b235502db5c27cf1cd9bd4208d76ae1f0253e828
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "base/i40e_prototype.h"
10 #include "base/i40e_type.h"
11 #include "i40e_ethdev.h"
12 #include "i40e_rxtx.h"
13 #include "i40e_rxtx_vec_common.h"
14
15 #include <tmmintrin.h>
16
17 #ifndef __INTEL_COMPILER
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19 #endif
20
21 static inline void
22 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
23 {
24         int i;
25         uint16_t rx_id;
26         volatile union i40e_rx_desc *rxdp;
27         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
28         struct rte_mbuf *mb0, *mb1;
29         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
30                         RTE_PKTMBUF_HEADROOM);
31         __m128i dma_addr0, dma_addr1;
32
33         rxdp = rxq->rx_ring + rxq->rxrearm_start;
34
35         /* Pull 'n' more MBUFs into the software ring */
36         if (rte_mempool_get_bulk(rxq->mp,
37                                  (void *)rxep,
38                                  RTE_I40E_RXQ_REARM_THRESH) < 0) {
39                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
40                     rxq->nb_rx_desc) {
41                         dma_addr0 = _mm_setzero_si128();
42                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
43                                 rxep[i].mbuf = &rxq->fake_mbuf;
44                                 _mm_store_si128((__m128i *)&rxdp[i].read,
45                                                 dma_addr0);
46                         }
47                 }
48                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49                         RTE_I40E_RXQ_REARM_THRESH;
50                 return;
51         }
52
53         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
54         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55                 __m128i vaddr0, vaddr1;
56
57                 mb0 = rxep[0].mbuf;
58                 mb1 = rxep[1].mbuf;
59
60                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
61                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
62                                 offsetof(struct rte_mbuf, buf_addr) + 8);
63                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
64                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
65
66                 /* convert pa to dma_addr hdr/data */
67                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
68                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
69
70                 /* add headroom to pa values */
71                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
72                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
73
74                 /* flush desc with pa dma_addr */
75                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
76                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
77         }
78
79         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
80         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
81                 rxq->rxrearm_start = 0;
82
83         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
84
85         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
86                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
87
88         /* Update the tail pointer on the NIC */
89         I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
90 }
91
92 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
93 /* SSE version of FDIR mark extraction for 4 32B descriptors at a time */
94 static inline __m128i
95 descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt)
96 {
97         /* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */
98         __m128i desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23;
99         desc0_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 0)->wb.qword2);
100         desc1_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 1)->wb.qword2);
101         desc2_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 2)->wb.qword2);
102         desc3_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 3)->wb.qword2);
103
104         /* FDIR ID data: move last u32 of each desc to 4 u32 lanes */
105         __m128i v_unpack_01, v_unpack_23;
106         v_unpack_01 = _mm_unpackhi_epi32(desc0_qw23, desc1_qw23);
107         v_unpack_23 = _mm_unpackhi_epi32(desc2_qw23, desc3_qw23);
108         __m128i v_fdir_ids = _mm_unpackhi_epi64(v_unpack_01, v_unpack_23);
109
110         /* Extended Status: extract from each lower 32 bits, to u32 lanes */
111         v_unpack_01 = _mm_unpacklo_epi32(desc0_qw23, desc1_qw23);
112         v_unpack_23 = _mm_unpacklo_epi32(desc2_qw23, desc3_qw23);
113         __m128i v_flt_status = _mm_unpacklo_epi64(v_unpack_01, v_unpack_23);
114
115         /* Shift u32 left and right to "mask away" bits not required.
116          * Data required is 4:5 (zero based), so left shift by 26 (32-6)
117          * and then right shift by 30 (32 - 2 bits required).
118          */
119         v_flt_status = _mm_slli_epi32(v_flt_status, 26);
120         v_flt_status = _mm_srli_epi32(v_flt_status, 30);
121
122         /* Generate constant 1 in all u32 lanes and compare */
123         RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1);
124         __m128i v_zeros = _mm_setzero_si128();
125         __m128i v_ffff = _mm_cmpeq_epi32(v_zeros, v_zeros);
126         __m128i v_u32_one = _mm_srli_epi32(v_ffff, 31);
127
128         /* per desc mask, bits set if FDIR ID is valid */
129         __m128i v_fd_id_mask = _mm_cmpeq_epi32(v_flt_status, v_u32_one);
130
131         /* Mask ID data to zero if the FD_ID bit not set in desc */
132         v_fdir_ids = _mm_and_si128(v_fdir_ids, v_fd_id_mask);
133
134         /* Extract and store as u32. No advantage to combining into SSE
135          * stores, there are no surrounding stores to around fdir.hi
136          */
137         rx_pkt[0]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 0);
138         rx_pkt[1]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 1);
139         rx_pkt[2]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 2);
140         rx_pkt[3]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 3);
141
142         /* convert fdir_id_mask into a single bit, then shift as required for
143          * correct location in the mbuf->olflags
144          */
145         const uint32_t FDIR_ID_BIT_SHIFT = 13;
146         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << FDIR_ID_BIT_SHIFT));
147         v_fd_id_mask = _mm_srli_epi32(v_fd_id_mask, 31);
148         v_fd_id_mask = _mm_slli_epi32(v_fd_id_mask, FDIR_ID_BIT_SHIFT);
149
150         /* The returned value must be combined into each mbuf. This is already
151          * being done for RSS and VLAN mbuf olflags, so return bits to OR in.
152          */
153         return v_fd_id_mask;
154 }
155
156 #else /* 32 or 16B FDIR ID handling */
157
158 /* Handle 16B descriptor FDIR ID flag setting based on FLM. See scalar driver
159  * for scalar implementation of the same functionality.
160  */
161 static inline __m128i
162 descs_to_fdir_16b(__m128i fltstat, __m128i descs[4], struct rte_mbuf **rx_pkt)
163 {
164         /* unpack filter-status data from descriptors */
165         __m128i v_tmp_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
166         __m128i v_tmp_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
167         __m128i v_fdir_ids = _mm_unpackhi_epi64(v_tmp_01, v_tmp_23);
168
169         /* Generate one bit in each u32 lane */
170         __m128i v_zeros = _mm_setzero_si128();
171         __m128i v_ffff = _mm_cmpeq_epi32(v_zeros, v_zeros);
172         __m128i v_111_mask = _mm_srli_epi32(v_ffff, 29);
173         __m128i v_11_mask = _mm_srli_epi32(v_ffff, 30);
174
175         /* Top lane ones mask for FDIR isolation */
176         __m128i v_desc_fdir_mask = _mm_insert_epi32(v_zeros, UINT32_MAX, 1);
177
178         /* Compare and mask away FDIR ID data if bit not set */
179         __m128i v_u32_bits = _mm_and_si128(v_111_mask, fltstat);
180         __m128i v_fdir_id_mask = _mm_cmpeq_epi32(v_u32_bits, v_11_mask);
181         v_fdir_ids = _mm_and_si128(v_fdir_id_mask, v_fdir_ids);
182
183         /* Store data to fdir.hi in mbuf */
184         rx_pkt[0]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 0);
185         rx_pkt[1]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 1);
186         rx_pkt[2]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 2);
187         rx_pkt[3]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 3);
188
189         /* Move fdir_id_mask to correct lane, blend RSS to zero on hits */
190         __m128i v_desc3_shift = _mm_alignr_epi8(v_zeros, v_fdir_id_mask, 8);
191         __m128i v_desc3_mask = _mm_and_si128(v_desc_fdir_mask, v_desc3_shift);
192         descs[3] = _mm_blendv_epi8(descs[3], _mm_setzero_si128(), v_desc3_mask);
193
194         __m128i v_desc2_shift = _mm_alignr_epi8(v_zeros, v_fdir_id_mask, 4);
195         __m128i v_desc2_mask = _mm_and_si128(v_desc_fdir_mask, v_desc2_shift);
196         descs[2] = _mm_blendv_epi8(descs[2], _mm_setzero_si128(), v_desc2_mask);
197
198         __m128i v_desc1_shift = v_fdir_id_mask;
199         __m128i v_desc1_mask = _mm_and_si128(v_desc_fdir_mask, v_desc1_shift);
200         descs[1] = _mm_blendv_epi8(descs[1], _mm_setzero_si128(), v_desc1_mask);
201
202         __m128i v_desc0_shift = _mm_alignr_epi8(v_fdir_id_mask, v_zeros, 12);
203         __m128i v_desc0_mask = _mm_and_si128(v_desc_fdir_mask, v_desc0_shift);
204         descs[0] = _mm_blendv_epi8(descs[0], _mm_setzero_si128(), v_desc0_mask);
205
206         /* Shift to 1 or 0 bit per u32 lane, then to PKT_RX_FDIR_ID offset */
207         const uint32_t FDIR_ID_BIT_SHIFT = 13;
208         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << FDIR_ID_BIT_SHIFT));
209         __m128i v_mask_one_bit = _mm_srli_epi32(v_fdir_id_mask, 31);
210         return _mm_slli_epi32(v_mask_one_bit, FDIR_ID_BIT_SHIFT);
211 }
212 #endif
213
214 static inline void
215 desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp,
216                   __m128i descs[4], struct rte_mbuf **rx_pkts)
217 {
218         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
219         __m128i rearm0, rearm1, rearm2, rearm3;
220
221         __m128i vlan0, vlan1, rss, l3_l4e;
222
223         /* mask everything except RSS, flow director and VLAN flags
224          * bit2 is for VLAN tag, bit11 for flow director indication
225          * bit13:12 for RSS indication.
226          */
227         const __m128i rss_vlan_msk = _mm_set_epi32(
228                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
229
230         const __m128i cksum_mask = _mm_set_epi32(
231                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
232                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
233                         PKT_RX_OUTER_IP_CKSUM_BAD,
234                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
235                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
236                         PKT_RX_OUTER_IP_CKSUM_BAD,
237                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
238                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
239                         PKT_RX_OUTER_IP_CKSUM_BAD,
240                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
241                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
242                         PKT_RX_OUTER_IP_CKSUM_BAD);
243
244         /* map rss and vlan type to rss hash and vlan flag */
245         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
246                         0, 0, 0, 0,
247                         0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
248                         0, 0, 0, 0);
249
250         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
251                         0, 0, 0, 0,
252                         PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
253                         0, 0, PKT_RX_FDIR, 0);
254
255         const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
256                         /* shift right 1 bit to make sure it not exceed 255 */
257                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD  |
258                          PKT_RX_IP_CKSUM_BAD) >> 1,
259                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD  |
260                          PKT_RX_IP_CKSUM_GOOD) >> 1,
261                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
262                          PKT_RX_IP_CKSUM_BAD) >> 1,
263                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
264                          PKT_RX_IP_CKSUM_GOOD) >> 1,
265                         (PKT_RX_L4_CKSUM_BAD  | PKT_RX_IP_CKSUM_BAD) >> 1,
266                         (PKT_RX_L4_CKSUM_BAD  | PKT_RX_IP_CKSUM_GOOD) >> 1,
267                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
268                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
269
270         /* Unpack "status" from quadword 1, bits 0:32 */
271         vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
272         vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
273         vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
274
275         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
276         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
277
278         const __m128i desc_fltstat = _mm_srli_epi32(vlan1, 11);
279         rss = _mm_shuffle_epi8(rss_flags, desc_fltstat);
280
281         l3_l4e = _mm_srli_epi32(vlan1, 22);
282         l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
283         /* then we shift left 1 bit */
284         l3_l4e = _mm_slli_epi32(l3_l4e, 1);
285         /* we need to mask out the reduntant bits */
286         l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
287
288         vlan0 = _mm_or_si128(vlan0, rss);
289         vlan0 = _mm_or_si128(vlan0, l3_l4e);
290
291         /* Extract FDIR ID only if FDIR is enabled to avoid useless work */
292         if (rxq->fdir_enabled) {
293 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
294                 __m128i v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts);
295 #else
296                 (void)rxdp; /* rxdp not required for 16B desc mode */
297                 __m128i v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat,
298                                                             descs, rx_pkts);
299 #endif
300                 /* OR in ol_flag bits after descriptor speicific extraction */
301                 vlan0 = _mm_or_si128(vlan0, v_fdir_ol_flags);
302         }
303
304         /*
305          * At this point, we have the 4 sets of flags in the low 16-bits
306          * of each 32-bit value in vlan0.
307          * We want to extract these, and merge them with the mbuf init data
308          * so we can do a single 16-byte write to the mbuf to set the flags
309          * and all the other initialization fields. Extracting the
310          * appropriate flags means that we have to do a shift and blend for
311          * each mbuf before we do the write.
312          */
313         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
314         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
315         rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
316         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
317
318         /* write the rearm data and the olflags in one write */
319         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
320                         offsetof(struct rte_mbuf, rearm_data) + 8);
321         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
322                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
323         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
324         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
325         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
326         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
327 }
328
329 #define PKTLEN_SHIFT     10
330
331 static inline void
332 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
333                 uint32_t *ptype_tbl)
334 {
335         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
336         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
337
338         ptype0 = _mm_srli_epi64(ptype0, 30);
339         ptype1 = _mm_srli_epi64(ptype1, 30);
340
341         rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
342         rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
343         rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
344         rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
345 }
346
347 /**
348  * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
349  *
350  * Notice:
351  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
352  * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
353  */
354 static inline uint16_t
355 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
356                    uint16_t nb_pkts, uint8_t *split_packet)
357 {
358         volatile union i40e_rx_desc *rxdp;
359         struct i40e_rx_entry *sw_ring;
360         uint16_t nb_pkts_recd;
361         int pos;
362         uint64_t var;
363         __m128i shuf_msk;
364         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
365
366         __m128i crc_adjust = _mm_set_epi16(
367                                 0, 0, 0,    /* ignore non-length fields */
368                                 -rxq->crc_len, /* sub crc on data_len */
369                                 0,          /* ignore high-16bits of pkt_len */
370                                 -rxq->crc_len, /* sub crc on pkt_len */
371                                 0, 0            /* ignore pkt_type field */
372                         );
373         /*
374          * compile-time check the above crc_adjust layout is correct.
375          * NOTE: the first field (lowest address) is given last in set_epi16
376          * call above.
377          */
378         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
379                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
380         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
381                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
382         __m128i dd_check, eop_check;
383
384         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
385         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
386
387         /* Just the act of getting into the function from the application is
388          * going to cost about 7 cycles
389          */
390         rxdp = rxq->rx_ring + rxq->rx_tail;
391
392         rte_prefetch0(rxdp);
393
394         /* See if we need to rearm the RX queue - gives the prefetch a bit
395          * of time to act
396          */
397         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
398                 i40e_rxq_rearm(rxq);
399
400         /* Before we start moving massive data around, check to see if
401          * there is actually a packet available
402          */
403         if (!(rxdp->wb.qword1.status_error_len &
404                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
405                 return 0;
406
407         /* 4 packets DD mask */
408         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
409
410         /* 4 packets EOP mask */
411         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
412
413         /* mask to shuffle from desc. to mbuf */
414         shuf_msk = _mm_set_epi8(
415                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
416                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
417                 15, 14,      /* octet 15~14, 16 bits data_len */
418                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
419                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
420                 0xFF, 0xFF,  /* pkt_type set as unknown */
421                 0xFF, 0xFF  /*pkt_type set as unknown */
422                 );
423         /*
424          * Compile-time verify the shuffle mask
425          * NOTE: some field positions already verified above, but duplicated
426          * here for completeness in case of future modifications.
427          */
428         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
429                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
430         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
431                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
432         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
433                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
434         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
435                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
436
437         /* Cache is empty -> need to scan the buffer rings, but first move
438          * the next 'n' mbufs into the cache
439          */
440         sw_ring = &rxq->sw_ring[rxq->rx_tail];
441
442         /* A. load 4 packet in one loop
443          * [A*. mask out 4 unused dirty field in desc]
444          * B. copy 4 mbuf point from swring to rx_pkts
445          * C. calc the number of DD bits among the 4 packets
446          * [C*. extract the end-of-packet bit, if requested]
447          * D. fill info. from desc to mbuf
448          */
449
450         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
451                         pos += RTE_I40E_DESCS_PER_LOOP,
452                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
453                 __m128i descs[RTE_I40E_DESCS_PER_LOOP];
454                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
455                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
456                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
457                 __m128i mbp1;
458 #if defined(RTE_ARCH_X86_64)
459                 __m128i mbp2;
460 #endif
461
462                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
463                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
464                 /* Read desc statuses backwards to avoid race condition */
465                 /* A.1 load desc[3] */
466                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
467                 rte_compiler_barrier();
468
469                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
470                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
471
472 #if defined(RTE_ARCH_X86_64)
473                 /* B.1 load 2 64 bit mbuf points */
474                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
475 #endif
476
477                 /* A.1 load desc[2-0] */
478                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
479                 rte_compiler_barrier();
480                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
481                 rte_compiler_barrier();
482                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
483
484 #if defined(RTE_ARCH_X86_64)
485                 /* B.2 copy 2 mbuf point into rx_pkts  */
486                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
487 #endif
488
489                 if (split_packet) {
490                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
491                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
492                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
493                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
494                 }
495
496                 /* avoid compiler reorder optimization */
497                 rte_compiler_barrier();
498
499                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
500                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
501                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
502
503                 /* merge the now-aligned packet length fields back in */
504                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
505                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
506
507                 /* C.1 4=>2 filter staterr info only */
508                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
509                 /* C.1 4=>2 filter staterr info only */
510                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
511
512                 desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
513
514                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
515                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
516                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
517
518                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
519                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
520                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
521
522                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
523                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
524                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
525
526                 /* merge the now-aligned packet length fields back in */
527                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
528                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
529
530                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
531                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
532                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
533
534                 /* C.2 get 4 pkts staterr value  */
535                 zero = _mm_xor_si128(dd_check, dd_check);
536                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
537
538                 /* D.3 copy final 3,4 data to rx_pkts */
539                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
540                                  pkt_mb4);
541                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
542                                  pkt_mb3);
543
544                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
545                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
546                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
547
548                 /* C* extract and record EOP bit */
549                 if (split_packet) {
550                         __m128i eop_shuf_mask = _mm_set_epi8(
551                                         0xFF, 0xFF, 0xFF, 0xFF,
552                                         0xFF, 0xFF, 0xFF, 0xFF,
553                                         0xFF, 0xFF, 0xFF, 0xFF,
554                                         0x04, 0x0C, 0x00, 0x08
555                                         );
556
557                         /* and with mask to extract bits, flipping 1-0 */
558                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
559                         /* the staterr values are not in order, as the count
560                          * of dd bits doesn't care. However, for end of
561                          * packet tracking, we do care, so shuffle. This also
562                          * compresses the 32-bit values to 8-bit
563                          */
564                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
565                         /* store the resulting 32-bit value */
566                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
567                         split_packet += RTE_I40E_DESCS_PER_LOOP;
568                 }
569
570                 /* C.3 calc available number of desc */
571                 staterr = _mm_and_si128(staterr, dd_check);
572                 staterr = _mm_packs_epi32(staterr, zero);
573
574                 /* D.3 copy final 1,2 data to rx_pkts */
575                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
576                                  pkt_mb2);
577                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
578                                  pkt_mb1);
579                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
580                 /* C.4 calc avaialbe number of desc */
581                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
582                 nb_pkts_recd += var;
583                 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
584                         break;
585         }
586
587         /* Update our internal tail pointer */
588         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
589         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
590         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
591
592         return nb_pkts_recd;
593 }
594
595  /*
596  * Notice:
597  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
598  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
599  *   numbers of DD bits
600  */
601 uint16_t
602 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
603                    uint16_t nb_pkts)
604 {
605         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
606 }
607
608 /**
609  * vPMD receive routine that reassembles single burst of 32 scattered packets
610  *
611  * Notice:
612  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
613  */
614 static uint16_t
615 i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
616                               uint16_t nb_pkts)
617 {
618
619         struct i40e_rx_queue *rxq = rx_queue;
620         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
621
622         /* get some new buffers */
623         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
624                         split_flags);
625         if (nb_bufs == 0)
626                 return 0;
627
628         /* happy day case, full burst + no packets to be joined */
629         const uint64_t *split_fl64 = (uint64_t *)split_flags;
630
631         if (rxq->pkt_first_seg == NULL &&
632                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
633                         split_fl64[2] == 0 && split_fl64[3] == 0)
634                 return nb_bufs;
635
636         /* reassemble any packets that need reassembly*/
637         unsigned i = 0;
638
639         if (rxq->pkt_first_seg == NULL) {
640                 /* find the first split flag, and only reassemble then*/
641                 while (i < nb_bufs && !split_flags[i])
642                         i++;
643                 if (i == nb_bufs)
644                         return nb_bufs;
645                 rxq->pkt_first_seg = rx_pkts[i];
646         }
647         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
648                 &split_flags[i]);
649 }
650
651 /**
652  * vPMD receive routine that reassembles scattered packets.
653  */
654 uint16_t
655 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
656                              uint16_t nb_pkts)
657 {
658         uint16_t retval = 0;
659
660         while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
661                 uint16_t burst;
662
663                 burst = i40e_recv_scattered_burst_vec(rx_queue,
664                                                       rx_pkts + retval,
665                                                       RTE_I40E_VPMD_RX_BURST);
666                 retval += burst;
667                 nb_pkts -= burst;
668                 if (burst < RTE_I40E_VPMD_RX_BURST)
669                         return retval;
670         }
671
672         return retval + i40e_recv_scattered_burst_vec(rx_queue,
673                                                       rx_pkts + retval,
674                                                       nb_pkts);
675 }
676
677 static inline void
678 vtx1(volatile struct i40e_tx_desc *txdp,
679                 struct rte_mbuf *pkt, uint64_t flags)
680 {
681         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
682                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
683                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
684
685         __m128i descriptor = _mm_set_epi64x(high_qw,
686                                 pkt->buf_iova + pkt->data_off);
687         _mm_store_si128((__m128i *)txdp, descriptor);
688 }
689
690 static inline void
691 vtx(volatile struct i40e_tx_desc *txdp,
692                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
693 {
694         int i;
695
696         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
697                 vtx1(txdp, *pkt, flags);
698 }
699
700 uint16_t
701 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
702                           uint16_t nb_pkts)
703 {
704         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
705         volatile struct i40e_tx_desc *txdp;
706         struct i40e_tx_entry *txep;
707         uint16_t n, nb_commit, tx_id;
708         uint64_t flags = I40E_TD_CMD;
709         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
710         int i;
711
712         /* cross rx_thresh boundary is not allowed */
713         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
714
715         if (txq->nb_tx_free < txq->tx_free_thresh)
716                 i40e_tx_free_bufs(txq);
717
718         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
719         if (unlikely(nb_pkts == 0))
720                 return 0;
721
722         tx_id = txq->tx_tail;
723         txdp = &txq->tx_ring[tx_id];
724         txep = &txq->sw_ring[tx_id];
725
726         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
727
728         n = (uint16_t)(txq->nb_tx_desc - tx_id);
729         if (nb_commit >= n) {
730                 tx_backlog_entry(txep, tx_pkts, n);
731
732                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
733                         vtx1(txdp, *tx_pkts, flags);
734
735                 vtx1(txdp, *tx_pkts++, rs);
736
737                 nb_commit = (uint16_t)(nb_commit - n);
738
739                 tx_id = 0;
740                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
741
742                 /* avoid reach the end of ring */
743                 txdp = &txq->tx_ring[tx_id];
744                 txep = &txq->sw_ring[tx_id];
745         }
746
747         tx_backlog_entry(txep, tx_pkts, nb_commit);
748
749         vtx(txdp, tx_pkts, nb_commit, flags);
750
751         tx_id = (uint16_t)(tx_id + nb_commit);
752         if (tx_id > txq->tx_next_rs) {
753                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
754                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
755                                                 I40E_TXD_QW1_CMD_SHIFT);
756                 txq->tx_next_rs =
757                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
758         }
759
760         txq->tx_tail = tx_id;
761
762         I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
763
764         return nb_pkts;
765 }
766
767 void __rte_cold
768 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
769 {
770         _i40e_rx_queue_release_mbufs_vec(rxq);
771 }
772
773 int __rte_cold
774 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
775 {
776         return i40e_rxq_vec_setup_default(rxq);
777 }
778
779 int __rte_cold
780 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
781 {
782         return 0;
783 }
784
785 int __rte_cold
786 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
787 {
788         return i40e_rx_vec_dev_conf_condition_check_default(dev);
789 }