mbuf: add rte prefix to offload flags
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation.
3  * Copyright(c) 2016-2018, Linaro Limited.
4  */
5
6 #include <stdint.h>
7 #include <ethdev_driver.h>
8 #include <rte_malloc.h>
9 #include <rte_vect.h>
10
11 #include "base/i40e_prototype.h"
12 #include "base/i40e_type.h"
13 #include "i40e_ethdev.h"
14 #include "i40e_rxtx.h"
15 #include "i40e_rxtx_vec_common.h"
16
17
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19
20 static inline void
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
22 {
23         int i;
24         uint16_t rx_id;
25         volatile union i40e_rx_desc *rxdp;
26         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         uint64x2_t dma_addr0, dma_addr1;
29         uint64x2_t zero = vdupq_n_u64(0);
30         uint64_t paddr;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (unlikely(rte_mempool_get_bulk(rxq->mp,
36                                           (void *)rxep,
37                                           RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
39                     rxq->nb_rx_desc) {
40                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41                                 rxep[i].mbuf = &rxq->fake_mbuf;
42                                 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         RTE_I40E_RXQ_REARM_THRESH;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56                 dma_addr0 = vdupq_n_u64(paddr);
57
58                 /* flush desc with pa dma_addr */
59                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
60
61                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62                 dma_addr1 = vdupq_n_u64(paddr);
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
64         }
65
66         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68                 rxq->rxrearm_start = 0;
69
70         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
71
72         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
74
75         rte_io_wmb();
76         /* Update the tail pointer on the NIC */
77         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
78 }
79
80 static inline void
81 desc_to_olflags_v(struct i40e_rx_queue *rxq, uint64x2_t descs[4],
82                   struct rte_mbuf **rx_pkts)
83 {
84         uint32x4_t vlan0, vlan1, rss, l3_l4e;
85         const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
86         uint64x2_t rearm0, rearm1, rearm2, rearm3;
87
88         /* mask everything except RSS, flow director and VLAN flags
89          * bit2 is for VLAN tag, bit11 for flow director indication
90          * bit13:12 for RSS indication.
91          */
92         const uint32x4_t rss_vlan_msk = {
93                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
94
95         const uint32x4_t cksum_mask = {
96                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
97                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
98                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
99                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
100                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
101                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
102                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
103                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
104                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
105                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
106                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
107                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD};
108
109         /* map rss and vlan type to rss hash and vlan flag */
110         const uint8x16_t vlan_flags = {
111                         0, 0, 0, 0,
112                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0,
113                         0, 0,
114                         0, 0, 0, 0,
115                         0, 0, 0, 0};
116
117         const uint8x16_t rss_flags = {
118                         0, RTE_MBUF_F_RX_FDIR, 0, 0,
119                         0, 0, RTE_MBUF_F_RX_RSS_HASH,
120                         RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
121                         0, 0, 0, 0,
122                         0, 0, 0, 0};
123
124         const uint8x16_t l3_l4e_flags = {
125                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
126                         RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
127                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
128                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
129                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
130                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
131                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
132                          RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
133                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
134                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
135                         0, 0, 0, 0, 0, 0, 0, 0};
136
137         vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
138                           vreinterpretq_u32_u64(descs[2])).val[1];
139         vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
140                           vreinterpretq_u32_u64(descs[3])).val[1];
141         vlan0 = vzipq_u32(vlan0, vlan1).val[0];
142
143         vlan1 = vandq_u32(vlan0, rss_vlan_msk);
144         vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
145                                                 vreinterpretq_u8_u32(vlan1)));
146
147         rss = vshrq_n_u32(vlan1, 11);
148         rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
149                                               vreinterpretq_u8_u32(rss)));
150
151         l3_l4e = vshrq_n_u32(vlan1, 22);
152         l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
153                                               vreinterpretq_u8_u32(l3_l4e)));
154         /* then we shift left 1 bit */
155         l3_l4e = vshlq_n_u32(l3_l4e, 1);
156         /* we need to mask out the reduntant bits */
157         l3_l4e = vandq_u32(l3_l4e, cksum_mask);
158
159         vlan0 = vorrq_u32(vlan0, rss);
160         vlan0 = vorrq_u32(vlan0, l3_l4e);
161
162         rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
163         rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
164         rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
165         rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
166
167         vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
168         vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
169         vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
170         vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
171 }
172
173 #define PKTLEN_SHIFT     10
174 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
175
176 static inline void
177 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts,
178                 uint32_t *__rte_restrict ptype_tbl)
179 {
180         int i;
181         uint8_t ptype;
182         uint8x16_t tmp;
183
184         for (i = 0; i < 4; i++) {
185                 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
186                 ptype = vgetq_lane_u8(tmp, 8);
187                 rx_pkts[i]->packet_type = ptype_tbl[ptype];
188         }
189
190 }
191
192 /**
193  * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
194  *
195  * Notice:
196  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
197  * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
198  */
199 static inline uint16_t
200 _recv_raw_pkts_vec(struct i40e_rx_queue *__rte_restrict rxq,
201                    struct rte_mbuf **__rte_restrict rx_pkts,
202                    uint16_t nb_pkts, uint8_t *split_packet)
203 {
204         volatile union i40e_rx_desc *rxdp;
205         struct i40e_rx_entry *sw_ring;
206         uint16_t nb_pkts_recd;
207         int pos;
208         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
209
210         /* mask to shuffle from desc. to mbuf */
211         uint8x16_t shuf_msk = {
212                 0xFF, 0xFF,   /* pkt_type set as unknown */
213                 0xFF, 0xFF,   /* pkt_type set as unknown */
214                 14, 15,       /* octet 15~14, low 16 bits pkt_len */
215                 0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
216                 14, 15,       /* octet 15~14, 16 bits data_len */
217                 2, 3,         /* octet 2~3, low 16 bits vlan_macip */
218                 4, 5, 6, 7    /* octet 4~7, 32bits rss */
219                 };
220
221         uint8x16_t eop_check = {
222                 0x02, 0x00, 0x02, 0x00,
223                 0x02, 0x00, 0x02, 0x00,
224                 0x00, 0x00, 0x00, 0x00,
225                 0x00, 0x00, 0x00, 0x00
226                 };
227
228         uint16x8_t crc_adjust = {
229                 0, 0,         /* ignore pkt_type field */
230                 rxq->crc_len, /* sub crc on pkt_len */
231                 0,            /* ignore high-16bits of pkt_len */
232                 rxq->crc_len, /* sub crc on data_len */
233                 0, 0, 0       /* ignore non-length fields */
234                 };
235
236         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
237         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
238
239         /* Just the act of getting into the function from the application is
240          * going to cost about 7 cycles
241          */
242         rxdp = rxq->rx_ring + rxq->rx_tail;
243
244         rte_prefetch_non_temporal(rxdp);
245
246         /* See if we need to rearm the RX queue - gives the prefetch a bit
247          * of time to act
248          */
249         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
250                 i40e_rxq_rearm(rxq);
251
252         /* Before we start moving massive data around, check to see if
253          * there is actually a packet available
254          */
255         if (!(rxdp->wb.qword1.status_error_len &
256                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
257                 return 0;
258
259         /* Cache is empty -> need to scan the buffer rings, but first move
260          * the next 'n' mbufs into the cache
261          */
262         sw_ring = &rxq->sw_ring[rxq->rx_tail];
263
264         /* A. load 4 packet in one loop
265          * [A*. mask out 4 unused dirty field in desc]
266          * B. copy 4 mbuf point from swring to rx_pkts
267          * C. calc the number of DD bits among the 4 packets
268          * [C*. extract the end-of-packet bit, if requested]
269          * D. fill info. from desc to mbuf
270          */
271
272         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
273                         pos += RTE_I40E_DESCS_PER_LOOP,
274                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
275                 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
276                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
277                 uint16x8x2_t sterr_tmp1, sterr_tmp2;
278                 uint64x2_t mbp1, mbp2;
279                 uint16x8_t staterr;
280                 uint16x8_t tmp;
281                 uint64_t stat;
282
283                 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
284
285                 /* B.1 load 1 mbuf point */
286                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
287                 /* Read desc statuses backwards to avoid race condition */
288                 /* A.1 load 4 pkts desc */
289                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
290
291                 /* B.2 copy 2 mbuf point into rx_pkts  */
292                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
293
294                 /* B.1 load 1 mbuf point */
295                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
296
297                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
298                 /* B.1 load 2 mbuf point */
299                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
300                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
301
302                 /* B.2 copy 2 mbuf point into rx_pkts  */
303                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
304
305                 if (split_packet) {
306                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
307                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
308                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
309                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
310                 }
311
312                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
313                 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
314                                             len_shl);
315                 descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16
316                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7),
317                                  vreinterpretq_u16_u64(descs[3]),
318                                  7));
319                 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
320                                             len_shl);
321                 descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16
322                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7),
323                                  vreinterpretq_u16_u64(descs[2]),
324                                  7));
325
326                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
327                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
328                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
329
330                 /* C.1 4=>2 filter staterr info only */
331                 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
332                                        vreinterpretq_u16_u64(descs[3]));
333                 /* C.1 4=>2 filter staterr info only */
334                 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
335                                        vreinterpretq_u16_u64(descs[2]));
336
337                 /* C.2 get 4 pkts staterr value  */
338                 staterr = vzipq_u16(sterr_tmp1.val[1],
339                                     sterr_tmp2.val[1]).val[0];
340
341                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
342
343                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
344                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
345                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
346                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
347                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
348
349                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
350                 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
351                                             len_shl);
352                 descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16
353                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7),
354                                  vreinterpretq_u16_u64(descs[1]),
355                                  7));
356                 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
357                                             len_shl);
358                 descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16
359                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7),
360                                  vreinterpretq_u16_u64(descs[0]),
361                                  7));
362
363                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
364                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
365                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
366
367                 /* D.3 copy final 3,4 data to rx_pkts */
368                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
369                                  pkt_mb4);
370                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
371                                  pkt_mb3);
372
373                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
374                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
375                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
376                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
377                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
378
379                 /* C* extract and record EOP bit */
380                 if (split_packet) {
381                         uint8x16_t eop_shuf_mask = {
382                                         0x00, 0x02, 0x04, 0x06,
383                                         0xFF, 0xFF, 0xFF, 0xFF,
384                                         0xFF, 0xFF, 0xFF, 0xFF,
385                                         0xFF, 0xFF, 0xFF, 0xFF};
386                         uint8x16_t eop_bits;
387
388                         /* and with mask to extract bits, flipping 1-0 */
389                         eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
390                         eop_bits = vandq_u8(eop_bits, eop_check);
391                         /* the staterr values are not in order, as the count
392                          * count of dd bits doesn't care. However, for end of
393                          * packet tracking, we do care, so shuffle. This also
394                          * compresses the 32-bit values to 8-bit
395                          */
396                         eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
397
398                         /* store the resulting 32-bit value */
399                         vst1q_lane_u32((uint32_t *)split_packet,
400                                        vreinterpretq_u32_u8(eop_bits), 0);
401                         split_packet += RTE_I40E_DESCS_PER_LOOP;
402
403                         /* zero-out next pointers */
404                         rx_pkts[pos]->next = NULL;
405                         rx_pkts[pos + 1]->next = NULL;
406                         rx_pkts[pos + 2]->next = NULL;
407                         rx_pkts[pos + 3]->next = NULL;
408                 }
409
410                 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
411                 staterr = vreinterpretq_u16_s16(
412                                 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
413                                             I40E_UINT16_BIT - 1));
414                 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
415
416                 rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
417
418                 /* D.3 copy final 1,2 data to rx_pkts */
419                 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
420                          pkt_mb2);
421                 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
422                          pkt_mb1);
423                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
424                 /* C.4 calc avaialbe number of desc */
425                 if (unlikely(stat == 0)) {
426                         nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
427                 } else {
428                         nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
429                         break;
430                 }
431         }
432
433         /* Update our internal tail pointer */
434         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
435         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
436         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
437
438         return nb_pkts_recd;
439 }
440
441  /*
442  * Notice:
443  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
444  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
445  *   numbers of DD bits
446  */
447 uint16_t
448 i40e_recv_pkts_vec(void *__rte_restrict rx_queue,
449                 struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts)
450 {
451         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
452 }
453
454 /**
455  * vPMD receive routine that reassembles single burst of 32 scattered packets
456  *
457  * Notice:
458  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
459  */
460 static uint16_t
461 i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
462                               uint16_t nb_pkts)
463 {
464
465         struct i40e_rx_queue *rxq = rx_queue;
466         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
467
468         /* get some new buffers */
469         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
470                         split_flags);
471         if (nb_bufs == 0)
472                 return 0;
473
474         /* happy day case, full burst + no packets to be joined */
475         const uint64_t *split_fl64 = (uint64_t *)split_flags;
476
477         if (rxq->pkt_first_seg == NULL &&
478                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
479                         split_fl64[2] == 0 && split_fl64[3] == 0)
480                 return nb_bufs;
481
482         /* reassemble any packets that need reassembly*/
483         unsigned i = 0;
484
485         if (rxq->pkt_first_seg == NULL) {
486                 /* find the first split flag, and only reassemble then*/
487                 while (i < nb_bufs && !split_flags[i])
488                         i++;
489                 if (i == nb_bufs)
490                         return nb_bufs;
491                 rxq->pkt_first_seg = rx_pkts[i];
492         }
493         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
494                 &split_flags[i]);
495 }
496
497 /**
498  * vPMD receive routine that reassembles scattered packets.
499  */
500 uint16_t
501 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
502                              uint16_t nb_pkts)
503 {
504         uint16_t retval = 0;
505
506         while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
507                 uint16_t burst;
508
509                 burst = i40e_recv_scattered_burst_vec(rx_queue,
510                                                       rx_pkts + retval,
511                                                       RTE_I40E_VPMD_RX_BURST);
512                 retval += burst;
513                 nb_pkts -= burst;
514                 if (burst < RTE_I40E_VPMD_RX_BURST)
515                         return retval;
516         }
517
518         return retval + i40e_recv_scattered_burst_vec(rx_queue,
519                                                       rx_pkts + retval,
520                                                       nb_pkts);
521 }
522
523 static inline void
524 vtx1(volatile struct i40e_tx_desc *txdp,
525                 struct rte_mbuf *pkt, uint64_t flags)
526 {
527         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
528                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
529                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
530
531         uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
532         vst1q_u64((uint64_t *)txdp, descriptor);
533 }
534
535 static inline void
536 vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt,
537                 uint16_t nb_pkts,  uint64_t flags)
538 {
539         int i;
540
541         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
542                 vtx1(txdp, *pkt, flags);
543 }
544
545 uint16_t
546 i40e_xmit_fixed_burst_vec(void *__rte_restrict tx_queue,
547         struct rte_mbuf **__rte_restrict tx_pkts, uint16_t nb_pkts)
548 {
549         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
550         volatile struct i40e_tx_desc *txdp;
551         struct i40e_tx_entry *txep;
552         uint16_t n, nb_commit, tx_id;
553         uint64_t flags = I40E_TD_CMD;
554         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
555         int i;
556
557         /* cross rx_thresh boundary is not allowed */
558         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
559
560         if (txq->nb_tx_free < txq->tx_free_thresh)
561                 i40e_tx_free_bufs(txq);
562
563         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
564         if (unlikely(nb_pkts == 0))
565                 return 0;
566
567         tx_id = txq->tx_tail;
568         txdp = &txq->tx_ring[tx_id];
569         txep = &txq->sw_ring[tx_id];
570
571         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
572
573         n = (uint16_t)(txq->nb_tx_desc - tx_id);
574         if (nb_commit >= n) {
575                 tx_backlog_entry(txep, tx_pkts, n);
576
577                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
578                         vtx1(txdp, *tx_pkts, flags);
579
580                 vtx1(txdp, *tx_pkts++, rs);
581
582                 nb_commit = (uint16_t)(nb_commit - n);
583
584                 tx_id = 0;
585                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
586
587                 /* avoid reach the end of ring */
588                 txdp = &txq->tx_ring[tx_id];
589                 txep = &txq->sw_ring[tx_id];
590         }
591
592         tx_backlog_entry(txep, tx_pkts, nb_commit);
593
594         vtx(txdp, tx_pkts, nb_commit, flags);
595
596         tx_id = (uint16_t)(tx_id + nb_commit);
597         if (tx_id > txq->tx_next_rs) {
598                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
599                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
600                                                 I40E_TXD_QW1_CMD_SHIFT);
601                 txq->tx_next_rs =
602                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
603         }
604
605         txq->tx_tail = tx_id;
606
607         rte_io_wmb();
608         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
609
610         return nb_pkts;
611 }
612
613 void __rte_cold
614 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
615 {
616         _i40e_rx_queue_release_mbufs_vec(rxq);
617 }
618
619 int __rte_cold
620 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
621 {
622         return i40e_rxq_vec_setup_default(rxq);
623 }
624
625 int __rte_cold
626 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
627 {
628         return 0;
629 }
630
631 int __rte_cold
632 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
633 {
634         return i40e_rx_vec_dev_conf_condition_check_default(dev);
635 }