64037e11d2216b66a8d00c50e61ff85ae92e02d0
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf_log.h"
29 #include "base/iavf_prototype.h"
30 #include "base/iavf_adminq_cmd.h"
31 #include "base/iavf_type.h"
32
33 #include "iavf.h"
34 #include "iavf_rxtx.h"
35
36 static int iavf_dev_configure(struct rte_eth_dev *dev);
37 static int iavf_dev_start(struct rte_eth_dev *dev);
38 static void iavf_dev_stop(struct rte_eth_dev *dev);
39 static void iavf_dev_close(struct rte_eth_dev *dev);
40 static int iavf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
46 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
47 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
48 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
49 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
50 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
51                                 struct rte_ether_addr *addr,
52                                 uint32_t index,
53                                 uint32_t pool);
54 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
55 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
56                                    uint16_t vlan_id, int on);
57 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
58 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
59                                    struct rte_eth_rss_reta_entry64 *reta_conf,
60                                    uint16_t reta_size);
61 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
62                                   struct rte_eth_rss_reta_entry64 *reta_conf,
63                                   uint16_t reta_size);
64 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
65                                    struct rte_eth_rss_conf *rss_conf);
66 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
67                                      struct rte_eth_rss_conf *rss_conf);
68 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
70                                          struct rte_ether_addr *mac_addr);
71 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
72                                         uint16_t queue_id);
73 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
74                                          uint16_t queue_id);
75
76 int iavf_logtype_init;
77 int iavf_logtype_driver;
78
79 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
80 int iavf_logtype_rx;
81 #endif
82 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
83 int iavf_logtype_tx;
84 #endif
85 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
86 int iavf_logtype_tx_free;
87 #endif
88
89 static const struct rte_pci_id pci_id_iavf_map[] = {
90         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
91         { .vendor_id = 0, /* sentinel */ },
92 };
93
94 static const struct eth_dev_ops iavf_eth_dev_ops = {
95         .dev_configure              = iavf_dev_configure,
96         .dev_start                  = iavf_dev_start,
97         .dev_stop                   = iavf_dev_stop,
98         .dev_close                  = iavf_dev_close,
99         .dev_infos_get              = iavf_dev_info_get,
100         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
101         .link_update                = iavf_dev_link_update,
102         .stats_get                  = iavf_dev_stats_get,
103         .stats_reset                = iavf_dev_stats_reset,
104         .promiscuous_enable         = iavf_dev_promiscuous_enable,
105         .promiscuous_disable        = iavf_dev_promiscuous_disable,
106         .allmulticast_enable        = iavf_dev_allmulticast_enable,
107         .allmulticast_disable       = iavf_dev_allmulticast_disable,
108         .mac_addr_add               = iavf_dev_add_mac_addr,
109         .mac_addr_remove            = iavf_dev_del_mac_addr,
110         .vlan_filter_set            = iavf_dev_vlan_filter_set,
111         .vlan_offload_set           = iavf_dev_vlan_offload_set,
112         .rx_queue_start             = iavf_dev_rx_queue_start,
113         .rx_queue_stop              = iavf_dev_rx_queue_stop,
114         .tx_queue_start             = iavf_dev_tx_queue_start,
115         .tx_queue_stop              = iavf_dev_tx_queue_stop,
116         .rx_queue_setup             = iavf_dev_rx_queue_setup,
117         .rx_queue_release           = iavf_dev_rx_queue_release,
118         .tx_queue_setup             = iavf_dev_tx_queue_setup,
119         .tx_queue_release           = iavf_dev_tx_queue_release,
120         .mac_addr_set               = iavf_dev_set_default_mac_addr,
121         .reta_update                = iavf_dev_rss_reta_update,
122         .reta_query                 = iavf_dev_rss_reta_query,
123         .rss_hash_update            = iavf_dev_rss_hash_update,
124         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
125         .rxq_info_get               = iavf_dev_rxq_info_get,
126         .txq_info_get               = iavf_dev_txq_info_get,
127         .rx_queue_count             = iavf_dev_rxq_count,
128         .rx_descriptor_status       = iavf_dev_rx_desc_status,
129         .tx_descriptor_status       = iavf_dev_tx_desc_status,
130         .mtu_set                    = iavf_dev_mtu_set,
131         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
132         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
133 };
134
135 static int
136 iavf_dev_configure(struct rte_eth_dev *dev)
137 {
138         struct iavf_adapter *ad =
139                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
140         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
141         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
142
143         ad->rx_bulk_alloc_allowed = true;
144 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
145         /* Initialize to TRUE. If any of Rx queues doesn't meet the
146          * vector Rx/Tx preconditions, it will be reset.
147          */
148         ad->rx_vec_allowed = true;
149         ad->tx_vec_allowed = true;
150 #else
151         ad->rx_vec_allowed = false;
152         ad->tx_vec_allowed = false;
153 #endif
154
155         /* Vlan stripping setting */
156         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
157                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
158                         iavf_enable_vlan_strip(ad);
159                 else
160                         iavf_disable_vlan_strip(ad);
161         }
162         return 0;
163 }
164
165 static int
166 iavf_init_rss(struct iavf_adapter *adapter)
167 {
168         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
169         struct rte_eth_rss_conf *rss_conf;
170         uint8_t i, j, nb_q;
171         int ret;
172
173         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
174         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
175                        IAVF_MAX_NUM_QUEUES);
176
177         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
178                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
179                 return -ENOTSUP;
180         }
181         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
182                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
183                 /* set all lut items to default queue */
184                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
185                         vf->rss_lut[i] = 0;
186                 ret = iavf_configure_rss_lut(adapter);
187                 return ret;
188         }
189
190         /* In IAVF, RSS enablement is set by PF driver. It is not supported
191          * to set based on rss_conf->rss_hf.
192          */
193
194         /* configure RSS key */
195         if (!rss_conf->rss_key) {
196                 /* Calculate the default hash key */
197                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
198                         vf->rss_key[i] = (uint8_t)rte_rand();
199         } else
200                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
201                            RTE_MIN(rss_conf->rss_key_len,
202                                    vf->vf_res->rss_key_size));
203
204         /* init RSS LUT table */
205         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
206                 if (j >= nb_q)
207                         j = 0;
208                 vf->rss_lut[i] = j;
209         }
210         /* send virtchnnl ops to configure rss*/
211         ret = iavf_configure_rss_lut(adapter);
212         if (ret)
213                 return ret;
214         ret = iavf_configure_rss_key(adapter);
215         if (ret)
216                 return ret;
217
218         return 0;
219 }
220
221 static int
222 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
223 {
224         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
225         struct rte_eth_dev_data *dev_data = dev->data;
226         uint16_t buf_size, max_pkt_len, len;
227
228         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
229
230         /* Calculate the maximum packet length allowed */
231         len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
232         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
233
234         /* Check if the jumbo frame and maximum packet length are set
235          * correctly.
236          */
237         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
238                 if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
239                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
240                         PMD_DRV_LOG(ERR, "maximum packet length must be "
241                                     "larger than %u and smaller than %u, "
242                                     "as jumbo frame is enabled",
243                                     (uint32_t)RTE_ETHER_MAX_LEN,
244                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
245                         return -EINVAL;
246                 }
247         } else {
248                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
249                     max_pkt_len > RTE_ETHER_MAX_LEN) {
250                         PMD_DRV_LOG(ERR, "maximum packet length must be "
251                                     "larger than %u and smaller than %u, "
252                                     "as jumbo frame is disabled",
253                                     (uint32_t)RTE_ETHER_MIN_LEN,
254                                     (uint32_t)RTE_ETHER_MAX_LEN);
255                         return -EINVAL;
256                 }
257         }
258
259         rxq->max_pkt_len = max_pkt_len;
260         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
261             (rxq->max_pkt_len + 2 * IAVF_VLAN_TAG_SIZE) > buf_size) {
262                 dev_data->scattered_rx = 1;
263         }
264         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
265         IAVF_WRITE_FLUSH(hw);
266
267         return 0;
268 }
269
270 static int
271 iavf_init_queues(struct rte_eth_dev *dev)
272 {
273         struct iavf_rx_queue **rxq =
274                 (struct iavf_rx_queue **)dev->data->rx_queues;
275         int i, ret = IAVF_SUCCESS;
276
277         for (i = 0; i < dev->data->nb_rx_queues; i++) {
278                 if (!rxq[i] || !rxq[i]->q_set)
279                         continue;
280                 ret = iavf_init_rxq(dev, rxq[i]);
281                 if (ret != IAVF_SUCCESS)
282                         break;
283         }
284         /* set rx/tx function to vector/scatter/single-segment
285          * according to parameters
286          */
287         iavf_set_rx_function(dev);
288         iavf_set_tx_function(dev);
289
290         return ret;
291 }
292
293 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
294                                      struct rte_intr_handle *intr_handle)
295 {
296         struct iavf_adapter *adapter =
297                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
298         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
299         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
300         uint16_t interval, i;
301         int vec;
302
303         if (rte_intr_cap_multiple(intr_handle) &&
304             dev->data->dev_conf.intr_conf.rxq) {
305                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
306                         return -1;
307         }
308
309         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
310                 intr_handle->intr_vec =
311                         rte_zmalloc("intr_vec",
312                                     dev->data->nb_rx_queues * sizeof(int), 0);
313                 if (!intr_handle->intr_vec) {
314                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
315                                     dev->data->nb_rx_queues);
316                         return -1;
317                 }
318         }
319
320         if (!dev->data->dev_conf.intr_conf.rxq ||
321             !rte_intr_dp_is_en(intr_handle)) {
322                 /* Rx interrupt disabled, Map interrupt only for writeback */
323                 vf->nb_msix = 1;
324                 if (vf->vf_res->vf_cap_flags &
325                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
326                         /* If WB_ON_ITR supports, enable it */
327                         vf->msix_base = IAVF_RX_VEC_START;
328                         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTLN1(vf->msix_base - 1),
329                                       IAVFINT_DYN_CTLN1_ITR_INDX_MASK |
330                                       IAVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
331                 } else {
332                         /* If no WB_ON_ITR offload flags, need to set
333                          * interrupt for descriptor write back.
334                          */
335                         vf->msix_base = IAVF_MISC_VEC_ID;
336
337                         /* set ITR to max */
338                         interval = iavf_calc_itr_interval(
339                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
340                         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
341                                       IAVFINT_DYN_CTL01_INTENA_MASK |
342                                       (IAVF_ITR_INDEX_DEFAULT <<
343                                        IAVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
344                                       (interval <<
345                                        IAVFINT_DYN_CTL01_INTERVAL_SHIFT));
346                 }
347                 IAVF_WRITE_FLUSH(hw);
348                 /* map all queues to the same interrupt */
349                 for (i = 0; i < dev->data->nb_rx_queues; i++)
350                         vf->rxq_map[vf->msix_base] |= 1 << i;
351         } else {
352                 if (!rte_intr_allow_others(intr_handle)) {
353                         vf->nb_msix = 1;
354                         vf->msix_base = IAVF_MISC_VEC_ID;
355                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
356                                 vf->rxq_map[vf->msix_base] |= 1 << i;
357                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
358                         }
359                         PMD_DRV_LOG(DEBUG,
360                                     "vector %u are mapping to all Rx queues",
361                                     vf->msix_base);
362                 } else {
363                         /* If Rx interrupt is reuquired, and we can use
364                          * multi interrupts, then the vec is from 1
365                          */
366                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
367                                               intr_handle->nb_efd);
368                         vf->msix_base = IAVF_RX_VEC_START;
369                         vec = IAVF_RX_VEC_START;
370                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
371                                 vf->rxq_map[vec] |= 1 << i;
372                                 intr_handle->intr_vec[i] = vec++;
373                                 if (vec >= vf->nb_msix)
374                                         vec = IAVF_RX_VEC_START;
375                         }
376                         PMD_DRV_LOG(DEBUG,
377                                     "%u vectors are mapping to %u Rx queues",
378                                     vf->nb_msix, dev->data->nb_rx_queues);
379                 }
380         }
381
382         if (iavf_config_irq_map(adapter)) {
383                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
384                 return -1;
385         }
386         return 0;
387 }
388
389 static int
390 iavf_start_queues(struct rte_eth_dev *dev)
391 {
392         struct iavf_rx_queue *rxq;
393         struct iavf_tx_queue *txq;
394         int i;
395
396         for (i = 0; i < dev->data->nb_tx_queues; i++) {
397                 txq = dev->data->tx_queues[i];
398                 if (txq->tx_deferred_start)
399                         continue;
400                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
401                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
402                         return -1;
403                 }
404         }
405
406         for (i = 0; i < dev->data->nb_rx_queues; i++) {
407                 rxq = dev->data->rx_queues[i];
408                 if (rxq->rx_deferred_start)
409                         continue;
410                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
411                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
412                         return -1;
413                 }
414         }
415
416         return 0;
417 }
418
419 static int
420 iavf_dev_start(struct rte_eth_dev *dev)
421 {
422         struct iavf_adapter *adapter =
423                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
424         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
425         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
426         struct rte_intr_handle *intr_handle = dev->intr_handle;
427
428         PMD_INIT_FUNC_TRACE();
429
430         hw->adapter_stopped = 0;
431
432         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
433         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
434                                       dev->data->nb_tx_queues);
435
436         if (iavf_init_queues(dev) != 0) {
437                 PMD_DRV_LOG(ERR, "failed to do Queue init");
438                 return -1;
439         }
440
441         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
442                 if (iavf_init_rss(adapter) != 0) {
443                         PMD_DRV_LOG(ERR, "configure rss failed");
444                         goto err_rss;
445                 }
446         }
447
448         if (iavf_configure_queues(adapter) != 0) {
449                 PMD_DRV_LOG(ERR, "configure queues failed");
450                 goto err_queue;
451         }
452
453         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
454                 PMD_DRV_LOG(ERR, "configure irq failed");
455                 goto err_queue;
456         }
457         /* re-enable intr again, because efd assign may change */
458         if (dev->data->dev_conf.intr_conf.rxq != 0) {
459                 rte_intr_disable(intr_handle);
460                 rte_intr_enable(intr_handle);
461         }
462
463         /* Set all mac addrs */
464         iavf_add_del_all_mac_addr(adapter, TRUE);
465
466         if (iavf_start_queues(dev) != 0) {
467                 PMD_DRV_LOG(ERR, "enable queues failed");
468                 goto err_mac;
469         }
470
471         return 0;
472
473 err_mac:
474         iavf_add_del_all_mac_addr(adapter, FALSE);
475 err_queue:
476 err_rss:
477         return -1;
478 }
479
480 static void
481 iavf_dev_stop(struct rte_eth_dev *dev)
482 {
483         struct iavf_adapter *adapter =
484                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
485         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
486         struct rte_intr_handle *intr_handle = dev->intr_handle;
487
488         PMD_INIT_FUNC_TRACE();
489
490         if (hw->adapter_stopped == 1)
491                 return;
492
493         iavf_stop_queues(dev);
494
495         /* Disable the interrupt for Rx */
496         rte_intr_efd_disable(intr_handle);
497         /* Rx interrupt vector mapping free */
498         if (intr_handle->intr_vec) {
499                 rte_free(intr_handle->intr_vec);
500                 intr_handle->intr_vec = NULL;
501         }
502
503         /* remove all mac addrs */
504         iavf_add_del_all_mac_addr(adapter, FALSE);
505         hw->adapter_stopped = 1;
506 }
507
508 static int
509 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
510 {
511         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
512
513         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
514         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
515         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
516         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
517         dev_info->hash_key_size = vf->vf_res->rss_key_size;
518         dev_info->reta_size = vf->vf_res->rss_lut_size;
519         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
520         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
521         dev_info->rx_offload_capa =
522                 DEV_RX_OFFLOAD_VLAN_STRIP |
523                 DEV_RX_OFFLOAD_QINQ_STRIP |
524                 DEV_RX_OFFLOAD_IPV4_CKSUM |
525                 DEV_RX_OFFLOAD_UDP_CKSUM |
526                 DEV_RX_OFFLOAD_TCP_CKSUM |
527                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
528                 DEV_RX_OFFLOAD_SCATTER |
529                 DEV_RX_OFFLOAD_JUMBO_FRAME |
530                 DEV_RX_OFFLOAD_VLAN_FILTER;
531         dev_info->tx_offload_capa =
532                 DEV_TX_OFFLOAD_VLAN_INSERT |
533                 DEV_TX_OFFLOAD_QINQ_INSERT |
534                 DEV_TX_OFFLOAD_IPV4_CKSUM |
535                 DEV_TX_OFFLOAD_UDP_CKSUM |
536                 DEV_TX_OFFLOAD_TCP_CKSUM |
537                 DEV_TX_OFFLOAD_SCTP_CKSUM |
538                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
539                 DEV_TX_OFFLOAD_TCP_TSO |
540                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
541                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
542                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
543                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
544                 DEV_TX_OFFLOAD_MULTI_SEGS;
545
546         dev_info->default_rxconf = (struct rte_eth_rxconf) {
547                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
548                 .rx_drop_en = 0,
549                 .offloads = 0,
550         };
551
552         dev_info->default_txconf = (struct rte_eth_txconf) {
553                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
554                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
555                 .offloads = 0,
556         };
557
558         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
559                 .nb_max = IAVF_MAX_RING_DESC,
560                 .nb_min = IAVF_MIN_RING_DESC,
561                 .nb_align = IAVF_ALIGN_RING_DESC,
562         };
563
564         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
565                 .nb_max = IAVF_MAX_RING_DESC,
566                 .nb_min = IAVF_MIN_RING_DESC,
567                 .nb_align = IAVF_ALIGN_RING_DESC,
568         };
569
570         return 0;
571 }
572
573 static const uint32_t *
574 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
575 {
576         static const uint32_t ptypes[] = {
577                 RTE_PTYPE_L2_ETHER,
578                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
579                 RTE_PTYPE_L4_FRAG,
580                 RTE_PTYPE_L4_ICMP,
581                 RTE_PTYPE_L4_NONFRAG,
582                 RTE_PTYPE_L4_SCTP,
583                 RTE_PTYPE_L4_TCP,
584                 RTE_PTYPE_L4_UDP,
585                 RTE_PTYPE_UNKNOWN
586         };
587         return ptypes;
588 }
589
590 int
591 iavf_dev_link_update(struct rte_eth_dev *dev,
592                     __rte_unused int wait_to_complete)
593 {
594         struct rte_eth_link new_link;
595         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
596
597         /* Only read status info stored in VF, and the info is updated
598          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
599          */
600         switch (vf->link_speed) {
601         case 10:
602                 new_link.link_speed = ETH_SPEED_NUM_10M;
603                 break;
604         case 100:
605                 new_link.link_speed = ETH_SPEED_NUM_100M;
606                 break;
607         case 1000:
608                 new_link.link_speed = ETH_SPEED_NUM_1G;
609                 break;
610         case 10000:
611                 new_link.link_speed = ETH_SPEED_NUM_10G;
612                 break;
613         case 20000:
614                 new_link.link_speed = ETH_SPEED_NUM_20G;
615                 break;
616         case 25000:
617                 new_link.link_speed = ETH_SPEED_NUM_25G;
618                 break;
619         case 40000:
620                 new_link.link_speed = ETH_SPEED_NUM_40G;
621                 break;
622         case 50000:
623                 new_link.link_speed = ETH_SPEED_NUM_50G;
624                 break;
625         case 100000:
626                 new_link.link_speed = ETH_SPEED_NUM_100G;
627                 break;
628         default:
629                 new_link.link_speed = ETH_SPEED_NUM_NONE;
630                 break;
631         }
632
633         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
634         new_link.link_status = vf->link_up ? ETH_LINK_UP :
635                                              ETH_LINK_DOWN;
636         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
637                                 ETH_LINK_SPEED_FIXED);
638
639         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
640                                 *(uint64_t *)&dev->data->dev_link,
641                                 *(uint64_t *)&new_link) == 0)
642                 return -1;
643
644         return 0;
645 }
646
647 static int
648 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
649 {
650         struct iavf_adapter *adapter =
651                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
652         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
653         int ret;
654
655         if (vf->promisc_unicast_enabled)
656                 return 0;
657
658         ret = iavf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
659         if (!ret)
660                 vf->promisc_unicast_enabled = TRUE;
661         else
662                 ret = -EAGAIN;
663
664         return ret;
665 }
666
667 static int
668 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
669 {
670         struct iavf_adapter *adapter =
671                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
672         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
673         int ret;
674
675         if (!vf->promisc_unicast_enabled)
676                 return 0;
677
678         ret = iavf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
679         if (!ret)
680                 vf->promisc_unicast_enabled = FALSE;
681         else
682                 ret = -EAGAIN;
683
684         return ret;
685 }
686
687 static int
688 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
689 {
690         struct iavf_adapter *adapter =
691                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
692         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
693         int ret;
694
695         if (vf->promisc_multicast_enabled)
696                 return 0;
697
698         ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
699         if (!ret)
700                 vf->promisc_multicast_enabled = TRUE;
701         else
702                 ret = -EAGAIN;
703
704         return ret;
705 }
706
707 static int
708 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
709 {
710         struct iavf_adapter *adapter =
711                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
712         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
713         int ret;
714
715         if (!vf->promisc_multicast_enabled)
716                 return 0;
717
718         ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
719         if (!ret)
720                 vf->promisc_multicast_enabled = FALSE;
721         else
722                 ret = -EAGAIN;
723
724         return ret;
725 }
726
727 static int
728 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
729                      __rte_unused uint32_t index,
730                      __rte_unused uint32_t pool)
731 {
732         struct iavf_adapter *adapter =
733                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
734         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
735         int err;
736
737         if (rte_is_zero_ether_addr(addr)) {
738                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
739                 return -EINVAL;
740         }
741
742         err = iavf_add_del_eth_addr(adapter, addr, TRUE);
743         if (err) {
744                 PMD_DRV_LOG(ERR, "fail to add MAC address");
745                 return -EIO;
746         }
747
748         vf->mac_num++;
749
750         return 0;
751 }
752
753 static void
754 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
755 {
756         struct iavf_adapter *adapter =
757                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
758         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
759         struct rte_ether_addr *addr;
760         int err;
761
762         addr = &dev->data->mac_addrs[index];
763
764         err = iavf_add_del_eth_addr(adapter, addr, FALSE);
765         if (err)
766                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
767
768         vf->mac_num--;
769 }
770
771 static int
772 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
773 {
774         struct iavf_adapter *adapter =
775                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
776         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
777         int err;
778
779         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
780                 return -ENOTSUP;
781
782         err = iavf_add_del_vlan(adapter, vlan_id, on);
783         if (err)
784                 return -EIO;
785         return 0;
786 }
787
788 static int
789 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
790 {
791         struct iavf_adapter *adapter =
792                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
793         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
794         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
795         int err;
796
797         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
798                 return -ENOTSUP;
799
800         /* Vlan stripping setting */
801         if (mask & ETH_VLAN_STRIP_MASK) {
802                 /* Enable or disable VLAN stripping */
803                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
804                         err = iavf_enable_vlan_strip(adapter);
805                 else
806                         err = iavf_disable_vlan_strip(adapter);
807
808                 if (err)
809                         return -EIO;
810         }
811         return 0;
812 }
813
814 static int
815 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
816                         struct rte_eth_rss_reta_entry64 *reta_conf,
817                         uint16_t reta_size)
818 {
819         struct iavf_adapter *adapter =
820                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
821         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
822         uint8_t *lut;
823         uint16_t i, idx, shift;
824         int ret;
825
826         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
827                 return -ENOTSUP;
828
829         if (reta_size != vf->vf_res->rss_lut_size) {
830                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
831                         "(%d) doesn't match the number of hardware can "
832                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
833                 return -EINVAL;
834         }
835
836         lut = rte_zmalloc("rss_lut", reta_size, 0);
837         if (!lut) {
838                 PMD_DRV_LOG(ERR, "No memory can be allocated");
839                 return -ENOMEM;
840         }
841         /* store the old lut table temporarily */
842         rte_memcpy(lut, vf->rss_lut, reta_size);
843
844         for (i = 0; i < reta_size; i++) {
845                 idx = i / RTE_RETA_GROUP_SIZE;
846                 shift = i % RTE_RETA_GROUP_SIZE;
847                 if (reta_conf[idx].mask & (1ULL << shift))
848                         lut[i] = reta_conf[idx].reta[shift];
849         }
850
851         rte_memcpy(vf->rss_lut, lut, reta_size);
852         /* send virtchnnl ops to configure rss*/
853         ret = iavf_configure_rss_lut(adapter);
854         if (ret) /* revert back */
855                 rte_memcpy(vf->rss_lut, lut, reta_size);
856         rte_free(lut);
857
858         return ret;
859 }
860
861 static int
862 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
863                        struct rte_eth_rss_reta_entry64 *reta_conf,
864                        uint16_t reta_size)
865 {
866         struct iavf_adapter *adapter =
867                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
868         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
869         uint16_t i, idx, shift;
870
871         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
872                 return -ENOTSUP;
873
874         if (reta_size != vf->vf_res->rss_lut_size) {
875                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
876                         "(%d) doesn't match the number of hardware can "
877                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
878                 return -EINVAL;
879         }
880
881         for (i = 0; i < reta_size; i++) {
882                 idx = i / RTE_RETA_GROUP_SIZE;
883                 shift = i % RTE_RETA_GROUP_SIZE;
884                 if (reta_conf[idx].mask & (1ULL << shift))
885                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
886         }
887
888         return 0;
889 }
890
891 static int
892 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
893                         struct rte_eth_rss_conf *rss_conf)
894 {
895         struct iavf_adapter *adapter =
896                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
897         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
898
899         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
900                 return -ENOTSUP;
901
902         /* HENA setting, it is enabled by default, no change */
903         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
904                 PMD_DRV_LOG(DEBUG, "No key to be configured");
905                 return 0;
906         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
907                 PMD_DRV_LOG(ERR, "The size of hash key configured "
908                         "(%d) doesn't match the size of hardware can "
909                         "support (%d)", rss_conf->rss_key_len,
910                         vf->vf_res->rss_key_size);
911                 return -EINVAL;
912         }
913
914         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
915
916         return iavf_configure_rss_key(adapter);
917 }
918
919 static int
920 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
921                           struct rte_eth_rss_conf *rss_conf)
922 {
923         struct iavf_adapter *adapter =
924                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
925         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
926
927         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
928                 return -ENOTSUP;
929
930          /* Just set it to default value now. */
931         rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL;
932
933         if (!rss_conf->rss_key)
934                 return 0;
935
936         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
937         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
938
939         return 0;
940 }
941
942 static int
943 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
944 {
945         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
946         int ret = 0;
947
948         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
949                 return -EINVAL;
950
951         /* mtu setting is forbidden if port is start */
952         if (dev->data->dev_started) {
953                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
954                 return -EBUSY;
955         }
956
957         if (frame_size > RTE_ETHER_MAX_LEN)
958                 dev->data->dev_conf.rxmode.offloads |=
959                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
960         else
961                 dev->data->dev_conf.rxmode.offloads &=
962                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
963
964         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
965
966         return ret;
967 }
968
969 static int
970 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
971                              struct rte_ether_addr *mac_addr)
972 {
973         struct iavf_adapter *adapter =
974                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
975         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
976         struct rte_ether_addr *perm_addr, *old_addr;
977         int ret;
978
979         old_addr = (struct rte_ether_addr *)hw->mac.addr;
980         perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
981
982         if (rte_is_same_ether_addr(mac_addr, old_addr))
983                 return 0;
984
985         /* If the MAC address is configured by host, skip the setting */
986         if (rte_is_valid_assigned_ether_addr(perm_addr))
987                 return -EPERM;
988
989         ret = iavf_add_del_eth_addr(adapter, old_addr, FALSE);
990         if (ret)
991                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
992                             " %02X:%02X:%02X:%02X:%02X:%02X",
993                             old_addr->addr_bytes[0],
994                             old_addr->addr_bytes[1],
995                             old_addr->addr_bytes[2],
996                             old_addr->addr_bytes[3],
997                             old_addr->addr_bytes[4],
998                             old_addr->addr_bytes[5]);
999
1000         ret = iavf_add_del_eth_addr(adapter, mac_addr, TRUE);
1001         if (ret)
1002                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1003                             " %02X:%02X:%02X:%02X:%02X:%02X",
1004                             mac_addr->addr_bytes[0],
1005                             mac_addr->addr_bytes[1],
1006                             mac_addr->addr_bytes[2],
1007                             mac_addr->addr_bytes[3],
1008                             mac_addr->addr_bytes[4],
1009                             mac_addr->addr_bytes[5]);
1010
1011         if (ret)
1012                 return -EIO;
1013
1014         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1015         return 0;
1016 }
1017
1018 static void
1019 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1020 {
1021         if (*stat >= *offset)
1022                 *stat = *stat - *offset;
1023         else
1024                 *stat = (uint64_t)((*stat +
1025                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1026
1027         *stat &= IAVF_48_BIT_MASK;
1028 }
1029
1030 static void
1031 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1032 {
1033         if (*stat >= *offset)
1034                 *stat = (uint64_t)(*stat - *offset);
1035         else
1036                 *stat = (uint64_t)((*stat +
1037                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1038 }
1039
1040 static void
1041 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1042 {
1043         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1044
1045         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1046         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1047         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1048         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1049         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1050         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1051         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1052         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1053         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1054         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1055         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1056 }
1057
1058 static int
1059 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1060 {
1061         struct iavf_adapter *adapter =
1062                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1063         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1064         struct iavf_vsi *vsi = &vf->vsi;
1065         struct virtchnl_eth_stats *pstats = NULL;
1066         int ret;
1067
1068         ret = iavf_query_stats(adapter, &pstats);
1069         if (ret == 0) {
1070                 iavf_update_stats(vsi, pstats);
1071                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1072                                                 pstats->rx_broadcast;
1073                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1074                                                 pstats->tx_unicast;
1075                 stats->imissed = pstats->rx_discards;
1076                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1077                 stats->ibytes = pstats->rx_bytes;
1078                 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
1079                 stats->obytes = pstats->tx_bytes;
1080         } else {
1081                 PMD_DRV_LOG(ERR, "Get statistics failed");
1082         }
1083         return -EIO;
1084 }
1085
1086 static int
1087 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1088 {
1089         int ret;
1090         struct iavf_adapter *adapter =
1091                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1092         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1093         struct iavf_vsi *vsi = &vf->vsi;
1094         struct virtchnl_eth_stats *pstats = NULL;
1095
1096         /* read stat values to clear hardware registers */
1097         ret = iavf_query_stats(adapter, &pstats);
1098         if (ret != 0)
1099                 return ret;
1100
1101         /* set stats offset base on current values */
1102         vsi->eth_stats_offset = *pstats;
1103
1104         return 0;
1105 }
1106
1107 static int
1108 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1109 {
1110         struct iavf_adapter *adapter =
1111                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1112         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1113         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1114         uint16_t msix_intr;
1115
1116         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1117         if (msix_intr == IAVF_MISC_VEC_ID) {
1118                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1119                 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
1120                               IAVFINT_DYN_CTL01_INTENA_MASK |
1121                               IAVFINT_DYN_CTL01_CLEARPBA_MASK |
1122                               IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1123         } else {
1124                 IAVF_WRITE_REG(hw,
1125                               IAVFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1126                               IAVFINT_DYN_CTLN1_INTENA_MASK |
1127                               IAVFINT_DYN_CTL01_CLEARPBA_MASK |
1128                               IAVFINT_DYN_CTLN1_ITR_INDX_MASK);
1129         }
1130
1131         IAVF_WRITE_FLUSH(hw);
1132
1133         rte_intr_ack(&pci_dev->intr_handle);
1134
1135         return 0;
1136 }
1137
1138 static int
1139 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1140 {
1141         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1142         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1143         uint16_t msix_intr;
1144
1145         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1146         if (msix_intr == IAVF_MISC_VEC_ID) {
1147                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1148                 return -EIO;
1149         }
1150
1151         IAVF_WRITE_REG(hw,
1152                       IAVFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1153                       0);
1154
1155         IAVF_WRITE_FLUSH(hw);
1156         return 0;
1157 }
1158
1159 static int
1160 iavf_check_vf_reset_done(struct iavf_hw *hw)
1161 {
1162         int i, reset;
1163
1164         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1165                 reset = IAVF_READ_REG(hw, IAVFGEN_RSTAT) &
1166                         IAVFGEN_RSTAT_VFR_STATE_MASK;
1167                 reset = reset >> IAVFGEN_RSTAT_VFR_STATE_SHIFT;
1168                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1169                     reset == VIRTCHNL_VFR_COMPLETED)
1170                         break;
1171                 rte_delay_ms(20);
1172         }
1173
1174         if (i >= IAVF_RESET_WAIT_CNT)
1175                 return -1;
1176
1177         return 0;
1178 }
1179
1180 static int
1181 iavf_init_vf(struct rte_eth_dev *dev)
1182 {
1183         int err, bufsz;
1184         struct iavf_adapter *adapter =
1185                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1186         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1187         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1188
1189         err = iavf_set_mac_type(hw);
1190         if (err) {
1191                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1192                 goto err;
1193         }
1194
1195         err = iavf_check_vf_reset_done(hw);
1196         if (err) {
1197                 PMD_INIT_LOG(ERR, "VF is still resetting");
1198                 goto err;
1199         }
1200
1201         iavf_init_adminq_parameter(hw);
1202         err = iavf_init_adminq(hw);
1203         if (err) {
1204                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1205                 goto err;
1206         }
1207
1208         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1209         if (!vf->aq_resp) {
1210                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1211                 goto err_aq;
1212         }
1213         if (iavf_check_api_version(adapter) != 0) {
1214                 PMD_INIT_LOG(ERR, "check_api version failed");
1215                 goto err_api;
1216         }
1217
1218         bufsz = sizeof(struct virtchnl_vf_resource) +
1219                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1220         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1221         if (!vf->vf_res) {
1222                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1223                 goto err_api;
1224         }
1225         if (iavf_get_vf_resource(adapter) != 0) {
1226                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1227                 goto err_alloc;
1228         }
1229         /* Allocate memort for RSS info */
1230         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1231                 vf->rss_key = rte_zmalloc("rss_key",
1232                                           vf->vf_res->rss_key_size, 0);
1233                 if (!vf->rss_key) {
1234                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1235                         goto err_rss;
1236                 }
1237                 vf->rss_lut = rte_zmalloc("rss_lut",
1238                                           vf->vf_res->rss_lut_size, 0);
1239                 if (!vf->rss_lut) {
1240                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1241                         goto err_rss;
1242                 }
1243         }
1244         return 0;
1245 err_rss:
1246         rte_free(vf->rss_key);
1247         rte_free(vf->rss_lut);
1248 err_alloc:
1249         rte_free(vf->vf_res);
1250         vf->vsi_res = NULL;
1251 err_api:
1252         rte_free(vf->aq_resp);
1253 err_aq:
1254         iavf_shutdown_adminq(hw);
1255 err:
1256         return -1;
1257 }
1258
1259 /* Enable default admin queue interrupt setting */
1260 static inline void
1261 iavf_enable_irq0(struct iavf_hw *hw)
1262 {
1263         /* Enable admin queue interrupt trigger */
1264         IAVF_WRITE_REG(hw, IAVFINT_ICR0_ENA1, IAVFINT_ICR0_ENA1_ADMINQ_MASK);
1265
1266         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01, IAVFINT_DYN_CTL01_INTENA_MASK |
1267                 IAVFINT_DYN_CTL01_CLEARPBA_MASK | IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1268
1269         IAVF_WRITE_FLUSH(hw);
1270 }
1271
1272 static inline void
1273 iavf_disable_irq0(struct iavf_hw *hw)
1274 {
1275         /* Disable all interrupt types */
1276         IAVF_WRITE_REG(hw, IAVFINT_ICR0_ENA1, 0);
1277         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
1278                       IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1279         IAVF_WRITE_FLUSH(hw);
1280 }
1281
1282 static void
1283 iavf_dev_interrupt_handler(void *param)
1284 {
1285         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1286         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1287
1288         iavf_disable_irq0(hw);
1289
1290         iavf_handle_virtchnl_msg(dev);
1291
1292         iavf_enable_irq0(hw);
1293 }
1294
1295 static int
1296 iavf_dev_init(struct rte_eth_dev *eth_dev)
1297 {
1298         struct iavf_adapter *adapter =
1299                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1300         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1301         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1302
1303         PMD_INIT_FUNC_TRACE();
1304
1305         /* assign ops func pointer */
1306         eth_dev->dev_ops = &iavf_eth_dev_ops;
1307         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
1308         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
1309         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
1310
1311         /* For secondary processes, we don't initialise any further as primary
1312          * has already done this work. Only check if we need a different RX
1313          * and TX function.
1314          */
1315         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1316                 iavf_set_rx_function(eth_dev);
1317                 iavf_set_tx_function(eth_dev);
1318                 return 0;
1319         }
1320         rte_eth_copy_pci_info(eth_dev, pci_dev);
1321
1322         hw->vendor_id = pci_dev->id.vendor_id;
1323         hw->device_id = pci_dev->id.device_id;
1324         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1325         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1326         hw->bus.bus_id = pci_dev->addr.bus;
1327         hw->bus.device = pci_dev->addr.devid;
1328         hw->bus.func = pci_dev->addr.function;
1329         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1330         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1331         adapter->eth_dev = eth_dev;
1332
1333         if (iavf_init_vf(eth_dev) != 0) {
1334                 PMD_INIT_LOG(ERR, "Init vf failed");
1335                 return -1;
1336         }
1337
1338         /* copy mac addr */
1339         eth_dev->data->mac_addrs = rte_zmalloc(
1340                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
1341         if (!eth_dev->data->mac_addrs) {
1342                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1343                              " store MAC addresses",
1344                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
1345                 return -ENOMEM;
1346         }
1347         /* If the MAC address is not configured by host,
1348          * generate a random one.
1349          */
1350         if (!rte_is_valid_assigned_ether_addr(
1351                         (struct rte_ether_addr *)hw->mac.addr))
1352                 rte_eth_random_addr(hw->mac.addr);
1353         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
1354                         &eth_dev->data->mac_addrs[0]);
1355
1356         /* register callback func to eal lib */
1357         rte_intr_callback_register(&pci_dev->intr_handle,
1358                                    iavf_dev_interrupt_handler,
1359                                    (void *)eth_dev);
1360
1361         /* enable uio intr after callback register */
1362         rte_intr_enable(&pci_dev->intr_handle);
1363
1364         /* configure and enable device interrupt */
1365         iavf_enable_irq0(hw);
1366
1367         return 0;
1368 }
1369
1370 static void
1371 iavf_dev_close(struct rte_eth_dev *dev)
1372 {
1373         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1374         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1375         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1376
1377         iavf_dev_stop(dev);
1378         iavf_shutdown_adminq(hw);
1379         /* disable uio intr before callback unregister */
1380         rte_intr_disable(intr_handle);
1381
1382         /* unregister callback func from eal lib */
1383         rte_intr_callback_unregister(intr_handle,
1384                                      iavf_dev_interrupt_handler, dev);
1385         iavf_disable_irq0(hw);
1386 }
1387
1388 static int
1389 iavf_dev_uninit(struct rte_eth_dev *dev)
1390 {
1391         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1392         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1393
1394         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1395                 return -EPERM;
1396
1397         dev->dev_ops = NULL;
1398         dev->rx_pkt_burst = NULL;
1399         dev->tx_pkt_burst = NULL;
1400         if (hw->adapter_stopped == 0)
1401                 iavf_dev_close(dev);
1402
1403         rte_free(vf->vf_res);
1404         vf->vsi_res = NULL;
1405         vf->vf_res = NULL;
1406
1407         rte_free(vf->aq_resp);
1408         vf->aq_resp = NULL;
1409
1410         if (vf->rss_lut) {
1411                 rte_free(vf->rss_lut);
1412                 vf->rss_lut = NULL;
1413         }
1414         if (vf->rss_key) {
1415                 rte_free(vf->rss_key);
1416                 vf->rss_key = NULL;
1417         }
1418
1419         return 0;
1420 }
1421
1422 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1423                              struct rte_pci_device *pci_dev)
1424 {
1425         return rte_eth_dev_pci_generic_probe(pci_dev,
1426                 sizeof(struct iavf_adapter), iavf_dev_init);
1427 }
1428
1429 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
1430 {
1431         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
1432 }
1433
1434 /* Adaptive virtual function driver struct */
1435 static struct rte_pci_driver rte_iavf_pmd = {
1436         .id_table = pci_id_iavf_map,
1437         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1438         .probe = eth_iavf_pci_probe,
1439         .remove = eth_iavf_pci_remove,
1440 };
1441
1442 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
1443 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
1444 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
1445 RTE_INIT(iavf_init_log)
1446 {
1447         iavf_logtype_init = rte_log_register("pmd.net.iavf.init");
1448         if (iavf_logtype_init >= 0)
1449                 rte_log_set_level(iavf_logtype_init, RTE_LOG_NOTICE);
1450         iavf_logtype_driver = rte_log_register("pmd.net.iavf.driver");
1451         if (iavf_logtype_driver >= 0)
1452                 rte_log_set_level(iavf_logtype_driver, RTE_LOG_NOTICE);
1453
1454 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
1455         iavf_logtype_rx = rte_log_register("pmd.net.iavf.rx");
1456         if (iavf_logtype_rx >= 0)
1457                 rte_log_set_level(iavf_logtype_rx, RTE_LOG_DEBUG);
1458 #endif
1459
1460 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
1461         iavf_logtype_tx = rte_log_register("pmd.net.iavf.tx");
1462         if (iavf_logtype_tx >= 0)
1463                 rte_log_set_level(iavf_logtype_tx, RTE_LOG_DEBUG);
1464 #endif
1465
1466 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
1467         iavf_logtype_tx_free = rte_log_register("pmd.net.iavf.tx_free");
1468         if (iavf_logtype_tx_free >= 0)
1469                 rte_log_set_level(iavf_logtype_tx_free, RTE_LOG_DEBUG);
1470 #endif
1471 }
1472
1473 /* memory func for base code */
1474 enum iavf_status_code
1475 iavf_allocate_dma_mem_d(__rte_unused struct iavf_hw *hw,
1476                        struct iavf_dma_mem *mem,
1477                        u64 size,
1478                        u32 alignment)
1479 {
1480         const struct rte_memzone *mz = NULL;
1481         char z_name[RTE_MEMZONE_NAMESIZE];
1482
1483         if (!mem)
1484                 return IAVF_ERR_PARAM;
1485
1486         snprintf(z_name, sizeof(z_name), "iavf_dma_%"PRIu64, rte_rand());
1487         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1488                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1489         if (!mz)
1490                 return IAVF_ERR_NO_MEMORY;
1491
1492         mem->size = size;
1493         mem->va = mz->addr;
1494         mem->pa = mz->phys_addr;
1495         mem->zone = (const void *)mz;
1496         PMD_DRV_LOG(DEBUG,
1497                     "memzone %s allocated with physical address: %"PRIu64,
1498                     mz->name, mem->pa);
1499
1500         return IAVF_SUCCESS;
1501 }
1502
1503 enum iavf_status_code
1504 iavf_free_dma_mem_d(__rte_unused struct iavf_hw *hw,
1505                    struct iavf_dma_mem *mem)
1506 {
1507         if (!mem)
1508                 return IAVF_ERR_PARAM;
1509
1510         PMD_DRV_LOG(DEBUG,
1511                     "memzone %s to be freed with physical address: %"PRIu64,
1512                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1513         rte_memzone_free((const struct rte_memzone *)mem->zone);
1514         mem->zone = NULL;
1515         mem->va = NULL;
1516         mem->pa = (u64)0;
1517
1518         return IAVF_SUCCESS;
1519 }
1520
1521 enum iavf_status_code
1522 iavf_allocate_virt_mem_d(__rte_unused struct iavf_hw *hw,
1523                         struct iavf_virt_mem *mem,
1524                         u32 size)
1525 {
1526         if (!mem)
1527                 return IAVF_ERR_PARAM;
1528
1529         mem->size = size;
1530         mem->va = rte_zmalloc("iavf", size, 0);
1531
1532         if (mem->va)
1533                 return IAVF_SUCCESS;
1534         else
1535                 return IAVF_ERR_NO_MEMORY;
1536 }
1537
1538 enum iavf_status_code
1539 iavf_free_virt_mem_d(__rte_unused struct iavf_hw *hw,
1540                     struct iavf_virt_mem *mem)
1541 {
1542         if (!mem)
1543                 return IAVF_ERR_PARAM;
1544
1545         rte_free(mem->va);
1546         mem->va = NULL;
1547
1548         return IAVF_SUCCESS;
1549 }