233f2fb3a01632350294f1a2a5f834504d00a132
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf_log.h"
29 #include "base/iavf_prototype.h"
30 #include "base/iavf_adminq_cmd.h"
31 #include "base/iavf_type.h"
32
33 #include "iavf.h"
34 #include "iavf_rxtx.h"
35
36 static int iavf_dev_configure(struct rte_eth_dev *dev);
37 static int iavf_dev_start(struct rte_eth_dev *dev);
38 static void iavf_dev_stop(struct rte_eth_dev *dev);
39 static void iavf_dev_close(struct rte_eth_dev *dev);
40 static int iavf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
46 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
47 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
48 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
49 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
50 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
51                                 struct rte_ether_addr *addr,
52                                 uint32_t index,
53                                 uint32_t pool);
54 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
55 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
56                                    uint16_t vlan_id, int on);
57 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
58 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
59                                    struct rte_eth_rss_reta_entry64 *reta_conf,
60                                    uint16_t reta_size);
61 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
62                                   struct rte_eth_rss_reta_entry64 *reta_conf,
63                                   uint16_t reta_size);
64 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
65                                    struct rte_eth_rss_conf *rss_conf);
66 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
67                                      struct rte_eth_rss_conf *rss_conf);
68 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
70                                          struct rte_ether_addr *mac_addr);
71 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
72                                         uint16_t queue_id);
73 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
74                                          uint16_t queue_id);
75
76 int iavf_logtype_init;
77 int iavf_logtype_driver;
78
79 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
80 int iavf_logtype_rx;
81 #endif
82 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
83 int iavf_logtype_tx;
84 #endif
85 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
86 int iavf_logtype_tx_free;
87 #endif
88
89 static const struct rte_pci_id pci_id_iavf_map[] = {
90         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
91         { .vendor_id = 0, /* sentinel */ },
92 };
93
94 static const struct eth_dev_ops iavf_eth_dev_ops = {
95         .dev_configure              = iavf_dev_configure,
96         .dev_start                  = iavf_dev_start,
97         .dev_stop                   = iavf_dev_stop,
98         .dev_close                  = iavf_dev_close,
99         .dev_infos_get              = iavf_dev_info_get,
100         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
101         .link_update                = iavf_dev_link_update,
102         .stats_get                  = iavf_dev_stats_get,
103         .stats_reset                = iavf_dev_stats_reset,
104         .promiscuous_enable         = iavf_dev_promiscuous_enable,
105         .promiscuous_disable        = iavf_dev_promiscuous_disable,
106         .allmulticast_enable        = iavf_dev_allmulticast_enable,
107         .allmulticast_disable       = iavf_dev_allmulticast_disable,
108         .mac_addr_add               = iavf_dev_add_mac_addr,
109         .mac_addr_remove            = iavf_dev_del_mac_addr,
110         .vlan_filter_set            = iavf_dev_vlan_filter_set,
111         .vlan_offload_set           = iavf_dev_vlan_offload_set,
112         .rx_queue_start             = iavf_dev_rx_queue_start,
113         .rx_queue_stop              = iavf_dev_rx_queue_stop,
114         .tx_queue_start             = iavf_dev_tx_queue_start,
115         .tx_queue_stop              = iavf_dev_tx_queue_stop,
116         .rx_queue_setup             = iavf_dev_rx_queue_setup,
117         .rx_queue_release           = iavf_dev_rx_queue_release,
118         .tx_queue_setup             = iavf_dev_tx_queue_setup,
119         .tx_queue_release           = iavf_dev_tx_queue_release,
120         .mac_addr_set               = iavf_dev_set_default_mac_addr,
121         .reta_update                = iavf_dev_rss_reta_update,
122         .reta_query                 = iavf_dev_rss_reta_query,
123         .rss_hash_update            = iavf_dev_rss_hash_update,
124         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
125         .rxq_info_get               = iavf_dev_rxq_info_get,
126         .txq_info_get               = iavf_dev_txq_info_get,
127         .rx_queue_count             = iavf_dev_rxq_count,
128         .rx_descriptor_status       = iavf_dev_rx_desc_status,
129         .tx_descriptor_status       = iavf_dev_tx_desc_status,
130         .mtu_set                    = iavf_dev_mtu_set,
131         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
132         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
133 };
134
135 static int
136 iavf_dev_configure(struct rte_eth_dev *dev)
137 {
138         struct iavf_adapter *ad =
139                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
140         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
141         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
142
143         ad->rx_bulk_alloc_allowed = true;
144         /* Initialize to TRUE. If any of Rx queues doesn't meet the
145          * vector Rx/Tx preconditions, it will be reset.
146          */
147         ad->rx_vec_allowed = true;
148         ad->tx_vec_allowed = true;
149
150         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
151                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
152
153         /* Vlan stripping setting */
154         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
155                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
156                         iavf_enable_vlan_strip(ad);
157                 else
158                         iavf_disable_vlan_strip(ad);
159         }
160         return 0;
161 }
162
163 static int
164 iavf_init_rss(struct iavf_adapter *adapter)
165 {
166         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
167         struct rte_eth_rss_conf *rss_conf;
168         uint8_t i, j, nb_q;
169         int ret;
170
171         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
172         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
173                        IAVF_MAX_NUM_QUEUES);
174
175         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
176                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
177                 return -ENOTSUP;
178         }
179         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
180                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
181                 /* set all lut items to default queue */
182                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
183                         vf->rss_lut[i] = 0;
184                 ret = iavf_configure_rss_lut(adapter);
185                 return ret;
186         }
187
188         /* In IAVF, RSS enablement is set by PF driver. It is not supported
189          * to set based on rss_conf->rss_hf.
190          */
191
192         /* configure RSS key */
193         if (!rss_conf->rss_key) {
194                 /* Calculate the default hash key */
195                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
196                         vf->rss_key[i] = (uint8_t)rte_rand();
197         } else
198                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
199                            RTE_MIN(rss_conf->rss_key_len,
200                                    vf->vf_res->rss_key_size));
201
202         /* init RSS LUT table */
203         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
204                 if (j >= nb_q)
205                         j = 0;
206                 vf->rss_lut[i] = j;
207         }
208         /* send virtchnnl ops to configure rss*/
209         ret = iavf_configure_rss_lut(adapter);
210         if (ret)
211                 return ret;
212         ret = iavf_configure_rss_key(adapter);
213         if (ret)
214                 return ret;
215
216         return 0;
217 }
218
219 static int
220 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
221 {
222         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
223         struct rte_eth_dev_data *dev_data = dev->data;
224         uint16_t buf_size, max_pkt_len, len;
225
226         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
227
228         /* Calculate the maximum packet length allowed */
229         len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
230         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
231
232         /* Check if the jumbo frame and maximum packet length are set
233          * correctly.
234          */
235         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
236                 if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
237                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
238                         PMD_DRV_LOG(ERR, "maximum packet length must be "
239                                     "larger than %u and smaller than %u, "
240                                     "as jumbo frame is enabled",
241                                     (uint32_t)RTE_ETHER_MAX_LEN,
242                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
243                         return -EINVAL;
244                 }
245         } else {
246                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
247                     max_pkt_len > RTE_ETHER_MAX_LEN) {
248                         PMD_DRV_LOG(ERR, "maximum packet length must be "
249                                     "larger than %u and smaller than %u, "
250                                     "as jumbo frame is disabled",
251                                     (uint32_t)RTE_ETHER_MIN_LEN,
252                                     (uint32_t)RTE_ETHER_MAX_LEN);
253                         return -EINVAL;
254                 }
255         }
256
257         rxq->max_pkt_len = max_pkt_len;
258         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
259             (rxq->max_pkt_len + 2 * IAVF_VLAN_TAG_SIZE) > buf_size) {
260                 dev_data->scattered_rx = 1;
261         }
262         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
263         IAVF_WRITE_FLUSH(hw);
264
265         return 0;
266 }
267
268 static int
269 iavf_init_queues(struct rte_eth_dev *dev)
270 {
271         struct iavf_rx_queue **rxq =
272                 (struct iavf_rx_queue **)dev->data->rx_queues;
273         int i, ret = IAVF_SUCCESS;
274
275         for (i = 0; i < dev->data->nb_rx_queues; i++) {
276                 if (!rxq[i] || !rxq[i]->q_set)
277                         continue;
278                 ret = iavf_init_rxq(dev, rxq[i]);
279                 if (ret != IAVF_SUCCESS)
280                         break;
281         }
282         /* set rx/tx function to vector/scatter/single-segment
283          * according to parameters
284          */
285         iavf_set_rx_function(dev);
286         iavf_set_tx_function(dev);
287
288         return ret;
289 }
290
291 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
292                                      struct rte_intr_handle *intr_handle)
293 {
294         struct iavf_adapter *adapter =
295                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
296         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
297         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
298         uint16_t interval, i;
299         int vec;
300
301         if (rte_intr_cap_multiple(intr_handle) &&
302             dev->data->dev_conf.intr_conf.rxq) {
303                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
304                         return -1;
305         }
306
307         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
308                 intr_handle->intr_vec =
309                         rte_zmalloc("intr_vec",
310                                     dev->data->nb_rx_queues * sizeof(int), 0);
311                 if (!intr_handle->intr_vec) {
312                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
313                                     dev->data->nb_rx_queues);
314                         return -1;
315                 }
316         }
317
318         if (!dev->data->dev_conf.intr_conf.rxq ||
319             !rte_intr_dp_is_en(intr_handle)) {
320                 /* Rx interrupt disabled, Map interrupt only for writeback */
321                 vf->nb_msix = 1;
322                 if (vf->vf_res->vf_cap_flags &
323                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
324                         /* If WB_ON_ITR supports, enable it */
325                         vf->msix_base = IAVF_RX_VEC_START;
326                         IAVF_WRITE_REG(hw,
327                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
328                                        IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK |
329                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK);
330                 } else {
331                         /* If no WB_ON_ITR offload flags, need to set
332                          * interrupt for descriptor write back.
333                          */
334                         vf->msix_base = IAVF_MISC_VEC_ID;
335
336                         /* set ITR to max */
337                         interval = iavf_calc_itr_interval(
338                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
339                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
340                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
341                                        (IAVF_ITR_INDEX_DEFAULT <<
342                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
343                                        (interval <<
344                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
345                 }
346                 IAVF_WRITE_FLUSH(hw);
347                 /* map all queues to the same interrupt */
348                 for (i = 0; i < dev->data->nb_rx_queues; i++)
349                         vf->rxq_map[vf->msix_base] |= 1 << i;
350         } else {
351                 if (!rte_intr_allow_others(intr_handle)) {
352                         vf->nb_msix = 1;
353                         vf->msix_base = IAVF_MISC_VEC_ID;
354                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
355                                 vf->rxq_map[vf->msix_base] |= 1 << i;
356                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
357                         }
358                         PMD_DRV_LOG(DEBUG,
359                                     "vector %u are mapping to all Rx queues",
360                                     vf->msix_base);
361                 } else {
362                         /* If Rx interrupt is reuquired, and we can use
363                          * multi interrupts, then the vec is from 1
364                          */
365                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
366                                               intr_handle->nb_efd);
367                         vf->msix_base = IAVF_RX_VEC_START;
368                         vec = IAVF_RX_VEC_START;
369                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
370                                 vf->rxq_map[vec] |= 1 << i;
371                                 intr_handle->intr_vec[i] = vec++;
372                                 if (vec >= vf->nb_msix)
373                                         vec = IAVF_RX_VEC_START;
374                         }
375                         PMD_DRV_LOG(DEBUG,
376                                     "%u vectors are mapping to %u Rx queues",
377                                     vf->nb_msix, dev->data->nb_rx_queues);
378                 }
379         }
380
381         if (iavf_config_irq_map(adapter)) {
382                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
383                 return -1;
384         }
385         return 0;
386 }
387
388 static int
389 iavf_start_queues(struct rte_eth_dev *dev)
390 {
391         struct iavf_rx_queue *rxq;
392         struct iavf_tx_queue *txq;
393         int i;
394
395         for (i = 0; i < dev->data->nb_tx_queues; i++) {
396                 txq = dev->data->tx_queues[i];
397                 if (txq->tx_deferred_start)
398                         continue;
399                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
400                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
401                         return -1;
402                 }
403         }
404
405         for (i = 0; i < dev->data->nb_rx_queues; i++) {
406                 rxq = dev->data->rx_queues[i];
407                 if (rxq->rx_deferred_start)
408                         continue;
409                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
410                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
411                         return -1;
412                 }
413         }
414
415         return 0;
416 }
417
418 static int
419 iavf_dev_start(struct rte_eth_dev *dev)
420 {
421         struct iavf_adapter *adapter =
422                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
423         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
424         struct rte_intr_handle *intr_handle = dev->intr_handle;
425
426         PMD_INIT_FUNC_TRACE();
427
428         adapter->stopped = 0;
429
430         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
431         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
432                                       dev->data->nb_tx_queues);
433
434         if (iavf_init_queues(dev) != 0) {
435                 PMD_DRV_LOG(ERR, "failed to do Queue init");
436                 return -1;
437         }
438
439         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
440                 if (iavf_init_rss(adapter) != 0) {
441                         PMD_DRV_LOG(ERR, "configure rss failed");
442                         goto err_rss;
443                 }
444         }
445
446         if (iavf_configure_queues(adapter) != 0) {
447                 PMD_DRV_LOG(ERR, "configure queues failed");
448                 goto err_queue;
449         }
450
451         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
452                 PMD_DRV_LOG(ERR, "configure irq failed");
453                 goto err_queue;
454         }
455         /* re-enable intr again, because efd assign may change */
456         if (dev->data->dev_conf.intr_conf.rxq != 0) {
457                 rte_intr_disable(intr_handle);
458                 rte_intr_enable(intr_handle);
459         }
460
461         /* Set all mac addrs */
462         iavf_add_del_all_mac_addr(adapter, TRUE);
463
464         if (iavf_start_queues(dev) != 0) {
465                 PMD_DRV_LOG(ERR, "enable queues failed");
466                 goto err_mac;
467         }
468
469         return 0;
470
471 err_mac:
472         iavf_add_del_all_mac_addr(adapter, FALSE);
473 err_queue:
474 err_rss:
475         return -1;
476 }
477
478 static void
479 iavf_dev_stop(struct rte_eth_dev *dev)
480 {
481         struct iavf_adapter *adapter =
482                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
483         struct rte_intr_handle *intr_handle = dev->intr_handle;
484
485         PMD_INIT_FUNC_TRACE();
486
487         if (adapter->stopped == 1)
488                 return;
489
490         iavf_stop_queues(dev);
491
492         /* Disable the interrupt for Rx */
493         rte_intr_efd_disable(intr_handle);
494         /* Rx interrupt vector mapping free */
495         if (intr_handle->intr_vec) {
496                 rte_free(intr_handle->intr_vec);
497                 intr_handle->intr_vec = NULL;
498         }
499
500         /* remove all mac addrs */
501         iavf_add_del_all_mac_addr(adapter, FALSE);
502         adapter->stopped = 1;
503 }
504
505 static int
506 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
507 {
508         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
509
510         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
511         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
512         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
513         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
514         dev_info->hash_key_size = vf->vf_res->rss_key_size;
515         dev_info->reta_size = vf->vf_res->rss_lut_size;
516         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
517         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
518         dev_info->rx_offload_capa =
519                 DEV_RX_OFFLOAD_VLAN_STRIP |
520                 DEV_RX_OFFLOAD_QINQ_STRIP |
521                 DEV_RX_OFFLOAD_IPV4_CKSUM |
522                 DEV_RX_OFFLOAD_UDP_CKSUM |
523                 DEV_RX_OFFLOAD_TCP_CKSUM |
524                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
525                 DEV_RX_OFFLOAD_SCATTER |
526                 DEV_RX_OFFLOAD_JUMBO_FRAME |
527                 DEV_RX_OFFLOAD_VLAN_FILTER |
528                 DEV_RX_OFFLOAD_RSS_HASH;
529         dev_info->tx_offload_capa =
530                 DEV_TX_OFFLOAD_VLAN_INSERT |
531                 DEV_TX_OFFLOAD_QINQ_INSERT |
532                 DEV_TX_OFFLOAD_IPV4_CKSUM |
533                 DEV_TX_OFFLOAD_UDP_CKSUM |
534                 DEV_TX_OFFLOAD_TCP_CKSUM |
535                 DEV_TX_OFFLOAD_SCTP_CKSUM |
536                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
537                 DEV_TX_OFFLOAD_TCP_TSO |
538                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
539                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
540                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
541                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
542                 DEV_TX_OFFLOAD_MULTI_SEGS;
543
544         dev_info->default_rxconf = (struct rte_eth_rxconf) {
545                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
546                 .rx_drop_en = 0,
547                 .offloads = 0,
548         };
549
550         dev_info->default_txconf = (struct rte_eth_txconf) {
551                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
552                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
553                 .offloads = 0,
554         };
555
556         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
557                 .nb_max = IAVF_MAX_RING_DESC,
558                 .nb_min = IAVF_MIN_RING_DESC,
559                 .nb_align = IAVF_ALIGN_RING_DESC,
560         };
561
562         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
563                 .nb_max = IAVF_MAX_RING_DESC,
564                 .nb_min = IAVF_MIN_RING_DESC,
565                 .nb_align = IAVF_ALIGN_RING_DESC,
566         };
567
568         return 0;
569 }
570
571 static const uint32_t *
572 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
573 {
574         static const uint32_t ptypes[] = {
575                 RTE_PTYPE_L2_ETHER,
576                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
577                 RTE_PTYPE_L4_FRAG,
578                 RTE_PTYPE_L4_ICMP,
579                 RTE_PTYPE_L4_NONFRAG,
580                 RTE_PTYPE_L4_SCTP,
581                 RTE_PTYPE_L4_TCP,
582                 RTE_PTYPE_L4_UDP,
583                 RTE_PTYPE_UNKNOWN
584         };
585         return ptypes;
586 }
587
588 int
589 iavf_dev_link_update(struct rte_eth_dev *dev,
590                     __rte_unused int wait_to_complete)
591 {
592         struct rte_eth_link new_link;
593         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
594
595         /* Only read status info stored in VF, and the info is updated
596          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
597          */
598         switch (vf->link_speed) {
599         case 10:
600                 new_link.link_speed = ETH_SPEED_NUM_10M;
601                 break;
602         case 100:
603                 new_link.link_speed = ETH_SPEED_NUM_100M;
604                 break;
605         case 1000:
606                 new_link.link_speed = ETH_SPEED_NUM_1G;
607                 break;
608         case 10000:
609                 new_link.link_speed = ETH_SPEED_NUM_10G;
610                 break;
611         case 20000:
612                 new_link.link_speed = ETH_SPEED_NUM_20G;
613                 break;
614         case 25000:
615                 new_link.link_speed = ETH_SPEED_NUM_25G;
616                 break;
617         case 40000:
618                 new_link.link_speed = ETH_SPEED_NUM_40G;
619                 break;
620         case 50000:
621                 new_link.link_speed = ETH_SPEED_NUM_50G;
622                 break;
623         case 100000:
624                 new_link.link_speed = ETH_SPEED_NUM_100G;
625                 break;
626         default:
627                 new_link.link_speed = ETH_SPEED_NUM_NONE;
628                 break;
629         }
630
631         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
632         new_link.link_status = vf->link_up ? ETH_LINK_UP :
633                                              ETH_LINK_DOWN;
634         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
635                                 ETH_LINK_SPEED_FIXED);
636
637         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
638                                 *(uint64_t *)&dev->data->dev_link,
639                                 *(uint64_t *)&new_link) == 0)
640                 return -1;
641
642         return 0;
643 }
644
645 static int
646 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
647 {
648         struct iavf_adapter *adapter =
649                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
650         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
651         int ret;
652
653         if (vf->promisc_unicast_enabled)
654                 return 0;
655
656         ret = iavf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
657         if (!ret)
658                 vf->promisc_unicast_enabled = TRUE;
659         else
660                 ret = -EAGAIN;
661
662         return ret;
663 }
664
665 static int
666 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
667 {
668         struct iavf_adapter *adapter =
669                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
670         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
671         int ret;
672
673         if (!vf->promisc_unicast_enabled)
674                 return 0;
675
676         ret = iavf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
677         if (!ret)
678                 vf->promisc_unicast_enabled = FALSE;
679         else
680                 ret = -EAGAIN;
681
682         return ret;
683 }
684
685 static int
686 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
687 {
688         struct iavf_adapter *adapter =
689                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
690         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
691         int ret;
692
693         if (vf->promisc_multicast_enabled)
694                 return 0;
695
696         ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
697         if (!ret)
698                 vf->promisc_multicast_enabled = TRUE;
699         else
700                 ret = -EAGAIN;
701
702         return ret;
703 }
704
705 static int
706 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
707 {
708         struct iavf_adapter *adapter =
709                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
710         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
711         int ret;
712
713         if (!vf->promisc_multicast_enabled)
714                 return 0;
715
716         ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
717         if (!ret)
718                 vf->promisc_multicast_enabled = FALSE;
719         else
720                 ret = -EAGAIN;
721
722         return ret;
723 }
724
725 static int
726 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
727                      __rte_unused uint32_t index,
728                      __rte_unused uint32_t pool)
729 {
730         struct iavf_adapter *adapter =
731                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
732         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
733         int err;
734
735         if (rte_is_zero_ether_addr(addr)) {
736                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
737                 return -EINVAL;
738         }
739
740         err = iavf_add_del_eth_addr(adapter, addr, TRUE);
741         if (err) {
742                 PMD_DRV_LOG(ERR, "fail to add MAC address");
743                 return -EIO;
744         }
745
746         vf->mac_num++;
747
748         return 0;
749 }
750
751 static void
752 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
753 {
754         struct iavf_adapter *adapter =
755                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
756         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
757         struct rte_ether_addr *addr;
758         int err;
759
760         addr = &dev->data->mac_addrs[index];
761
762         err = iavf_add_del_eth_addr(adapter, addr, FALSE);
763         if (err)
764                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
765
766         vf->mac_num--;
767 }
768
769 static int
770 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
771 {
772         struct iavf_adapter *adapter =
773                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
774         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
775         int err;
776
777         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
778                 return -ENOTSUP;
779
780         err = iavf_add_del_vlan(adapter, vlan_id, on);
781         if (err)
782                 return -EIO;
783         return 0;
784 }
785
786 static int
787 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
788 {
789         struct iavf_adapter *adapter =
790                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
791         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
792         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
793         int err;
794
795         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
796                 return -ENOTSUP;
797
798         /* Vlan stripping setting */
799         if (mask & ETH_VLAN_STRIP_MASK) {
800                 /* Enable or disable VLAN stripping */
801                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
802                         err = iavf_enable_vlan_strip(adapter);
803                 else
804                         err = iavf_disable_vlan_strip(adapter);
805
806                 if (err)
807                         return -EIO;
808         }
809         return 0;
810 }
811
812 static int
813 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
814                         struct rte_eth_rss_reta_entry64 *reta_conf,
815                         uint16_t reta_size)
816 {
817         struct iavf_adapter *adapter =
818                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
819         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
820         uint8_t *lut;
821         uint16_t i, idx, shift;
822         int ret;
823
824         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
825                 return -ENOTSUP;
826
827         if (reta_size != vf->vf_res->rss_lut_size) {
828                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
829                         "(%d) doesn't match the number of hardware can "
830                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
831                 return -EINVAL;
832         }
833
834         lut = rte_zmalloc("rss_lut", reta_size, 0);
835         if (!lut) {
836                 PMD_DRV_LOG(ERR, "No memory can be allocated");
837                 return -ENOMEM;
838         }
839         /* store the old lut table temporarily */
840         rte_memcpy(lut, vf->rss_lut, reta_size);
841
842         for (i = 0; i < reta_size; i++) {
843                 idx = i / RTE_RETA_GROUP_SIZE;
844                 shift = i % RTE_RETA_GROUP_SIZE;
845                 if (reta_conf[idx].mask & (1ULL << shift))
846                         lut[i] = reta_conf[idx].reta[shift];
847         }
848
849         rte_memcpy(vf->rss_lut, lut, reta_size);
850         /* send virtchnnl ops to configure rss*/
851         ret = iavf_configure_rss_lut(adapter);
852         if (ret) /* revert back */
853                 rte_memcpy(vf->rss_lut, lut, reta_size);
854         rte_free(lut);
855
856         return ret;
857 }
858
859 static int
860 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
861                        struct rte_eth_rss_reta_entry64 *reta_conf,
862                        uint16_t reta_size)
863 {
864         struct iavf_adapter *adapter =
865                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
866         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
867         uint16_t i, idx, shift;
868
869         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
870                 return -ENOTSUP;
871
872         if (reta_size != vf->vf_res->rss_lut_size) {
873                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
874                         "(%d) doesn't match the number of hardware can "
875                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
876                 return -EINVAL;
877         }
878
879         for (i = 0; i < reta_size; i++) {
880                 idx = i / RTE_RETA_GROUP_SIZE;
881                 shift = i % RTE_RETA_GROUP_SIZE;
882                 if (reta_conf[idx].mask & (1ULL << shift))
883                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
884         }
885
886         return 0;
887 }
888
889 static int
890 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
891                         struct rte_eth_rss_conf *rss_conf)
892 {
893         struct iavf_adapter *adapter =
894                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
895         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
896
897         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
898                 return -ENOTSUP;
899
900         /* HENA setting, it is enabled by default, no change */
901         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
902                 PMD_DRV_LOG(DEBUG, "No key to be configured");
903                 return 0;
904         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
905                 PMD_DRV_LOG(ERR, "The size of hash key configured "
906                         "(%d) doesn't match the size of hardware can "
907                         "support (%d)", rss_conf->rss_key_len,
908                         vf->vf_res->rss_key_size);
909                 return -EINVAL;
910         }
911
912         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
913
914         return iavf_configure_rss_key(adapter);
915 }
916
917 static int
918 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
919                           struct rte_eth_rss_conf *rss_conf)
920 {
921         struct iavf_adapter *adapter =
922                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
923         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
924
925         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
926                 return -ENOTSUP;
927
928          /* Just set it to default value now. */
929         rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL;
930
931         if (!rss_conf->rss_key)
932                 return 0;
933
934         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
935         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
936
937         return 0;
938 }
939
940 static int
941 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
942 {
943         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
944         int ret = 0;
945
946         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
947                 return -EINVAL;
948
949         /* mtu setting is forbidden if port is start */
950         if (dev->data->dev_started) {
951                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
952                 return -EBUSY;
953         }
954
955         if (frame_size > RTE_ETHER_MAX_LEN)
956                 dev->data->dev_conf.rxmode.offloads |=
957                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
958         else
959                 dev->data->dev_conf.rxmode.offloads &=
960                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
961
962         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
963
964         return ret;
965 }
966
967 static int
968 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
969                              struct rte_ether_addr *mac_addr)
970 {
971         struct iavf_adapter *adapter =
972                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
973         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
974         struct rte_ether_addr *perm_addr, *old_addr;
975         int ret;
976
977         old_addr = (struct rte_ether_addr *)hw->mac.addr;
978         perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
979
980         if (rte_is_same_ether_addr(mac_addr, old_addr))
981                 return 0;
982
983         /* If the MAC address is configured by host, skip the setting */
984         if (rte_is_valid_assigned_ether_addr(perm_addr))
985                 return -EPERM;
986
987         ret = iavf_add_del_eth_addr(adapter, old_addr, FALSE);
988         if (ret)
989                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
990                             " %02X:%02X:%02X:%02X:%02X:%02X",
991                             old_addr->addr_bytes[0],
992                             old_addr->addr_bytes[1],
993                             old_addr->addr_bytes[2],
994                             old_addr->addr_bytes[3],
995                             old_addr->addr_bytes[4],
996                             old_addr->addr_bytes[5]);
997
998         ret = iavf_add_del_eth_addr(adapter, mac_addr, TRUE);
999         if (ret)
1000                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1001                             " %02X:%02X:%02X:%02X:%02X:%02X",
1002                             mac_addr->addr_bytes[0],
1003                             mac_addr->addr_bytes[1],
1004                             mac_addr->addr_bytes[2],
1005                             mac_addr->addr_bytes[3],
1006                             mac_addr->addr_bytes[4],
1007                             mac_addr->addr_bytes[5]);
1008
1009         if (ret)
1010                 return -EIO;
1011
1012         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1013         return 0;
1014 }
1015
1016 static void
1017 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1018 {
1019         if (*stat >= *offset)
1020                 *stat = *stat - *offset;
1021         else
1022                 *stat = (uint64_t)((*stat +
1023                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1024
1025         *stat &= IAVF_48_BIT_MASK;
1026 }
1027
1028 static void
1029 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1030 {
1031         if (*stat >= *offset)
1032                 *stat = (uint64_t)(*stat - *offset);
1033         else
1034                 *stat = (uint64_t)((*stat +
1035                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1036 }
1037
1038 static void
1039 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1040 {
1041         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1042
1043         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1044         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1045         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1046         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1047         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1048         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1049         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1050         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1051         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1052         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1053         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1054 }
1055
1056 static int
1057 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1058 {
1059         struct iavf_adapter *adapter =
1060                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1061         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1062         struct iavf_vsi *vsi = &vf->vsi;
1063         struct virtchnl_eth_stats *pstats = NULL;
1064         int ret;
1065
1066         ret = iavf_query_stats(adapter, &pstats);
1067         if (ret == 0) {
1068                 iavf_update_stats(vsi, pstats);
1069                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1070                                 pstats->rx_broadcast - pstats->rx_discards;
1071                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1072                                                 pstats->tx_unicast;
1073                 stats->imissed = pstats->rx_discards;
1074                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1075                 stats->ibytes = pstats->rx_bytes;
1076                 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
1077                 stats->obytes = pstats->tx_bytes;
1078         } else {
1079                 PMD_DRV_LOG(ERR, "Get statistics failed");
1080         }
1081         return -EIO;
1082 }
1083
1084 static int
1085 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1086 {
1087         int ret;
1088         struct iavf_adapter *adapter =
1089                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1090         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1091         struct iavf_vsi *vsi = &vf->vsi;
1092         struct virtchnl_eth_stats *pstats = NULL;
1093
1094         /* read stat values to clear hardware registers */
1095         ret = iavf_query_stats(adapter, &pstats);
1096         if (ret != 0)
1097                 return ret;
1098
1099         /* set stats offset base on current values */
1100         vsi->eth_stats_offset = *pstats;
1101
1102         return 0;
1103 }
1104
1105 static int
1106 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1107 {
1108         struct iavf_adapter *adapter =
1109                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1110         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1111         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1112         uint16_t msix_intr;
1113
1114         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1115         if (msix_intr == IAVF_MISC_VEC_ID) {
1116                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1117                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1118                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1119                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1120                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1121         } else {
1122                 IAVF_WRITE_REG(hw,
1123                                IAVF_VFINT_DYN_CTLN1
1124                                 (msix_intr - IAVF_RX_VEC_START),
1125                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1126                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1127                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1128         }
1129
1130         IAVF_WRITE_FLUSH(hw);
1131
1132         rte_intr_ack(&pci_dev->intr_handle);
1133
1134         return 0;
1135 }
1136
1137 static int
1138 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1139 {
1140         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1141         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1142         uint16_t msix_intr;
1143
1144         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1145         if (msix_intr == IAVF_MISC_VEC_ID) {
1146                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1147                 return -EIO;
1148         }
1149
1150         IAVF_WRITE_REG(hw,
1151                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1152                       0);
1153
1154         IAVF_WRITE_FLUSH(hw);
1155         return 0;
1156 }
1157
1158 static int
1159 iavf_check_vf_reset_done(struct iavf_hw *hw)
1160 {
1161         int i, reset;
1162
1163         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1164                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1165                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1166                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1167                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1168                     reset == VIRTCHNL_VFR_COMPLETED)
1169                         break;
1170                 rte_delay_ms(20);
1171         }
1172
1173         if (i >= IAVF_RESET_WAIT_CNT)
1174                 return -1;
1175
1176         return 0;
1177 }
1178
1179 static int
1180 iavf_init_vf(struct rte_eth_dev *dev)
1181 {
1182         int err, bufsz;
1183         struct iavf_adapter *adapter =
1184                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1185         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1186         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1187
1188         err = iavf_set_mac_type(hw);
1189         if (err) {
1190                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1191                 goto err;
1192         }
1193
1194         err = iavf_check_vf_reset_done(hw);
1195         if (err) {
1196                 PMD_INIT_LOG(ERR, "VF is still resetting");
1197                 goto err;
1198         }
1199
1200         iavf_init_adminq_parameter(hw);
1201         err = iavf_init_adminq(hw);
1202         if (err) {
1203                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1204                 goto err;
1205         }
1206
1207         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1208         if (!vf->aq_resp) {
1209                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1210                 goto err_aq;
1211         }
1212         if (iavf_check_api_version(adapter) != 0) {
1213                 PMD_INIT_LOG(ERR, "check_api version failed");
1214                 goto err_api;
1215         }
1216
1217         bufsz = sizeof(struct virtchnl_vf_resource) +
1218                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1219         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1220         if (!vf->vf_res) {
1221                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1222                 goto err_api;
1223         }
1224         if (iavf_get_vf_resource(adapter) != 0) {
1225                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1226                 goto err_alloc;
1227         }
1228         /* Allocate memort for RSS info */
1229         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1230                 vf->rss_key = rte_zmalloc("rss_key",
1231                                           vf->vf_res->rss_key_size, 0);
1232                 if (!vf->rss_key) {
1233                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1234                         goto err_rss;
1235                 }
1236                 vf->rss_lut = rte_zmalloc("rss_lut",
1237                                           vf->vf_res->rss_lut_size, 0);
1238                 if (!vf->rss_lut) {
1239                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1240                         goto err_rss;
1241                 }
1242         }
1243         return 0;
1244 err_rss:
1245         rte_free(vf->rss_key);
1246         rte_free(vf->rss_lut);
1247 err_alloc:
1248         rte_free(vf->vf_res);
1249         vf->vsi_res = NULL;
1250 err_api:
1251         rte_free(vf->aq_resp);
1252 err_aq:
1253         iavf_shutdown_adminq(hw);
1254 err:
1255         return -1;
1256 }
1257
1258 /* Enable default admin queue interrupt setting */
1259 static inline void
1260 iavf_enable_irq0(struct iavf_hw *hw)
1261 {
1262         /* Enable admin queue interrupt trigger */
1263         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
1264                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
1265
1266         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1267                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1268                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1269                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1270
1271         IAVF_WRITE_FLUSH(hw);
1272 }
1273
1274 static inline void
1275 iavf_disable_irq0(struct iavf_hw *hw)
1276 {
1277         /* Disable all interrupt types */
1278         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
1279         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1280                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1281         IAVF_WRITE_FLUSH(hw);
1282 }
1283
1284 static void
1285 iavf_dev_interrupt_handler(void *param)
1286 {
1287         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1288         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1289
1290         iavf_disable_irq0(hw);
1291
1292         iavf_handle_virtchnl_msg(dev);
1293
1294         iavf_enable_irq0(hw);
1295 }
1296
1297 static int
1298 iavf_dev_init(struct rte_eth_dev *eth_dev)
1299 {
1300         struct iavf_adapter *adapter =
1301                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1302         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1303         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1304
1305         PMD_INIT_FUNC_TRACE();
1306
1307         /* assign ops func pointer */
1308         eth_dev->dev_ops = &iavf_eth_dev_ops;
1309         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
1310         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
1311         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
1312
1313         /* For secondary processes, we don't initialise any further as primary
1314          * has already done this work. Only check if we need a different RX
1315          * and TX function.
1316          */
1317         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1318                 iavf_set_rx_function(eth_dev);
1319                 iavf_set_tx_function(eth_dev);
1320                 return 0;
1321         }
1322         rte_eth_copy_pci_info(eth_dev, pci_dev);
1323
1324         hw->vendor_id = pci_dev->id.vendor_id;
1325         hw->device_id = pci_dev->id.device_id;
1326         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1327         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1328         hw->bus.bus_id = pci_dev->addr.bus;
1329         hw->bus.device = pci_dev->addr.devid;
1330         hw->bus.func = pci_dev->addr.function;
1331         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1332         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1333         adapter->eth_dev = eth_dev;
1334         adapter->stopped = 1;
1335
1336         if (iavf_init_vf(eth_dev) != 0) {
1337                 PMD_INIT_LOG(ERR, "Init vf failed");
1338                 return -1;
1339         }
1340
1341         /* copy mac addr */
1342         eth_dev->data->mac_addrs = rte_zmalloc(
1343                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
1344         if (!eth_dev->data->mac_addrs) {
1345                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1346                              " store MAC addresses",
1347                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
1348                 return -ENOMEM;
1349         }
1350         /* If the MAC address is not configured by host,
1351          * generate a random one.
1352          */
1353         if (!rte_is_valid_assigned_ether_addr(
1354                         (struct rte_ether_addr *)hw->mac.addr))
1355                 rte_eth_random_addr(hw->mac.addr);
1356         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
1357                         &eth_dev->data->mac_addrs[0]);
1358
1359         /* register callback func to eal lib */
1360         rte_intr_callback_register(&pci_dev->intr_handle,
1361                                    iavf_dev_interrupt_handler,
1362                                    (void *)eth_dev);
1363
1364         /* enable uio intr after callback register */
1365         rte_intr_enable(&pci_dev->intr_handle);
1366
1367         /* configure and enable device interrupt */
1368         iavf_enable_irq0(hw);
1369
1370         return 0;
1371 }
1372
1373 static void
1374 iavf_dev_close(struct rte_eth_dev *dev)
1375 {
1376         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1377         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1378         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1379
1380         iavf_dev_stop(dev);
1381         iavf_shutdown_adminq(hw);
1382         /* disable uio intr before callback unregister */
1383         rte_intr_disable(intr_handle);
1384
1385         /* unregister callback func from eal lib */
1386         rte_intr_callback_unregister(intr_handle,
1387                                      iavf_dev_interrupt_handler, dev);
1388         iavf_disable_irq0(hw);
1389 }
1390
1391 static int
1392 iavf_dev_uninit(struct rte_eth_dev *dev)
1393 {
1394         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1395
1396         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1397                 return -EPERM;
1398
1399         dev->dev_ops = NULL;
1400         dev->rx_pkt_burst = NULL;
1401         dev->tx_pkt_burst = NULL;
1402         iavf_dev_close(dev);
1403
1404         rte_free(vf->vf_res);
1405         vf->vsi_res = NULL;
1406         vf->vf_res = NULL;
1407
1408         rte_free(vf->aq_resp);
1409         vf->aq_resp = NULL;
1410
1411         if (vf->rss_lut) {
1412                 rte_free(vf->rss_lut);
1413                 vf->rss_lut = NULL;
1414         }
1415         if (vf->rss_key) {
1416                 rte_free(vf->rss_key);
1417                 vf->rss_key = NULL;
1418         }
1419
1420         return 0;
1421 }
1422
1423 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1424                              struct rte_pci_device *pci_dev)
1425 {
1426         return rte_eth_dev_pci_generic_probe(pci_dev,
1427                 sizeof(struct iavf_adapter), iavf_dev_init);
1428 }
1429
1430 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
1431 {
1432         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
1433 }
1434
1435 /* Adaptive virtual function driver struct */
1436 static struct rte_pci_driver rte_iavf_pmd = {
1437         .id_table = pci_id_iavf_map,
1438         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1439         .probe = eth_iavf_pci_probe,
1440         .remove = eth_iavf_pci_remove,
1441 };
1442
1443 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
1444 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
1445 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
1446 RTE_INIT(iavf_init_log)
1447 {
1448         iavf_logtype_init = rte_log_register("pmd.net.iavf.init");
1449         if (iavf_logtype_init >= 0)
1450                 rte_log_set_level(iavf_logtype_init, RTE_LOG_NOTICE);
1451         iavf_logtype_driver = rte_log_register("pmd.net.iavf.driver");
1452         if (iavf_logtype_driver >= 0)
1453                 rte_log_set_level(iavf_logtype_driver, RTE_LOG_NOTICE);
1454
1455 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
1456         iavf_logtype_rx = rte_log_register("pmd.net.iavf.rx");
1457         if (iavf_logtype_rx >= 0)
1458                 rte_log_set_level(iavf_logtype_rx, RTE_LOG_DEBUG);
1459 #endif
1460
1461 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
1462         iavf_logtype_tx = rte_log_register("pmd.net.iavf.tx");
1463         if (iavf_logtype_tx >= 0)
1464                 rte_log_set_level(iavf_logtype_tx, RTE_LOG_DEBUG);
1465 #endif
1466
1467 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
1468         iavf_logtype_tx_free = rte_log_register("pmd.net.iavf.tx_free");
1469         if (iavf_logtype_tx_free >= 0)
1470                 rte_log_set_level(iavf_logtype_tx_free, RTE_LOG_DEBUG);
1471 #endif
1472 }
1473
1474 /* memory func for base code */
1475 enum iavf_status
1476 iavf_allocate_dma_mem_d(__rte_unused struct iavf_hw *hw,
1477                        struct iavf_dma_mem *mem,
1478                        u64 size,
1479                        u32 alignment)
1480 {
1481         const struct rte_memzone *mz = NULL;
1482         char z_name[RTE_MEMZONE_NAMESIZE];
1483
1484         if (!mem)
1485                 return IAVF_ERR_PARAM;
1486
1487         snprintf(z_name, sizeof(z_name), "iavf_dma_%"PRIu64, rte_rand());
1488         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1489                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1490         if (!mz)
1491                 return IAVF_ERR_NO_MEMORY;
1492
1493         mem->size = size;
1494         mem->va = mz->addr;
1495         mem->pa = mz->phys_addr;
1496         mem->zone = (const void *)mz;
1497         PMD_DRV_LOG(DEBUG,
1498                     "memzone %s allocated with physical address: %"PRIu64,
1499                     mz->name, mem->pa);
1500
1501         return IAVF_SUCCESS;
1502 }
1503
1504 enum iavf_status
1505 iavf_free_dma_mem_d(__rte_unused struct iavf_hw *hw,
1506                    struct iavf_dma_mem *mem)
1507 {
1508         if (!mem)
1509                 return IAVF_ERR_PARAM;
1510
1511         PMD_DRV_LOG(DEBUG,
1512                     "memzone %s to be freed with physical address: %"PRIu64,
1513                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1514         rte_memzone_free((const struct rte_memzone *)mem->zone);
1515         mem->zone = NULL;
1516         mem->va = NULL;
1517         mem->pa = (u64)0;
1518
1519         return IAVF_SUCCESS;
1520 }
1521
1522 enum iavf_status
1523 iavf_allocate_virt_mem_d(__rte_unused struct iavf_hw *hw,
1524                         struct iavf_virt_mem *mem,
1525                         u32 size)
1526 {
1527         if (!mem)
1528                 return IAVF_ERR_PARAM;
1529
1530         mem->size = size;
1531         mem->va = rte_zmalloc("iavf", size, 0);
1532
1533         if (mem->va)
1534                 return IAVF_SUCCESS;
1535         else
1536                 return IAVF_ERR_NO_MEMORY;
1537 }
1538
1539 enum iavf_status
1540 iavf_free_virt_mem_d(__rte_unused struct iavf_hw *hw,
1541                     struct iavf_virt_mem *mem)
1542 {
1543         if (!mem)
1544                 return IAVF_ERR_PARAM;
1545
1546         rte_free(mem->va);
1547         mem->va = NULL;
1548
1549         return IAVF_SUCCESS;
1550 }