net/i40e: add Tx preparation
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53 #include <rte_ip.h>
54 #include <rte_net.h>
55
56 #include "i40e_logs.h"
57 #include "base/i40e_prototype.h"
58 #include "base/i40e_type.h"
59 #include "i40e_ethdev.h"
60 #include "i40e_rxtx.h"
61
62 #define DEFAULT_TX_RS_THRESH   32
63 #define DEFAULT_TX_FREE_THRESH 32
64 #define I40E_MAX_PKT_TYPE      256
65
66 #define I40E_TX_MAX_BURST  32
67
68 #define I40E_DMA_MEM_ALIGN 4096
69
70 /* Base address of the HW descriptor ring should be 128B aligned. */
71 #define I40E_RING_BASE_ALIGN    128
72
73 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
74                                         ETH_TXQ_FLAGS_NOOFFLOADS)
75
76 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
77
78 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
79                 PKT_TX_IP_CKSUM |                \
80                 PKT_TX_L4_MASK |                 \
81                 PKT_TX_TCP_SEG |                 \
82                 PKT_TX_OUTER_IP_CKSUM)
83
84 #define I40E_TX_OFFLOAD_MASK (  \
85                 PKT_TX_IP_CKSUM |       \
86                 PKT_TX_L4_MASK |        \
87                 PKT_TX_OUTER_IP_CKSUM | \
88                 PKT_TX_TCP_SEG |        \
89                 PKT_TX_QINQ_PKT |       \
90                 PKT_TX_VLAN_PKT)
91
92 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
93                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
94
95 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
96                                       struct rte_mbuf **tx_pkts,
97                                       uint16_t nb_pkts);
98
99 static inline void
100 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
101 {
102         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
103                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
104                 mb->ol_flags |= PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED;
105                 mb->vlan_tci =
106                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
107                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
108                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
109         } else {
110                 mb->vlan_tci = 0;
111         }
112 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
113         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
114                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
115                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED;
116                 mb->vlan_tci_outer = mb->vlan_tci;
117                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
118                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
119                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
120                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
121         } else {
122                 mb->vlan_tci_outer = 0;
123         }
124 #endif
125         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
126                    mb->vlan_tci, mb->vlan_tci_outer);
127 }
128
129 /* Translate the rx descriptor status to pkt flags */
130 static inline uint64_t
131 i40e_rxd_status_to_pkt_flags(uint64_t qword)
132 {
133         uint64_t flags;
134
135         /* Check if RSS_HASH */
136         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
137                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
138                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
139
140         /* Check if FDIR Match */
141         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
142                                                         PKT_RX_FDIR : 0);
143
144         return flags;
145 }
146
147 static inline uint64_t
148 i40e_rxd_error_to_pkt_flags(uint64_t qword)
149 {
150         uint64_t flags = 0;
151         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
152
153 #define I40E_RX_ERR_BITS 0x3f
154         if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
155                 return flags;
156         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
157                 flags |= PKT_RX_IP_CKSUM_BAD;
158         else
159                 flags |= PKT_RX_IP_CKSUM_GOOD;
160
161         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
162                 flags |= PKT_RX_L4_CKSUM_BAD;
163         else
164                 flags |= PKT_RX_L4_CKSUM_GOOD;
165
166         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
167                 flags |= PKT_RX_EIP_CKSUM_BAD;
168
169         return flags;
170 }
171
172 /* Function to check and set the ieee1588 timesync index and get the
173  * appropriate flags.
174  */
175 #ifdef RTE_LIBRTE_IEEE1588
176 static inline uint64_t
177 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
178 {
179         uint64_t pkt_flags = 0;
180         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
181                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
182                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
183
184         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
185                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
186                 pkt_flags = PKT_RX_IEEE1588_PTP;
187         if (tsyn & 0x04) {
188                 pkt_flags |= PKT_RX_IEEE1588_TMST;
189                 mb->timesync = tsyn & 0x03;
190         }
191
192         return pkt_flags;
193 }
194 #endif
195
196 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
197 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
198 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
199 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
200 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
201
202 static inline uint64_t
203 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
204 {
205         uint64_t flags = 0;
206 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
207         uint16_t flexbh, flexbl;
208
209         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
210                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
211                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
212         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
213                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
214                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
215
216
217         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
218                 mb->hash.fdir.hi =
219                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
220                 flags |= PKT_RX_FDIR_ID;
221         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
222                 mb->hash.fdir.hi =
223                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
224                 flags |= PKT_RX_FDIR_FLX;
225         }
226         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
227                 mb->hash.fdir.lo =
228                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
229                 flags |= PKT_RX_FDIR_FLX;
230         }
231 #else
232         mb->hash.fdir.hi =
233                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
234         flags |= PKT_RX_FDIR_ID;
235 #endif
236         return flags;
237 }
238
239 static inline void
240 i40e_parse_tunneling_params(uint64_t ol_flags,
241                             union i40e_tx_offload tx_offload,
242                             uint32_t *cd_tunneling)
243 {
244         /* EIPT: External (outer) IP header type */
245         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
246                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
247         else if (ol_flags & PKT_TX_OUTER_IPV4)
248                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
249         else if (ol_flags & PKT_TX_OUTER_IPV6)
250                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
251
252         /* EIPLEN: External (outer) IP header length, in DWords */
253         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
254                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
255
256         /* L4TUNT: L4 Tunneling Type */
257         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
258         case PKT_TX_TUNNEL_IPIP:
259                 /* for non UDP / GRE tunneling, set to 00b */
260                 break;
261         case PKT_TX_TUNNEL_VXLAN:
262         case PKT_TX_TUNNEL_GENEVE:
263                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
264                 break;
265         case PKT_TX_TUNNEL_GRE:
266                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
267                 break;
268         default:
269                 PMD_TX_LOG(ERR, "Tunnel type not supported\n");
270                 return;
271         }
272
273         /* L4TUNLEN: L4 Tunneling Length, in Words
274          *
275          * We depend on app to set rte_mbuf.l2_len correctly.
276          * For IP in GRE it should be set to the length of the GRE
277          * header;
278          * for MAC in GRE or MAC in UDP it should be set to the length
279          * of the GRE or UDP headers plus the inner MAC up to including
280          * its last Ethertype.
281          */
282         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
283                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
284 }
285
286 static inline void
287 i40e_txd_enable_checksum(uint64_t ol_flags,
288                         uint32_t *td_cmd,
289                         uint32_t *td_offset,
290                         union i40e_tx_offload tx_offload)
291 {
292         /* Set MACLEN */
293         if (ol_flags & PKT_TX_TUNNEL_MASK)
294                 *td_offset |= (tx_offload.outer_l2_len >> 1)
295                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
296         else
297                 *td_offset |= (tx_offload.l2_len >> 1)
298                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
299
300         /* Enable L3 checksum offloads */
301         if (ol_flags & PKT_TX_IP_CKSUM) {
302                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
303                 *td_offset |= (tx_offload.l3_len >> 2)
304                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
305         } else if (ol_flags & PKT_TX_IPV4) {
306                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
307                 *td_offset |= (tx_offload.l3_len >> 2)
308                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
309         } else if (ol_flags & PKT_TX_IPV6) {
310                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
311                 *td_offset |= (tx_offload.l3_len >> 2)
312                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
313         }
314
315         if (ol_flags & PKT_TX_TCP_SEG) {
316                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
317                 *td_offset |= (tx_offload.l4_len >> 2)
318                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
319                 return;
320         }
321
322         /* Enable L4 checksum offloads */
323         switch (ol_flags & PKT_TX_L4_MASK) {
324         case PKT_TX_TCP_CKSUM:
325                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
326                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
327                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
328                 break;
329         case PKT_TX_SCTP_CKSUM:
330                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
331                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
332                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
333                 break;
334         case PKT_TX_UDP_CKSUM:
335                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
336                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
337                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
338                 break;
339         default:
340                 break;
341         }
342 }
343
344 /* Construct the tx flags */
345 static inline uint64_t
346 i40e_build_ctob(uint32_t td_cmd,
347                 uint32_t td_offset,
348                 unsigned int size,
349                 uint32_t td_tag)
350 {
351         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
352                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
353                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
354                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
355                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
356 }
357
358 static inline int
359 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
360 {
361         struct i40e_tx_entry *sw_ring = txq->sw_ring;
362         volatile struct i40e_tx_desc *txd = txq->tx_ring;
363         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
364         uint16_t nb_tx_desc = txq->nb_tx_desc;
365         uint16_t desc_to_clean_to;
366         uint16_t nb_tx_to_clean;
367
368         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
369         if (desc_to_clean_to >= nb_tx_desc)
370                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
371
372         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
373         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
374                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
375                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
376                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
377                         "(port=%d queue=%d)", desc_to_clean_to,
378                                 txq->port_id, txq->queue_id);
379                 return -1;
380         }
381
382         if (last_desc_cleaned > desc_to_clean_to)
383                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
384                                                         desc_to_clean_to);
385         else
386                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
387                                         last_desc_cleaned);
388
389         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
390
391         txq->last_desc_cleaned = desc_to_clean_to;
392         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
393
394         return 0;
395 }
396
397 static inline int
398 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
399 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
400 #else
401 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
402 #endif
403 {
404         int ret = 0;
405
406 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
407         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
408                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
409                              "rxq->rx_free_thresh=%d, "
410                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
411                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
412                 ret = -EINVAL;
413         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
414                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
415                              "rxq->rx_free_thresh=%d, "
416                              "rxq->nb_rx_desc=%d",
417                              rxq->rx_free_thresh, rxq->nb_rx_desc);
418                 ret = -EINVAL;
419         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
420                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
421                              "rxq->nb_rx_desc=%d, "
422                              "rxq->rx_free_thresh=%d",
423                              rxq->nb_rx_desc, rxq->rx_free_thresh);
424                 ret = -EINVAL;
425         } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
426                                 RTE_PMD_I40E_RX_MAX_BURST))) {
427                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
428                              "rxq->nb_rx_desc=%d, "
429                              "I40E_MAX_RING_DESC=%d, "
430                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
431                              rxq->nb_rx_desc, I40E_MAX_RING_DESC,
432                              RTE_PMD_I40E_RX_MAX_BURST);
433                 ret = -EINVAL;
434         }
435 #else
436         ret = -EINVAL;
437 #endif
438
439         return ret;
440 }
441
442 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
443 #define I40E_LOOK_AHEAD 8
444 #if (I40E_LOOK_AHEAD != 8)
445 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
446 #endif
447 static inline int
448 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
449 {
450         volatile union i40e_rx_desc *rxdp;
451         struct i40e_rx_entry *rxep;
452         struct rte_mbuf *mb;
453         uint16_t pkt_len;
454         uint64_t qword1;
455         uint32_t rx_status;
456         int32_t s[I40E_LOOK_AHEAD], nb_dd;
457         int32_t i, j, nb_rx = 0;
458         uint64_t pkt_flags;
459
460         rxdp = &rxq->rx_ring[rxq->rx_tail];
461         rxep = &rxq->sw_ring[rxq->rx_tail];
462
463         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
464         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
465                                 I40E_RXD_QW1_STATUS_SHIFT;
466
467         /* Make sure there is at least 1 packet to receive */
468         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
469                 return 0;
470
471         /**
472          * Scan LOOK_AHEAD descriptors at a time to determine which
473          * descriptors reference packets that are ready to be received.
474          */
475         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
476                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
477                 /* Read desc statuses backwards to avoid race condition */
478                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
479                         qword1 = rte_le_to_cpu_64(\
480                                 rxdp[j].wb.qword1.status_error_len);
481                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
482                                         I40E_RXD_QW1_STATUS_SHIFT;
483                 }
484
485                 rte_smp_rmb();
486
487                 /* Compute how many status bits were set */
488                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
489                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
490
491                 nb_rx += nb_dd;
492
493                 /* Translate descriptor info to mbuf parameters */
494                 for (j = 0; j < nb_dd; j++) {
495                         mb = rxep[j].mbuf;
496                         qword1 = rte_le_to_cpu_64(\
497                                 rxdp[j].wb.qword1.status_error_len);
498                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
499                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
500                         mb->data_len = pkt_len;
501                         mb->pkt_len = pkt_len;
502                         mb->ol_flags = 0;
503                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
504                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
505                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
506                         mb->packet_type =
507                                 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
508                                                 I40E_RXD_QW1_PTYPE_MASK) >>
509                                                 I40E_RXD_QW1_PTYPE_SHIFT));
510                         if (pkt_flags & PKT_RX_RSS_HASH)
511                                 mb->hash.rss = rte_le_to_cpu_32(\
512                                         rxdp[j].wb.qword0.hi_dword.rss);
513                         if (pkt_flags & PKT_RX_FDIR)
514                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
515
516 #ifdef RTE_LIBRTE_IEEE1588
517                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
518 #endif
519                         mb->ol_flags |= pkt_flags;
520
521                 }
522
523                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
524                         rxq->rx_stage[i + j] = rxep[j].mbuf;
525
526                 if (nb_dd != I40E_LOOK_AHEAD)
527                         break;
528         }
529
530         /* Clear software ring entries */
531         for (i = 0; i < nb_rx; i++)
532                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
533
534         return nb_rx;
535 }
536
537 static inline uint16_t
538 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
539                         struct rte_mbuf **rx_pkts,
540                         uint16_t nb_pkts)
541 {
542         uint16_t i;
543         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
544
545         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
546
547         for (i = 0; i < nb_pkts; i++)
548                 rx_pkts[i] = stage[i];
549
550         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
551         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
552
553         return nb_pkts;
554 }
555
556 static inline int
557 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
558 {
559         volatile union i40e_rx_desc *rxdp;
560         struct i40e_rx_entry *rxep;
561         struct rte_mbuf *mb;
562         uint16_t alloc_idx, i;
563         uint64_t dma_addr;
564         int diag;
565
566         /* Allocate buffers in bulk */
567         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
568                                 (rxq->rx_free_thresh - 1));
569         rxep = &(rxq->sw_ring[alloc_idx]);
570         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
571                                         rxq->rx_free_thresh);
572         if (unlikely(diag != 0)) {
573                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
574                 return -ENOMEM;
575         }
576
577         rxdp = &rxq->rx_ring[alloc_idx];
578         for (i = 0; i < rxq->rx_free_thresh; i++) {
579                 if (likely(i < (rxq->rx_free_thresh - 1)))
580                         /* Prefetch next mbuf */
581                         rte_prefetch0(rxep[i + 1].mbuf);
582
583                 mb = rxep[i].mbuf;
584                 rte_mbuf_refcnt_set(mb, 1);
585                 mb->next = NULL;
586                 mb->data_off = RTE_PKTMBUF_HEADROOM;
587                 mb->nb_segs = 1;
588                 mb->port = rxq->port_id;
589                 dma_addr = rte_cpu_to_le_64(\
590                         rte_mbuf_data_dma_addr_default(mb));
591                 rxdp[i].read.hdr_addr = 0;
592                 rxdp[i].read.pkt_addr = dma_addr;
593         }
594
595         /* Update rx tail regsiter */
596         rte_wmb();
597         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
598
599         rxq->rx_free_trigger =
600                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
601         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
602                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
603
604         return 0;
605 }
606
607 static inline uint16_t
608 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
609 {
610         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
611         uint16_t nb_rx = 0;
612
613         if (!nb_pkts)
614                 return 0;
615
616         if (rxq->rx_nb_avail)
617                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
618
619         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
620         rxq->rx_next_avail = 0;
621         rxq->rx_nb_avail = nb_rx;
622         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
623
624         if (rxq->rx_tail > rxq->rx_free_trigger) {
625                 if (i40e_rx_alloc_bufs(rxq) != 0) {
626                         uint16_t i, j;
627
628                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
629                                    "port_id=%u, queue_id=%u",
630                                    rxq->port_id, rxq->queue_id);
631                         rxq->rx_nb_avail = 0;
632                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
633                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
634                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
635
636                         return 0;
637                 }
638         }
639
640         if (rxq->rx_tail >= rxq->nb_rx_desc)
641                 rxq->rx_tail = 0;
642
643         if (rxq->rx_nb_avail)
644                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
645
646         return 0;
647 }
648
649 static uint16_t
650 i40e_recv_pkts_bulk_alloc(void *rx_queue,
651                           struct rte_mbuf **rx_pkts,
652                           uint16_t nb_pkts)
653 {
654         uint16_t nb_rx = 0, n, count;
655
656         if (unlikely(nb_pkts == 0))
657                 return 0;
658
659         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
660                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
661
662         while (nb_pkts) {
663                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
664                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
665                 nb_rx = (uint16_t)(nb_rx + count);
666                 nb_pkts = (uint16_t)(nb_pkts - count);
667                 if (count < n)
668                         break;
669         }
670
671         return nb_rx;
672 }
673 #else
674 static uint16_t
675 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
676                           struct rte_mbuf __rte_unused **rx_pkts,
677                           uint16_t __rte_unused nb_pkts)
678 {
679         return 0;
680 }
681 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
682
683 uint16_t
684 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
685 {
686         struct i40e_rx_queue *rxq;
687         volatile union i40e_rx_desc *rx_ring;
688         volatile union i40e_rx_desc *rxdp;
689         union i40e_rx_desc rxd;
690         struct i40e_rx_entry *sw_ring;
691         struct i40e_rx_entry *rxe;
692         struct rte_mbuf *rxm;
693         struct rte_mbuf *nmb;
694         uint16_t nb_rx;
695         uint32_t rx_status;
696         uint64_t qword1;
697         uint16_t rx_packet_len;
698         uint16_t rx_id, nb_hold;
699         uint64_t dma_addr;
700         uint64_t pkt_flags;
701
702         nb_rx = 0;
703         nb_hold = 0;
704         rxq = rx_queue;
705         rx_id = rxq->rx_tail;
706         rx_ring = rxq->rx_ring;
707         sw_ring = rxq->sw_ring;
708
709         while (nb_rx < nb_pkts) {
710                 rxdp = &rx_ring[rx_id];
711                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
712                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
713                                 >> I40E_RXD_QW1_STATUS_SHIFT;
714
715                 /* Check the DD bit first */
716                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
717                         break;
718
719                 nmb = rte_mbuf_raw_alloc(rxq->mp);
720                 if (unlikely(!nmb))
721                         break;
722                 rxd = *rxdp;
723
724                 nb_hold++;
725                 rxe = &sw_ring[rx_id];
726                 rx_id++;
727                 if (unlikely(rx_id == rxq->nb_rx_desc))
728                         rx_id = 0;
729
730                 /* Prefetch next mbuf */
731                 rte_prefetch0(sw_ring[rx_id].mbuf);
732
733                 /**
734                  * When next RX descriptor is on a cache line boundary,
735                  * prefetch the next 4 RX descriptors and next 8 pointers
736                  * to mbufs.
737                  */
738                 if ((rx_id & 0x3) == 0) {
739                         rte_prefetch0(&rx_ring[rx_id]);
740                         rte_prefetch0(&sw_ring[rx_id]);
741                 }
742                 rxm = rxe->mbuf;
743                 rxe->mbuf = nmb;
744                 dma_addr =
745                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
746                 rxdp->read.hdr_addr = 0;
747                 rxdp->read.pkt_addr = dma_addr;
748
749                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
750                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
751
752                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
753                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
754                 rxm->nb_segs = 1;
755                 rxm->next = NULL;
756                 rxm->pkt_len = rx_packet_len;
757                 rxm->data_len = rx_packet_len;
758                 rxm->port = rxq->port_id;
759                 rxm->ol_flags = 0;
760                 i40e_rxd_to_vlan_tci(rxm, &rxd);
761                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
762                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
763                 rxm->packet_type =
764                         i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
765                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
766                 if (pkt_flags & PKT_RX_RSS_HASH)
767                         rxm->hash.rss =
768                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
769                 if (pkt_flags & PKT_RX_FDIR)
770                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
771
772 #ifdef RTE_LIBRTE_IEEE1588
773                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
774 #endif
775                 rxm->ol_flags |= pkt_flags;
776
777                 rx_pkts[nb_rx++] = rxm;
778         }
779         rxq->rx_tail = rx_id;
780
781         /**
782          * If the number of free RX descriptors is greater than the RX free
783          * threshold of the queue, advance the receive tail register of queue.
784          * Update that register with the value of the last processed RX
785          * descriptor minus 1.
786          */
787         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
788         if (nb_hold > rxq->rx_free_thresh) {
789                 rx_id = (uint16_t) ((rx_id == 0) ?
790                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
791                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
792                 nb_hold = 0;
793         }
794         rxq->nb_rx_hold = nb_hold;
795
796         return nb_rx;
797 }
798
799 uint16_t
800 i40e_recv_scattered_pkts(void *rx_queue,
801                          struct rte_mbuf **rx_pkts,
802                          uint16_t nb_pkts)
803 {
804         struct i40e_rx_queue *rxq = rx_queue;
805         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
806         volatile union i40e_rx_desc *rxdp;
807         union i40e_rx_desc rxd;
808         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
809         struct i40e_rx_entry *rxe;
810         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
811         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
812         struct rte_mbuf *nmb, *rxm;
813         uint16_t rx_id = rxq->rx_tail;
814         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
815         uint32_t rx_status;
816         uint64_t qword1;
817         uint64_t dma_addr;
818         uint64_t pkt_flags;
819
820         while (nb_rx < nb_pkts) {
821                 rxdp = &rx_ring[rx_id];
822                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
823                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
824                                         I40E_RXD_QW1_STATUS_SHIFT;
825
826                 /* Check the DD bit */
827                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
828                         break;
829
830                 nmb = rte_mbuf_raw_alloc(rxq->mp);
831                 if (unlikely(!nmb))
832                         break;
833                 rxd = *rxdp;
834                 nb_hold++;
835                 rxe = &sw_ring[rx_id];
836                 rx_id++;
837                 if (rx_id == rxq->nb_rx_desc)
838                         rx_id = 0;
839
840                 /* Prefetch next mbuf */
841                 rte_prefetch0(sw_ring[rx_id].mbuf);
842
843                 /**
844                  * When next RX descriptor is on a cache line boundary,
845                  * prefetch the next 4 RX descriptors and next 8 pointers
846                  * to mbufs.
847                  */
848                 if ((rx_id & 0x3) == 0) {
849                         rte_prefetch0(&rx_ring[rx_id]);
850                         rte_prefetch0(&sw_ring[rx_id]);
851                 }
852
853                 rxm = rxe->mbuf;
854                 rxe->mbuf = nmb;
855                 dma_addr =
856                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
857
858                 /* Set data buffer address and data length of the mbuf */
859                 rxdp->read.hdr_addr = 0;
860                 rxdp->read.pkt_addr = dma_addr;
861                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
862                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
863                 rxm->data_len = rx_packet_len;
864                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
865
866                 /**
867                  * If this is the first buffer of the received packet, set the
868                  * pointer to the first mbuf of the packet and initialize its
869                  * context. Otherwise, update the total length and the number
870                  * of segments of the current scattered packet, and update the
871                  * pointer to the last mbuf of the current packet.
872                  */
873                 if (!first_seg) {
874                         first_seg = rxm;
875                         first_seg->nb_segs = 1;
876                         first_seg->pkt_len = rx_packet_len;
877                 } else {
878                         first_seg->pkt_len =
879                                 (uint16_t)(first_seg->pkt_len +
880                                                 rx_packet_len);
881                         first_seg->nb_segs++;
882                         last_seg->next = rxm;
883                 }
884
885                 /**
886                  * If this is not the last buffer of the received packet,
887                  * update the pointer to the last mbuf of the current scattered
888                  * packet and continue to parse the RX ring.
889                  */
890                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
891                         last_seg = rxm;
892                         continue;
893                 }
894
895                 /**
896                  * This is the last buffer of the received packet. If the CRC
897                  * is not stripped by the hardware:
898                  *  - Subtract the CRC length from the total packet length.
899                  *  - If the last buffer only contains the whole CRC or a part
900                  *  of it, free the mbuf associated to the last buffer. If part
901                  *  of the CRC is also contained in the previous mbuf, subtract
902                  *  the length of that CRC part from the data length of the
903                  *  previous mbuf.
904                  */
905                 rxm->next = NULL;
906                 if (unlikely(rxq->crc_len > 0)) {
907                         first_seg->pkt_len -= ETHER_CRC_LEN;
908                         if (rx_packet_len <= ETHER_CRC_LEN) {
909                                 rte_pktmbuf_free_seg(rxm);
910                                 first_seg->nb_segs--;
911                                 last_seg->data_len =
912                                         (uint16_t)(last_seg->data_len -
913                                         (ETHER_CRC_LEN - rx_packet_len));
914                                 last_seg->next = NULL;
915                         } else
916                                 rxm->data_len = (uint16_t)(rx_packet_len -
917                                                                 ETHER_CRC_LEN);
918                 }
919
920                 first_seg->port = rxq->port_id;
921                 first_seg->ol_flags = 0;
922                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
923                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
924                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
925                 first_seg->packet_type =
926                         i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
927                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
928                 if (pkt_flags & PKT_RX_RSS_HASH)
929                         first_seg->hash.rss =
930                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
931                 if (pkt_flags & PKT_RX_FDIR)
932                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
933
934 #ifdef RTE_LIBRTE_IEEE1588
935                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
936 #endif
937                 first_seg->ol_flags |= pkt_flags;
938
939                 /* Prefetch data of first segment, if configured to do so. */
940                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
941                         first_seg->data_off));
942                 rx_pkts[nb_rx++] = first_seg;
943                 first_seg = NULL;
944         }
945
946         /* Record index of the next RX descriptor to probe. */
947         rxq->rx_tail = rx_id;
948         rxq->pkt_first_seg = first_seg;
949         rxq->pkt_last_seg = last_seg;
950
951         /**
952          * If the number of free RX descriptors is greater than the RX free
953          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
954          * register. Update the RDT with the value of the last processed RX
955          * descriptor minus 1, to guarantee that the RDT register is never
956          * equal to the RDH register, which creates a "full" ring situtation
957          * from the hardware point of view.
958          */
959         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
960         if (nb_hold > rxq->rx_free_thresh) {
961                 rx_id = (uint16_t)(rx_id == 0 ?
962                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
963                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
964                 nb_hold = 0;
965         }
966         rxq->nb_rx_hold = nb_hold;
967
968         return nb_rx;
969 }
970
971 /* Check if the context descriptor is needed for TX offloading */
972 static inline uint16_t
973 i40e_calc_context_desc(uint64_t flags)
974 {
975         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
976                 PKT_TX_TCP_SEG |
977                 PKT_TX_QINQ_PKT |
978                 PKT_TX_TUNNEL_MASK;
979
980 #ifdef RTE_LIBRTE_IEEE1588
981         mask |= PKT_TX_IEEE1588_TMST;
982 #endif
983
984         return (flags & mask) ? 1 : 0;
985 }
986
987 /* set i40e TSO context descriptor */
988 static inline uint64_t
989 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
990 {
991         uint64_t ctx_desc = 0;
992         uint32_t cd_cmd, hdr_len, cd_tso_len;
993
994         if (!tx_offload.l4_len) {
995                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
996                 return ctx_desc;
997         }
998
999         /**
1000          * in case of non tunneling packet, the outer_l2_len and
1001          * outer_l3_len must be 0.
1002          */
1003         hdr_len = tx_offload.outer_l2_len +
1004                 tx_offload.outer_l3_len +
1005                 tx_offload.l2_len +
1006                 tx_offload.l3_len +
1007                 tx_offload.l4_len;
1008
1009         cd_cmd = I40E_TX_CTX_DESC_TSO;
1010         cd_tso_len = mbuf->pkt_len - hdr_len;
1011         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1012                 ((uint64_t)cd_tso_len <<
1013                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1014                 ((uint64_t)mbuf->tso_segsz <<
1015                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1016
1017         return ctx_desc;
1018 }
1019
1020 uint16_t
1021 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1022 {
1023         struct i40e_tx_queue *txq;
1024         struct i40e_tx_entry *sw_ring;
1025         struct i40e_tx_entry *txe, *txn;
1026         volatile struct i40e_tx_desc *txd;
1027         volatile struct i40e_tx_desc *txr;
1028         struct rte_mbuf *tx_pkt;
1029         struct rte_mbuf *m_seg;
1030         uint32_t cd_tunneling_params;
1031         uint16_t tx_id;
1032         uint16_t nb_tx;
1033         uint32_t td_cmd;
1034         uint32_t td_offset;
1035         uint32_t tx_flags;
1036         uint32_t td_tag;
1037         uint64_t ol_flags;
1038         uint16_t nb_used;
1039         uint16_t nb_ctx;
1040         uint16_t tx_last;
1041         uint16_t slen;
1042         uint64_t buf_dma_addr;
1043         union i40e_tx_offload tx_offload = {0};
1044
1045         txq = tx_queue;
1046         sw_ring = txq->sw_ring;
1047         txr = txq->tx_ring;
1048         tx_id = txq->tx_tail;
1049         txe = &sw_ring[tx_id];
1050
1051         /* Check if the descriptor ring needs to be cleaned. */
1052         if (txq->nb_tx_free < txq->tx_free_thresh)
1053                 i40e_xmit_cleanup(txq);
1054
1055         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1056                 td_cmd = 0;
1057                 td_tag = 0;
1058                 td_offset = 0;
1059                 tx_flags = 0;
1060
1061                 tx_pkt = *tx_pkts++;
1062                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1063
1064                 ol_flags = tx_pkt->ol_flags;
1065                 tx_offload.l2_len = tx_pkt->l2_len;
1066                 tx_offload.l3_len = tx_pkt->l3_len;
1067                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1068                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1069                 tx_offload.l4_len = tx_pkt->l4_len;
1070                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1071
1072                 /* Calculate the number of context descriptors needed. */
1073                 nb_ctx = i40e_calc_context_desc(ol_flags);
1074
1075                 /**
1076                  * The number of descriptors that must be allocated for
1077                  * a packet equals to the number of the segments of that
1078                  * packet plus 1 context descriptor if needed.
1079                  */
1080                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1081                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1082
1083                 /* Circular ring */
1084                 if (tx_last >= txq->nb_tx_desc)
1085                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1086
1087                 if (nb_used > txq->nb_tx_free) {
1088                         if (i40e_xmit_cleanup(txq) != 0) {
1089                                 if (nb_tx == 0)
1090                                         return 0;
1091                                 goto end_of_tx;
1092                         }
1093                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1094                                 while (nb_used > txq->nb_tx_free) {
1095                                         if (i40e_xmit_cleanup(txq) != 0) {
1096                                                 if (nb_tx == 0)
1097                                                         return 0;
1098                                                 goto end_of_tx;
1099                                         }
1100                                 }
1101                         }
1102                 }
1103
1104                 /* Descriptor based VLAN insertion */
1105                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1106                         tx_flags |= tx_pkt->vlan_tci <<
1107                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1108                         tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1109                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1110                         td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1111                                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1112                 }
1113
1114                 /* Always enable CRC offload insertion */
1115                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1116
1117                 /* Fill in tunneling parameters if necessary */
1118                 cd_tunneling_params = 0;
1119                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1120                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1121                                                     &cd_tunneling_params);
1122                 /* Enable checksum offloading */
1123                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1124                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1125                                                  &td_offset, tx_offload);
1126
1127                 if (nb_ctx) {
1128                         /* Setup TX context descriptor if required */
1129                         volatile struct i40e_tx_context_desc *ctx_txd =
1130                                 (volatile struct i40e_tx_context_desc *)\
1131                                                         &txr[tx_id];
1132                         uint16_t cd_l2tag2 = 0;
1133                         uint64_t cd_type_cmd_tso_mss =
1134                                 I40E_TX_DESC_DTYPE_CONTEXT;
1135
1136                         txn = &sw_ring[txe->next_id];
1137                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1138                         if (txe->mbuf != NULL) {
1139                                 rte_pktmbuf_free_seg(txe->mbuf);
1140                                 txe->mbuf = NULL;
1141                         }
1142
1143                         /* TSO enabled means no timestamp */
1144                         if (ol_flags & PKT_TX_TCP_SEG)
1145                                 cd_type_cmd_tso_mss |=
1146                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1147                         else {
1148 #ifdef RTE_LIBRTE_IEEE1588
1149                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1150                                         cd_type_cmd_tso_mss |=
1151                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1152                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1153 #endif
1154                         }
1155
1156                         ctx_txd->tunneling_params =
1157                                 rte_cpu_to_le_32(cd_tunneling_params);
1158                         if (ol_flags & PKT_TX_QINQ_PKT) {
1159                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1160                                 cd_type_cmd_tso_mss |=
1161                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1162                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1163                         }
1164                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1165                         ctx_txd->type_cmd_tso_mss =
1166                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1167
1168                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1169                                 "tunneling_params: %#x;\n"
1170                                 "l2tag2: %#hx;\n"
1171                                 "rsvd: %#hx;\n"
1172                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1173                                 tx_pkt, tx_id,
1174                                 ctx_txd->tunneling_params,
1175                                 ctx_txd->l2tag2,
1176                                 ctx_txd->rsvd,
1177                                 ctx_txd->type_cmd_tso_mss);
1178
1179                         txe->last_id = tx_last;
1180                         tx_id = txe->next_id;
1181                         txe = txn;
1182                 }
1183
1184                 m_seg = tx_pkt;
1185                 do {
1186                         txd = &txr[tx_id];
1187                         txn = &sw_ring[txe->next_id];
1188
1189                         if (txe->mbuf)
1190                                 rte_pktmbuf_free_seg(txe->mbuf);
1191                         txe->mbuf = m_seg;
1192
1193                         /* Setup TX Descriptor */
1194                         slen = m_seg->data_len;
1195                         buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
1196
1197                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1198                                 "buf_dma_addr: %#"PRIx64";\n"
1199                                 "td_cmd: %#x;\n"
1200                                 "td_offset: %#x;\n"
1201                                 "td_len: %u;\n"
1202                                 "td_tag: %#x;\n",
1203                                 tx_pkt, tx_id, buf_dma_addr,
1204                                 td_cmd, td_offset, slen, td_tag);
1205
1206                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1207                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1208                                                 td_offset, slen, td_tag);
1209                         txe->last_id = tx_last;
1210                         tx_id = txe->next_id;
1211                         txe = txn;
1212                         m_seg = m_seg->next;
1213                 } while (m_seg != NULL);
1214
1215                 /* The last packet data descriptor needs End Of Packet (EOP) */
1216                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1217                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1218                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1219
1220                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1221                         PMD_TX_FREE_LOG(DEBUG,
1222                                         "Setting RS bit on TXD id="
1223                                         "%4u (port=%d queue=%d)",
1224                                         tx_last, txq->port_id, txq->queue_id);
1225
1226                         td_cmd |= I40E_TX_DESC_CMD_RS;
1227
1228                         /* Update txq RS bit counters */
1229                         txq->nb_tx_used = 0;
1230                 }
1231
1232                 txd->cmd_type_offset_bsz |=
1233                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1234                                         I40E_TXD_QW1_CMD_SHIFT);
1235         }
1236
1237 end_of_tx:
1238         rte_wmb();
1239
1240         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1241                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1242                    (unsigned) tx_id, (unsigned) nb_tx);
1243
1244         I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1245         txq->tx_tail = tx_id;
1246
1247         return nb_tx;
1248 }
1249
1250 static inline int __attribute__((always_inline))
1251 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1252 {
1253         struct i40e_tx_entry *txep;
1254         uint16_t i;
1255
1256         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1257                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1258                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1259                 return 0;
1260
1261         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1262
1263         for (i = 0; i < txq->tx_rs_thresh; i++)
1264                 rte_prefetch0((txep + i)->mbuf);
1265
1266         if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) {
1267                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1268                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1269                         txep->mbuf = NULL;
1270                 }
1271         } else {
1272                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1273                         rte_pktmbuf_free_seg(txep->mbuf);
1274                         txep->mbuf = NULL;
1275                 }
1276         }
1277
1278         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1279         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1280         if (txq->tx_next_dd >= txq->nb_tx_desc)
1281                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1282
1283         return txq->tx_rs_thresh;
1284 }
1285
1286 /* Populate 4 descriptors with data from 4 mbufs */
1287 static inline void
1288 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1289 {
1290         uint64_t dma_addr;
1291         uint32_t i;
1292
1293         for (i = 0; i < 4; i++, txdp++, pkts++) {
1294                 dma_addr = rte_mbuf_data_dma_addr(*pkts);
1295                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1296                 txdp->cmd_type_offset_bsz =
1297                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1298                                         (*pkts)->data_len, 0);
1299         }
1300 }
1301
1302 /* Populate 1 descriptor with data from 1 mbuf */
1303 static inline void
1304 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1305 {
1306         uint64_t dma_addr;
1307
1308         dma_addr = rte_mbuf_data_dma_addr(*pkts);
1309         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1310         txdp->cmd_type_offset_bsz =
1311                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1312                                 (*pkts)->data_len, 0);
1313 }
1314
1315 /* Fill hardware descriptor ring with mbuf data */
1316 static inline void
1317 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1318                      struct rte_mbuf **pkts,
1319                      uint16_t nb_pkts)
1320 {
1321         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1322         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1323         const int N_PER_LOOP = 4;
1324         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1325         int mainpart, leftover;
1326         int i, j;
1327
1328         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1329         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1330         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1331                 for (j = 0; j < N_PER_LOOP; ++j) {
1332                         (txep + i + j)->mbuf = *(pkts + i + j);
1333                 }
1334                 tx4(txdp + i, pkts + i);
1335         }
1336         if (unlikely(leftover > 0)) {
1337                 for (i = 0; i < leftover; ++i) {
1338                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1339                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1340                 }
1341         }
1342 }
1343
1344 static inline uint16_t
1345 tx_xmit_pkts(struct i40e_tx_queue *txq,
1346              struct rte_mbuf **tx_pkts,
1347              uint16_t nb_pkts)
1348 {
1349         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1350         uint16_t n = 0;
1351
1352         /**
1353          * Begin scanning the H/W ring for done descriptors when the number
1354          * of available descriptors drops below tx_free_thresh. For each done
1355          * descriptor, free the associated buffer.
1356          */
1357         if (txq->nb_tx_free < txq->tx_free_thresh)
1358                 i40e_tx_free_bufs(txq);
1359
1360         /* Use available descriptor only */
1361         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1362         if (unlikely(!nb_pkts))
1363                 return 0;
1364
1365         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1366         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1367                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1368                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1369                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1370                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1371                                                 I40E_TXD_QW1_CMD_SHIFT);
1372                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1373                 txq->tx_tail = 0;
1374         }
1375
1376         /* Fill hardware descriptor ring with mbuf data */
1377         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1378         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1379
1380         /* Determin if RS bit needs to be set */
1381         if (txq->tx_tail > txq->tx_next_rs) {
1382                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1383                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1384                                                 I40E_TXD_QW1_CMD_SHIFT);
1385                 txq->tx_next_rs =
1386                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1387                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1388                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1389         }
1390
1391         if (txq->tx_tail >= txq->nb_tx_desc)
1392                 txq->tx_tail = 0;
1393
1394         /* Update the tx tail register */
1395         rte_wmb();
1396         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1397
1398         return nb_pkts;
1399 }
1400
1401 static uint16_t
1402 i40e_xmit_pkts_simple(void *tx_queue,
1403                       struct rte_mbuf **tx_pkts,
1404                       uint16_t nb_pkts)
1405 {
1406         uint16_t nb_tx = 0;
1407
1408         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1409                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1410                                                 tx_pkts, nb_pkts);
1411
1412         while (nb_pkts) {
1413                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1414                                                 I40E_TX_MAX_BURST);
1415
1416                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1417                                                 &tx_pkts[nb_tx], num);
1418                 nb_tx = (uint16_t)(nb_tx + ret);
1419                 nb_pkts = (uint16_t)(nb_pkts - ret);
1420                 if (ret < num)
1421                         break;
1422         }
1423
1424         return nb_tx;
1425 }
1426
1427 /*********************************************************************
1428  *
1429  *  TX prep functions
1430  *
1431  **********************************************************************/
1432 uint16_t
1433 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1434                 uint16_t nb_pkts)
1435 {
1436         int i, ret;
1437         uint64_t ol_flags;
1438         struct rte_mbuf *m;
1439
1440         for (i = 0; i < nb_pkts; i++) {
1441                 m = tx_pkts[i];
1442                 ol_flags = m->ol_flags;
1443
1444                 /**
1445                  * m->nb_segs is uint8_t, so nb_segs is always less than
1446                  * I40E_TX_MAX_SEG.
1447                  * We check only a condition for nb_segs > I40E_TX_MAX_MTU_SEG.
1448                  */
1449                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1450                         if (m->nb_segs > I40E_TX_MAX_MTU_SEG) {
1451                                 rte_errno = -EINVAL;
1452                                 return i;
1453                         }
1454                 } else if ((m->tso_segsz < I40E_MIN_TSO_MSS) ||
1455                                 (m->tso_segsz > I40E_MAX_TSO_MSS)) {
1456                         /* MSS outside the range (256B - 9674B) are considered
1457                          * malicious
1458                          */
1459                         rte_errno = -EINVAL;
1460                         return i;
1461                 }
1462
1463                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1464                         rte_errno = -ENOTSUP;
1465                         return i;
1466                 }
1467
1468 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1469                 ret = rte_validate_tx_offload(m);
1470                 if (ret != 0) {
1471                         rte_errno = ret;
1472                         return i;
1473                 }
1474 #endif
1475                 ret = rte_net_intel_cksum_prepare(m);
1476                 if (ret != 0) {
1477                         rte_errno = ret;
1478                         return i;
1479                 }
1480         }
1481         return i;
1482 }
1483
1484 /*
1485  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1486  * application used, which assume having sequential ones. But from driver's
1487  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1488  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1489  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1490  * use queue_idx from 0 to 95 to access queues, while real queue would be
1491  * different. This function will do a queue mapping to find VSI the queue
1492  * belongs to.
1493  */
1494 static struct i40e_vsi*
1495 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1496 {
1497         /* the queue in MAIN VSI range */
1498         if (queue_idx < pf->main_vsi->nb_qps)
1499                 return pf->main_vsi;
1500
1501         queue_idx -= pf->main_vsi->nb_qps;
1502
1503         /* queue_idx is greater than VMDQ VSIs range */
1504         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1505                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1506                 return NULL;
1507         }
1508
1509         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1510 }
1511
1512 static uint16_t
1513 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1514 {
1515         /* the queue in MAIN VSI range */
1516         if (queue_idx < pf->main_vsi->nb_qps)
1517                 return queue_idx;
1518
1519         /* It's VMDQ queues */
1520         queue_idx -= pf->main_vsi->nb_qps;
1521
1522         if (pf->nb_cfg_vmdq_vsi)
1523                 return queue_idx % pf->vmdq_nb_qps;
1524         else {
1525                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1526                 return (uint16_t)(-1);
1527         }
1528 }
1529
1530 int
1531 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1532 {
1533         struct i40e_rx_queue *rxq;
1534         int err = -1;
1535         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1536
1537         PMD_INIT_FUNC_TRACE();
1538
1539         if (rx_queue_id < dev->data->nb_rx_queues) {
1540                 rxq = dev->data->rx_queues[rx_queue_id];
1541
1542                 err = i40e_alloc_rx_queue_mbufs(rxq);
1543                 if (err) {
1544                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1545                         return err;
1546                 }
1547
1548                 rte_wmb();
1549
1550                 /* Init the RX tail regieter. */
1551                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1552
1553                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1554
1555                 if (err) {
1556                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1557                                     rx_queue_id);
1558
1559                         i40e_rx_queue_release_mbufs(rxq);
1560                         i40e_reset_rx_queue(rxq);
1561                 } else
1562                         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1563         }
1564
1565         return err;
1566 }
1567
1568 int
1569 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1570 {
1571         struct i40e_rx_queue *rxq;
1572         int err;
1573         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1574
1575         if (rx_queue_id < dev->data->nb_rx_queues) {
1576                 rxq = dev->data->rx_queues[rx_queue_id];
1577
1578                 /*
1579                 * rx_queue_id is queue id aplication refers to, while
1580                 * rxq->reg_idx is the real queue index.
1581                 */
1582                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1583
1584                 if (err) {
1585                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1586                                     rx_queue_id);
1587                         return err;
1588                 }
1589                 i40e_rx_queue_release_mbufs(rxq);
1590                 i40e_reset_rx_queue(rxq);
1591                 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1592         }
1593
1594         return 0;
1595 }
1596
1597 int
1598 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1599 {
1600         int err = -1;
1601         struct i40e_tx_queue *txq;
1602         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1603
1604         PMD_INIT_FUNC_TRACE();
1605
1606         if (tx_queue_id < dev->data->nb_tx_queues) {
1607                 txq = dev->data->tx_queues[tx_queue_id];
1608
1609                 /*
1610                 * tx_queue_id is queue id aplication refers to, while
1611                 * rxq->reg_idx is the real queue index.
1612                 */
1613                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1614                 if (err)
1615                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1616                                     tx_queue_id);
1617                 else
1618                         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1619         }
1620
1621         return err;
1622 }
1623
1624 int
1625 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1626 {
1627         struct i40e_tx_queue *txq;
1628         int err;
1629         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1630
1631         if (tx_queue_id < dev->data->nb_tx_queues) {
1632                 txq = dev->data->tx_queues[tx_queue_id];
1633
1634                 /*
1635                 * tx_queue_id is queue id aplication refers to, while
1636                 * txq->reg_idx is the real queue index.
1637                 */
1638                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1639
1640                 if (err) {
1641                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1642                                     tx_queue_id);
1643                         return err;
1644                 }
1645
1646                 i40e_tx_queue_release_mbufs(txq);
1647                 i40e_reset_tx_queue(txq);
1648                 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1649         }
1650
1651         return 0;
1652 }
1653
1654 const uint32_t *
1655 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1656 {
1657         static const uint32_t ptypes[] = {
1658                 /* refers to i40e_rxd_pkt_type_mapping() */
1659                 RTE_PTYPE_L2_ETHER,
1660                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1661                 RTE_PTYPE_L2_ETHER_LLDP,
1662                 RTE_PTYPE_L2_ETHER_ARP,
1663                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1664                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1665                 RTE_PTYPE_L4_FRAG,
1666                 RTE_PTYPE_L4_ICMP,
1667                 RTE_PTYPE_L4_NONFRAG,
1668                 RTE_PTYPE_L4_SCTP,
1669                 RTE_PTYPE_L4_TCP,
1670                 RTE_PTYPE_L4_UDP,
1671                 RTE_PTYPE_TUNNEL_GRENAT,
1672                 RTE_PTYPE_TUNNEL_IP,
1673                 RTE_PTYPE_INNER_L2_ETHER,
1674                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1675                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1676                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1677                 RTE_PTYPE_INNER_L4_FRAG,
1678                 RTE_PTYPE_INNER_L4_ICMP,
1679                 RTE_PTYPE_INNER_L4_NONFRAG,
1680                 RTE_PTYPE_INNER_L4_SCTP,
1681                 RTE_PTYPE_INNER_L4_TCP,
1682                 RTE_PTYPE_INNER_L4_UDP,
1683                 RTE_PTYPE_UNKNOWN
1684         };
1685
1686         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1687 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1688             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1689 #endif
1690             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1691             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1692             dev->rx_pkt_burst == i40e_recv_pkts_vec)
1693                 return ptypes;
1694         return NULL;
1695 }
1696
1697 int
1698 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1699                         uint16_t queue_idx,
1700                         uint16_t nb_desc,
1701                         unsigned int socket_id,
1702                         const struct rte_eth_rxconf *rx_conf,
1703                         struct rte_mempool *mp)
1704 {
1705         struct i40e_vsi *vsi;
1706         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1707         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1708         struct i40e_adapter *ad =
1709                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1710         struct i40e_rx_queue *rxq;
1711         const struct rte_memzone *rz;
1712         uint32_t ring_size;
1713         uint16_t len, i;
1714         uint16_t base, bsf, tc_mapping;
1715         int use_def_burst_func = 1;
1716
1717         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1718                 struct i40e_vf *vf =
1719                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1720                 vsi = &vf->vsi;
1721         } else
1722                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1723
1724         if (vsi == NULL) {
1725                 PMD_DRV_LOG(ERR, "VSI not available or queue "
1726                             "index exceeds the maximum");
1727                 return I40E_ERR_PARAM;
1728         }
1729         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1730                         (nb_desc > I40E_MAX_RING_DESC) ||
1731                         (nb_desc < I40E_MIN_RING_DESC)) {
1732                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1733                             "invalid", nb_desc);
1734                 return I40E_ERR_PARAM;
1735         }
1736
1737         /* Free memory if needed */
1738         if (dev->data->rx_queues[queue_idx]) {
1739                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1740                 dev->data->rx_queues[queue_idx] = NULL;
1741         }
1742
1743         /* Allocate the rx queue data structure */
1744         rxq = rte_zmalloc_socket("i40e rx queue",
1745                                  sizeof(struct i40e_rx_queue),
1746                                  RTE_CACHE_LINE_SIZE,
1747                                  socket_id);
1748         if (!rxq) {
1749                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1750                             "rx queue data structure");
1751                 return -ENOMEM;
1752         }
1753         rxq->mp = mp;
1754         rxq->nb_rx_desc = nb_desc;
1755         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1756         rxq->queue_id = queue_idx;
1757         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
1758                 rxq->reg_idx = queue_idx;
1759         else /* PF device */
1760                 rxq->reg_idx = vsi->base_queue +
1761                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
1762
1763         rxq->port_id = dev->data->port_id;
1764         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
1765                                                         0 : ETHER_CRC_LEN);
1766         rxq->drop_en = rx_conf->rx_drop_en;
1767         rxq->vsi = vsi;
1768         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1769
1770         /* Allocate the maximun number of RX ring hardware descriptor. */
1771         ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
1772         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
1773         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1774                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1775         if (!rz) {
1776                 i40e_dev_rx_queue_release(rxq);
1777                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1778                 return -ENOMEM;
1779         }
1780
1781         /* Zero all the descriptors in the ring. */
1782         memset(rz->addr, 0, ring_size);
1783
1784         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1785         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1786
1787 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1788         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1789 #else
1790         len = nb_desc;
1791 #endif
1792
1793         /* Allocate the software ring. */
1794         rxq->sw_ring =
1795                 rte_zmalloc_socket("i40e rx sw ring",
1796                                    sizeof(struct i40e_rx_entry) * len,
1797                                    RTE_CACHE_LINE_SIZE,
1798                                    socket_id);
1799         if (!rxq->sw_ring) {
1800                 i40e_dev_rx_queue_release(rxq);
1801                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1802                 return -ENOMEM;
1803         }
1804
1805         i40e_reset_rx_queue(rxq);
1806         rxq->q_set = TRUE;
1807         dev->data->rx_queues[queue_idx] = rxq;
1808
1809         use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
1810
1811         if (!use_def_burst_func) {
1812 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1813                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1814                              "satisfied. Rx Burst Bulk Alloc function will be "
1815                              "used on port=%d, queue=%d.",
1816                              rxq->port_id, rxq->queue_id);
1817 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1818         } else {
1819                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1820                              "not satisfied, Scattered Rx is requested, "
1821                              "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1822                              "not enabled on port=%d, queue=%d.",
1823                              rxq->port_id, rxq->queue_id);
1824                 ad->rx_bulk_alloc_allowed = false;
1825         }
1826
1827         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1828                 if (!(vsi->enabled_tc & (1 << i)))
1829                         continue;
1830                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1831                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1832                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1833                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1834                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1835
1836                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1837                         rxq->dcb_tc = i;
1838         }
1839
1840         return 0;
1841 }
1842
1843 void
1844 i40e_dev_rx_queue_release(void *rxq)
1845 {
1846         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1847
1848         if (!q) {
1849                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1850                 return;
1851         }
1852
1853         i40e_rx_queue_release_mbufs(q);
1854         rte_free(q->sw_ring);
1855         rte_free(q);
1856 }
1857
1858 uint32_t
1859 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1860 {
1861 #define I40E_RXQ_SCAN_INTERVAL 4
1862         volatile union i40e_rx_desc *rxdp;
1863         struct i40e_rx_queue *rxq;
1864         uint16_t desc = 0;
1865
1866         if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
1867                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
1868                 return 0;
1869         }
1870
1871         rxq = dev->data->rx_queues[rx_queue_id];
1872         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1873         while ((desc < rxq->nb_rx_desc) &&
1874                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1875                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1876                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1877                 /**
1878                  * Check the DD bit of a rx descriptor of each 4 in a group,
1879                  * to avoid checking too frequently and downgrading performance
1880                  * too much.
1881                  */
1882                 desc += I40E_RXQ_SCAN_INTERVAL;
1883                 rxdp += I40E_RXQ_SCAN_INTERVAL;
1884                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1885                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1886                                         desc - rxq->nb_rx_desc]);
1887         }
1888
1889         return desc;
1890 }
1891
1892 int
1893 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
1894 {
1895         volatile union i40e_rx_desc *rxdp;
1896         struct i40e_rx_queue *rxq = rx_queue;
1897         uint16_t desc;
1898         int ret;
1899
1900         if (unlikely(offset >= rxq->nb_rx_desc)) {
1901                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
1902                 return 0;
1903         }
1904
1905         desc = rxq->rx_tail + offset;
1906         if (desc >= rxq->nb_rx_desc)
1907                 desc -= rxq->nb_rx_desc;
1908
1909         rxdp = &(rxq->rx_ring[desc]);
1910
1911         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1912                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
1913                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
1914
1915         return ret;
1916 }
1917
1918 int
1919 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
1920                         uint16_t queue_idx,
1921                         uint16_t nb_desc,
1922                         unsigned int socket_id,
1923                         const struct rte_eth_txconf *tx_conf)
1924 {
1925         struct i40e_vsi *vsi;
1926         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1927         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1928         struct i40e_tx_queue *txq;
1929         const struct rte_memzone *tz;
1930         uint32_t ring_size;
1931         uint16_t tx_rs_thresh, tx_free_thresh;
1932         uint16_t i, base, bsf, tc_mapping;
1933
1934         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1935                 struct i40e_vf *vf =
1936                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1937                 vsi = &vf->vsi;
1938         } else
1939                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1940
1941         if (vsi == NULL) {
1942                 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
1943                             "exceeds the maximum", queue_idx);
1944                 return I40E_ERR_PARAM;
1945         }
1946
1947         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1948                         (nb_desc > I40E_MAX_RING_DESC) ||
1949                         (nb_desc < I40E_MIN_RING_DESC)) {
1950                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
1951                             "invalid", nb_desc);
1952                 return I40E_ERR_PARAM;
1953         }
1954
1955         /**
1956          * The following two parameters control the setting of the RS bit on
1957          * transmit descriptors. TX descriptors will have their RS bit set
1958          * after txq->tx_rs_thresh descriptors have been used. The TX
1959          * descriptor ring will be cleaned after txq->tx_free_thresh
1960          * descriptors are used or if the number of descriptors required to
1961          * transmit a packet is greater than the number of free TX descriptors.
1962          *
1963          * The following constraints must be satisfied:
1964          *  - tx_rs_thresh must be greater than 0.
1965          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1966          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1967          *  - tx_rs_thresh must be a divisor of the ring size.
1968          *  - tx_free_thresh must be greater than 0.
1969          *  - tx_free_thresh must be less than the size of the ring minus 3.
1970          *
1971          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1972          * race condition, hence the maximum threshold constraints. When set
1973          * to zero use default values.
1974          */
1975         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
1976                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
1977         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
1978                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
1979         if (tx_rs_thresh >= (nb_desc - 2)) {
1980                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1981                              "number of TX descriptors minus 2. "
1982                              "(tx_rs_thresh=%u port=%d queue=%d)",
1983                              (unsigned int)tx_rs_thresh,
1984                              (int)dev->data->port_id,
1985                              (int)queue_idx);
1986                 return I40E_ERR_PARAM;
1987         }
1988         if (tx_free_thresh >= (nb_desc - 3)) {
1989                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1990                              "tx_free_thresh must be less than the "
1991                              "number of TX descriptors minus 3. "
1992                              "(tx_free_thresh=%u port=%d queue=%d)",
1993                              (unsigned int)tx_free_thresh,
1994                              (int)dev->data->port_id,
1995                              (int)queue_idx);
1996                 return I40E_ERR_PARAM;
1997         }
1998         if (tx_rs_thresh > tx_free_thresh) {
1999                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2000                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2001                              " tx_rs_thresh=%u port=%d queue=%d)",
2002                              (unsigned int)tx_free_thresh,
2003                              (unsigned int)tx_rs_thresh,
2004                              (int)dev->data->port_id,
2005                              (int)queue_idx);
2006                 return I40E_ERR_PARAM;
2007         }
2008         if ((nb_desc % tx_rs_thresh) != 0) {
2009                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2010                              "number of TX descriptors. (tx_rs_thresh=%u"
2011                              " port=%d queue=%d)",
2012                              (unsigned int)tx_rs_thresh,
2013                              (int)dev->data->port_id,
2014                              (int)queue_idx);
2015                 return I40E_ERR_PARAM;
2016         }
2017         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2018                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2019                              "tx_rs_thresh is greater than 1. "
2020                              "(tx_rs_thresh=%u port=%d queue=%d)",
2021                              (unsigned int)tx_rs_thresh,
2022                              (int)dev->data->port_id,
2023                              (int)queue_idx);
2024                 return I40E_ERR_PARAM;
2025         }
2026
2027         /* Free memory if needed. */
2028         if (dev->data->tx_queues[queue_idx]) {
2029                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2030                 dev->data->tx_queues[queue_idx] = NULL;
2031         }
2032
2033         /* Allocate the TX queue data structure. */
2034         txq = rte_zmalloc_socket("i40e tx queue",
2035                                   sizeof(struct i40e_tx_queue),
2036                                   RTE_CACHE_LINE_SIZE,
2037                                   socket_id);
2038         if (!txq) {
2039                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2040                             "tx queue structure");
2041                 return -ENOMEM;
2042         }
2043
2044         /* Allocate TX hardware ring descriptors. */
2045         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2046         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2047         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2048                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2049         if (!tz) {
2050                 i40e_dev_tx_queue_release(txq);
2051                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2052                 return -ENOMEM;
2053         }
2054
2055         txq->nb_tx_desc = nb_desc;
2056         txq->tx_rs_thresh = tx_rs_thresh;
2057         txq->tx_free_thresh = tx_free_thresh;
2058         txq->pthresh = tx_conf->tx_thresh.pthresh;
2059         txq->hthresh = tx_conf->tx_thresh.hthresh;
2060         txq->wthresh = tx_conf->tx_thresh.wthresh;
2061         txq->queue_id = queue_idx;
2062         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
2063                 txq->reg_idx = queue_idx;
2064         else /* PF device */
2065                 txq->reg_idx = vsi->base_queue +
2066                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2067
2068         txq->port_id = dev->data->port_id;
2069         txq->txq_flags = tx_conf->txq_flags;
2070         txq->vsi = vsi;
2071         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2072
2073         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2074         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2075
2076         /* Allocate software ring */
2077         txq->sw_ring =
2078                 rte_zmalloc_socket("i40e tx sw ring",
2079                                    sizeof(struct i40e_tx_entry) * nb_desc,
2080                                    RTE_CACHE_LINE_SIZE,
2081                                    socket_id);
2082         if (!txq->sw_ring) {
2083                 i40e_dev_tx_queue_release(txq);
2084                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2085                 return -ENOMEM;
2086         }
2087
2088         i40e_reset_tx_queue(txq);
2089         txq->q_set = TRUE;
2090         dev->data->tx_queues[queue_idx] = txq;
2091
2092         /* Use a simple TX queue without offloads or multi segs if possible */
2093         i40e_set_tx_function_flag(dev, txq);
2094
2095         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2096                 if (!(vsi->enabled_tc & (1 << i)))
2097                         continue;
2098                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2099                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2100                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2101                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2102                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2103
2104                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2105                         txq->dcb_tc = i;
2106         }
2107
2108         return 0;
2109 }
2110
2111 void
2112 i40e_dev_tx_queue_release(void *txq)
2113 {
2114         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2115
2116         if (!q) {
2117                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2118                 return;
2119         }
2120
2121         i40e_tx_queue_release_mbufs(q);
2122         rte_free(q->sw_ring);
2123         rte_free(q);
2124 }
2125
2126 const struct rte_memzone *
2127 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2128 {
2129         const struct rte_memzone *mz;
2130
2131         mz = rte_memzone_lookup(name);
2132         if (mz)
2133                 return mz;
2134
2135         if (rte_xen_dom0_supported())
2136                 mz = rte_memzone_reserve_bounded(name, len,
2137                                 socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
2138         else
2139                 mz = rte_memzone_reserve_aligned(name, len,
2140                                 socket_id, 0, I40E_RING_BASE_ALIGN);
2141         return mz;
2142 }
2143
2144 void
2145 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2146 {
2147         uint16_t i;
2148
2149         /* SSE Vector driver has a different way of releasing mbufs. */
2150         if (rxq->rx_using_sse) {
2151                 i40e_rx_queue_release_mbufs_vec(rxq);
2152                 return;
2153         }
2154
2155         if (!rxq->sw_ring) {
2156                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2157                 return;
2158         }
2159
2160         for (i = 0; i < rxq->nb_rx_desc; i++) {
2161                 if (rxq->sw_ring[i].mbuf) {
2162                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2163                         rxq->sw_ring[i].mbuf = NULL;
2164                 }
2165         }
2166 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2167         if (rxq->rx_nb_avail == 0)
2168                 return;
2169         for (i = 0; i < rxq->rx_nb_avail; i++) {
2170                 struct rte_mbuf *mbuf;
2171
2172                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2173                 rte_pktmbuf_free_seg(mbuf);
2174         }
2175         rxq->rx_nb_avail = 0;
2176 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2177 }
2178
2179 void
2180 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2181 {
2182         unsigned i;
2183         uint16_t len;
2184
2185         if (!rxq) {
2186                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2187                 return;
2188         }
2189
2190 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2191         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2192                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2193         else
2194 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2195                 len = rxq->nb_rx_desc;
2196
2197         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2198                 ((volatile char *)rxq->rx_ring)[i] = 0;
2199
2200 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2201         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2202         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2203                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2204
2205         rxq->rx_nb_avail = 0;
2206         rxq->rx_next_avail = 0;
2207         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2208 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2209         rxq->rx_tail = 0;
2210         rxq->nb_rx_hold = 0;
2211         rxq->pkt_first_seg = NULL;
2212         rxq->pkt_last_seg = NULL;
2213
2214         rxq->rxrearm_start = 0;
2215         rxq->rxrearm_nb = 0;
2216 }
2217
2218 void
2219 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2220 {
2221         uint16_t i;
2222
2223         if (!txq || !txq->sw_ring) {
2224                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2225                 return;
2226         }
2227
2228         for (i = 0; i < txq->nb_tx_desc; i++) {
2229                 if (txq->sw_ring[i].mbuf) {
2230                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2231                         txq->sw_ring[i].mbuf = NULL;
2232                 }
2233         }
2234 }
2235
2236 void
2237 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2238 {
2239         struct i40e_tx_entry *txe;
2240         uint16_t i, prev, size;
2241
2242         if (!txq) {
2243                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2244                 return;
2245         }
2246
2247         txe = txq->sw_ring;
2248         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2249         for (i = 0; i < size; i++)
2250                 ((volatile char *)txq->tx_ring)[i] = 0;
2251
2252         prev = (uint16_t)(txq->nb_tx_desc - 1);
2253         for (i = 0; i < txq->nb_tx_desc; i++) {
2254                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2255
2256                 txd->cmd_type_offset_bsz =
2257                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2258                 txe[i].mbuf =  NULL;
2259                 txe[i].last_id = i;
2260                 txe[prev].next_id = i;
2261                 prev = i;
2262         }
2263
2264         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2265         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2266
2267         txq->tx_tail = 0;
2268         txq->nb_tx_used = 0;
2269
2270         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2271         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2272 }
2273
2274 /* Init the TX queue in hardware */
2275 int
2276 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2277 {
2278         enum i40e_status_code err = I40E_SUCCESS;
2279         struct i40e_vsi *vsi = txq->vsi;
2280         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2281         uint16_t pf_q = txq->reg_idx;
2282         struct i40e_hmc_obj_txq tx_ctx;
2283         uint32_t qtx_ctl;
2284
2285         /* clear the context structure first */
2286         memset(&tx_ctx, 0, sizeof(tx_ctx));
2287         tx_ctx.new_context = 1;
2288         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2289         tx_ctx.qlen = txq->nb_tx_desc;
2290
2291 #ifdef RTE_LIBRTE_IEEE1588
2292         tx_ctx.timesync_ena = 1;
2293 #endif
2294         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2295         if (vsi->type == I40E_VSI_FDIR)
2296                 tx_ctx.fd_ena = TRUE;
2297
2298         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2299         if (err != I40E_SUCCESS) {
2300                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2301                 return err;
2302         }
2303
2304         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2305         if (err != I40E_SUCCESS) {
2306                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2307                 return err;
2308         }
2309
2310         /* Now associate this queue with this PCI function */
2311         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2312         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2313                                         I40E_QTX_CTL_PF_INDX_MASK);
2314         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2315         I40E_WRITE_FLUSH(hw);
2316
2317         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2318
2319         return err;
2320 }
2321
2322 int
2323 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2324 {
2325         struct i40e_rx_entry *rxe = rxq->sw_ring;
2326         uint64_t dma_addr;
2327         uint16_t i;
2328
2329         for (i = 0; i < rxq->nb_rx_desc; i++) {
2330                 volatile union i40e_rx_desc *rxd;
2331                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2332
2333                 if (unlikely(!mbuf)) {
2334                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2335                         return -ENOMEM;
2336                 }
2337
2338                 rte_mbuf_refcnt_set(mbuf, 1);
2339                 mbuf->next = NULL;
2340                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2341                 mbuf->nb_segs = 1;
2342                 mbuf->port = rxq->port_id;
2343
2344                 dma_addr =
2345                         rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
2346
2347                 rxd = &rxq->rx_ring[i];
2348                 rxd->read.pkt_addr = dma_addr;
2349                 rxd->read.hdr_addr = 0;
2350 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2351                 rxd->read.rsvd1 = 0;
2352                 rxd->read.rsvd2 = 0;
2353 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2354
2355                 rxe[i].mbuf = mbuf;
2356         }
2357
2358         return 0;
2359 }
2360
2361 /*
2362  * Calculate the buffer length, and check the jumbo frame
2363  * and maximum packet length.
2364  */
2365 static int
2366 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2367 {
2368         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2369         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2370         struct rte_eth_dev_data *data = pf->dev_data;
2371         uint16_t buf_size, len;
2372
2373         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2374                 RTE_PKTMBUF_HEADROOM);
2375
2376         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2377                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2378         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2379                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2380                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2381                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2382                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2383                 rxq->hs_mode = i40e_header_split_enabled;
2384                 break;
2385         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2386         default:
2387                 rxq->rx_hdr_len = 0;
2388                 rxq->rx_buf_len = RTE_ALIGN(buf_size,
2389                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2390                 rxq->hs_mode = i40e_header_split_none;
2391                 break;
2392         }
2393
2394         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2395         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2396         if (data->dev_conf.rxmode.jumbo_frame == 1) {
2397                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2398                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2399                         PMD_DRV_LOG(ERR, "maximum packet length must "
2400                                     "be larger than %u and smaller than %u,"
2401                                     "as jumbo frame is enabled",
2402                                     (uint32_t)ETHER_MAX_LEN,
2403                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2404                         return I40E_ERR_CONFIG;
2405                 }
2406         } else {
2407                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2408                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2409                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2410                                     "larger than %u and smaller than %u, "
2411                                     "as jumbo frame is disabled",
2412                                     (uint32_t)ETHER_MIN_LEN,
2413                                     (uint32_t)ETHER_MAX_LEN);
2414                         return I40E_ERR_CONFIG;
2415                 }
2416         }
2417
2418         return 0;
2419 }
2420
2421 /* Init the RX queue in hardware */
2422 int
2423 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2424 {
2425         int err = I40E_SUCCESS;
2426         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2427         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2428         uint16_t pf_q = rxq->reg_idx;
2429         uint16_t buf_size;
2430         struct i40e_hmc_obj_rxq rx_ctx;
2431
2432         err = i40e_rx_queue_config(rxq);
2433         if (err < 0) {
2434                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2435                 return err;
2436         }
2437
2438         /* Clear the context structure first */
2439         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2440         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2441         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2442
2443         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2444         rx_ctx.qlen = rxq->nb_rx_desc;
2445 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2446         rx_ctx.dsize = 1;
2447 #endif
2448         rx_ctx.dtype = rxq->hs_mode;
2449         if (rxq->hs_mode)
2450                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2451         else
2452                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2453         rx_ctx.rxmax = rxq->max_pkt_len;
2454         rx_ctx.tphrdesc_ena = 1;
2455         rx_ctx.tphwdesc_ena = 1;
2456         rx_ctx.tphdata_ena = 1;
2457         rx_ctx.tphhead_ena = 1;
2458         rx_ctx.lrxqthresh = 2;
2459         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2460         rx_ctx.l2tsel = 1;
2461         /* showiv indicates if inner VLAN is stripped inside of tunnel
2462          * packet. When set it to 1, vlan information is stripped from
2463          * the inner header, but the hardware does not put it in the
2464          * descriptor. So set it zero by default.
2465          */
2466         rx_ctx.showiv = 0;
2467         rx_ctx.prefena = 1;
2468
2469         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2470         if (err != I40E_SUCCESS) {
2471                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2472                 return err;
2473         }
2474         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2475         if (err != I40E_SUCCESS) {
2476                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2477                 return err;
2478         }
2479
2480         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2481
2482         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2483                 RTE_PKTMBUF_HEADROOM);
2484
2485         /* Check if scattered RX needs to be used. */
2486         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2487                 dev_data->scattered_rx = 1;
2488         }
2489
2490         /* Init the RX tail regieter. */
2491         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2492
2493         return 0;
2494 }
2495
2496 void
2497 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2498 {
2499         uint16_t i;
2500
2501         PMD_INIT_FUNC_TRACE();
2502
2503         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2504                 if (!dev->data->tx_queues[i])
2505                         continue;
2506                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2507                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2508         }
2509
2510         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2511                 if (!dev->data->rx_queues[i])
2512                         continue;
2513                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2514                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2515         }
2516 }
2517
2518 void
2519 i40e_dev_free_queues(struct rte_eth_dev *dev)
2520 {
2521         uint16_t i;
2522
2523         PMD_INIT_FUNC_TRACE();
2524
2525         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2526                 if (!dev->data->rx_queues[i])
2527                         continue;
2528                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2529                 dev->data->rx_queues[i] = NULL;
2530         }
2531         dev->data->nb_rx_queues = 0;
2532
2533         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2534                 if (!dev->data->tx_queues[i])
2535                         continue;
2536                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2537                 dev->data->tx_queues[i] = NULL;
2538         }
2539         dev->data->nb_tx_queues = 0;
2540 }
2541
2542 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2543 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2544
2545 enum i40e_status_code
2546 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2547 {
2548         struct i40e_tx_queue *txq;
2549         const struct rte_memzone *tz = NULL;
2550         uint32_t ring_size;
2551         struct rte_eth_dev *dev;
2552
2553         if (!pf) {
2554                 PMD_DRV_LOG(ERR, "PF is not available");
2555                 return I40E_ERR_BAD_PTR;
2556         }
2557
2558         dev = pf->adapter->eth_dev;
2559
2560         /* Allocate the TX queue data structure. */
2561         txq = rte_zmalloc_socket("i40e fdir tx queue",
2562                                   sizeof(struct i40e_tx_queue),
2563                                   RTE_CACHE_LINE_SIZE,
2564                                   SOCKET_ID_ANY);
2565         if (!txq) {
2566                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2567                                         "tx queue structure.");
2568                 return I40E_ERR_NO_MEMORY;
2569         }
2570
2571         /* Allocate TX hardware ring descriptors. */
2572         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2573         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2574
2575         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2576                                       I40E_FDIR_QUEUE_ID, ring_size,
2577                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2578         if (!tz) {
2579                 i40e_dev_tx_queue_release(txq);
2580                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2581                 return I40E_ERR_NO_MEMORY;
2582         }
2583
2584         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2585         txq->queue_id = I40E_FDIR_QUEUE_ID;
2586         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2587         txq->vsi = pf->fdir.fdir_vsi;
2588
2589         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2590         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2591         /*
2592          * don't need to allocate software ring and reset for the fdir
2593          * program queue just set the queue has been configured.
2594          */
2595         txq->q_set = TRUE;
2596         pf->fdir.txq = txq;
2597
2598         return I40E_SUCCESS;
2599 }
2600
2601 enum i40e_status_code
2602 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2603 {
2604         struct i40e_rx_queue *rxq;
2605         const struct rte_memzone *rz = NULL;
2606         uint32_t ring_size;
2607         struct rte_eth_dev *dev;
2608
2609         if (!pf) {
2610                 PMD_DRV_LOG(ERR, "PF is not available");
2611                 return I40E_ERR_BAD_PTR;
2612         }
2613
2614         dev = pf->adapter->eth_dev;
2615
2616         /* Allocate the RX queue data structure. */
2617         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2618                                   sizeof(struct i40e_rx_queue),
2619                                   RTE_CACHE_LINE_SIZE,
2620                                   SOCKET_ID_ANY);
2621         if (!rxq) {
2622                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2623                                         "rx queue structure.");
2624                 return I40E_ERR_NO_MEMORY;
2625         }
2626
2627         /* Allocate RX hardware ring descriptors. */
2628         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2629         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2630
2631         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2632                                       I40E_FDIR_QUEUE_ID, ring_size,
2633                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
2634         if (!rz) {
2635                 i40e_dev_rx_queue_release(rxq);
2636                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2637                 return I40E_ERR_NO_MEMORY;
2638         }
2639
2640         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2641         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2642         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2643         rxq->vsi = pf->fdir.fdir_vsi;
2644
2645         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2646         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2647
2648         /*
2649          * Don't need to allocate software ring and reset for the fdir
2650          * rx queue, just set the queue has been configured.
2651          */
2652         rxq->q_set = TRUE;
2653         pf->fdir.rxq = rxq;
2654
2655         return I40E_SUCCESS;
2656 }
2657
2658 void
2659 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2660         struct rte_eth_rxq_info *qinfo)
2661 {
2662         struct i40e_rx_queue *rxq;
2663
2664         rxq = dev->data->rx_queues[queue_id];
2665
2666         qinfo->mp = rxq->mp;
2667         qinfo->scattered_rx = dev->data->scattered_rx;
2668         qinfo->nb_desc = rxq->nb_rx_desc;
2669
2670         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2671         qinfo->conf.rx_drop_en = rxq->drop_en;
2672         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2673 }
2674
2675 void
2676 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2677         struct rte_eth_txq_info *qinfo)
2678 {
2679         struct i40e_tx_queue *txq;
2680
2681         txq = dev->data->tx_queues[queue_id];
2682
2683         qinfo->nb_desc = txq->nb_tx_desc;
2684
2685         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2686         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2687         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2688
2689         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
2690         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
2691         qinfo->conf.txq_flags = txq->txq_flags;
2692         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2693 }
2694
2695 void __attribute__((cold))
2696 i40e_set_rx_function(struct rte_eth_dev *dev)
2697 {
2698         struct i40e_adapter *ad =
2699                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2700         uint16_t rx_using_sse, i;
2701         /* In order to allow Vector Rx there are a few configuration
2702          * conditions to be met and Rx Bulk Allocation should be allowed.
2703          */
2704         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2705                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
2706                     !ad->rx_bulk_alloc_allowed) {
2707                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
2708                                      " Vector Rx preconditions",
2709                                      dev->data->port_id);
2710
2711                         ad->rx_vec_allowed = false;
2712                 }
2713                 if (ad->rx_vec_allowed) {
2714                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2715                                 struct i40e_rx_queue *rxq =
2716                                         dev->data->rx_queues[i];
2717
2718                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
2719                                         ad->rx_vec_allowed = false;
2720                                         break;
2721                                 }
2722                         }
2723                 }
2724         }
2725
2726         if (dev->data->scattered_rx) {
2727                 /* Set the non-LRO scattered callback: there are Vector and
2728                  * single allocation versions.
2729                  */
2730                 if (ad->rx_vec_allowed) {
2731                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
2732                                             "callback (port=%d).",
2733                                      dev->data->port_id);
2734
2735                         dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
2736                 } else {
2737                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
2738                                            "allocation callback (port=%d).",
2739                                      dev->data->port_id);
2740                         dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2741                 }
2742         /* If parameters allow we are going to choose between the following
2743          * callbacks:
2744          *    - Vector
2745          *    - Bulk Allocation
2746          *    - Single buffer allocation (the simplest one)
2747          */
2748         } else if (ad->rx_vec_allowed) {
2749                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
2750                                     "burst size no less than %d (port=%d).",
2751                              RTE_I40E_DESCS_PER_LOOP,
2752                              dev->data->port_id);
2753
2754                 dev->rx_pkt_burst = i40e_recv_pkts_vec;
2755         } else if (ad->rx_bulk_alloc_allowed) {
2756                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2757                                     "satisfied. Rx Burst Bulk Alloc function "
2758                                     "will be used on port=%d.",
2759                              dev->data->port_id);
2760
2761                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2762         } else {
2763                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
2764                                     "satisfied, or Scattered Rx is requested "
2765                                     "(port=%d).",
2766                              dev->data->port_id);
2767
2768                 dev->rx_pkt_burst = i40e_recv_pkts;
2769         }
2770
2771         /* Propagate information about RX function choice through all queues. */
2772         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2773                 rx_using_sse =
2774                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
2775                          dev->rx_pkt_burst == i40e_recv_pkts_vec);
2776
2777                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2778                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
2779
2780                         if (rxq)
2781                                 rxq->rx_using_sse = rx_using_sse;
2782                 }
2783         }
2784 }
2785
2786 void __attribute__((cold))
2787 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
2788 {
2789         struct i40e_adapter *ad =
2790                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2791
2792         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2793         if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
2794                         && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
2795                 if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
2796                         PMD_INIT_LOG(DEBUG, "Vector tx"
2797                                      " can be enabled on this txq.");
2798
2799                 } else {
2800                         ad->tx_vec_allowed = false;
2801                 }
2802         } else {
2803                 ad->tx_simple_allowed = false;
2804         }
2805 }
2806
2807 void __attribute__((cold))
2808 i40e_set_tx_function(struct rte_eth_dev *dev)
2809 {
2810         struct i40e_adapter *ad =
2811                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2812         int i;
2813
2814         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2815                 if (ad->tx_vec_allowed) {
2816                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2817                                 struct i40e_tx_queue *txq =
2818                                         dev->data->tx_queues[i];
2819
2820                                 if (txq && i40e_txq_vec_setup(txq)) {
2821                                         ad->tx_vec_allowed = false;
2822                                         break;
2823                                 }
2824                         }
2825                 }
2826         }
2827
2828         if (ad->tx_simple_allowed) {
2829                 if (ad->tx_vec_allowed) {
2830                         PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
2831                         dev->tx_pkt_burst = i40e_xmit_pkts_vec;
2832                 } else {
2833                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
2834                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
2835                 }
2836                 dev->tx_pkt_prepare = NULL;
2837         } else {
2838                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
2839                 dev->tx_pkt_burst = i40e_xmit_pkts;
2840                 dev->tx_pkt_prepare = i40e_prep_pkts;
2841         }
2842 }
2843
2844 /* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
2845 int __attribute__((weak))
2846 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
2847 {
2848         return -1;
2849 }
2850
2851 uint16_t __attribute__((weak))
2852 i40e_recv_pkts_vec(
2853         void __rte_unused *rx_queue,
2854         struct rte_mbuf __rte_unused **rx_pkts,
2855         uint16_t __rte_unused nb_pkts)
2856 {
2857         return 0;
2858 }
2859
2860 uint16_t __attribute__((weak))
2861 i40e_recv_scattered_pkts_vec(
2862         void __rte_unused *rx_queue,
2863         struct rte_mbuf __rte_unused **rx_pkts,
2864         uint16_t __rte_unused nb_pkts)
2865 {
2866         return 0;
2867 }
2868
2869 int __attribute__((weak))
2870 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
2871 {
2872         return -1;
2873 }
2874
2875 int __attribute__((weak))
2876 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
2877 {
2878         return -1;
2879 }
2880
2881 void __attribute__((weak))
2882 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
2883 {
2884         return;
2885 }
2886
2887 uint16_t __attribute__((weak))
2888 i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
2889                    struct rte_mbuf __rte_unused **tx_pkts,
2890                    uint16_t __rte_unused nb_pkts)
2891 {
2892         return 0;
2893 }