1498                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1499                 return NULL;
1500         }
1501
1502         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1503 }
1504
1505 static uint16_t
1506 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1507 {
1508         /* the queue in MAIN VSI range */
1509         if (queue_idx < pf->main_vsi->nb_qps)
1510                 return queue_idx;
1511
1512         /* It's VMDQ queues */
1513         queue_idx -= pf->main_vsi->nb_qps;
1514
1515         if (pf->nb_cfg_vmdq_vsi)
1516                 return queue_idx % pf->vmdq_nb_qps;
1517         else {
1518                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1519                 return (uint16_t)(-1);
1520         }
1521 }
1522
1523 int
1524 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1525 {
1526         struct i40e_rx_queue *rxq;
1527         int err = -1;
1528         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1529
1530         PMD_INIT_FUNC_TRACE();
1531
1532         if (rx_queue_id < dev->data->nb_rx_queues) {
1533                 rxq = dev->data->rx_queues[rx_queue_id];
1534
1535                 err = i40e_alloc_rx_queue_mbufs(rxq);
1536                 if (err) {
1537                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1538                         return err;
1539                 }
1540
1541                 rte_wmb();
1542
1543                 /* Init the RX tail regieter. */
1544                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1545
1546                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1547
1548                 if (err) {
1549                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1550                                     rx_queue_id);
1551
1552                         i40e_rx_queue_release_mbufs(rxq);
1553                         i40e_reset_rx_queue(rxq);
1554                 } else
1555                         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1556         }
1557
1558         return err;
1559 }
1560
1561 int
1562 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1563 {
1564         struct i40e_rx_queue *rxq;
1565         int err;
1566         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1567
1568         if (rx_queue_id < dev->data->nb_rx_queues) {
1569                 rxq = dev->data->rx_queues[rx_queue_id];
1570
1571                 /*
1572                 * rx_queue_id is queue id application refers to, while
1573                 * rxq->reg_idx is the real queue index.
1574                 */
1575                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1576
1577                 if (err) {
1578                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1579                                     rx_queue_id);
1580                         return err;
1581                 }
1582                 i40e_rx_queue_release_mbufs(rxq);
1583                 i40e_reset_rx_queue(rxq);
1584                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1585         }
1586
1587         return 0;
1588 }
1589
1590 int
1591 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1592 {
1593         int err = -1;
1594         struct i40e_tx_queue *txq;
1595         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1596
1597         PMD_INIT_FUNC_TRACE();
1598
1599         if (tx_queue_id < dev->data->nb_tx_queues) {
1600                 txq = dev->data->tx_queues[tx_queue_id];
1601
1602                 /*
1603                 * tx_queue_id is queue id application refers to, while
1604                 * rxq->reg_idx is the real queue index.
1605                 */
1606                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1607                 if (err)
1608                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1609                                     tx_queue_id);
1610                 else
1611                         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1612         }
1613
1614         return err;
1615 }
1616
1617 int
1618 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1619 {
1620         struct i40e_tx_queue *txq;
1621         int err;
1622         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1623
1624         if (tx_queue_id < dev->data->nb_tx_queues) {
1625                 txq = dev->data->tx_queues[tx_queue_id];
1626
1627                 /*
1628                 * tx_queue_id is queue id application refers to, while
1629                 * txq->reg_idx is the real queue index.
1630                 */
1631                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1632
1633                 if (err) {
1634                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1635                                     tx_queue_id);
1636                         return err;
1637                 }
1638
1639                 i40e_tx_queue_release_mbufs(txq);
1640                 i40e_reset_tx_queue(txq);
1641                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1642         }
1643
1644         return 0;
1645 }
1646
1647 const uint32_t *
1648 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1649 {
1650         static const uint32_t ptypes[] = {
1651                 /* refers to i40e_rxd_pkt_type_mapping() */
1652                 RTE_PTYPE_L2_ETHER,
1653                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1654                 RTE_PTYPE_L2_ETHER_LLDP,
1655                 RTE_PTYPE_L2_ETHER_ARP,
1656                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1657                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1658                 RTE_PTYPE_L4_FRAG,
1659                 RTE_PTYPE_L4_ICMP,
1660                 RTE_PTYPE_L4_NONFRAG,
1661                 RTE_PTYPE_L4_SCTP,
1662                 RTE_PTYPE_L4_TCP,
1663                 RTE_PTYPE_L4_UDP,
1664                 RTE_PTYPE_TUNNEL_GRENAT,
1665                 RTE_PTYPE_TUNNEL_IP,
1666                 RTE_PTYPE_INNER_L2_ETHER,
1667                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1668                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1669                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1670                 RTE_PTYPE_INNER_L4_FRAG,
1671                 RTE_PTYPE_INNER_L4_ICMP,
1672                 RTE_PTYPE_INNER_L4_NONFRAG,
1673                 RTE_PTYPE_INNER_L4_SCTP,
1674                 RTE_PTYPE_INNER_L4_TCP,
1675                 RTE_PTYPE_INNER_L4_UDP,
1676                 RTE_PTYPE_UNKNOWN
1677         };
1678
1679         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1680 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1681             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1682 #endif
1683             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1684             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1685             dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1686             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1687             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1688                 return ptypes;
1689         return NULL;
1690 }
1691
1692 static int
1693 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1694 {
1695         uint16_t i;
1696
1697         for (i = 0; i < num; i++) {
1698                 if (i != idx && queues[i])
1699                         return 0;
1700         }
1701
1702         return 1;
1703 }
1704
1705 static int
1706 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1707                                 struct i40e_rx_queue *rxq)
1708 {
1709         struct i40e_adapter *ad =
1710                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1711         int use_def_burst_func =
1712                 check_rx_burst_bulk_alloc_preconditions(rxq);
1713         uint16_t buf_size =
1714                 (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1715                            RTE_PKTMBUF_HEADROOM);
1716         int use_scattered_rx =
1717                 ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size);
1718
1719         if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1720                 PMD_DRV_LOG(ERR,
1721                             "Failed to do RX queue initialization");
1722                 return -EINVAL;
1723         }
1724
1725         if (i40e_dev_first_queue(rxq->queue_id,
1726                                  dev->data->rx_queues,
1727                                  dev->data->nb_rx_queues)) {
1728                 /**
1729                  * If it is the first queue to setup,
1730                  * set all flags to default and call
1731                  * i40e_set_rx_function.
1732                  */
1733                 ad->rx_bulk_alloc_allowed = true;
1734                 ad->rx_vec_allowed = true;
1735                 dev->data->scattered_rx = use_scattered_rx;
1736                 if (use_def_burst_func)
1737                         ad->rx_bulk_alloc_allowed = false;
1738                 i40e_set_rx_function(dev);
1739                 return 0;
1740         }
1741
1742         /* check bulk alloc conflict */
1743         if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1744                 PMD_DRV_LOG(ERR, "Can't use default burst.");
1745                 return -EINVAL;
1746         }
1747         /* check scatterred conflict */
1748         if (!dev->data->scattered_rx && use_scattered_rx) {
1749                 PMD_DRV_LOG(ERR, "Scattered rx is required.");
1750                 return -EINVAL;
1751         }
1752         /* check vector conflict */
1753         if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1754                 PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1755                 return -EINVAL;
1756         }
1757
1758         return 0;
1759 }
1760
1761 int
1762 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1763                         uint16_t queue_idx,
1764                         uint16_t nb_desc,
1765                         unsigned int socket_id,
1766                         const struct rte_eth_rxconf *rx_conf,
1767                         struct rte_mempool *mp)
1768 {
1769         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1770         struct i40e_adapter *ad =
1771                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1772         struct i40e_vsi *vsi;
1773         struct i40e_pf *pf = NULL;
1774         struct i40e_vf *vf = NULL;
1775         struct i40e_rx_queue *rxq;
1776         const struct rte_memzone *rz;
1777         uint32_t ring_size;
1778         uint16_t len, i;
1779         uint16_t reg_idx, base, bsf, tc_mapping;
1780         int q_offset, use_def_burst_func = 1;
1781         uint64_t offloads;
1782
1783         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1784
1785         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1786                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1787                 vsi = &vf->vsi;
1788                 if (!vsi)
1789                         return -EINVAL;
1790                 reg_idx = queue_idx;
1791         } else {
1792                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1793                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1794                 if (!vsi)
1795                         return -EINVAL;
1796                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1797                 if (q_offset < 0)
1798                         return -EINVAL;
1799                 reg_idx = vsi->base_queue + q_offset;
1800         }
1801
1802         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1803             (nb_desc > I40E_MAX_RING_DESC) ||
1804             (nb_desc < I40E_MIN_RING_DESC)) {
1805                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1806                             "invalid", nb_desc);
1807                 return -EINVAL;
1808         }
1809
1810         /* Free memory if needed */
1811         if (dev->data->rx_queues[queue_idx]) {
1812                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1813                 dev->data->rx_queues[queue_idx] = NULL;
1814         }
1815
1816         /* Allocate the rx queue data structure */
1817         rxq = rte_zmalloc_socket("i40e rx queue",
1818                                  sizeof(struct i40e_rx_queue),
1819                                  RTE_CACHE_LINE_SIZE,
1820                                  socket_id);
1821         if (!rxq) {
1822                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1823                             "rx queue data structure");
1824                 return -ENOMEM;
1825         }
1826         rxq->mp = mp;
1827         rxq->nb_rx_desc = nb_desc;
1828         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1829         rxq->queue_id = queue_idx;
1830         rxq->reg_idx = reg_idx;
1831         rxq->port_id = dev->data->port_id;
1832         rxq->crc_len = (uint8_t)((dev->data->dev_conf.rxmode.offloads &
1833                         DEV_RX_OFFLOAD_CRC_STRIP) ? 0 : ETHER_CRC_LEN);
1834         rxq->drop_en = rx_conf->rx_drop_en;
1835         rxq->vsi = vsi;
1836         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1837         rxq->offloads = offloads;
1838
1839         /* Allocate the maximun number of RX ring hardware descriptor. */
1840         len = I40E_MAX_RING_DESC;
1841
1842         /**
1843          * Allocating a little more memory because vectorized/bulk_alloc Rx
1844          * functions doesn't check boundaries each time.
1845          */
1846         len += RTE_PMD_I40E_RX_MAX_BURST;
1847
1848         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1849                               I40E_DMA_MEM_ALIGN);
1850
1851         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1852                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1853         if (!rz) {
1854                 i40e_dev_rx_queue_release(rxq);
1855                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1856                 return -ENOMEM;
1857         }
1858
1859         /* Zero all the descriptors in the ring. */
1860         memset(rz->addr, 0, ring_size);
1861
1862         rxq->rx_ring_phys_addr = rz->iova;
1863         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1864
1865         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1866
1867         /* Allocate the software ring. */
1868         rxq->sw_ring =
1869                 rte_zmalloc_socket("i40e rx sw ring",
1870                                    sizeof(struct i40e_rx_entry) * len,
1871                                    RTE_CACHE_LINE_SIZE,
1872                                    socket_id);
1873         if (!rxq->sw_ring) {
1874                 i40e_dev_rx_queue_release(rxq);
1875                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1876                 return -ENOMEM;
1877         }
1878
1879         i40e_reset_rx_queue(rxq);
1880         rxq->q_set = TRUE;
1881
1882         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1883                 if (!(vsi->enabled_tc & (1 << i)))
1884                         continue;
1885                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1886                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1887                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1888                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1889                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1890
1891                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1892                         rxq->dcb_tc = i;
1893         }
1894
1895         if (dev->data->dev_started) {
1896                 if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
1897                         i40e_dev_rx_queue_release(rxq);
1898                         return -EINVAL;
1899                 }
1900         } else {
1901                 use_def_burst_func =
1902                         check_rx_burst_bulk_alloc_preconditions(rxq);
1903                 if (!use_def_burst_func) {
1904 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1905                         PMD_INIT_LOG(DEBUG,
1906                           "Rx Burst Bulk Alloc Preconditions are "
1907                           "satisfied. Rx Burst Bulk Alloc function will be "
1908                           "used on port=%d, queue=%d.",
1909                           rxq->port_id, rxq->queue_id);
1910 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1911                 } else {
1912                         PMD_INIT_LOG(DEBUG,
1913                           "Rx Burst Bulk Alloc Preconditions are "
1914                           "not satisfied, Scattered Rx is requested, "
1915                           "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1916                           "not enabled on port=%d, queue=%d.",
1917                           rxq->port_id, rxq->queue_id);
1918                         ad->rx_bulk_alloc_allowed = false;
1919                 }
1920         }
1921
1922         dev->data->rx_queues[queue_idx] = rxq;
1923         return 0;
1924 }
1925
1926 void
1927 i40e_dev_rx_queue_release(void *rxq)
1928 {
1929         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1930
1931         if (!q) {
1932                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1933                 return;
1934         }
1935
1936         i40e_rx_queue_release_mbufs(q);
1937         rte_free(q->sw_ring);
1938         rte_free(q);
1939 }
1940
1941 uint32_t
1942 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1943 {
1944 #define I40E_RXQ_SCAN_INTERVAL 4
1945         volatile union i40e_rx_desc *rxdp;
1946         struct i40e_rx_queue *rxq;
1947         uint16_t desc = 0;
1948
1949         rxq = dev->data->rx_queues[rx_queue_id];
1950         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1951         while ((desc < rxq->nb_rx_desc) &&
1952                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1953                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1954                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1955                 /**
1956                  * Check the DD bit of a rx descriptor of each 4 in a group,
1957                  * to avoid checking too frequently and downgrading performance
1958                  * too much.
1959                  */
1960                 desc += I40E_RXQ_SCAN_INTERVAL;
1961                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1962                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1963                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1964                                         desc - rxq->nb_rx_desc]);
1965         }
1966
1967         return desc;
1968 }
1969
1970 int
1971 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1972 {
1973         volatile union i40e_rx_desc *rxdp;
1974         struct i40e_rx_queue *rxq = rx_queue;
1975         uint16_t desc;
1976         int ret;
1977
1978         if (unlikely(offset >= rxq->nb_rx_desc)) {
1979                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
1980                 return 0;
1981         }
1982
1983         desc = rxq->rx_tail + offset;
1984         if (desc >= rxq->nb_rx_desc)
1985                 desc -= rxq->nb_rx_desc;
1986
1987         rxdp = &(rxq->rx_ring[desc]);
1988
1989         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1990                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1991                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1992
1993         return ret;
1994 }
1995
1996 int
1997 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
1998 {
1999         struct i40e_rx_queue *rxq = rx_queue;
2000         volatile uint64_t *status;
2001         uint64_t mask;
2002         uint32_t desc;
2003
2004         if (unlikely(offset >= rxq->nb_rx_desc))
2005                 return -EINVAL;
2006
2007         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2008                 return RTE_ETH_RX_DESC_UNAVAIL;
2009
2010         desc = rxq->rx_tail + offset;
2011         if (desc >= rxq->nb_rx_desc)
2012                 desc -= rxq->nb_rx_desc;
2013
2014         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2015         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2016                 << I40E_RXD_QW1_STATUS_SHIFT);
2017         if (*status & mask)
2018                 return RTE_ETH_RX_DESC_DONE;
2019
2020         return RTE_ETH_RX_DESC_AVAIL;
2021 }
2022
2023 int
2024 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2025 {
2026         struct i40e_tx_queue *txq = tx_queue;
2027         volatile uint64_t *status;
2028         uint64_t mask, expect;
2029         uint32_t desc;
2030
2031         if (unlikely(offset >= txq->nb_tx_desc))
2032                 return -EINVAL;
2033
2034         desc = txq->tx_tail + offset;
2035         /* go to next desc that has the RS bit */
2036         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2037                 txq->tx_rs_thresh;
2038         if (desc >= txq->nb_tx_desc) {
2039                 desc -= txq->nb_tx_desc;
2040                 if (desc >= txq->nb_tx_desc)
2041                         desc -= txq->nb_tx_desc;
2042         }
2043
2044         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2045         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2046         expect = rte_cpu_to_le_64(
2047                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2048         if ((*status & mask) == expect)
2049                 return RTE_ETH_TX_DESC_DONE;
2050
2051         return RTE_ETH_TX_DESC_FULL;
2052 }
2053
2054 static int
2055 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2056                                 struct i40e_tx_queue *txq)
2057 {
2058         struct i40e_adapter *ad =
2059                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2060
2061         if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2062                 PMD_DRV_LOG(ERR,
2063                             "Failed to do TX queue initialization");
2064                 return -EINVAL;
2065         }
2066
2067         if (i40e_dev_first_queue(txq->queue_id,
2068                                  dev->data->tx_queues,
2069                                  dev->data->nb_tx_queues)) {
2070                 /**
2071                  * If it is the first queue to setup,
2072                  * set all flags and call
2073                  * i40e_set_tx_function.
2074                  */
2075                 i40e_set_tx_function_flag(dev, txq);
2076                 i40e_set_tx_function(dev);
2077                 return 0;
2078         }
2079
2080         /* check vector conflict */
2081         if (ad->tx_vec_allowed) {
2082                 if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2083                     i40e_txq_vec_setup(txq)) {
2084                         PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2085                         return -EINVAL;
2086                 }
2087         }
2088         /* check simple tx conflict */
2089         if (ad->tx_simple_allowed) {
2090                 if (txq->offloads != 0 ||
2091                                 txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2092                         PMD_DRV_LOG(ERR, "No-simple tx is required.");
2093                         return -EINVAL;
2094                 }
2095         }
2096
2097         return 0;
2098 }
2099
2100 int
2101 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2102                         uint16_t queue_idx,
2103                         uint16_t nb_desc,
2104                         unsigned int socket_id,
2105                         const struct rte_eth_txconf *tx_conf)
2106 {
2107         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2108         struct i40e_vsi *vsi;
2109         struct i40e_pf *pf = NULL;
2110         struct i40e_vf *vf = NULL;
2111         struct i40e_tx_queue *txq;
2112         const struct rte_memzone *tz;
2113         uint32_t ring_size;
2114         uint16_t tx_rs_thresh, tx_free_thresh;
2115         uint16_t reg_idx, i, base, bsf, tc_mapping;
2116         int q_offset;
2117         uint64_t offloads;
2118
2119         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2120
2121         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2122                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2123                 vsi = &vf->vsi;
2124                 if (!vsi)
2125                         return -EINVAL;
2126                 reg_idx = queue_idx;
2127         } else {
2128                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2129                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2130                 if (!vsi)
2131                         return -EINVAL;
2132                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2133                 if (q_offset < 0)
2134                         return -EINVAL;
2135                 reg_idx = vsi->base_queue + q_offset;
2136         }
2137
2138         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2139             (nb_desc > I40E_MAX_RING_DESC) ||
2140             (nb_desc < I40E_MIN_RING_DESC)) {
2141                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2142                             "invalid", nb_desc);
2143                 return -EINVAL;
2144         }
2145
2146         /**
2147          * The following two parameters control the setting of the RS bit on
2148          * transmit descriptors. TX descriptors will have their RS bit set
2149          * after txq->tx_rs_thresh descriptors have been used. The TX
2150          * descriptor ring will be cleaned after txq->tx_free_thresh
2151          * descriptors are used or if the number of descriptors required to
2152          * transmit a packet is greater than the number of free TX descriptors.
2153          *
2154          * The following constraints must be satisfied:
2155          *  - tx_rs_thresh must be greater than 0.
2156          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2157          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2158          *  - tx_rs_thresh must be a divisor of the ring size.
2159          *  - tx_free_thresh must be greater than 0.
2160          *  - tx_free_thresh must be less than the size of the ring minus 3.
2161          *
2162          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2163          * race condition, hence the maximum threshold constraints. When set
2164          * to zero use default values.
2165          */
2166         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2167                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2168         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2169                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2170         if (tx_rs_thresh >= (nb_desc - 2)) {
2171                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2172                              "number of TX descriptors minus 2. "
2173                              "(tx_rs_thresh=%u port=%d queue=%d)",
2174                              (unsigned int)tx_rs_thresh,
2175                              (int)dev->data->port_id,
2176                              (int)queue_idx);
2177                 return I40E_ERR_PARAM;
2178         }
2179         if (tx_free_thresh >= (nb_desc - 3)) {
2180                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2181                              "number of TX descriptors minus 3. "
2182                              "(tx_free_thresh=%u port=%d queue=%d)",
2183                              (unsigned int)tx_free_thresh,
2184                              (int)dev->data->port_id,
2185                              (int)queue_idx);
2186                 return I40E_ERR_PARAM;
2187         }
2188         if (tx_rs_thresh > tx_free_thresh) {
2189                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2190                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2191                              " tx_rs_thresh=%u port=%d queue=%d)",
2192                              (unsigned int)tx_free_thresh,
2193                              (unsigned int)tx_rs_thresh,
2194                              (int)dev->data->port_id,
2195                              (int)queue_idx);
2196                 return I40E_ERR_PARAM;
2197         }
2198         if ((nb_desc % tx_rs_thresh) != 0) {
2199                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2200                              "number of TX descriptors. (tx_rs_thresh=%u"
2201                              " port=%d queue=%d)",
2202                              (unsigned int)tx_rs_thresh,
2203                              (int)dev->data->port_id,
2204                              (int)queue_idx);
2205                 return I40E_ERR_PARAM;
2206         }
2207         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2208                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2209                              "tx_rs_thresh is greater than 1. "
2210                              "(tx_rs_thresh=%u port=%d queue=%d)",
2211                              (unsigned int)tx_rs_thresh,
2212                              (int)dev->data->port_id,
2213                              (int)queue_idx);
2214                 return I40E_ERR_PARAM;
2215         }
2216
2217         /* Free memory if needed. */
2218         if (dev->data->tx_queues[queue_idx]) {
2219                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2220                 dev->data->tx_queues[queue_idx] = NULL;
2221         }
2222
2223         /* Allocate the TX queue data structure. */
2224         txq = rte_zmalloc_socket("i40e tx queue",
2225                                   sizeof(struct i40e_tx_queue),
2226                                   RTE_CACHE_LINE_SIZE,
2227                                   socket_id);
2228         if (!txq) {
2229                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2230                             "tx queue structure");
2231                 return -ENOMEM;
2232         }
2233
2234         /* Allocate TX hardware ring descriptors. */
2235         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2236         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2237         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2238                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2239         if (!tz) {
2240                 i40e_dev_tx_queue_release(txq);
2241                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2242                 return -ENOMEM;
2243         }
2244
2245         txq->nb_tx_desc = nb_desc;
2246         txq->tx_rs_thresh = tx_rs_thresh;
2247         txq->tx_free_thresh = tx_free_thresh;
2248         txq->pthresh = tx_conf->tx_thresh.pthresh;
2249         txq->hthresh = tx_conf->tx_thresh.hthresh;
2250         txq->wthresh = tx_conf->tx_thresh.wthresh;
2251         txq->queue_id = queue_idx;
2252         txq->reg_idx = reg_idx;
2253         txq->port_id = dev->data->port_id;
2254         txq->offloads = offloads;
2255         txq->vsi = vsi;
2256         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2257
2258         txq->tx_ring_phys_addr = tz->iova;
2259         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2260
2261         /* Allocate software ring */
2262         txq->sw_ring =
2263                 rte_zmalloc_socket("i40e tx sw ring",
2264                                    sizeof(struct i40e_tx_entry) * nb_desc,
2265                                    RTE_CACHE_LINE_SIZE,
2266                                    socket_id);
2267         if (!txq->sw_ring) {
2268                 i40e_dev_tx_queue_release(txq);
2269                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2270                 return -ENOMEM;
2271         }
2272
2273         i40e_reset_tx_queue(txq);
2274         txq->q_set = TRUE;
2275
2276         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2277                 if (!(vsi->enabled_tc & (1 << i)))
2278                         continue;
2279                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2280                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2281                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2282                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2283                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2284
2285                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2286                         txq->dcb_tc = i;
2287         }
2288
2289         if (dev->data->dev_started) {
2290                 if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2291                         i40e_dev_tx_queue_release(txq);
2292                         return -EINVAL;
2293                 }
2294         } else {
2295                 /**
2296                  * Use a simple TX queue without offloads or
2297                  * multi segs if possible
2298                  */
2299                 i40e_set_tx_function_flag(dev, txq);
2300         }
2301         dev->data->tx_queues[queue_idx] = txq;
2302
2303         return 0;
2304 }
2305
2306 void
2307 i40e_dev_tx_queue_release(void *txq)
2308 {
2309         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2310
2311         if (!q) {
2312                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2313                 return;
2314         }
2315
2316         i40e_tx_queue_release_mbufs(q);
2317         rte_free(q->sw_ring);
2318         rte_free(q);
2319 }
2320
2321 const struct rte_memzone *
2322 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2323 {
2324         const struct rte_memzone *mz;
2325
2326         mz = rte_memzone_lookup(name);
2327         if (mz)
2328                 return mz;
2329
2330         mz = rte_memzone_reserve_aligned(name, len, socket_id,
2331                         RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2332         return mz;
2333 }
2334
2335 void
2336 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2337 {
2338         uint16_t i;
2339
2340         /* SSE Vector driver has a different way of releasing mbufs. */
2341         if (rxq->rx_using_sse) {
2342                 i40e_rx_queue_release_mbufs_vec(rxq);
2343                 return;
2344         }
2345
2346         if (!rxq->sw_ring) {
2347                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2348                 return;
2349         }
2350
2351         for (i = 0; i < rxq->nb_rx_desc; i++) {
2352                 if (rxq->sw_ring[i].mbuf) {
2353                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2354                         rxq->sw_ring[i].mbuf = NULL;
2355                 }
2356         }
2357 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2358         if (rxq->rx_nb_avail == 0)
2359                 return;
2360         for (i = 0; i < rxq->rx_nb_avail; i++) {
2361                 struct rte_mbuf *mbuf;
2362
2363                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2364                 rte_pktmbuf_free_seg(mbuf);
2365         }
2366         rxq->rx_nb_avail = 0;
2367 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2368 }
2369
2370 void
2371 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2372 {
2373         unsigned i;
2374         uint16_t len;
2375
2376         if (!rxq) {
2377                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2378                 return;
2379         }
2380
2381 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2382         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2383                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2384         else
2385 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2386                 len = rxq->nb_rx_desc;
2387
2388         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2389                 ((volatile char *)rxq->rx_ring)[i] = 0;
2390
2391         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2392         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2393                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2394
2395 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2396         rxq->rx_nb_avail = 0;
2397         rxq->rx_next_avail = 0;
2398         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2399 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2400         rxq->rx_tail = 0;
2401         rxq->nb_rx_hold = 0;
2402         rxq->pkt_first_seg = NULL;
2403         rxq->pkt_last_seg = NULL;
2404
2405         rxq->rxrearm_start = 0;
2406         rxq->rxrearm_nb = 0;
2407 }
2408
2409 void
2410 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2411 {
2412         struct rte_eth_dev *dev;
2413         uint16_t i;
2414
2415         dev = &rte_eth_devices[txq->port_id];
2416
2417         if (!txq || !txq->sw_ring) {
2418                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2419                 return;
2420         }
2421
2422         /**
2423          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2424          *  so need to free remains more carefully.
2425          */
2426         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2427                         dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2428                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2429                 if (txq->tx_tail < i) {
2430                         for (; i < txq->nb_tx_desc; i++) {
2431                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2432                                 txq->sw_ring[i].mbuf = NULL;
2433                         }
2434                         i = 0;
2435                 }
2436                 for (; i < txq->tx_tail; i++) {
2437                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2438                         txq->sw_ring[i].mbuf = NULL;
2439                 }
2440         } else {
2441                 for (i = 0; i < txq->nb_tx_desc; i++) {
2442                         if (txq->sw_ring[i].mbuf) {
2443                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2444                                 txq->sw_ring[i].mbuf = NULL;
2445                         }
2446                 }
2447         }
2448 }
2449
2450 void
2451 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2452 {
2453         struct i40e_tx_entry *txe;
2454         uint16_t i, prev, size;
2455
2456         if (!txq) {
2457                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2458                 return;
2459         }
2460
2461         txe = txq->sw_ring;
2462         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2463         for (i = 0; i < size; i++)
2464                 ((volatile char *)txq->tx_ring)[i] = 0;
2465
2466         prev = (uint16_t)(txq->nb_tx_desc - 1);
2467         for (i = 0; i < txq->nb_tx_desc; i++) {
2468                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2469
2470                 txd->cmd_type_offset_bsz =
2471                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2472                 txe[i].mbuf =  NULL;
2473                 txe[i].last_id = i;
2474                 txe[prev].next_id = i;
2475                 prev = i;
2476         }
2477
2478         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2479         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2480
2481         txq->tx_tail = 0;
2482         txq->nb_tx_used = 0;
2483
2484         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2485         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2486 }
2487
2488 /* Init the TX queue in hardware */
2489 int
2490 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2491 {
2492         enum i40e_status_code err = I40E_SUCCESS;
2493         struct i40e_vsi *vsi = txq->vsi;
2494         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2495         uint16_t pf_q = txq->reg_idx;
2496         struct i40e_hmc_obj_txq tx_ctx;
2497         uint32_t qtx_ctl;
2498
2499         /* clear the context structure first */
2500         memset(&tx_ctx, 0, sizeof(tx_ctx));
2501         tx_ctx.new_context = 1;
2502         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2503         tx_ctx.qlen = txq->nb_tx_desc;
2504
2505 #ifdef RTE_LIBRTE_IEEE1588
2506         tx_ctx.timesync_ena = 1;
2507 #endif
2508         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2509         if (vsi->type == I40E_VSI_FDIR)
2510                 tx_ctx.fd_ena = TRUE;
2511
2512         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2513         if (err != I40E_SUCCESS) {
2514                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2515                 return err;
2516         }
2517
2518         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2519         if (err != I40E_SUCCESS) {
2520                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2521                 return err;
2522         }
2523
2524         /* Now associate this queue with this PCI function */
2525         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2526         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2527                                         I40E_QTX_CTL_PF_INDX_MASK);
2528         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2529         I40E_WRITE_FLUSH(hw);
2530
2531         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2532
2533         return err;
2534 }
2535
2536 int
2537 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2538 {
2539         struct i40e_rx_entry *rxe = rxq->sw_ring;
2540         uint64_t dma_addr;
2541         uint16_t i;
2542
2543         for (i = 0; i < rxq->nb_rx_desc; i++) {
2544                 volatile union i40e_rx_desc *rxd;
2545                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2546
2547                 if (unlikely(!mbuf)) {
2548                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2549                         return -ENOMEM;
2550                 }
2551
2552                 rte_mbuf_refcnt_set(mbuf, 1);
2553                 mbuf->next = NULL;
2554                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2555                 mbuf->nb_segs = 1;
2556                 mbuf->port = rxq->port_id;
2557
2558                 dma_addr =
2559                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2560
2561                 rxd = &rxq->rx_ring[i];
2562                 rxd->read.pkt_addr = dma_addr;
2563                 rxd->read.hdr_addr = 0;
2564 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2565                 rxd->read.rsvd1 = 0;
2566                 rxd->read.rsvd2 = 0;
2567 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2568
2569                 rxe[i].mbuf = mbuf;
2570         }
2571
2572         return 0;
2573 }
2574
2575 /*
2576  * Calculate the buffer length, and check the jumbo frame
2577  * and maximum packet length.
2578  */
2579 static int
2580 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2581 {
2582         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2583         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2584         struct rte_eth_dev_data *data = pf->dev_data;
2585         uint16_t buf_size, len;
2586
2587         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2588                 RTE_PKTMBUF_HEADROOM);
2589
2590         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2591                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2592         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2593                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2594                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2595                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2596                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2597                 rxq->hs_mode = i40e_header_split_enabled;
2598                 break;
2599         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2600         default:
2601                 rxq->rx_hdr_len = 0;
2602                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2603                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2604                 rxq->hs_mode = i40e_header_split_none;
2605                 break;
2606         }
2607
2608         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2609         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2610         if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2611                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2612                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2613                         PMD_DRV_LOG(ERR, "maximum packet length must "
2614                                     "be larger than %u and smaller than %u,"
2615                                     "as jumbo frame is enabled",
2616                                     (uint32_t)ETHER_MAX_LEN,
2617                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2618                         return I40E_ERR_CONFIG;
2619                 }
2620         } else {
2621                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2622                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2623                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2624                                     "larger than %u and smaller than %u, "
2625                                     "as jumbo frame is disabled",
2626                                     (uint32_t)ETHER_MIN_LEN,
2627                                     (uint32_t)ETHER_MAX_LEN);
2628                         return I40E_ERR_CONFIG;
2629                 }
2630         }
2631
2632         return 0;
2633 }
2634
2635 /* Init the RX queue in hardware */
2636 int
2637 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2638 {
2639         int err = I40E_SUCCESS;
2640         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2641         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2642         uint16_t pf_q = rxq->reg_idx;
2643         uint16_t buf_size;
2644         struct i40e_hmc_obj_rxq rx_ctx;
2645
2646         err = i40e_rx_queue_config(rxq);
2647         if (err < 0) {
2648                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2649                 return err;
2650         }
2651
2652         /* Clear the context structure first */
2653         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2654         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2655         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2656
2657         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2658         rx_ctx.qlen = rxq->nb_rx_desc;
2659 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2660         rx_ctx.dsize = 1;
2661 #endif
2662         rx_ctx.dtype = rxq->hs_mode;
2663         if (rxq->hs_mode)
2664                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2665         else
2666                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2667         rx_ctx.rxmax = rxq->max_pkt_len;
2668         rx_ctx.tphrdesc_ena = 1;
2669         rx_ctx.tphwdesc_ena = 1;
2670         rx_ctx.tphdata_ena = 1;
2671         rx_ctx.tphhead_ena = 1;
2672         rx_ctx.lrxqthresh = 2;
2673         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2674         rx_ctx.l2tsel = 1;
2675         /* showiv indicates if inner VLAN is stripped inside of tunnel
2676          * packet. When set it to 1, vlan information is stripped from
2677          * the inner header, but the hardware does not put it in the
2678          * descriptor. So set it zero by default.
2679          */
2680         rx_ctx.showiv = 0;
2681         rx_ctx.prefena = 1;
2682
2683         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2684         if (err != I40E_SUCCESS) {
2685                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2686                 return err;
2687         }
2688         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2689         if (err != I40E_SUCCESS) {
2690                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2691                 return err;
2692         }
2693
2694         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2695
2696         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2697                 RTE_PKTMBUF_HEADROOM);
2698
2699         /* Check if scattered RX needs to be used. */
2700         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2701                 dev_data->scattered_rx = 1;
2702         }
2703
2704         /* Init the RX tail regieter. */
2705         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2706
2707         return 0;
2708 }
2709
2710 void
2711 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2712 {
2713         uint16_t i;
2714
2715         PMD_INIT_FUNC_TRACE();
2716
2717         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2718                 if (!dev->data->tx_queues[i])
2719                         continue;
2720                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2721                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2722         }
2723
2724         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2725                 if (!dev->data->rx_queues[i])
2726                         continue;
2727                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2728                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2729         }
2730 }
2731
2732 void
2733 i40e_dev_free_queues(struct rte_eth_dev *dev)
2734 {
2735         uint16_t i;
2736
2737         PMD_INIT_FUNC_TRACE();
2738
2739         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2740                 if (!dev->data->rx_queues[i])
2741                         continue;
2742                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2743                 dev->data->rx_queues[i] = NULL;
2744         }
2745         dev->data->nb_rx_queues = 0;
2746
2747         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2748                 if (!dev->data->tx_queues[i])
2749                         continue;
2750                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2751                 dev->data->tx_queues[i] = NULL;
2752         }
2753         dev->data->nb_tx_queues = 0;
2754 }
2755
2756 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2757 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2758
2759 enum i40e_status_code
2760 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2761 {
2762         struct i40e_tx_queue *txq;
2763         const struct rte_memzone *tz = NULL;
2764         uint32_t ring_size;
2765         struct rte_eth_dev *dev;
2766
2767         if (!pf) {
2768                 PMD_DRV_LOG(ERR, "PF is not available");
2769                 return I40E_ERR_BAD_PTR;
2770         }
2771
2772         dev = pf->adapter->eth_dev;
2773
2774         /* Allocate the TX queue data structure. */
2775         txq = rte_zmalloc_socket("i40e fdir tx queue",
2776                                   sizeof(struct i40e_tx_queue),
2777                                   RTE_CACHE_LINE_SIZE,
2778                                   SOCKET_ID_ANY);
2779         if (!txq) {
2780                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2781                                         "tx queue structure.");
2782                 return I40E_ERR_NO_MEMORY;
2783         }
2784
2785         /* Allocate TX hardware ring descriptors. */
2786         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2787         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2788
2789         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2790                                       I40E_FDIR_QUEUE_ID, ring_size,
2791                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2792         if (!tz) {
2793                 i40e_dev_tx_queue_release(txq);
2794                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2795                 return I40E_ERR_NO_MEMORY;
2796         }
2797
2798         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2799         txq->queue_id = I40E_FDIR_QUEUE_ID;
2800         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2801         txq->vsi = pf->fdir.fdir_vsi;
2802
2803         txq->tx_ring_phys_addr = tz->iova;
2804         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2805         /*
2806          * don't need to allocate software ring and reset for the fdir
2807          * program queue just set the queue has been configured.
2808          */
2809         txq->q_set = TRUE;
2810         pf->fdir.txq = txq;
2811
2812         return I40E_SUCCESS;
2813 }
2814
2815 enum i40e_status_code
2816 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2817 {
2818         struct i40e_rx_queue *rxq;
2819         const struct rte_memzone *rz = NULL;
2820         uint32_t ring_size;
2821         struct rte_eth_dev *dev;
2822
2823         if (!pf) {
2824                 PMD_DRV_LOG(ERR, "PF is not available");
2825                 return I40E_ERR_BAD_PTR;
2826         }
2827
2828         dev = pf->adapter->eth_dev;
2829
2830         /* Allocate the RX queue data structure. */
2831         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2832                                   sizeof(struct i40e_rx_queue),
2833                                   RTE_CACHE_LINE_SIZE,
2834                                   SOCKET_ID_ANY);
2835         if (!rxq) {
2836                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2837                                         "rx queue structure.");
2838                 return I40E_ERR_NO_MEMORY;
2839         }
2840
2841         /* Allocate RX hardware ring descriptors. */
2842         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2843         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2844
2845         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2846                                       I40E_FDIR_QUEUE_ID, ring_size,
2847                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2848         if (!rz) {
2849                 i40e_dev_rx_queue_release(rxq);
2850                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2851                 return I40E_ERR_NO_MEMORY;
2852         }
2853
2854         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2855         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2856         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2857         rxq->vsi = pf->fdir.fdir_vsi;
2858
2859         rxq->rx_ring_phys_addr = rz->iova;
2860         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
2861         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2862
2863         /*
2864          * Don't need to allocate software ring and reset for the fdir
2865          * rx queue, just set the queue has been configured.
2866          */
2867         rxq->q_set = TRUE;
2868         pf->fdir.rxq = rxq;
2869
2870         return I40E_SUCCESS;
2871 }
2872
2873 void
2874 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2875         struct rte_eth_rxq_info *qinfo)
2876 {
2877         struct i40e_rx_queue *rxq;
2878
2879         rxq = dev->data->rx_queues[queue_id];
2880
2881         qinfo->mp = rxq->mp;
2882         qinfo->scattered_rx = dev->data->scattered_rx;
2883         qinfo->nb_desc = rxq->nb_rx_desc;
2884
2885         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2886         qinfo->conf.rx_drop_en = rxq->drop_en;
2887         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2888         qinfo->conf.offloads = rxq->offloads;
2889 }
2890
2891 void
2892 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2893         struct rte_eth_txq_info *qinfo)
2894 {
2895         struct i40e_tx_queue *txq;
2896
2897         txq = dev->data->tx_queues[queue_id];
2898
2899         qinfo->nb_desc = txq->nb_tx_desc;
2900
2901         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2902         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2903         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2904
2905         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2906         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2907         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2908         qinfo->conf.offloads = txq->offloads;
2909 }
2910
2911 void __attribute__((cold))
2912 i40e_set_rx_function(struct rte_eth_dev *dev)
2913 {
2914         struct i40e_adapter *ad =
2915                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2916         uint16_t rx_using_sse, i;
2917         /* In order to allow Vector Rx there are a few configuration
2918          * conditions to be met and Rx Bulk Allocation should be allowed.
2919          */
2920         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2921                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2922                     !ad->rx_bulk_alloc_allowed) {
2923                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2924                                      " Vector Rx preconditions",
2925                                      dev->data->port_id);
2926
2927                         ad->rx_vec_allowed = false;
2928                 }
2929                 if (ad->rx_vec_allowed) {
2930                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2931                                 struct i40e_rx_queue *rxq =
2932                                         dev->data->rx_queues[i];
2933
2934                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
2935                                         ad->rx_vec_allowed = false;
2936                                         break;
2937                                 }
2938                         }
2939                 }
2940         }
2941
2942         if (dev->data->scattered_rx) {
2943                 /* Set the non-LRO scattered callback: there are Vector and
2944                  * single allocation versions.
2945                  */
2946                 if (ad->rx_vec_allowed) {
2947                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
2948                                             "callback (port=%d).",
2949                                      dev->data->port_id);
2950
2951                         dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
2952 #ifdef RTE_ARCH_X86
2953                         /*
2954                          * since AVX frequency can be different to base
2955                          * frequency, limit use of AVX2 version to later
2956                          * plaforms, not all those that could theoretically
2957                          * run it.
2958                          */
2959                         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
2960                                 dev->rx_pkt_burst =
2961                                         i40e_recv_scattered_pkts_vec_avx2;
2962 #endif
2963                 } else {
2964                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
2965                                            "allocation callback (port=%d).",
2966                                      dev->data->port_id);
2967                         dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2968                 }
2969         /* If parameters allow we are going to choose between the following
2970          * callbacks:
2971          *    - Vector
2972          *    - Bulk Allocation
2973          *    - Single buffer allocation (the simplest one)
2974          */
2975         } else if (ad->rx_vec_allowed) {
2976                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
2977                                     "burst size no less than %d (port=%d).",
2978                              RTE_I40E_DESCS_PER_LOOP,
2979                              dev->data->port_id);
2980
2981                 dev->rx_pkt_burst = i40e_recv_pkts_vec;
2982 #ifdef RTE_ARCH_X86
2983                 /*
2984                  * since AVX frequency can be different to base
2985                  * frequency, limit use of AVX2 version to later
2986                  * plaforms, not all those that could theoretically
2987                  * run it.
2988                  */
2989                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
2990                         dev->rx_pkt_burst = i40e_recv_pkts_vec_avx2;
2991 #endif
2992         } else if (ad->rx_bulk_alloc_allowed) {
2993                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2994                                     "satisfied. Rx Burst Bulk Alloc function "
2995                                     "will be used on port=%d.",
2996                              dev->data->port_id);
2997
2998                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2999         } else {
3000                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
3001                                     "satisfied, or Scattered Rx is requested "
3002                                     "(port=%d).",
3003                              dev->data->port_id);
3004
3005                 dev->rx_pkt_burst = i40e_recv_pkts;
3006         }
3007
3008         /* Propagate information about RX function choice through all queues. */
3009         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3010                 rx_using_sse =
3011                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3012                          dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3013                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3014                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3015
3016                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3017                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3018
3019                         if (rxq)
3020                                 rxq->rx_using_sse = rx_using_sse;
3021                 }
3022         }
3023 }
3024
3025 void __attribute__((cold))
3026 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3027 {
3028         struct i40e_adapter *ad =
3029                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3030
3031         /* Use a simple Tx queue if possible (only fast free is allowed) */
3032         ad->tx_simple_allowed =
3033                 (txq->offloads ==
3034                  (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3035                  txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3036         ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3037                         txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3038
3039         if (ad->tx_vec_allowed)
3040                 PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3041                                 txq->queue_id);
3042         else if (ad->tx_simple_allowed)
3043                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3044                                 txq->queue_id);
3045         else
3046                 PMD_INIT_LOG(DEBUG,
3047                                 "Neither simple nor vector Tx enabled on Tx queue %u\n",
3048                                 txq->queue_id);
3049 }
3050
3051 void __attribute__((cold))
3052 i40e_set_tx_function(struct rte_eth_dev *dev)
3053 {
3054         struct i40e_adapter *ad =
3055                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3056         int i;
3057
3058         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3059                 if (ad->tx_vec_allowed) {
3060                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3061                                 struct i40e_tx_queue *txq =
3062                                         dev->data->tx_queues[i];
3063
3064                                 if (txq && i40e_txq_vec_setup(txq)) {
3065                                         ad->tx_vec_allowed = false;
3066                                         break;
3067                                 }
3068                         }
3069                 }
3070         }
3071
3072         if (ad->tx_simple_allowed) {
3073                 if (ad->tx_vec_allowed) {
3074                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
3075                         dev->tx_pkt_burst = i40e_xmit_pkts_vec;
3076 #ifdef RTE_ARCH_X86
3077                         /*
3078                          * since AVX frequency can be different to base
3079                          * frequency, limit use of AVX2 version to later
3080                          * plaforms, not all those that could theoretically
3081                          * run it.
3082                          */
3083                         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
3084                                 dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx2;
3085 #endif
3086                 } else {
3087                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3088                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3089                 }
3090                 dev->tx_pkt_prepare = NULL;
3091         } else {
3092                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3093                 dev->tx_pkt_burst = i40e_xmit_pkts;
3094                 dev->tx_pkt_prepare = i40e_prep_pkts;
3095         }
3096 }
3097
3098 void __attribute__((cold))
3099 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3100 {
3101         struct i40e_adapter *ad =
3102                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3103         int i;
3104
3105         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3106                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3107 }
3108
3109 void __attribute__((cold))
3110 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3111 {
3112         struct i40e_adapter *ad =
3113                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3114         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3115         int i;
3116
3117         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3118                 ad->pctypes_tbl[i] = 0ULL;
3119         ad->flow_types_mask = 0ULL;
3120         ad->pctypes_mask = 0ULL;
3121
3122         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3123                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3124         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3125                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3126         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3127                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3128         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3129                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3130         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3131                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3132         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3133                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3134         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3135                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3136         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3137                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3138         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3139                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3140         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3141                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3142         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3143                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3144
3145         if (hw->mac.type == I40E_MAC_X722) {
3146                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3147                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3148                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3149                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3150                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3151                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3152                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3153                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3154                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3155                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3156                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3157                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3158         }
3159
3160         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3161                 if (ad->pctypes_tbl[i])
3162                         ad->flow_types_mask |= (1ULL << i);
3163                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3164         }
3165 }
3166
3167 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
3168 int __attribute__((weak))
3169 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3170 {
3171         return -1;
3172 }
3173
3174 uint16_t __attribute__((weak))
3175 i40e_recv_pkts_vec(
3176         void __rte_unused *rx_queue,
3177         struct rte_mbuf __rte_unused **rx_pkts,
3178         uint16_t __rte_unused nb_pkts)
3179 {
3180         return 0;
3181 }
3182
3183 uint16_t __attribute__((weak))
3184 i40e_recv_scattered_pkts_vec(
3185         void __rte_unused *rx_queue,
3186         struct rte_mbuf __rte_unused **rx_pkts,
3187         uint16_t __rte_unused nb_pkts)
3188 {
3189         return 0;
3190 }
3191
3192 uint16_t __attribute__((weak))
3193 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3194                         struct rte_mbuf __rte_unused **rx_pkts,
3195                         uint16_t __rte_unused nb_pkts)
3196 {
3197         return 0;
3198 }
3199
3200 uint16_t __attribute__((weak))
3201 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3202                         struct rte_mbuf __rte_unused **rx_pkts,
3203                         uint16_t __rte_unused nb_pkts)
3204 {
3205         return 0;
3206 }
3207
3208 int __attribute__((weak))
3209 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3210 {
3211         return -1;
3212 }
3213
3214 int __attribute__((weak))
3215 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3216 {
3217         return -1;
3218 }
3219
3220 void __attribute__((weak))
3221 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3222 {
3223         return;
3224 }
3225
3226 uint16_t __attribute__((weak))
3227 i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
3228                           struct rte_mbuf __rte_unused **tx_pkts,
3229                           uint16_t __rte_unused nb_pkts)
3230 {
3231         return 0;
3232 }
3233
3234 uint16_t __attribute__((weak))
3235 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3236                           struct rte_mbuf __rte_unused **tx_pkts,
3237                           uint16_t __rte_unused nb_pkts)
3238 {
3239         return 0;
3240 }