41382c6d669b13ba7b03da26c36cce28a0feee7a
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <ethdev_driver.h>
23 #include <ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
32
33 /* devargs */
34 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
35
36 static const char * const iavf_valid_args[] = {
37         IAVF_PROTO_XTR_ARG,
38         NULL
39 };
40
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42         .name = "intel_pmd_dynfield_proto_xtr_metadata",
43         .size = sizeof(uint32_t),
44         .align = __alignof__(uint32_t),
45         .flags = 0,
46 };
47
48 struct iavf_proto_xtr_ol {
49         const struct rte_mbuf_dynflag param;
50         uint64_t *ol_flag;
51         bool required;
52 };
53
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55         [IAVF_PROTO_XTR_VLAN] = {
56                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58         [IAVF_PROTO_XTR_IPV4] = {
59                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61         [IAVF_PROTO_XTR_IPV6] = {
62                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64         [IAVF_PROTO_XTR_IPV6_FLOW] = {
65                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67         [IAVF_PROTO_XTR_TCP] = {
68                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70         [IAVF_PROTO_XTR_IP_OFFSET] = {
71                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
73 };
74
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81                              struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84                              struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87                                  struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89                                        struct rte_eth_xstat_name *xstats_names,
90                                        unsigned int limit);
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96                                 struct rte_ether_addr *addr,
97                                 uint32_t index,
98                                 uint32_t pool);
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101                                    uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104                                    struct rte_eth_rss_reta_entry64 *reta_conf,
105                                    uint16_t reta_size);
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107                                   struct rte_eth_rss_reta_entry64 *reta_conf,
108                                   uint16_t reta_size);
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110                                    struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112                                      struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115                                          struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
117                                         uint16_t queue_id);
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
119                                          uint16_t queue_id);
120 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
121                                  const struct rte_flow_ops **ops);
122 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
123                         struct rte_ether_addr *mc_addrs,
124                         uint32_t mc_addrs_num);
125 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
126
127 static const struct rte_pci_id pci_id_iavf_map[] = {
128         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
129         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
130         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
131         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
132         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
133         { .vendor_id = 0, /* sentinel */ },
134 };
135
136 struct rte_iavf_xstats_name_off {
137         char name[RTE_ETH_XSTATS_NAME_SIZE];
138         unsigned int offset;
139 };
140
141 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
142         {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
143         {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
144         {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
145         {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
146         {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
147         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
148                 rx_unknown_protocol)},
149         {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
150         {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
151         {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
152         {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
153         {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
154         {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
155 };
156
157 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
158                 sizeof(rte_iavf_stats_strings[0]))
159
160 static const struct eth_dev_ops iavf_eth_dev_ops = {
161         .dev_configure              = iavf_dev_configure,
162         .dev_start                  = iavf_dev_start,
163         .dev_stop                   = iavf_dev_stop,
164         .dev_close                  = iavf_dev_close,
165         .dev_reset                  = iavf_dev_reset,
166         .dev_infos_get              = iavf_dev_info_get,
167         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
168         .link_update                = iavf_dev_link_update,
169         .stats_get                  = iavf_dev_stats_get,
170         .stats_reset                = iavf_dev_stats_reset,
171         .xstats_get                 = iavf_dev_xstats_get,
172         .xstats_get_names           = iavf_dev_xstats_get_names,
173         .xstats_reset               = iavf_dev_stats_reset,
174         .promiscuous_enable         = iavf_dev_promiscuous_enable,
175         .promiscuous_disable        = iavf_dev_promiscuous_disable,
176         .allmulticast_enable        = iavf_dev_allmulticast_enable,
177         .allmulticast_disable       = iavf_dev_allmulticast_disable,
178         .mac_addr_add               = iavf_dev_add_mac_addr,
179         .mac_addr_remove            = iavf_dev_del_mac_addr,
180         .set_mc_addr_list                       = iavf_set_mc_addr_list,
181         .vlan_filter_set            = iavf_dev_vlan_filter_set,
182         .vlan_offload_set           = iavf_dev_vlan_offload_set,
183         .rx_queue_start             = iavf_dev_rx_queue_start,
184         .rx_queue_stop              = iavf_dev_rx_queue_stop,
185         .tx_queue_start             = iavf_dev_tx_queue_start,
186         .tx_queue_stop              = iavf_dev_tx_queue_stop,
187         .rx_queue_setup             = iavf_dev_rx_queue_setup,
188         .rx_queue_release           = iavf_dev_rx_queue_release,
189         .tx_queue_setup             = iavf_dev_tx_queue_setup,
190         .tx_queue_release           = iavf_dev_tx_queue_release,
191         .mac_addr_set               = iavf_dev_set_default_mac_addr,
192         .reta_update                = iavf_dev_rss_reta_update,
193         .reta_query                 = iavf_dev_rss_reta_query,
194         .rss_hash_update            = iavf_dev_rss_hash_update,
195         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
196         .rxq_info_get               = iavf_dev_rxq_info_get,
197         .txq_info_get               = iavf_dev_txq_info_get,
198         .mtu_set                    = iavf_dev_mtu_set,
199         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
200         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
201         .flow_ops_get               = iavf_dev_flow_ops_get,
202         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
203         .get_monitor_addr           = iavf_get_monitor_addr,
204         .tm_ops_get                 = iavf_tm_ops_get,
205 };
206
207 static int
208 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
209                         void *arg)
210 {
211         if (!arg)
212                 return -EINVAL;
213
214         *(const void **)arg = &iavf_tm_ops;
215
216         return 0;
217 }
218
219 static int
220 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
221                         struct rte_ether_addr *mc_addrs,
222                         uint32_t mc_addrs_num)
223 {
224         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
225         struct iavf_adapter *adapter =
226                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
227         int err, ret;
228
229         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
230                 PMD_DRV_LOG(ERR,
231                             "can't add more than a limited number (%u) of addresses.",
232                             (uint32_t)IAVF_NUM_MACADDR_MAX);
233                 return -EINVAL;
234         }
235
236         /* flush previous addresses */
237         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
238                                         false);
239         if (err)
240                 return err;
241
242         /* add new ones */
243         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
244
245         if (err) {
246                 /* if adding mac address list fails, should add the previous
247                  * addresses back.
248                  */
249                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
250                                                 vf->mc_addrs_num, true);
251                 if (ret)
252                         return ret;
253         } else {
254                 vf->mc_addrs_num = mc_addrs_num;
255                 memcpy(vf->mc_addrs,
256                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
257         }
258
259         return err;
260 }
261
262 static int
263 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
264 {
265         static const uint64_t map_hena_rss[] = {
266                 /* IPv4 */
267                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
268                                 ETH_RSS_NONFRAG_IPV4_UDP,
269                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
270                                 ETH_RSS_NONFRAG_IPV4_UDP,
271                 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
272                                 ETH_RSS_NONFRAG_IPV4_UDP,
273                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
274                                 ETH_RSS_NONFRAG_IPV4_TCP,
275                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
276                                 ETH_RSS_NONFRAG_IPV4_TCP,
277                 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
278                                 ETH_RSS_NONFRAG_IPV4_SCTP,
279                 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
280                                 ETH_RSS_NONFRAG_IPV4_OTHER,
281                 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = ETH_RSS_FRAG_IPV4,
282
283                 /* IPv6 */
284                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
285                                 ETH_RSS_NONFRAG_IPV6_UDP,
286                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
287                                 ETH_RSS_NONFRAG_IPV6_UDP,
288                 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
289                                 ETH_RSS_NONFRAG_IPV6_UDP,
290                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
291                                 ETH_RSS_NONFRAG_IPV6_TCP,
292                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
293                                 ETH_RSS_NONFRAG_IPV6_TCP,
294                 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
295                                 ETH_RSS_NONFRAG_IPV6_SCTP,
296                 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
297                                 ETH_RSS_NONFRAG_IPV6_OTHER,
298                 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = ETH_RSS_FRAG_IPV6,
299
300                 /* L2 Payload */
301                 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = ETH_RSS_L2_PAYLOAD
302         };
303
304         const uint64_t ipv4_rss = ETH_RSS_NONFRAG_IPV4_UDP |
305                                   ETH_RSS_NONFRAG_IPV4_TCP |
306                                   ETH_RSS_NONFRAG_IPV4_SCTP |
307                                   ETH_RSS_NONFRAG_IPV4_OTHER |
308                                   ETH_RSS_FRAG_IPV4;
309
310         const uint64_t ipv6_rss = ETH_RSS_NONFRAG_IPV6_UDP |
311                                   ETH_RSS_NONFRAG_IPV6_TCP |
312                                   ETH_RSS_NONFRAG_IPV6_SCTP |
313                                   ETH_RSS_NONFRAG_IPV6_OTHER |
314                                   ETH_RSS_FRAG_IPV6;
315
316         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
317         uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
318         uint32_t i;
319         int ret;
320
321         ret = iavf_get_hena_caps(adapter, &caps);
322         if (ret)
323                 return ret;
324         /**
325          * ETH_RSS_IPV4 and ETH_RSS_IPV6 can be considered as 2
326          * generalizations of all other IPv4 and IPv6 RSS types.
327          */
328         if (rss_hf & ETH_RSS_IPV4)
329                 rss_hf |= ipv4_rss;
330
331         if (rss_hf & ETH_RSS_IPV6)
332                 rss_hf |= ipv6_rss;
333
334         RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
335
336         for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
337                 uint64_t bit = BIT_ULL(i);
338
339                 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
340                         valid_rss_hf |= map_hena_rss[i];
341                         hena |= bit;
342                 }
343         }
344
345         ret = iavf_set_hena(adapter, hena);
346         if (ret)
347                 return ret;
348
349         if (valid_rss_hf & ipv4_rss)
350                 valid_rss_hf |= rss_hf & ETH_RSS_IPV4;
351
352         if (valid_rss_hf & ipv6_rss)
353                 valid_rss_hf |= rss_hf & ETH_RSS_IPV6;
354
355         if (rss_hf & ~valid_rss_hf)
356                 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
357                             rss_hf & ~valid_rss_hf);
358
359         vf->rss_hf = valid_rss_hf;
360         return 0;
361 }
362
363 static int
364 iavf_init_rss(struct iavf_adapter *adapter)
365 {
366         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
367         struct rte_eth_rss_conf *rss_conf;
368         uint16_t i, j, nb_q;
369         int ret;
370
371         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
372         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
373                        vf->max_rss_qregion);
374
375         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
376                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
377                 return -ENOTSUP;
378         }
379
380         /* configure RSS key */
381         if (!rss_conf->rss_key) {
382                 /* Calculate the default hash key */
383                 for (i = 0; i < vf->vf_res->rss_key_size; i++)
384                         vf->rss_key[i] = (uint8_t)rte_rand();
385         } else
386                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
387                            RTE_MIN(rss_conf->rss_key_len,
388                                    vf->vf_res->rss_key_size));
389
390         /* init RSS LUT table */
391         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
392                 if (j >= nb_q)
393                         j = 0;
394                 vf->rss_lut[i] = j;
395         }
396         /* send virtchnnl ops to configure rss*/
397         ret = iavf_configure_rss_lut(adapter);
398         if (ret)
399                 return ret;
400         ret = iavf_configure_rss_key(adapter);
401         if (ret)
402                 return ret;
403
404         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
405                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
406                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
407                 if (ret) {
408                         PMD_DRV_LOG(ERR, "fail to set default RSS");
409                         return ret;
410                 }
411         } else {
412                 ret = iavf_config_rss_hf(adapter, rss_conf->rss_hf);
413                 if (ret != -ENOTSUP)
414                         return ret;
415         }
416
417         return 0;
418 }
419
420 static int
421 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
422 {
423         struct iavf_adapter *ad =
424                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
425         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
426         int ret;
427
428         ret = iavf_request_queues(ad, num);
429         if (ret) {
430                 PMD_DRV_LOG(ERR, "request queues from PF failed");
431                 return ret;
432         }
433         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
434                         vf->vsi_res->num_queue_pairs, num);
435
436         ret = iavf_dev_reset(dev);
437         if (ret) {
438                 PMD_DRV_LOG(ERR, "vf reset failed");
439                 return ret;
440         }
441
442         return 0;
443 }
444
445 static int
446 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
447 {
448         struct iavf_adapter *adapter =
449                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
450         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
451         bool enable;
452
453         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
454                 return 0;
455
456         enable = !!(dev->data->dev_conf.txmode.offloads &
457                     DEV_TX_OFFLOAD_VLAN_INSERT);
458         iavf_config_vlan_insert_v2(adapter, enable);
459
460         return 0;
461 }
462
463 static int
464 iavf_dev_init_vlan(struct rte_eth_dev *dev)
465 {
466         int err;
467
468         err = iavf_dev_vlan_offload_set(dev,
469                                         ETH_VLAN_STRIP_MASK |
470                                         ETH_QINQ_STRIP_MASK |
471                                         ETH_VLAN_FILTER_MASK |
472                                         ETH_VLAN_EXTEND_MASK);
473         if (err) {
474                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
475                 return err;
476         }
477
478         err = iavf_dev_vlan_insert_set(dev);
479         if (err)
480                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
481
482         return err;
483 }
484
485 static int
486 iavf_dev_configure(struct rte_eth_dev *dev)
487 {
488         struct iavf_adapter *ad =
489                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
490         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
491         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
492                 dev->data->nb_tx_queues);
493         int ret;
494
495         ad->rx_bulk_alloc_allowed = true;
496         /* Initialize to TRUE. If any of Rx queues doesn't meet the
497          * vector Rx/Tx preconditions, it will be reset.
498          */
499         ad->rx_vec_allowed = true;
500         ad->tx_vec_allowed = true;
501
502         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
503                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
504
505         /* Large VF setting */
506         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
507                 if (!(vf->vf_res->vf_cap_flags &
508                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
509                         PMD_DRV_LOG(ERR, "large VF is not supported");
510                         return -1;
511                 }
512
513                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
514                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
515                                 IAVF_MAX_NUM_QUEUES_LV);
516                         return -1;
517                 }
518
519                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
520                 if (ret)
521                         return ret;
522
523                 ret = iavf_get_max_rss_queue_region(ad);
524                 if (ret) {
525                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
526                         return ret;
527                 }
528
529                 vf->lv_enabled = true;
530         } else {
531                 /* Check if large VF is already enabled. If so, disable and
532                  * release redundant queue resource.
533                  * Or check if enough queue pairs. If not, request them from PF.
534                  */
535                 if (vf->lv_enabled ||
536                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
537                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
538                         if (ret)
539                                 return ret;
540
541                         vf->lv_enabled = false;
542                 }
543                 /* if large VF is not required, use default rss queue region */
544                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
545         }
546
547         ret = iavf_dev_init_vlan(dev);
548         if (ret)
549                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
550
551         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
552                 if (iavf_init_rss(ad) != 0) {
553                         PMD_DRV_LOG(ERR, "configure rss failed");
554                         return -1;
555                 }
556         }
557         return 0;
558 }
559
560 static int
561 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
562 {
563         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
564         struct rte_eth_dev_data *dev_data = dev->data;
565         uint16_t buf_size, max_pkt_len, len;
566
567         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
568
569         /* Calculate the maximum packet length allowed */
570         len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
571         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
572
573         /* Check if the jumbo frame and maximum packet length are set
574          * correctly.
575          */
576         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
577                 if (max_pkt_len <= IAVF_ETH_MAX_LEN ||
578                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
579                         PMD_DRV_LOG(ERR, "maximum packet length must be "
580                                     "larger than %u and smaller than %u, "
581                                     "as jumbo frame is enabled",
582                                     (uint32_t)IAVF_ETH_MAX_LEN,
583                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
584                         return -EINVAL;
585                 }
586         } else {
587                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
588                     max_pkt_len > IAVF_ETH_MAX_LEN) {
589                         PMD_DRV_LOG(ERR, "maximum packet length must be "
590                                     "larger than %u and smaller than %u, "
591                                     "as jumbo frame is disabled",
592                                     (uint32_t)RTE_ETHER_MIN_LEN,
593                                     (uint32_t)IAVF_ETH_MAX_LEN);
594                         return -EINVAL;
595                 }
596         }
597
598         rxq->max_pkt_len = max_pkt_len;
599         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
600             rxq->max_pkt_len > buf_size) {
601                 dev_data->scattered_rx = 1;
602         }
603         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
604         IAVF_WRITE_FLUSH(hw);
605
606         return 0;
607 }
608
609 static int
610 iavf_init_queues(struct rte_eth_dev *dev)
611 {
612         struct iavf_rx_queue **rxq =
613                 (struct iavf_rx_queue **)dev->data->rx_queues;
614         int i, ret = IAVF_SUCCESS;
615
616         for (i = 0; i < dev->data->nb_rx_queues; i++) {
617                 if (!rxq[i] || !rxq[i]->q_set)
618                         continue;
619                 ret = iavf_init_rxq(dev, rxq[i]);
620                 if (ret != IAVF_SUCCESS)
621                         break;
622         }
623         /* set rx/tx function to vector/scatter/single-segment
624          * according to parameters
625          */
626         iavf_set_rx_function(dev);
627         iavf_set_tx_function(dev);
628
629         return ret;
630 }
631
632 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
633                                      struct rte_intr_handle *intr_handle)
634 {
635         struct iavf_adapter *adapter =
636                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
637         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
638         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
639         struct iavf_qv_map *qv_map;
640         uint16_t interval, i;
641         int vec;
642
643         if (rte_intr_cap_multiple(intr_handle) &&
644             dev->data->dev_conf.intr_conf.rxq) {
645                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
646                         return -1;
647         }
648
649         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
650                 intr_handle->intr_vec =
651                         rte_zmalloc("intr_vec",
652                                     dev->data->nb_rx_queues * sizeof(int), 0);
653                 if (!intr_handle->intr_vec) {
654                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
655                                     dev->data->nb_rx_queues);
656                         return -1;
657                 }
658         }
659
660         qv_map = rte_zmalloc("qv_map",
661                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
662         if (!qv_map) {
663                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
664                                 dev->data->nb_rx_queues);
665                 return -1;
666         }
667
668         if (!dev->data->dev_conf.intr_conf.rxq ||
669             !rte_intr_dp_is_en(intr_handle)) {
670                 /* Rx interrupt disabled, Map interrupt only for writeback */
671                 vf->nb_msix = 1;
672                 if (vf->vf_res->vf_cap_flags &
673                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
674                         /* If WB_ON_ITR supports, enable it */
675                         vf->msix_base = IAVF_RX_VEC_START;
676                         /* Set the ITR for index zero, to 2us to make sure that
677                          * we leave time for aggregation to occur, but don't
678                          * increase latency dramatically.
679                          */
680                         IAVF_WRITE_REG(hw,
681                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
682                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
683                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
684                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
685                         /* debug - check for success! the return value
686                          * should be 2, offset is 0x2800
687                          */
688                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
689                 } else {
690                         /* If no WB_ON_ITR offload flags, need to set
691                          * interrupt for descriptor write back.
692                          */
693                         vf->msix_base = IAVF_MISC_VEC_ID;
694
695                         /* set ITR to max */
696                         interval = iavf_calc_itr_interval(
697                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
698                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
699                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
700                                        (IAVF_ITR_INDEX_DEFAULT <<
701                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
702                                        (interval <<
703                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
704                 }
705                 IAVF_WRITE_FLUSH(hw);
706                 /* map all queues to the same interrupt */
707                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
708                         qv_map[i].queue_id = i;
709                         qv_map[i].vector_id = vf->msix_base;
710                 }
711                 vf->qv_map = qv_map;
712         } else {
713                 if (!rte_intr_allow_others(intr_handle)) {
714                         vf->nb_msix = 1;
715                         vf->msix_base = IAVF_MISC_VEC_ID;
716                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
717                                 qv_map[i].queue_id = i;
718                                 qv_map[i].vector_id = vf->msix_base;
719                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
720                         }
721                         vf->qv_map = qv_map;
722                         PMD_DRV_LOG(DEBUG,
723                                     "vector %u are mapping to all Rx queues",
724                                     vf->msix_base);
725                 } else {
726                         /* If Rx interrupt is reuquired, and we can use
727                          * multi interrupts, then the vec is from 1
728                          */
729                         vf->nb_msix = RTE_MIN(intr_handle->nb_efd,
730                                  (uint16_t)(vf->vf_res->max_vectors - 1));
731                         vf->msix_base = IAVF_RX_VEC_START;
732                         vec = IAVF_RX_VEC_START;
733                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
734                                 qv_map[i].queue_id = i;
735                                 qv_map[i].vector_id = vec;
736                                 intr_handle->intr_vec[i] = vec++;
737                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
738                                         vec = IAVF_RX_VEC_START;
739                         }
740                         vf->qv_map = qv_map;
741                         PMD_DRV_LOG(DEBUG,
742                                     "%u vectors are mapping to %u Rx queues",
743                                     vf->nb_msix, dev->data->nb_rx_queues);
744                 }
745         }
746
747         if (!vf->lv_enabled) {
748                 if (iavf_config_irq_map(adapter)) {
749                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
750                         return -1;
751                 }
752         } else {
753                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
754                 uint16_t index = 0;
755
756                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
757                         if (iavf_config_irq_map_lv(adapter,
758                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
759                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
760                                 return -1;
761                         }
762                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
763                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
764                 }
765
766                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
767                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
768                         return -1;
769                 }
770         }
771         return 0;
772 }
773
774 static int
775 iavf_start_queues(struct rte_eth_dev *dev)
776 {
777         struct iavf_rx_queue *rxq;
778         struct iavf_tx_queue *txq;
779         int i;
780
781         for (i = 0; i < dev->data->nb_tx_queues; i++) {
782                 txq = dev->data->tx_queues[i];
783                 if (txq->tx_deferred_start)
784                         continue;
785                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
786                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
787                         return -1;
788                 }
789         }
790
791         for (i = 0; i < dev->data->nb_rx_queues; i++) {
792                 rxq = dev->data->rx_queues[i];
793                 if (rxq->rx_deferred_start)
794                         continue;
795                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
796                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
797                         return -1;
798                 }
799         }
800
801         return 0;
802 }
803
804 static int
805 iavf_dev_start(struct rte_eth_dev *dev)
806 {
807         struct iavf_adapter *adapter =
808                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
809         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
810         struct rte_intr_handle *intr_handle = dev->intr_handle;
811         uint16_t num_queue_pairs;
812         uint16_t index = 0;
813
814         PMD_INIT_FUNC_TRACE();
815
816         adapter->stopped = 0;
817
818         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
819         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
820                                       dev->data->nb_tx_queues);
821         num_queue_pairs = vf->num_queue_pairs;
822
823         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
824                 if (iavf_get_qos_cap(adapter)) {
825                         PMD_INIT_LOG(ERR, "Failed to get qos capability");
826                         return -1;
827                 }
828
829         if (iavf_init_queues(dev) != 0) {
830                 PMD_DRV_LOG(ERR, "failed to do Queue init");
831                 return -1;
832         }
833
834         /* If needed, send configure queues msg multiple times to make the
835          * adminq buffer length smaller than the 4K limitation.
836          */
837         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
838                 if (iavf_configure_queues(adapter,
839                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
840                         PMD_DRV_LOG(ERR, "configure queues failed");
841                         goto err_queue;
842                 }
843                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
844                 index += IAVF_CFG_Q_NUM_PER_BUF;
845         }
846
847         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
848                 PMD_DRV_LOG(ERR, "configure queues failed");
849                 goto err_queue;
850         }
851
852         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
853                 PMD_DRV_LOG(ERR, "configure irq failed");
854                 goto err_queue;
855         }
856         /* re-enable intr again, because efd assign may change */
857         if (dev->data->dev_conf.intr_conf.rxq != 0) {
858                 rte_intr_disable(intr_handle);
859                 rte_intr_enable(intr_handle);
860         }
861
862         /* Set all mac addrs */
863         iavf_add_del_all_mac_addr(adapter, true);
864
865         /* Set all multicast addresses */
866         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
867                                   true);
868
869         if (iavf_start_queues(dev) != 0) {
870                 PMD_DRV_LOG(ERR, "enable queues failed");
871                 goto err_mac;
872         }
873
874         return 0;
875
876 err_mac:
877         iavf_add_del_all_mac_addr(adapter, false);
878 err_queue:
879         return -1;
880 }
881
882 static int
883 iavf_dev_stop(struct rte_eth_dev *dev)
884 {
885         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
886         struct iavf_adapter *adapter =
887                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
888         struct rte_intr_handle *intr_handle = dev->intr_handle;
889
890         PMD_INIT_FUNC_TRACE();
891
892         if (adapter->stopped == 1)
893                 return 0;
894
895         iavf_stop_queues(dev);
896
897         /* Disable the interrupt for Rx */
898         rte_intr_efd_disable(intr_handle);
899         /* Rx interrupt vector mapping free */
900         if (intr_handle->intr_vec) {
901                 rte_free(intr_handle->intr_vec);
902                 intr_handle->intr_vec = NULL;
903         }
904
905         /* remove all mac addrs */
906         iavf_add_del_all_mac_addr(adapter, false);
907
908         /* remove all multicast addresses */
909         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
910                                   false);
911
912         adapter->stopped = 1;
913         dev->data->dev_started = 0;
914
915         return 0;
916 }
917
918 static int
919 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
920 {
921         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
922
923         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
924         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
925         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
926         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
927         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
928         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
929         dev_info->hash_key_size = vf->vf_res->rss_key_size;
930         dev_info->reta_size = vf->vf_res->rss_lut_size;
931         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
932         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
933         dev_info->rx_offload_capa =
934                 DEV_RX_OFFLOAD_VLAN_STRIP |
935                 DEV_RX_OFFLOAD_QINQ_STRIP |
936                 DEV_RX_OFFLOAD_IPV4_CKSUM |
937                 DEV_RX_OFFLOAD_UDP_CKSUM |
938                 DEV_RX_OFFLOAD_TCP_CKSUM |
939                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
940                 DEV_RX_OFFLOAD_SCATTER |
941                 DEV_RX_OFFLOAD_JUMBO_FRAME |
942                 DEV_RX_OFFLOAD_VLAN_FILTER |
943                 DEV_RX_OFFLOAD_RSS_HASH;
944
945         dev_info->tx_offload_capa =
946                 DEV_TX_OFFLOAD_VLAN_INSERT |
947                 DEV_TX_OFFLOAD_QINQ_INSERT |
948                 DEV_TX_OFFLOAD_IPV4_CKSUM |
949                 DEV_TX_OFFLOAD_UDP_CKSUM |
950                 DEV_TX_OFFLOAD_TCP_CKSUM |
951                 DEV_TX_OFFLOAD_SCTP_CKSUM |
952                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
953                 DEV_TX_OFFLOAD_TCP_TSO |
954                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
955                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
956                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
957                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
958                 DEV_TX_OFFLOAD_MULTI_SEGS |
959                 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
960
961         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
962                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_KEEP_CRC;
963
964         dev_info->default_rxconf = (struct rte_eth_rxconf) {
965                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
966                 .rx_drop_en = 0,
967                 .offloads = 0,
968         };
969
970         dev_info->default_txconf = (struct rte_eth_txconf) {
971                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
972                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
973                 .offloads = 0,
974         };
975
976         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
977                 .nb_max = IAVF_MAX_RING_DESC,
978                 .nb_min = IAVF_MIN_RING_DESC,
979                 .nb_align = IAVF_ALIGN_RING_DESC,
980         };
981
982         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
983                 .nb_max = IAVF_MAX_RING_DESC,
984                 .nb_min = IAVF_MIN_RING_DESC,
985                 .nb_align = IAVF_ALIGN_RING_DESC,
986         };
987
988         return 0;
989 }
990
991 static const uint32_t *
992 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
993 {
994         static const uint32_t ptypes[] = {
995                 RTE_PTYPE_L2_ETHER,
996                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
997                 RTE_PTYPE_L4_FRAG,
998                 RTE_PTYPE_L4_ICMP,
999                 RTE_PTYPE_L4_NONFRAG,
1000                 RTE_PTYPE_L4_SCTP,
1001                 RTE_PTYPE_L4_TCP,
1002                 RTE_PTYPE_L4_UDP,
1003                 RTE_PTYPE_UNKNOWN
1004         };
1005         return ptypes;
1006 }
1007
1008 int
1009 iavf_dev_link_update(struct rte_eth_dev *dev,
1010                     __rte_unused int wait_to_complete)
1011 {
1012         struct rte_eth_link new_link;
1013         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1014
1015         memset(&new_link, 0, sizeof(new_link));
1016
1017         /* Only read status info stored in VF, and the info is updated
1018          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
1019          */
1020         switch (vf->link_speed) {
1021         case 10:
1022                 new_link.link_speed = ETH_SPEED_NUM_10M;
1023                 break;
1024         case 100:
1025                 new_link.link_speed = ETH_SPEED_NUM_100M;
1026                 break;
1027         case 1000:
1028                 new_link.link_speed = ETH_SPEED_NUM_1G;
1029                 break;
1030         case 10000:
1031                 new_link.link_speed = ETH_SPEED_NUM_10G;
1032                 break;
1033         case 20000:
1034                 new_link.link_speed = ETH_SPEED_NUM_20G;
1035                 break;
1036         case 25000:
1037                 new_link.link_speed = ETH_SPEED_NUM_25G;
1038                 break;
1039         case 40000:
1040                 new_link.link_speed = ETH_SPEED_NUM_40G;
1041                 break;
1042         case 50000:
1043                 new_link.link_speed = ETH_SPEED_NUM_50G;
1044                 break;
1045         case 100000:
1046                 new_link.link_speed = ETH_SPEED_NUM_100G;
1047                 break;
1048         default:
1049                 new_link.link_speed = ETH_SPEED_NUM_NONE;
1050                 break;
1051         }
1052
1053         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
1054         new_link.link_status = vf->link_up ? ETH_LINK_UP :
1055                                              ETH_LINK_DOWN;
1056         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1057                                 ETH_LINK_SPEED_FIXED);
1058
1059         return rte_eth_linkstatus_set(dev, &new_link);
1060 }
1061
1062 static int
1063 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1064 {
1065         struct iavf_adapter *adapter =
1066                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1067         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1068
1069         return iavf_config_promisc(adapter,
1070                                   true, vf->promisc_multicast_enabled);
1071 }
1072
1073 static int
1074 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1075 {
1076         struct iavf_adapter *adapter =
1077                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1078         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1079
1080         return iavf_config_promisc(adapter,
1081                                   false, vf->promisc_multicast_enabled);
1082 }
1083
1084 static int
1085 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1086 {
1087         struct iavf_adapter *adapter =
1088                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1089         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1090
1091         return iavf_config_promisc(adapter,
1092                                   vf->promisc_unicast_enabled, true);
1093 }
1094
1095 static int
1096 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1097 {
1098         struct iavf_adapter *adapter =
1099                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1100         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1101
1102         return iavf_config_promisc(adapter,
1103                                   vf->promisc_unicast_enabled, false);
1104 }
1105
1106 static int
1107 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1108                      __rte_unused uint32_t index,
1109                      __rte_unused uint32_t pool)
1110 {
1111         struct iavf_adapter *adapter =
1112                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1113         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1114         int err;
1115
1116         if (rte_is_zero_ether_addr(addr)) {
1117                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1118                 return -EINVAL;
1119         }
1120
1121         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1122         if (err) {
1123                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1124                 return -EIO;
1125         }
1126
1127         vf->mac_num++;
1128
1129         return 0;
1130 }
1131
1132 static void
1133 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1134 {
1135         struct iavf_adapter *adapter =
1136                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1137         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1138         struct rte_ether_addr *addr;
1139         int err;
1140
1141         addr = &dev->data->mac_addrs[index];
1142
1143         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1144         if (err)
1145                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1146
1147         vf->mac_num--;
1148 }
1149
1150 static int
1151 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1152 {
1153         struct iavf_adapter *adapter =
1154                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1155         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1156         int err;
1157
1158         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1159                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1160                 if (err)
1161                         return -EIO;
1162                 return 0;
1163         }
1164
1165         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1166                 return -ENOTSUP;
1167
1168         err = iavf_add_del_vlan(adapter, vlan_id, on);
1169         if (err)
1170                 return -EIO;
1171         return 0;
1172 }
1173
1174 static void
1175 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1176 {
1177         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1178         struct iavf_adapter *adapter =
1179                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1180         uint32_t i, j;
1181         uint64_t ids;
1182
1183         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1184                 if (vfc->ids[i] == 0)
1185                         continue;
1186
1187                 ids = vfc->ids[i];
1188                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1189                         if (ids & 1)
1190                                 iavf_add_del_vlan_v2(adapter,
1191                                                      64 * i + j, enable);
1192                 }
1193         }
1194 }
1195
1196 static int
1197 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1198 {
1199         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1200         struct iavf_adapter *adapter =
1201                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1202         bool enable;
1203         int err;
1204
1205         if (mask & ETH_VLAN_FILTER_MASK) {
1206                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER);
1207
1208                 iavf_iterate_vlan_filters_v2(dev, enable);
1209         }
1210
1211         if (mask & ETH_VLAN_STRIP_MASK) {
1212                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1213
1214                 err = iavf_config_vlan_strip_v2(adapter, enable);
1215                 /* If not support, the stripping is already disabled by PF */
1216                 if (err == -ENOTSUP && !enable)
1217                         err = 0;
1218                 if (err)
1219                         return -EIO;
1220         }
1221
1222         return 0;
1223 }
1224
1225 static int
1226 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1227 {
1228         struct iavf_adapter *adapter =
1229                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1230         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1231         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1232         int err;
1233
1234         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1235                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1236
1237         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1238                 return -ENOTSUP;
1239
1240         /* Vlan stripping setting */
1241         if (mask & ETH_VLAN_STRIP_MASK) {
1242                 /* Enable or disable VLAN stripping */
1243                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1244                         err = iavf_enable_vlan_strip(adapter);
1245                 else
1246                         err = iavf_disable_vlan_strip(adapter);
1247
1248                 if (err)
1249                         return -EIO;
1250         }
1251         return 0;
1252 }
1253
1254 static int
1255 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1256                         struct rte_eth_rss_reta_entry64 *reta_conf,
1257                         uint16_t reta_size)
1258 {
1259         struct iavf_adapter *adapter =
1260                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1261         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1262         uint8_t *lut;
1263         uint16_t i, idx, shift;
1264         int ret;
1265
1266         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1267                 return -ENOTSUP;
1268
1269         if (reta_size != vf->vf_res->rss_lut_size) {
1270                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1271                         "(%d) doesn't match the number of hardware can "
1272                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1273                 return -EINVAL;
1274         }
1275
1276         lut = rte_zmalloc("rss_lut", reta_size, 0);
1277         if (!lut) {
1278                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1279                 return -ENOMEM;
1280         }
1281         /* store the old lut table temporarily */
1282         rte_memcpy(lut, vf->rss_lut, reta_size);
1283
1284         for (i = 0; i < reta_size; i++) {
1285                 idx = i / RTE_RETA_GROUP_SIZE;
1286                 shift = i % RTE_RETA_GROUP_SIZE;
1287                 if (reta_conf[idx].mask & (1ULL << shift))
1288                         lut[i] = reta_conf[idx].reta[shift];
1289         }
1290
1291         rte_memcpy(vf->rss_lut, lut, reta_size);
1292         /* send virtchnnl ops to configure rss*/
1293         ret = iavf_configure_rss_lut(adapter);
1294         if (ret) /* revert back */
1295                 rte_memcpy(vf->rss_lut, lut, reta_size);
1296         rte_free(lut);
1297
1298         return ret;
1299 }
1300
1301 static int
1302 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1303                        struct rte_eth_rss_reta_entry64 *reta_conf,
1304                        uint16_t reta_size)
1305 {
1306         struct iavf_adapter *adapter =
1307                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1308         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1309         uint16_t i, idx, shift;
1310
1311         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1312                 return -ENOTSUP;
1313
1314         if (reta_size != vf->vf_res->rss_lut_size) {
1315                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1316                         "(%d) doesn't match the number of hardware can "
1317                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1318                 return -EINVAL;
1319         }
1320
1321         for (i = 0; i < reta_size; i++) {
1322                 idx = i / RTE_RETA_GROUP_SIZE;
1323                 shift = i % RTE_RETA_GROUP_SIZE;
1324                 if (reta_conf[idx].mask & (1ULL << shift))
1325                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1326         }
1327
1328         return 0;
1329 }
1330
1331 static int
1332 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1333 {
1334         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1335
1336         /* HENA setting, it is enabled by default, no change */
1337         if (!key || key_len == 0) {
1338                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1339                 return 0;
1340         } else if (key_len != vf->vf_res->rss_key_size) {
1341                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1342                         "(%d) doesn't match the size of hardware can "
1343                         "support (%d)", key_len,
1344                         vf->vf_res->rss_key_size);
1345                 return -EINVAL;
1346         }
1347
1348         rte_memcpy(vf->rss_key, key, key_len);
1349
1350         return iavf_configure_rss_key(adapter);
1351 }
1352
1353 static int
1354 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1355                         struct rte_eth_rss_conf *rss_conf)
1356 {
1357         struct iavf_adapter *adapter =
1358                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1359         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1360         int ret;
1361
1362         adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1363
1364         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1365                 return -ENOTSUP;
1366
1367         /* Set hash key. */
1368         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1369                                rss_conf->rss_key_len);
1370         if (ret)
1371                 return ret;
1372
1373         if (rss_conf->rss_hf == 0) {
1374                 vf->rss_hf = 0;
1375                 ret = iavf_set_hena(adapter, 0);
1376
1377                 /* It is a workaround, temporarily allow error to be returned
1378                  * due to possible lack of PF handling for hena = 0.
1379                  */
1380                 if (ret)
1381                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1382                 return 0;
1383         }
1384
1385         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1386                 /* Clear existing RSS. */
1387                 ret = iavf_set_hena(adapter, 0);
1388
1389                 /* It is a workaround, temporarily allow error to be returned
1390                  * due to possible lack of PF handling for hena = 0.
1391                  */
1392                 if (ret)
1393                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1394                                     "lack PF support");
1395
1396                 /* Set new RSS configuration. */
1397                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1398                 if (ret) {
1399                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1400                         return ret;
1401                 }
1402         } else {
1403                 ret = iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1404                 if (ret != -ENOTSUP)
1405                         return ret;
1406         }
1407
1408         return 0;
1409 }
1410
1411 static int
1412 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1413                           struct rte_eth_rss_conf *rss_conf)
1414 {
1415         struct iavf_adapter *adapter =
1416                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1417         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1418
1419         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1420                 return -ENOTSUP;
1421
1422         rss_conf->rss_hf = vf->rss_hf;
1423
1424         if (!rss_conf->rss_key)
1425                 return 0;
1426
1427         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1428         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1429
1430         return 0;
1431 }
1432
1433 static int
1434 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1435 {
1436         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1437         int ret = 0;
1438
1439         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1440                 return -EINVAL;
1441
1442         /* mtu setting is forbidden if port is start */
1443         if (dev->data->dev_started) {
1444                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1445                 return -EBUSY;
1446         }
1447
1448         if (frame_size > IAVF_ETH_MAX_LEN)
1449                 dev->data->dev_conf.rxmode.offloads |=
1450                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
1451         else
1452                 dev->data->dev_conf.rxmode.offloads &=
1453                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1454
1455         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1456
1457         return ret;
1458 }
1459
1460 static int
1461 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1462                              struct rte_ether_addr *mac_addr)
1463 {
1464         struct iavf_adapter *adapter =
1465                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1466         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1467         struct rte_ether_addr *old_addr;
1468         int ret;
1469
1470         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1471
1472         if (rte_is_same_ether_addr(old_addr, mac_addr))
1473                 return 0;
1474
1475         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1476         if (ret)
1477                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1478                             " %02X:%02X:%02X:%02X:%02X:%02X",
1479                             old_addr->addr_bytes[0],
1480                             old_addr->addr_bytes[1],
1481                             old_addr->addr_bytes[2],
1482                             old_addr->addr_bytes[3],
1483                             old_addr->addr_bytes[4],
1484                             old_addr->addr_bytes[5]);
1485
1486         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1487         if (ret)
1488                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1489                             " %02X:%02X:%02X:%02X:%02X:%02X",
1490                             mac_addr->addr_bytes[0],
1491                             mac_addr->addr_bytes[1],
1492                             mac_addr->addr_bytes[2],
1493                             mac_addr->addr_bytes[3],
1494                             mac_addr->addr_bytes[4],
1495                             mac_addr->addr_bytes[5]);
1496
1497         if (ret)
1498                 return -EIO;
1499
1500         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1501         return 0;
1502 }
1503
1504 static void
1505 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1506 {
1507         if (*stat >= *offset)
1508                 *stat = *stat - *offset;
1509         else
1510                 *stat = (uint64_t)((*stat +
1511                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1512
1513         *stat &= IAVF_48_BIT_MASK;
1514 }
1515
1516 static void
1517 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1518 {
1519         if (*stat >= *offset)
1520                 *stat = (uint64_t)(*stat - *offset);
1521         else
1522                 *stat = (uint64_t)((*stat +
1523                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1524 }
1525
1526 static void
1527 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1528 {
1529         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1530
1531         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1532         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1533         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1534         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1535         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1536         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1537         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1538         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1539         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1540         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1541         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1542 }
1543
1544 static int
1545 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1546 {
1547         struct iavf_adapter *adapter =
1548                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1549         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1550         struct iavf_vsi *vsi = &vf->vsi;
1551         struct virtchnl_eth_stats *pstats = NULL;
1552         int ret;
1553
1554         ret = iavf_query_stats(adapter, &pstats);
1555         if (ret == 0) {
1556                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1557                                          DEV_RX_OFFLOAD_KEEP_CRC) ? 0 :
1558                                          RTE_ETHER_CRC_LEN;
1559                 iavf_update_stats(vsi, pstats);
1560                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1561                                 pstats->rx_broadcast - pstats->rx_discards;
1562                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1563                                                 pstats->tx_unicast;
1564                 stats->imissed = pstats->rx_discards;
1565                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1566                 stats->ibytes = pstats->rx_bytes;
1567                 stats->ibytes -= stats->ipackets * crc_stats_len;
1568                 stats->obytes = pstats->tx_bytes;
1569         } else {
1570                 PMD_DRV_LOG(ERR, "Get statistics failed");
1571         }
1572         return ret;
1573 }
1574
1575 static int
1576 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1577 {
1578         int ret;
1579         struct iavf_adapter *adapter =
1580                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1581         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1582         struct iavf_vsi *vsi = &vf->vsi;
1583         struct virtchnl_eth_stats *pstats = NULL;
1584
1585         /* read stat values to clear hardware registers */
1586         ret = iavf_query_stats(adapter, &pstats);
1587         if (ret != 0)
1588                 return ret;
1589
1590         /* set stats offset base on current values */
1591         vsi->eth_stats_offset = *pstats;
1592
1593         return 0;
1594 }
1595
1596 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1597                                       struct rte_eth_xstat_name *xstats_names,
1598                                       __rte_unused unsigned int limit)
1599 {
1600         unsigned int i;
1601
1602         if (xstats_names != NULL)
1603                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1604                         snprintf(xstats_names[i].name,
1605                                 sizeof(xstats_names[i].name),
1606                                 "%s", rte_iavf_stats_strings[i].name);
1607                 }
1608         return IAVF_NB_XSTATS;
1609 }
1610
1611 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1612                                  struct rte_eth_xstat *xstats, unsigned int n)
1613 {
1614         int ret;
1615         unsigned int i;
1616         struct iavf_adapter *adapter =
1617                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1618         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1619         struct iavf_vsi *vsi = &vf->vsi;
1620         struct virtchnl_eth_stats *pstats = NULL;
1621
1622         if (n < IAVF_NB_XSTATS)
1623                 return IAVF_NB_XSTATS;
1624
1625         ret = iavf_query_stats(adapter, &pstats);
1626         if (ret != 0)
1627                 return 0;
1628
1629         if (!xstats)
1630                 return 0;
1631
1632         iavf_update_stats(vsi, pstats);
1633
1634         /* loop over xstats array and values from pstats */
1635         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1636                 xstats[i].id = i;
1637                 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1638                         rte_iavf_stats_strings[i].offset);
1639         }
1640
1641         return IAVF_NB_XSTATS;
1642 }
1643
1644
1645 static int
1646 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1647 {
1648         struct iavf_adapter *adapter =
1649                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1650         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1651         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1652         uint16_t msix_intr;
1653
1654         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1655         if (msix_intr == IAVF_MISC_VEC_ID) {
1656                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1657                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1658                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1659                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1660                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1661         } else {
1662                 IAVF_WRITE_REG(hw,
1663                                IAVF_VFINT_DYN_CTLN1
1664                                 (msix_intr - IAVF_RX_VEC_START),
1665                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1666                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1667                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1668         }
1669
1670         IAVF_WRITE_FLUSH(hw);
1671
1672         rte_intr_ack(&pci_dev->intr_handle);
1673
1674         return 0;
1675 }
1676
1677 static int
1678 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1679 {
1680         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1681         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1682         uint16_t msix_intr;
1683
1684         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1685         if (msix_intr == IAVF_MISC_VEC_ID) {
1686                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1687                 return -EIO;
1688         }
1689
1690         IAVF_WRITE_REG(hw,
1691                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1692                       0);
1693
1694         IAVF_WRITE_FLUSH(hw);
1695         return 0;
1696 }
1697
1698 static int
1699 iavf_check_vf_reset_done(struct iavf_hw *hw)
1700 {
1701         int i, reset;
1702
1703         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1704                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1705                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1706                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1707                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1708                     reset == VIRTCHNL_VFR_COMPLETED)
1709                         break;
1710                 rte_delay_ms(20);
1711         }
1712
1713         if (i >= IAVF_RESET_WAIT_CNT)
1714                 return -1;
1715
1716         return 0;
1717 }
1718
1719 static int
1720 iavf_lookup_proto_xtr_type(const char *flex_name)
1721 {
1722         static struct {
1723                 const char *name;
1724                 enum iavf_proto_xtr_type type;
1725         } xtr_type_map[] = {
1726                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1727                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1728                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1729                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1730                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1731                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1732         };
1733         uint32_t i;
1734
1735         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1736                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1737                         return xtr_type_map[i].type;
1738         }
1739
1740         PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1741                     "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1742
1743         return -1;
1744 }
1745
1746 /**
1747  * Parse elem, the elem could be single number/range or '(' ')' group
1748  * 1) A single number elem, it's just a simple digit. e.g. 9
1749  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1750  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1751  *    Within group elem, '-' used for a range separator;
1752  *                       ',' used for a single number.
1753  */
1754 static int
1755 iavf_parse_queue_set(const char *input, int xtr_type,
1756                      struct iavf_devargs *devargs)
1757 {
1758         const char *str = input;
1759         char *end = NULL;
1760         uint32_t min, max;
1761         uint32_t idx;
1762
1763         while (isblank(*str))
1764                 str++;
1765
1766         if (!isdigit(*str) && *str != '(')
1767                 return -1;
1768
1769         /* process single number or single range of number */
1770         if (*str != '(') {
1771                 errno = 0;
1772                 idx = strtoul(str, &end, 10);
1773                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1774                         return -1;
1775
1776                 while (isblank(*end))
1777                         end++;
1778
1779                 min = idx;
1780                 max = idx;
1781
1782                 /* process single <number>-<number> */
1783                 if (*end == '-') {
1784                         end++;
1785                         while (isblank(*end))
1786                                 end++;
1787                         if (!isdigit(*end))
1788                                 return -1;
1789
1790                         errno = 0;
1791                         idx = strtoul(end, &end, 10);
1792                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1793                                 return -1;
1794
1795                         max = idx;
1796                         while (isblank(*end))
1797                                 end++;
1798                 }
1799
1800                 if (*end != ':')
1801                         return -1;
1802
1803                 for (idx = RTE_MIN(min, max);
1804                      idx <= RTE_MAX(min, max); idx++)
1805                         devargs->proto_xtr[idx] = xtr_type;
1806
1807                 return 0;
1808         }
1809
1810         /* process set within bracket */
1811         str++;
1812         while (isblank(*str))
1813                 str++;
1814         if (*str == '\0')
1815                 return -1;
1816
1817         min = IAVF_MAX_QUEUE_NUM;
1818         do {
1819                 /* go ahead to the first digit */
1820                 while (isblank(*str))
1821                         str++;
1822                 if (!isdigit(*str))
1823                         return -1;
1824
1825                 /* get the digit value */
1826                 errno = 0;
1827                 idx = strtoul(str, &end, 10);
1828                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1829                         return -1;
1830
1831                 /* go ahead to separator '-',',' and ')' */
1832                 while (isblank(*end))
1833                         end++;
1834                 if (*end == '-') {
1835                         if (min == IAVF_MAX_QUEUE_NUM)
1836                                 min = idx;
1837                         else /* avoid continuous '-' */
1838                                 return -1;
1839                 } else if (*end == ',' || *end == ')') {
1840                         max = idx;
1841                         if (min == IAVF_MAX_QUEUE_NUM)
1842                                 min = idx;
1843
1844                         for (idx = RTE_MIN(min, max);
1845                              idx <= RTE_MAX(min, max); idx++)
1846                                 devargs->proto_xtr[idx] = xtr_type;
1847
1848                         min = IAVF_MAX_QUEUE_NUM;
1849                 } else {
1850                         return -1;
1851                 }
1852
1853                 str = end + 1;
1854         } while (*end != ')' && *end != '\0');
1855
1856         return 0;
1857 }
1858
1859 static int
1860 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1861 {
1862         const char *queue_start;
1863         uint32_t idx;
1864         int xtr_type;
1865         char flex_name[32];
1866
1867         while (isblank(*queues))
1868                 queues++;
1869
1870         if (*queues != '[') {
1871                 xtr_type = iavf_lookup_proto_xtr_type(queues);
1872                 if (xtr_type < 0)
1873                         return -1;
1874
1875                 devargs->proto_xtr_dflt = xtr_type;
1876
1877                 return 0;
1878         }
1879
1880         queues++;
1881         do {
1882                 while (isblank(*queues))
1883                         queues++;
1884                 if (*queues == '\0')
1885                         return -1;
1886
1887                 queue_start = queues;
1888
1889                 /* go across a complete bracket */
1890                 if (*queue_start == '(') {
1891                         queues += strcspn(queues, ")");
1892                         if (*queues != ')')
1893                                 return -1;
1894                 }
1895
1896                 /* scan the separator ':' */
1897                 queues += strcspn(queues, ":");
1898                 if (*queues++ != ':')
1899                         return -1;
1900                 while (isblank(*queues))
1901                         queues++;
1902
1903                 for (idx = 0; ; idx++) {
1904                         if (isblank(queues[idx]) ||
1905                             queues[idx] == ',' ||
1906                             queues[idx] == ']' ||
1907                             queues[idx] == '\0')
1908                                 break;
1909
1910                         if (idx > sizeof(flex_name) - 2)
1911                                 return -1;
1912
1913                         flex_name[idx] = queues[idx];
1914                 }
1915                 flex_name[idx] = '\0';
1916                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1917                 if (xtr_type < 0)
1918                         return -1;
1919
1920                 queues += idx;
1921
1922                 while (isblank(*queues) || *queues == ',' || *queues == ']')
1923                         queues++;
1924
1925                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1926                         return -1;
1927         } while (*queues != '\0');
1928
1929         return 0;
1930 }
1931
1932 static int
1933 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1934                           void *extra_args)
1935 {
1936         struct iavf_devargs *devargs = extra_args;
1937
1938         if (!value || !extra_args)
1939                 return -EINVAL;
1940
1941         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1942                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1943                             value);
1944                 return -1;
1945         }
1946
1947         return 0;
1948 }
1949
1950 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1951 {
1952         struct iavf_adapter *ad =
1953                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1954         struct rte_devargs *devargs = dev->device->devargs;
1955         struct rte_kvargs *kvlist;
1956         int ret;
1957
1958         if (!devargs)
1959                 return 0;
1960
1961         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1962         if (!kvlist) {
1963                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1964                 return -EINVAL;
1965         }
1966
1967         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1968         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1969                sizeof(ad->devargs.proto_xtr));
1970
1971         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1972                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
1973         if (ret)
1974                 goto bail;
1975
1976 bail:
1977         rte_kvargs_free(kvlist);
1978         return ret;
1979 }
1980
1981 static void
1982 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1983 {
1984         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1985         struct iavf_adapter *ad =
1986                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1987         const struct iavf_proto_xtr_ol *xtr_ol;
1988         bool proto_xtr_enable = false;
1989         int offset;
1990         uint16_t i;
1991
1992         vf->proto_xtr = rte_zmalloc("vf proto xtr",
1993                                     vf->vsi_res->num_queue_pairs, 0);
1994         if (unlikely(!(vf->proto_xtr))) {
1995                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
1996                 return;
1997         }
1998
1999         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2000                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2001                                         IAVF_PROTO_XTR_NONE ?
2002                                         ad->devargs.proto_xtr[i] :
2003                                         ad->devargs.proto_xtr_dflt;
2004
2005                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2006                         uint8_t type = vf->proto_xtr[i];
2007
2008                         iavf_proto_xtr_params[type].required = true;
2009                         proto_xtr_enable = true;
2010                 }
2011         }
2012
2013         if (likely(!proto_xtr_enable))
2014                 return;
2015
2016         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2017         if (unlikely(offset == -1)) {
2018                 PMD_DRV_LOG(ERR,
2019                             "failed to extract protocol metadata, error %d",
2020                             -rte_errno);
2021                 return;
2022         }
2023
2024         PMD_DRV_LOG(DEBUG,
2025                     "proto_xtr metadata offset in mbuf is : %d",
2026                     offset);
2027         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2028
2029         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2030                 xtr_ol = &iavf_proto_xtr_params[i];
2031
2032                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2033
2034                 if (!xtr_ol->required)
2035                         continue;
2036
2037                 if (!(vf->supported_rxdid & BIT(rxdid))) {
2038                         PMD_DRV_LOG(ERR,
2039                                     "rxdid[%u] is not supported in hardware",
2040                                     rxdid);
2041                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2042                         break;
2043                 }
2044
2045                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2046                 if (unlikely(offset == -1)) {
2047                         PMD_DRV_LOG(ERR,
2048                                     "failed to register proto_xtr offload '%s', error %d",
2049                                     xtr_ol->param.name, -rte_errno);
2050
2051                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2052                         break;
2053                 }
2054
2055                 PMD_DRV_LOG(DEBUG,
2056                             "proto_xtr offload '%s' offset in mbuf is : %d",
2057                             xtr_ol->param.name, offset);
2058                 *xtr_ol->ol_flag = 1ULL << offset;
2059         }
2060 }
2061
2062 static int
2063 iavf_init_vf(struct rte_eth_dev *dev)
2064 {
2065         int err, bufsz;
2066         struct iavf_adapter *adapter =
2067                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2068         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2069         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2070
2071         err = iavf_parse_devargs(dev);
2072         if (err) {
2073                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2074                 goto err;
2075         }
2076
2077         err = iavf_set_mac_type(hw);
2078         if (err) {
2079                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2080                 goto err;
2081         }
2082
2083         err = iavf_check_vf_reset_done(hw);
2084         if (err) {
2085                 PMD_INIT_LOG(ERR, "VF is still resetting");
2086                 goto err;
2087         }
2088
2089         iavf_init_adminq_parameter(hw);
2090         err = iavf_init_adminq(hw);
2091         if (err) {
2092                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2093                 goto err;
2094         }
2095
2096         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2097         if (!vf->aq_resp) {
2098                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2099                 goto err_aq;
2100         }
2101         if (iavf_check_api_version(adapter) != 0) {
2102                 PMD_INIT_LOG(ERR, "check_api version failed");
2103                 goto err_api;
2104         }
2105
2106         bufsz = sizeof(struct virtchnl_vf_resource) +
2107                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2108         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2109         if (!vf->vf_res) {
2110                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2111                 goto err_api;
2112         }
2113
2114         if (iavf_get_vf_resource(adapter) != 0) {
2115                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2116                 goto err_alloc;
2117         }
2118         /* Allocate memort for RSS info */
2119         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2120                 vf->rss_key = rte_zmalloc("rss_key",
2121                                           vf->vf_res->rss_key_size, 0);
2122                 if (!vf->rss_key) {
2123                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2124                         goto err_rss;
2125                 }
2126                 vf->rss_lut = rte_zmalloc("rss_lut",
2127                                           vf->vf_res->rss_lut_size, 0);
2128                 if (!vf->rss_lut) {
2129                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2130                         goto err_rss;
2131                 }
2132         }
2133
2134         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2135                 if (iavf_get_supported_rxdid(adapter) != 0) {
2136                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2137                         goto err_rss;
2138                 }
2139         }
2140
2141         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2142                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2143                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2144                         goto err_rss;
2145                 }
2146         }
2147
2148         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2149                 bufsz = sizeof(struct virtchnl_qos_cap_list) +
2150                         IAVF_MAX_TRAFFIC_CLASS *
2151                         sizeof(struct virtchnl_qos_cap_elem);
2152                 vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2153                 if (!vf->qos_cap) {
2154                         PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2155                         goto err_rss;
2156                 }
2157                 iavf_tm_conf_init(dev);
2158         }
2159
2160         iavf_init_proto_xtr(dev);
2161
2162         return 0;
2163 err_rss:
2164         rte_free(vf->rss_key);
2165         rte_free(vf->rss_lut);
2166 err_alloc:
2167         rte_free(vf->qos_cap);
2168         rte_free(vf->vf_res);
2169         vf->vsi_res = NULL;
2170 err_api:
2171         rte_free(vf->aq_resp);
2172 err_aq:
2173         iavf_shutdown_adminq(hw);
2174 err:
2175         return -1;
2176 }
2177
2178 /* Enable default admin queue interrupt setting */
2179 static inline void
2180 iavf_enable_irq0(struct iavf_hw *hw)
2181 {
2182         /* Enable admin queue interrupt trigger */
2183         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2184                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2185
2186         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2187                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2188                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2189                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2190
2191         IAVF_WRITE_FLUSH(hw);
2192 }
2193
2194 static inline void
2195 iavf_disable_irq0(struct iavf_hw *hw)
2196 {
2197         /* Disable all interrupt types */
2198         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2199         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2200                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2201         IAVF_WRITE_FLUSH(hw);
2202 }
2203
2204 static void
2205 iavf_dev_interrupt_handler(void *param)
2206 {
2207         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2208         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2209
2210         iavf_disable_irq0(hw);
2211
2212         iavf_handle_virtchnl_msg(dev);
2213
2214         iavf_enable_irq0(hw);
2215 }
2216
2217 static int
2218 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2219                       const struct rte_flow_ops **ops)
2220 {
2221         if (!dev)
2222                 return -EINVAL;
2223
2224         *ops = &iavf_flow_ops;
2225         return 0;
2226 }
2227
2228 static void
2229 iavf_default_rss_disable(struct iavf_adapter *adapter)
2230 {
2231         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2232         int ret = 0;
2233
2234         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2235                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2236                 ret = iavf_set_hena(adapter, 0);
2237                 if (ret)
2238                         /* It is a workaround, temporarily allow error to be
2239                          * returned due to possible lack of PF handling for
2240                          * hena = 0.
2241                          */
2242                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2243                                     "lack PF support");
2244         }
2245 }
2246
2247 static int
2248 iavf_dev_init(struct rte_eth_dev *eth_dev)
2249 {
2250         struct iavf_adapter *adapter =
2251                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2252         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2253         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2254         int ret = 0;
2255
2256         PMD_INIT_FUNC_TRACE();
2257
2258         /* assign ops func pointer */
2259         eth_dev->dev_ops = &iavf_eth_dev_ops;
2260         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2261         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2262         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2263         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2264         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2265         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2266
2267         /* For secondary processes, we don't initialise any further as primary
2268          * has already done this work. Only check if we need a different RX
2269          * and TX function.
2270          */
2271         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2272                 iavf_set_rx_function(eth_dev);
2273                 iavf_set_tx_function(eth_dev);
2274                 return 0;
2275         }
2276         rte_eth_copy_pci_info(eth_dev, pci_dev);
2277         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2278
2279         hw->vendor_id = pci_dev->id.vendor_id;
2280         hw->device_id = pci_dev->id.device_id;
2281         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2282         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2283         hw->bus.bus_id = pci_dev->addr.bus;
2284         hw->bus.device = pci_dev->addr.devid;
2285         hw->bus.func = pci_dev->addr.function;
2286         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2287         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2288         adapter->eth_dev = eth_dev;
2289         adapter->stopped = 1;
2290
2291         if (iavf_init_vf(eth_dev) != 0) {
2292                 PMD_INIT_LOG(ERR, "Init vf failed");
2293                 return -1;
2294         }
2295
2296         /* set default ptype table */
2297         adapter->ptype_tbl = iavf_get_default_ptype_table();
2298
2299         /* copy mac addr */
2300         eth_dev->data->mac_addrs = rte_zmalloc(
2301                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2302         if (!eth_dev->data->mac_addrs) {
2303                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2304                              " store MAC addresses",
2305                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2306                 return -ENOMEM;
2307         }
2308         /* If the MAC address is not configured by host,
2309          * generate a random one.
2310          */
2311         if (!rte_is_valid_assigned_ether_addr(
2312                         (struct rte_ether_addr *)hw->mac.addr))
2313                 rte_eth_random_addr(hw->mac.addr);
2314         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2315                         &eth_dev->data->mac_addrs[0]);
2316
2317         /* register callback func to eal lib */
2318         rte_intr_callback_register(&pci_dev->intr_handle,
2319                                    iavf_dev_interrupt_handler,
2320                                    (void *)eth_dev);
2321
2322         /* enable uio intr after callback register */
2323         rte_intr_enable(&pci_dev->intr_handle);
2324
2325         /* configure and enable device interrupt */
2326         iavf_enable_irq0(hw);
2327
2328         ret = iavf_flow_init(adapter);
2329         if (ret) {
2330                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2331                 return ret;
2332         }
2333
2334         iavf_default_rss_disable(adapter);
2335
2336         return 0;
2337 }
2338
2339 static int
2340 iavf_dev_close(struct rte_eth_dev *dev)
2341 {
2342         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2343         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2344         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2345         struct iavf_adapter *adapter =
2346                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2347         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2348         int ret;
2349
2350         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2351                 return 0;
2352
2353         ret = iavf_dev_stop(dev);
2354
2355         iavf_flow_flush(dev, NULL);
2356         iavf_flow_uninit(adapter);
2357
2358         /*
2359          * disable promiscuous mode before reset vf
2360          * it is a workaround solution when work with kernel driver
2361          * and it is not the normal way
2362          */
2363         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2364                 iavf_config_promisc(adapter, false, false);
2365
2366         iavf_shutdown_adminq(hw);
2367         /* disable uio intr before callback unregister */
2368         rte_intr_disable(intr_handle);
2369
2370         /* unregister callback func from eal lib */
2371         rte_intr_callback_unregister(intr_handle,
2372                                      iavf_dev_interrupt_handler, dev);
2373         iavf_disable_irq0(hw);
2374
2375         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2376                 iavf_tm_conf_uninit(dev);
2377
2378         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2379                 if (vf->rss_lut) {
2380                         rte_free(vf->rss_lut);
2381                         vf->rss_lut = NULL;
2382                 }
2383                 if (vf->rss_key) {
2384                         rte_free(vf->rss_key);
2385                         vf->rss_key = NULL;
2386                 }
2387         }
2388
2389         rte_free(vf->vf_res);
2390         vf->vsi_res = NULL;
2391         vf->vf_res = NULL;
2392
2393         rte_free(vf->aq_resp);
2394         vf->aq_resp = NULL;
2395
2396         /*
2397          * If the VF is reset via VFLR, the device will be knocked out of bus
2398          * master mode, and the driver will fail to recover from the reset. Fix
2399          * this by enabling bus mastering after every reset. In a non-VFLR case,
2400          * the bus master bit will not be disabled, and this call will have no
2401          * effect.
2402          */
2403         if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2404                 vf->vf_reset = false;
2405
2406         return ret;
2407 }
2408
2409 static int
2410 iavf_dev_uninit(struct rte_eth_dev *dev)
2411 {
2412         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2413                 return -EPERM;
2414
2415         iavf_dev_close(dev);
2416
2417         return 0;
2418 }
2419
2420 /*
2421  * Reset VF device only to re-initialize resources in PMD layer
2422  */
2423 static int
2424 iavf_dev_reset(struct rte_eth_dev *dev)
2425 {
2426         int ret;
2427
2428         ret = iavf_dev_uninit(dev);
2429         if (ret)
2430                 return ret;
2431
2432         return iavf_dev_init(dev);
2433 }
2434
2435 static int
2436 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2437                            const char *value, __rte_unused void *opaque)
2438 {
2439         if (strcmp(value, "dcf"))
2440                 return -1;
2441
2442         return 0;
2443 }
2444
2445 static int
2446 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2447 {
2448         struct rte_kvargs *kvlist;
2449         const char *key = "cap";
2450         int ret = 0;
2451
2452         if (devargs == NULL)
2453                 return 0;
2454
2455         kvlist = rte_kvargs_parse(devargs->args, NULL);
2456         if (kvlist == NULL)
2457                 return 0;
2458
2459         if (!rte_kvargs_count(kvlist, key))
2460                 goto exit;
2461
2462         /* dcf capability selected when there's a key-value pair: cap=dcf */
2463         if (rte_kvargs_process(kvlist, key,
2464                                iavf_dcf_cap_check_handler, NULL) < 0)
2465                 goto exit;
2466
2467         ret = 1;
2468
2469 exit:
2470         rte_kvargs_free(kvlist);
2471         return ret;
2472 }
2473
2474 static int
2475 iavf_drv_i40evf_check_handler(__rte_unused const char *key,
2476                               const char *value, __rte_unused void *opaque)
2477 {
2478         if (strcmp(value, "i40evf"))
2479                 return -1;
2480
2481         return 0;
2482 }
2483
2484 static int
2485 iavf_drv_i40evf_selected(struct rte_devargs *devargs, uint16_t device_id)
2486 {
2487         struct rte_kvargs *kvlist;
2488         int ret = 0;
2489
2490         if (device_id != IAVF_DEV_ID_VF &&
2491             device_id != IAVF_DEV_ID_VF_HV &&
2492             device_id != IAVF_DEV_ID_X722_VF &&
2493             device_id != IAVF_DEV_ID_X722_A0_VF)
2494                 return 0;
2495
2496         if (devargs == NULL)
2497                 return 0;
2498
2499         kvlist = rte_kvargs_parse(devargs->args, NULL);
2500         if (kvlist == NULL)
2501                 return 0;
2502
2503         if (!rte_kvargs_count(kvlist, RTE_DEVARGS_KEY_DRIVER))
2504                 goto exit;
2505
2506         /* i40evf driver selected when there's a key-value pair:
2507          * driver=i40evf
2508          */
2509         if (rte_kvargs_process(kvlist, RTE_DEVARGS_KEY_DRIVER,
2510                                iavf_drv_i40evf_check_handler, NULL) < 0)
2511                 goto exit;
2512
2513         ret = 1;
2514
2515 exit:
2516         rte_kvargs_free(kvlist);
2517         return ret;
2518 }
2519
2520 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2521                              struct rte_pci_device *pci_dev)
2522 {
2523         if (iavf_dcf_cap_selected(pci_dev->device.devargs) ||
2524             iavf_drv_i40evf_selected(pci_dev->device.devargs,
2525                                      pci_dev->id.device_id))
2526                 return 1;
2527
2528         return rte_eth_dev_pci_generic_probe(pci_dev,
2529                 sizeof(struct iavf_adapter), iavf_dev_init);
2530 }
2531
2532 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2533 {
2534         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2535 }
2536
2537 /* Adaptive virtual function driver struct */
2538 static struct rte_pci_driver rte_iavf_pmd = {
2539         .id_table = pci_id_iavf_map,
2540         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2541         .probe = eth_iavf_pci_probe,
2542         .remove = eth_iavf_pci_remove,
2543 };
2544
2545 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2546 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2547 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2548 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf driver=i40evf");
2549 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2550 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2551 #ifdef RTE_ETHDEV_DEBUG_RX
2552 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2553 #endif
2554 #ifdef RTE_ETHDEV_DEBUG_TX
2555 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2556 #endif