net/iavf: fix resource leak on probing failure
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <ethdev_driver.h>
23 #include <ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
32
33 /* devargs */
34 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
35
36 static const char * const iavf_valid_args[] = {
37         IAVF_PROTO_XTR_ARG,
38         NULL
39 };
40
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42         .name = "intel_pmd_dynfield_proto_xtr_metadata",
43         .size = sizeof(uint32_t),
44         .align = __alignof__(uint32_t),
45         .flags = 0,
46 };
47
48 struct iavf_proto_xtr_ol {
49         const struct rte_mbuf_dynflag param;
50         uint64_t *ol_flag;
51         bool required;
52 };
53
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55         [IAVF_PROTO_XTR_VLAN] = {
56                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58         [IAVF_PROTO_XTR_IPV4] = {
59                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61         [IAVF_PROTO_XTR_IPV6] = {
62                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64         [IAVF_PROTO_XTR_IPV6_FLOW] = {
65                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67         [IAVF_PROTO_XTR_TCP] = {
68                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70         [IAVF_PROTO_XTR_IP_OFFSET] = {
71                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
73 };
74
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81                              struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84                              struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87                                  struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89                                        struct rte_eth_xstat_name *xstats_names,
90                                        unsigned int limit);
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96                                 struct rte_ether_addr *addr,
97                                 uint32_t index,
98                                 uint32_t pool);
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101                                    uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104                                    struct rte_eth_rss_reta_entry64 *reta_conf,
105                                    uint16_t reta_size);
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107                                   struct rte_eth_rss_reta_entry64 *reta_conf,
108                                   uint16_t reta_size);
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110                                    struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112                                      struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115                                          struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
117                                         uint16_t queue_id);
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
119                                          uint16_t queue_id);
120 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
121                                  const struct rte_flow_ops **ops);
122 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
123                         struct rte_ether_addr *mc_addrs,
124                         uint32_t mc_addrs_num);
125 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
126
127 static const struct rte_pci_id pci_id_iavf_map[] = {
128         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
129         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
130         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
131         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
132         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
133         { .vendor_id = 0, /* sentinel */ },
134 };
135
136 struct rte_iavf_xstats_name_off {
137         char name[RTE_ETH_XSTATS_NAME_SIZE];
138         unsigned int offset;
139 };
140
141 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
142         {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
143         {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
144         {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
145         {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
146         {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
147         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
148                 rx_unknown_protocol)},
149         {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
150         {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
151         {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
152         {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
153         {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
154         {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
155 };
156
157 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
158                 sizeof(rte_iavf_stats_strings[0]))
159
160 static const struct eth_dev_ops iavf_eth_dev_ops = {
161         .dev_configure              = iavf_dev_configure,
162         .dev_start                  = iavf_dev_start,
163         .dev_stop                   = iavf_dev_stop,
164         .dev_close                  = iavf_dev_close,
165         .dev_reset                  = iavf_dev_reset,
166         .dev_infos_get              = iavf_dev_info_get,
167         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
168         .link_update                = iavf_dev_link_update,
169         .stats_get                  = iavf_dev_stats_get,
170         .stats_reset                = iavf_dev_stats_reset,
171         .xstats_get                 = iavf_dev_xstats_get,
172         .xstats_get_names           = iavf_dev_xstats_get_names,
173         .xstats_reset               = iavf_dev_stats_reset,
174         .promiscuous_enable         = iavf_dev_promiscuous_enable,
175         .promiscuous_disable        = iavf_dev_promiscuous_disable,
176         .allmulticast_enable        = iavf_dev_allmulticast_enable,
177         .allmulticast_disable       = iavf_dev_allmulticast_disable,
178         .mac_addr_add               = iavf_dev_add_mac_addr,
179         .mac_addr_remove            = iavf_dev_del_mac_addr,
180         .set_mc_addr_list                       = iavf_set_mc_addr_list,
181         .vlan_filter_set            = iavf_dev_vlan_filter_set,
182         .vlan_offload_set           = iavf_dev_vlan_offload_set,
183         .rx_queue_start             = iavf_dev_rx_queue_start,
184         .rx_queue_stop              = iavf_dev_rx_queue_stop,
185         .tx_queue_start             = iavf_dev_tx_queue_start,
186         .tx_queue_stop              = iavf_dev_tx_queue_stop,
187         .rx_queue_setup             = iavf_dev_rx_queue_setup,
188         .rx_queue_release           = iavf_dev_rx_queue_release,
189         .tx_queue_setup             = iavf_dev_tx_queue_setup,
190         .tx_queue_release           = iavf_dev_tx_queue_release,
191         .mac_addr_set               = iavf_dev_set_default_mac_addr,
192         .reta_update                = iavf_dev_rss_reta_update,
193         .reta_query                 = iavf_dev_rss_reta_query,
194         .rss_hash_update            = iavf_dev_rss_hash_update,
195         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
196         .rxq_info_get               = iavf_dev_rxq_info_get,
197         .txq_info_get               = iavf_dev_txq_info_get,
198         .mtu_set                    = iavf_dev_mtu_set,
199         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
200         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
201         .flow_ops_get               = iavf_dev_flow_ops_get,
202         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
203         .get_monitor_addr           = iavf_get_monitor_addr,
204         .tm_ops_get                 = iavf_tm_ops_get,
205 };
206
207 static int
208 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
209                         void *arg)
210 {
211         if (!arg)
212                 return -EINVAL;
213
214         *(const void **)arg = &iavf_tm_ops;
215
216         return 0;
217 }
218
219 static int
220 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
221                         struct rte_ether_addr *mc_addrs,
222                         uint32_t mc_addrs_num)
223 {
224         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
225         struct iavf_adapter *adapter =
226                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
227         int err, ret;
228
229         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
230                 PMD_DRV_LOG(ERR,
231                             "can't add more than a limited number (%u) of addresses.",
232                             (uint32_t)IAVF_NUM_MACADDR_MAX);
233                 return -EINVAL;
234         }
235
236         /* flush previous addresses */
237         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
238                                         false);
239         if (err)
240                 return err;
241
242         /* add new ones */
243         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
244
245         if (err) {
246                 /* if adding mac address list fails, should add the previous
247                  * addresses back.
248                  */
249                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
250                                                 vf->mc_addrs_num, true);
251                 if (ret)
252                         return ret;
253         } else {
254                 vf->mc_addrs_num = mc_addrs_num;
255                 memcpy(vf->mc_addrs,
256                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
257         }
258
259         return err;
260 }
261
262 static void
263 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
264 {
265         static const uint64_t map_hena_rss[] = {
266                 /* IPv4 */
267                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
268                                 ETH_RSS_NONFRAG_IPV4_UDP,
269                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
270                                 ETH_RSS_NONFRAG_IPV4_UDP,
271                 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
272                                 ETH_RSS_NONFRAG_IPV4_UDP,
273                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
274                                 ETH_RSS_NONFRAG_IPV4_TCP,
275                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
276                                 ETH_RSS_NONFRAG_IPV4_TCP,
277                 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
278                                 ETH_RSS_NONFRAG_IPV4_SCTP,
279                 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
280                                 ETH_RSS_NONFRAG_IPV4_OTHER,
281                 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = ETH_RSS_FRAG_IPV4,
282
283                 /* IPv6 */
284                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
285                                 ETH_RSS_NONFRAG_IPV6_UDP,
286                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
287                                 ETH_RSS_NONFRAG_IPV6_UDP,
288                 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
289                                 ETH_RSS_NONFRAG_IPV6_UDP,
290                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
291                                 ETH_RSS_NONFRAG_IPV6_TCP,
292                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
293                                 ETH_RSS_NONFRAG_IPV6_TCP,
294                 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
295                                 ETH_RSS_NONFRAG_IPV6_SCTP,
296                 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
297                                 ETH_RSS_NONFRAG_IPV6_OTHER,
298                 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = ETH_RSS_FRAG_IPV6,
299
300                 /* L2 Payload */
301                 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = ETH_RSS_L2_PAYLOAD
302         };
303
304         const uint64_t ipv4_rss = ETH_RSS_NONFRAG_IPV4_UDP |
305                                   ETH_RSS_NONFRAG_IPV4_TCP |
306                                   ETH_RSS_NONFRAG_IPV4_SCTP |
307                                   ETH_RSS_NONFRAG_IPV4_OTHER |
308                                   ETH_RSS_FRAG_IPV4;
309
310         const uint64_t ipv6_rss = ETH_RSS_NONFRAG_IPV6_UDP |
311                                   ETH_RSS_NONFRAG_IPV6_TCP |
312                                   ETH_RSS_NONFRAG_IPV6_SCTP |
313                                   ETH_RSS_NONFRAG_IPV6_OTHER |
314                                   ETH_RSS_FRAG_IPV6;
315
316         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
317         uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
318         uint32_t i;
319         int ret;
320
321         ret = iavf_get_hena_caps(adapter, &caps);
322         if (ret) {
323                 /**
324                  * RSS offload type configuration is not a necessary feature
325                  * for VF, so here just print a warning and return.
326                  */
327                 PMD_DRV_LOG(WARNING,
328                             "fail to get RSS offload type caps, ret: %d", ret);
329                 return;
330         }
331
332         /**
333          * ETH_RSS_IPV4 and ETH_RSS_IPV6 can be considered as 2
334          * generalizations of all other IPv4 and IPv6 RSS types.
335          */
336         if (rss_hf & ETH_RSS_IPV4)
337                 rss_hf |= ipv4_rss;
338
339         if (rss_hf & ETH_RSS_IPV6)
340                 rss_hf |= ipv6_rss;
341
342         RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
343
344         for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
345                 uint64_t bit = BIT_ULL(i);
346
347                 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
348                         valid_rss_hf |= map_hena_rss[i];
349                         hena |= bit;
350                 }
351         }
352
353         ret = iavf_set_hena(adapter, hena);
354         if (ret) {
355                 /**
356                  * RSS offload type configuration is not a necessary feature
357                  * for VF, so here just print a warning and return.
358                  */
359                 PMD_DRV_LOG(WARNING,
360                             "fail to set RSS offload types, ret: %d", ret);
361                 return;
362         }
363
364         if (valid_rss_hf & ipv4_rss)
365                 valid_rss_hf |= rss_hf & ETH_RSS_IPV4;
366
367         if (valid_rss_hf & ipv6_rss)
368                 valid_rss_hf |= rss_hf & ETH_RSS_IPV6;
369
370         if (rss_hf & ~valid_rss_hf)
371                 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
372                             rss_hf & ~valid_rss_hf);
373
374         vf->rss_hf = valid_rss_hf;
375 }
376
377 static int
378 iavf_init_rss(struct iavf_adapter *adapter)
379 {
380         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
381         struct rte_eth_rss_conf *rss_conf;
382         uint16_t i, j, nb_q;
383         int ret;
384
385         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
386         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
387                        vf->max_rss_qregion);
388
389         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
390                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
391                 return -ENOTSUP;
392         }
393
394         /* configure RSS key */
395         if (!rss_conf->rss_key) {
396                 /* Calculate the default hash key */
397                 for (i = 0; i < vf->vf_res->rss_key_size; i++)
398                         vf->rss_key[i] = (uint8_t)rte_rand();
399         } else
400                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
401                            RTE_MIN(rss_conf->rss_key_len,
402                                    vf->vf_res->rss_key_size));
403
404         /* init RSS LUT table */
405         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
406                 if (j >= nb_q)
407                         j = 0;
408                 vf->rss_lut[i] = j;
409         }
410         /* send virtchnnl ops to configure rss*/
411         ret = iavf_configure_rss_lut(adapter);
412         if (ret)
413                 return ret;
414         ret = iavf_configure_rss_key(adapter);
415         if (ret)
416                 return ret;
417
418         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
419                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
420                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
421                 if (ret) {
422                         PMD_DRV_LOG(ERR, "fail to set default RSS");
423                         return ret;
424                 }
425         } else {
426                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
427         }
428
429         return 0;
430 }
431
432 static int
433 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
434 {
435         struct iavf_adapter *ad =
436                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
437         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
438         int ret;
439
440         ret = iavf_request_queues(ad, num);
441         if (ret) {
442                 PMD_DRV_LOG(ERR, "request queues from PF failed");
443                 return ret;
444         }
445         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
446                         vf->vsi_res->num_queue_pairs, num);
447
448         ret = iavf_dev_reset(dev);
449         if (ret) {
450                 PMD_DRV_LOG(ERR, "vf reset failed");
451                 return ret;
452         }
453
454         return 0;
455 }
456
457 static int
458 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
459 {
460         struct iavf_adapter *adapter =
461                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
462         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
463         bool enable;
464
465         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
466                 return 0;
467
468         enable = !!(dev->data->dev_conf.txmode.offloads &
469                     DEV_TX_OFFLOAD_VLAN_INSERT);
470         iavf_config_vlan_insert_v2(adapter, enable);
471
472         return 0;
473 }
474
475 static int
476 iavf_dev_init_vlan(struct rte_eth_dev *dev)
477 {
478         int err;
479
480         err = iavf_dev_vlan_offload_set(dev,
481                                         ETH_VLAN_STRIP_MASK |
482                                         ETH_QINQ_STRIP_MASK |
483                                         ETH_VLAN_FILTER_MASK |
484                                         ETH_VLAN_EXTEND_MASK);
485         if (err) {
486                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
487                 return err;
488         }
489
490         err = iavf_dev_vlan_insert_set(dev);
491         if (err)
492                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
493
494         return err;
495 }
496
497 static int
498 iavf_dev_configure(struct rte_eth_dev *dev)
499 {
500         struct iavf_adapter *ad =
501                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
502         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
503         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
504                 dev->data->nb_tx_queues);
505         int ret;
506
507         ad->rx_bulk_alloc_allowed = true;
508         /* Initialize to TRUE. If any of Rx queues doesn't meet the
509          * vector Rx/Tx preconditions, it will be reset.
510          */
511         ad->rx_vec_allowed = true;
512         ad->tx_vec_allowed = true;
513
514         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
515                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
516
517         /* Large VF setting */
518         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
519                 if (!(vf->vf_res->vf_cap_flags &
520                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
521                         PMD_DRV_LOG(ERR, "large VF is not supported");
522                         return -1;
523                 }
524
525                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
526                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
527                                 IAVF_MAX_NUM_QUEUES_LV);
528                         return -1;
529                 }
530
531                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
532                 if (ret)
533                         return ret;
534
535                 ret = iavf_get_max_rss_queue_region(ad);
536                 if (ret) {
537                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
538                         return ret;
539                 }
540
541                 vf->lv_enabled = true;
542         } else {
543                 /* Check if large VF is already enabled. If so, disable and
544                  * release redundant queue resource.
545                  * Or check if enough queue pairs. If not, request them from PF.
546                  */
547                 if (vf->lv_enabled ||
548                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
549                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
550                         if (ret)
551                                 return ret;
552
553                         vf->lv_enabled = false;
554                 }
555                 /* if large VF is not required, use default rss queue region */
556                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
557         }
558
559         ret = iavf_dev_init_vlan(dev);
560         if (ret)
561                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
562
563         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
564                 if (iavf_init_rss(ad) != 0) {
565                         PMD_DRV_LOG(ERR, "configure rss failed");
566                         return -1;
567                 }
568         }
569         return 0;
570 }
571
572 static int
573 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
574 {
575         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576         struct rte_eth_dev_data *dev_data = dev->data;
577         uint16_t buf_size, max_pkt_len;
578
579         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
580
581         /* Calculate the maximum packet length allowed */
582         max_pkt_len = RTE_MIN((uint32_t)
583                         rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
584                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
585
586         /* Check if the jumbo frame and maximum packet length are set
587          * correctly.
588          */
589         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
590                 if (max_pkt_len <= IAVF_ETH_MAX_LEN ||
591                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
592                         PMD_DRV_LOG(ERR, "maximum packet length must be "
593                                     "larger than %u and smaller than %u, "
594                                     "as jumbo frame is enabled",
595                                     (uint32_t)IAVF_ETH_MAX_LEN,
596                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
597                         return -EINVAL;
598                 }
599         } else {
600                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
601                     max_pkt_len > IAVF_ETH_MAX_LEN) {
602                         PMD_DRV_LOG(ERR, "maximum packet length must be "
603                                     "larger than %u and smaller than %u, "
604                                     "as jumbo frame is disabled",
605                                     (uint32_t)RTE_ETHER_MIN_LEN,
606                                     (uint32_t)IAVF_ETH_MAX_LEN);
607                         return -EINVAL;
608                 }
609         }
610
611         rxq->max_pkt_len = max_pkt_len;
612         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
613             rxq->max_pkt_len > buf_size) {
614                 dev_data->scattered_rx = 1;
615         }
616         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
617         IAVF_WRITE_FLUSH(hw);
618
619         return 0;
620 }
621
622 static int
623 iavf_init_queues(struct rte_eth_dev *dev)
624 {
625         struct iavf_rx_queue **rxq =
626                 (struct iavf_rx_queue **)dev->data->rx_queues;
627         int i, ret = IAVF_SUCCESS;
628
629         for (i = 0; i < dev->data->nb_rx_queues; i++) {
630                 if (!rxq[i] || !rxq[i]->q_set)
631                         continue;
632                 ret = iavf_init_rxq(dev, rxq[i]);
633                 if (ret != IAVF_SUCCESS)
634                         break;
635         }
636         /* set rx/tx function to vector/scatter/single-segment
637          * according to parameters
638          */
639         iavf_set_rx_function(dev);
640         iavf_set_tx_function(dev);
641
642         return ret;
643 }
644
645 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
646                                      struct rte_intr_handle *intr_handle)
647 {
648         struct iavf_adapter *adapter =
649                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
650         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
651         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
652         struct iavf_qv_map *qv_map;
653         uint16_t interval, i;
654         int vec;
655
656         if (rte_intr_cap_multiple(intr_handle) &&
657             dev->data->dev_conf.intr_conf.rxq) {
658                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
659                         return -1;
660         }
661
662         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
663                 intr_handle->intr_vec =
664                         rte_zmalloc("intr_vec",
665                                     dev->data->nb_rx_queues * sizeof(int), 0);
666                 if (!intr_handle->intr_vec) {
667                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
668                                     dev->data->nb_rx_queues);
669                         return -1;
670                 }
671         }
672
673         qv_map = rte_zmalloc("qv_map",
674                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
675         if (!qv_map) {
676                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
677                                 dev->data->nb_rx_queues);
678                 return -1;
679         }
680
681         if (!dev->data->dev_conf.intr_conf.rxq ||
682             !rte_intr_dp_is_en(intr_handle)) {
683                 /* Rx interrupt disabled, Map interrupt only for writeback */
684                 vf->nb_msix = 1;
685                 if (vf->vf_res->vf_cap_flags &
686                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
687                         /* If WB_ON_ITR supports, enable it */
688                         vf->msix_base = IAVF_RX_VEC_START;
689                         /* Set the ITR for index zero, to 2us to make sure that
690                          * we leave time for aggregation to occur, but don't
691                          * increase latency dramatically.
692                          */
693                         IAVF_WRITE_REG(hw,
694                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
695                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
696                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
697                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
698                         /* debug - check for success! the return value
699                          * should be 2, offset is 0x2800
700                          */
701                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
702                 } else {
703                         /* If no WB_ON_ITR offload flags, need to set
704                          * interrupt for descriptor write back.
705                          */
706                         vf->msix_base = IAVF_MISC_VEC_ID;
707
708                         /* set ITR to max */
709                         interval = iavf_calc_itr_interval(
710                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
711                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
712                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
713                                        (IAVF_ITR_INDEX_DEFAULT <<
714                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
715                                        (interval <<
716                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
717                 }
718                 IAVF_WRITE_FLUSH(hw);
719                 /* map all queues to the same interrupt */
720                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
721                         qv_map[i].queue_id = i;
722                         qv_map[i].vector_id = vf->msix_base;
723                 }
724                 vf->qv_map = qv_map;
725         } else {
726                 if (!rte_intr_allow_others(intr_handle)) {
727                         vf->nb_msix = 1;
728                         vf->msix_base = IAVF_MISC_VEC_ID;
729                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
730                                 qv_map[i].queue_id = i;
731                                 qv_map[i].vector_id = vf->msix_base;
732                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
733                         }
734                         vf->qv_map = qv_map;
735                         PMD_DRV_LOG(DEBUG,
736                                     "vector %u are mapping to all Rx queues",
737                                     vf->msix_base);
738                 } else {
739                         /* If Rx interrupt is reuquired, and we can use
740                          * multi interrupts, then the vec is from 1
741                          */
742                         vf->nb_msix = RTE_MIN(intr_handle->nb_efd,
743                                  (uint16_t)(vf->vf_res->max_vectors - 1));
744                         vf->msix_base = IAVF_RX_VEC_START;
745                         vec = IAVF_RX_VEC_START;
746                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
747                                 qv_map[i].queue_id = i;
748                                 qv_map[i].vector_id = vec;
749                                 intr_handle->intr_vec[i] = vec++;
750                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
751                                         vec = IAVF_RX_VEC_START;
752                         }
753                         vf->qv_map = qv_map;
754                         PMD_DRV_LOG(DEBUG,
755                                     "%u vectors are mapping to %u Rx queues",
756                                     vf->nb_msix, dev->data->nb_rx_queues);
757                 }
758         }
759
760         if (!vf->lv_enabled) {
761                 if (iavf_config_irq_map(adapter)) {
762                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
763                         return -1;
764                 }
765         } else {
766                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
767                 uint16_t index = 0;
768
769                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
770                         if (iavf_config_irq_map_lv(adapter,
771                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
772                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
773                                 return -1;
774                         }
775                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
776                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
777                 }
778
779                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
780                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
781                         return -1;
782                 }
783         }
784         return 0;
785 }
786
787 static int
788 iavf_start_queues(struct rte_eth_dev *dev)
789 {
790         struct iavf_rx_queue *rxq;
791         struct iavf_tx_queue *txq;
792         int i;
793
794         for (i = 0; i < dev->data->nb_tx_queues; i++) {
795                 txq = dev->data->tx_queues[i];
796                 if (txq->tx_deferred_start)
797                         continue;
798                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
799                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
800                         return -1;
801                 }
802         }
803
804         for (i = 0; i < dev->data->nb_rx_queues; i++) {
805                 rxq = dev->data->rx_queues[i];
806                 if (rxq->rx_deferred_start)
807                         continue;
808                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
809                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
810                         return -1;
811                 }
812         }
813
814         return 0;
815 }
816
817 static int
818 iavf_dev_start(struct rte_eth_dev *dev)
819 {
820         struct iavf_adapter *adapter =
821                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
822         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
823         struct rte_intr_handle *intr_handle = dev->intr_handle;
824         uint16_t num_queue_pairs;
825         uint16_t index = 0;
826
827         PMD_INIT_FUNC_TRACE();
828
829         adapter->stopped = 0;
830
831         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
832         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
833                                       dev->data->nb_tx_queues);
834         num_queue_pairs = vf->num_queue_pairs;
835
836         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
837                 if (iavf_get_qos_cap(adapter)) {
838                         PMD_INIT_LOG(ERR, "Failed to get qos capability");
839                         return -1;
840                 }
841
842         if (iavf_init_queues(dev) != 0) {
843                 PMD_DRV_LOG(ERR, "failed to do Queue init");
844                 return -1;
845         }
846
847         /* If needed, send configure queues msg multiple times to make the
848          * adminq buffer length smaller than the 4K limitation.
849          */
850         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
851                 if (iavf_configure_queues(adapter,
852                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
853                         PMD_DRV_LOG(ERR, "configure queues failed");
854                         goto err_queue;
855                 }
856                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
857                 index += IAVF_CFG_Q_NUM_PER_BUF;
858         }
859
860         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
861                 PMD_DRV_LOG(ERR, "configure queues failed");
862                 goto err_queue;
863         }
864
865         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
866                 PMD_DRV_LOG(ERR, "configure irq failed");
867                 goto err_queue;
868         }
869         /* re-enable intr again, because efd assign may change */
870         if (dev->data->dev_conf.intr_conf.rxq != 0) {
871                 rte_intr_disable(intr_handle);
872                 rte_intr_enable(intr_handle);
873         }
874
875         /* Set all mac addrs */
876         iavf_add_del_all_mac_addr(adapter, true);
877
878         /* Set all multicast addresses */
879         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
880                                   true);
881
882         if (iavf_start_queues(dev) != 0) {
883                 PMD_DRV_LOG(ERR, "enable queues failed");
884                 goto err_mac;
885         }
886
887         return 0;
888
889 err_mac:
890         iavf_add_del_all_mac_addr(adapter, false);
891 err_queue:
892         return -1;
893 }
894
895 static int
896 iavf_dev_stop(struct rte_eth_dev *dev)
897 {
898         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
899         struct iavf_adapter *adapter =
900                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
901         struct rte_intr_handle *intr_handle = dev->intr_handle;
902
903         PMD_INIT_FUNC_TRACE();
904
905         if (adapter->stopped == 1)
906                 return 0;
907
908         iavf_stop_queues(dev);
909
910         /* Disable the interrupt for Rx */
911         rte_intr_efd_disable(intr_handle);
912         /* Rx interrupt vector mapping free */
913         if (intr_handle->intr_vec) {
914                 rte_free(intr_handle->intr_vec);
915                 intr_handle->intr_vec = NULL;
916         }
917
918         /* remove all mac addrs */
919         iavf_add_del_all_mac_addr(adapter, false);
920
921         /* remove all multicast addresses */
922         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
923                                   false);
924
925         adapter->stopped = 1;
926         dev->data->dev_started = 0;
927
928         return 0;
929 }
930
931 static int
932 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
933 {
934         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
935
936         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
937         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
938         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
939         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
940         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
941         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
942         dev_info->hash_key_size = vf->vf_res->rss_key_size;
943         dev_info->reta_size = vf->vf_res->rss_lut_size;
944         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
945         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
946         dev_info->rx_offload_capa =
947                 DEV_RX_OFFLOAD_VLAN_STRIP |
948                 DEV_RX_OFFLOAD_QINQ_STRIP |
949                 DEV_RX_OFFLOAD_IPV4_CKSUM |
950                 DEV_RX_OFFLOAD_UDP_CKSUM |
951                 DEV_RX_OFFLOAD_TCP_CKSUM |
952                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
953                 DEV_RX_OFFLOAD_SCATTER |
954                 DEV_RX_OFFLOAD_JUMBO_FRAME |
955                 DEV_RX_OFFLOAD_VLAN_FILTER |
956                 DEV_RX_OFFLOAD_RSS_HASH;
957
958         dev_info->tx_offload_capa =
959                 DEV_TX_OFFLOAD_VLAN_INSERT |
960                 DEV_TX_OFFLOAD_QINQ_INSERT |
961                 DEV_TX_OFFLOAD_IPV4_CKSUM |
962                 DEV_TX_OFFLOAD_UDP_CKSUM |
963                 DEV_TX_OFFLOAD_TCP_CKSUM |
964                 DEV_TX_OFFLOAD_SCTP_CKSUM |
965                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
966                 DEV_TX_OFFLOAD_TCP_TSO |
967                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
968                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
969                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
970                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
971                 DEV_TX_OFFLOAD_MULTI_SEGS |
972                 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
973
974         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
975                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_KEEP_CRC;
976
977         dev_info->default_rxconf = (struct rte_eth_rxconf) {
978                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
979                 .rx_drop_en = 0,
980                 .offloads = 0,
981         };
982
983         dev_info->default_txconf = (struct rte_eth_txconf) {
984                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
985                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
986                 .offloads = 0,
987         };
988
989         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
990                 .nb_max = IAVF_MAX_RING_DESC,
991                 .nb_min = IAVF_MIN_RING_DESC,
992                 .nb_align = IAVF_ALIGN_RING_DESC,
993         };
994
995         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
996                 .nb_max = IAVF_MAX_RING_DESC,
997                 .nb_min = IAVF_MIN_RING_DESC,
998                 .nb_align = IAVF_ALIGN_RING_DESC,
999         };
1000
1001         return 0;
1002 }
1003
1004 static const uint32_t *
1005 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1006 {
1007         static const uint32_t ptypes[] = {
1008                 RTE_PTYPE_L2_ETHER,
1009                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1010                 RTE_PTYPE_L4_FRAG,
1011                 RTE_PTYPE_L4_ICMP,
1012                 RTE_PTYPE_L4_NONFRAG,
1013                 RTE_PTYPE_L4_SCTP,
1014                 RTE_PTYPE_L4_TCP,
1015                 RTE_PTYPE_L4_UDP,
1016                 RTE_PTYPE_UNKNOWN
1017         };
1018         return ptypes;
1019 }
1020
1021 int
1022 iavf_dev_link_update(struct rte_eth_dev *dev,
1023                     __rte_unused int wait_to_complete)
1024 {
1025         struct rte_eth_link new_link;
1026         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1027
1028         memset(&new_link, 0, sizeof(new_link));
1029
1030         /* Only read status info stored in VF, and the info is updated
1031          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
1032          */
1033         switch (vf->link_speed) {
1034         case 10:
1035                 new_link.link_speed = ETH_SPEED_NUM_10M;
1036                 break;
1037         case 100:
1038                 new_link.link_speed = ETH_SPEED_NUM_100M;
1039                 break;
1040         case 1000:
1041                 new_link.link_speed = ETH_SPEED_NUM_1G;
1042                 break;
1043         case 10000:
1044                 new_link.link_speed = ETH_SPEED_NUM_10G;
1045                 break;
1046         case 20000:
1047                 new_link.link_speed = ETH_SPEED_NUM_20G;
1048                 break;
1049         case 25000:
1050                 new_link.link_speed = ETH_SPEED_NUM_25G;
1051                 break;
1052         case 40000:
1053                 new_link.link_speed = ETH_SPEED_NUM_40G;
1054                 break;
1055         case 50000:
1056                 new_link.link_speed = ETH_SPEED_NUM_50G;
1057                 break;
1058         case 100000:
1059                 new_link.link_speed = ETH_SPEED_NUM_100G;
1060                 break;
1061         default:
1062                 new_link.link_speed = ETH_SPEED_NUM_NONE;
1063                 break;
1064         }
1065
1066         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
1067         new_link.link_status = vf->link_up ? ETH_LINK_UP :
1068                                              ETH_LINK_DOWN;
1069         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1070                                 ETH_LINK_SPEED_FIXED);
1071
1072         return rte_eth_linkstatus_set(dev, &new_link);
1073 }
1074
1075 static int
1076 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1077 {
1078         struct iavf_adapter *adapter =
1079                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1080         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1081
1082         return iavf_config_promisc(adapter,
1083                                   true, vf->promisc_multicast_enabled);
1084 }
1085
1086 static int
1087 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1088 {
1089         struct iavf_adapter *adapter =
1090                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1091         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1092
1093         return iavf_config_promisc(adapter,
1094                                   false, vf->promisc_multicast_enabled);
1095 }
1096
1097 static int
1098 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1099 {
1100         struct iavf_adapter *adapter =
1101                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1102         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1103
1104         return iavf_config_promisc(adapter,
1105                                   vf->promisc_unicast_enabled, true);
1106 }
1107
1108 static int
1109 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1110 {
1111         struct iavf_adapter *adapter =
1112                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1113         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1114
1115         return iavf_config_promisc(adapter,
1116                                   vf->promisc_unicast_enabled, false);
1117 }
1118
1119 static int
1120 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1121                      __rte_unused uint32_t index,
1122                      __rte_unused uint32_t pool)
1123 {
1124         struct iavf_adapter *adapter =
1125                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1126         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1127         int err;
1128
1129         if (rte_is_zero_ether_addr(addr)) {
1130                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1131                 return -EINVAL;
1132         }
1133
1134         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1135         if (err) {
1136                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1137                 return -EIO;
1138         }
1139
1140         vf->mac_num++;
1141
1142         return 0;
1143 }
1144
1145 static void
1146 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1147 {
1148         struct iavf_adapter *adapter =
1149                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1150         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1151         struct rte_ether_addr *addr;
1152         int err;
1153
1154         addr = &dev->data->mac_addrs[index];
1155
1156         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1157         if (err)
1158                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1159
1160         vf->mac_num--;
1161 }
1162
1163 static int
1164 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1165 {
1166         struct iavf_adapter *adapter =
1167                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1168         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1169         int err;
1170
1171         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1172                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1173                 if (err)
1174                         return -EIO;
1175                 return 0;
1176         }
1177
1178         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1179                 return -ENOTSUP;
1180
1181         err = iavf_add_del_vlan(adapter, vlan_id, on);
1182         if (err)
1183                 return -EIO;
1184         return 0;
1185 }
1186
1187 static void
1188 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1189 {
1190         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1191         struct iavf_adapter *adapter =
1192                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1193         uint32_t i, j;
1194         uint64_t ids;
1195
1196         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1197                 if (vfc->ids[i] == 0)
1198                         continue;
1199
1200                 ids = vfc->ids[i];
1201                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1202                         if (ids & 1)
1203                                 iavf_add_del_vlan_v2(adapter,
1204                                                      64 * i + j, enable);
1205                 }
1206         }
1207 }
1208
1209 static int
1210 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1211 {
1212         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1213         struct iavf_adapter *adapter =
1214                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1215         bool enable;
1216         int err;
1217
1218         if (mask & ETH_VLAN_FILTER_MASK) {
1219                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER);
1220
1221                 iavf_iterate_vlan_filters_v2(dev, enable);
1222         }
1223
1224         if (mask & ETH_VLAN_STRIP_MASK) {
1225                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1226
1227                 err = iavf_config_vlan_strip_v2(adapter, enable);
1228                 /* If not support, the stripping is already disabled by PF */
1229                 if (err == -ENOTSUP && !enable)
1230                         err = 0;
1231                 if (err)
1232                         return -EIO;
1233         }
1234
1235         return 0;
1236 }
1237
1238 static int
1239 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1240 {
1241         struct iavf_adapter *adapter =
1242                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1243         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1244         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1245         int err;
1246
1247         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1248                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1249
1250         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1251                 return -ENOTSUP;
1252
1253         /* Vlan stripping setting */
1254         if (mask & ETH_VLAN_STRIP_MASK) {
1255                 /* Enable or disable VLAN stripping */
1256                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1257                         err = iavf_enable_vlan_strip(adapter);
1258                 else
1259                         err = iavf_disable_vlan_strip(adapter);
1260
1261                 if (err)
1262                         return -EIO;
1263         }
1264         return 0;
1265 }
1266
1267 static int
1268 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1269                         struct rte_eth_rss_reta_entry64 *reta_conf,
1270                         uint16_t reta_size)
1271 {
1272         struct iavf_adapter *adapter =
1273                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1274         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1275         uint8_t *lut;
1276         uint16_t i, idx, shift;
1277         int ret;
1278
1279         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1280                 return -ENOTSUP;
1281
1282         if (reta_size != vf->vf_res->rss_lut_size) {
1283                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1284                         "(%d) doesn't match the number of hardware can "
1285                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1286                 return -EINVAL;
1287         }
1288
1289         lut = rte_zmalloc("rss_lut", reta_size, 0);
1290         if (!lut) {
1291                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1292                 return -ENOMEM;
1293         }
1294         /* store the old lut table temporarily */
1295         rte_memcpy(lut, vf->rss_lut, reta_size);
1296
1297         for (i = 0; i < reta_size; i++) {
1298                 idx = i / RTE_RETA_GROUP_SIZE;
1299                 shift = i % RTE_RETA_GROUP_SIZE;
1300                 if (reta_conf[idx].mask & (1ULL << shift))
1301                         lut[i] = reta_conf[idx].reta[shift];
1302         }
1303
1304         rte_memcpy(vf->rss_lut, lut, reta_size);
1305         /* send virtchnnl ops to configure rss*/
1306         ret = iavf_configure_rss_lut(adapter);
1307         if (ret) /* revert back */
1308                 rte_memcpy(vf->rss_lut, lut, reta_size);
1309         rte_free(lut);
1310
1311         return ret;
1312 }
1313
1314 static int
1315 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1316                        struct rte_eth_rss_reta_entry64 *reta_conf,
1317                        uint16_t reta_size)
1318 {
1319         struct iavf_adapter *adapter =
1320                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1321         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1322         uint16_t i, idx, shift;
1323
1324         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1325                 return -ENOTSUP;
1326
1327         if (reta_size != vf->vf_res->rss_lut_size) {
1328                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1329                         "(%d) doesn't match the number of hardware can "
1330                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1331                 return -EINVAL;
1332         }
1333
1334         for (i = 0; i < reta_size; i++) {
1335                 idx = i / RTE_RETA_GROUP_SIZE;
1336                 shift = i % RTE_RETA_GROUP_SIZE;
1337                 if (reta_conf[idx].mask & (1ULL << shift))
1338                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1339         }
1340
1341         return 0;
1342 }
1343
1344 static int
1345 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1346 {
1347         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1348
1349         /* HENA setting, it is enabled by default, no change */
1350         if (!key || key_len == 0) {
1351                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1352                 return 0;
1353         } else if (key_len != vf->vf_res->rss_key_size) {
1354                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1355                         "(%d) doesn't match the size of hardware can "
1356                         "support (%d)", key_len,
1357                         vf->vf_res->rss_key_size);
1358                 return -EINVAL;
1359         }
1360
1361         rte_memcpy(vf->rss_key, key, key_len);
1362
1363         return iavf_configure_rss_key(adapter);
1364 }
1365
1366 static int
1367 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1368                         struct rte_eth_rss_conf *rss_conf)
1369 {
1370         struct iavf_adapter *adapter =
1371                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1372         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1373         int ret;
1374
1375         adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1376
1377         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1378                 return -ENOTSUP;
1379
1380         /* Set hash key. */
1381         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1382                                rss_conf->rss_key_len);
1383         if (ret)
1384                 return ret;
1385
1386         if (rss_conf->rss_hf == 0) {
1387                 vf->rss_hf = 0;
1388                 ret = iavf_set_hena(adapter, 0);
1389
1390                 /* It is a workaround, temporarily allow error to be returned
1391                  * due to possible lack of PF handling for hena = 0.
1392                  */
1393                 if (ret)
1394                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1395                 return 0;
1396         }
1397
1398         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1399                 /* Clear existing RSS. */
1400                 ret = iavf_set_hena(adapter, 0);
1401
1402                 /* It is a workaround, temporarily allow error to be returned
1403                  * due to possible lack of PF handling for hena = 0.
1404                  */
1405                 if (ret)
1406                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1407                                     "lack PF support");
1408
1409                 /* Set new RSS configuration. */
1410                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1411                 if (ret) {
1412                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1413                         return ret;
1414                 }
1415         } else {
1416                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1417         }
1418
1419         return 0;
1420 }
1421
1422 static int
1423 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1424                           struct rte_eth_rss_conf *rss_conf)
1425 {
1426         struct iavf_adapter *adapter =
1427                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1428         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1429
1430         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1431                 return -ENOTSUP;
1432
1433         rss_conf->rss_hf = vf->rss_hf;
1434
1435         if (!rss_conf->rss_key)
1436                 return 0;
1437
1438         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1439         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1440
1441         return 0;
1442 }
1443
1444 static int
1445 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1446 {
1447         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1448         int ret = 0;
1449
1450         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1451                 return -EINVAL;
1452
1453         /* mtu setting is forbidden if port is start */
1454         if (dev->data->dev_started) {
1455                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1456                 return -EBUSY;
1457         }
1458
1459         if (frame_size > IAVF_ETH_MAX_LEN)
1460                 dev->data->dev_conf.rxmode.offloads |=
1461                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
1462         else
1463                 dev->data->dev_conf.rxmode.offloads &=
1464                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1465
1466         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1467
1468         return ret;
1469 }
1470
1471 static int
1472 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1473                              struct rte_ether_addr *mac_addr)
1474 {
1475         struct iavf_adapter *adapter =
1476                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1477         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1478         struct rte_ether_addr *old_addr;
1479         int ret;
1480
1481         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1482
1483         if (rte_is_same_ether_addr(old_addr, mac_addr))
1484                 return 0;
1485
1486         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1487         if (ret)
1488                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1489                             RTE_ETHER_ADDR_PRT_FMT,
1490                                 RTE_ETHER_ADDR_BYTES(old_addr));
1491
1492         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1493         if (ret)
1494                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1495                             RTE_ETHER_ADDR_PRT_FMT,
1496                                 RTE_ETHER_ADDR_BYTES(mac_addr));
1497
1498         if (ret)
1499                 return -EIO;
1500
1501         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1502         return 0;
1503 }
1504
1505 static void
1506 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1507 {
1508         if (*stat >= *offset)
1509                 *stat = *stat - *offset;
1510         else
1511                 *stat = (uint64_t)((*stat +
1512                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1513
1514         *stat &= IAVF_48_BIT_MASK;
1515 }
1516
1517 static void
1518 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1519 {
1520         if (*stat >= *offset)
1521                 *stat = (uint64_t)(*stat - *offset);
1522         else
1523                 *stat = (uint64_t)((*stat +
1524                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1525 }
1526
1527 static void
1528 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1529 {
1530         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1531
1532         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1533         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1534         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1535         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1536         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1537         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1538         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1539         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1540         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1541         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1542         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1543 }
1544
1545 static int
1546 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1547 {
1548         struct iavf_adapter *adapter =
1549                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1550         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1551         struct iavf_vsi *vsi = &vf->vsi;
1552         struct virtchnl_eth_stats *pstats = NULL;
1553         int ret;
1554
1555         ret = iavf_query_stats(adapter, &pstats);
1556         if (ret == 0) {
1557                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1558                                          DEV_RX_OFFLOAD_KEEP_CRC) ? 0 :
1559                                          RTE_ETHER_CRC_LEN;
1560                 iavf_update_stats(vsi, pstats);
1561                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1562                                 pstats->rx_broadcast - pstats->rx_discards;
1563                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1564                                                 pstats->tx_unicast;
1565                 stats->imissed = pstats->rx_discards;
1566                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1567                 stats->ibytes = pstats->rx_bytes;
1568                 stats->ibytes -= stats->ipackets * crc_stats_len;
1569                 stats->obytes = pstats->tx_bytes;
1570         } else {
1571                 PMD_DRV_LOG(ERR, "Get statistics failed");
1572         }
1573         return ret;
1574 }
1575
1576 static int
1577 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1578 {
1579         int ret;
1580         struct iavf_adapter *adapter =
1581                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1582         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1583         struct iavf_vsi *vsi = &vf->vsi;
1584         struct virtchnl_eth_stats *pstats = NULL;
1585
1586         /* read stat values to clear hardware registers */
1587         ret = iavf_query_stats(adapter, &pstats);
1588         if (ret != 0)
1589                 return ret;
1590
1591         /* set stats offset base on current values */
1592         vsi->eth_stats_offset = *pstats;
1593
1594         return 0;
1595 }
1596
1597 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1598                                       struct rte_eth_xstat_name *xstats_names,
1599                                       __rte_unused unsigned int limit)
1600 {
1601         unsigned int i;
1602
1603         if (xstats_names != NULL)
1604                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1605                         snprintf(xstats_names[i].name,
1606                                 sizeof(xstats_names[i].name),
1607                                 "%s", rte_iavf_stats_strings[i].name);
1608                 }
1609         return IAVF_NB_XSTATS;
1610 }
1611
1612 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1613                                  struct rte_eth_xstat *xstats, unsigned int n)
1614 {
1615         int ret;
1616         unsigned int i;
1617         struct iavf_adapter *adapter =
1618                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1619         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1620         struct iavf_vsi *vsi = &vf->vsi;
1621         struct virtchnl_eth_stats *pstats = NULL;
1622
1623         if (n < IAVF_NB_XSTATS)
1624                 return IAVF_NB_XSTATS;
1625
1626         ret = iavf_query_stats(adapter, &pstats);
1627         if (ret != 0)
1628                 return 0;
1629
1630         if (!xstats)
1631                 return 0;
1632
1633         iavf_update_stats(vsi, pstats);
1634
1635         /* loop over xstats array and values from pstats */
1636         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1637                 xstats[i].id = i;
1638                 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1639                         rte_iavf_stats_strings[i].offset);
1640         }
1641
1642         return IAVF_NB_XSTATS;
1643 }
1644
1645
1646 static int
1647 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1648 {
1649         struct iavf_adapter *adapter =
1650                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1651         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1652         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1653         uint16_t msix_intr;
1654
1655         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1656         if (msix_intr == IAVF_MISC_VEC_ID) {
1657                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1658                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1659                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1660                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1661                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1662         } else {
1663                 IAVF_WRITE_REG(hw,
1664                                IAVF_VFINT_DYN_CTLN1
1665                                 (msix_intr - IAVF_RX_VEC_START),
1666                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1667                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1668                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1669         }
1670
1671         IAVF_WRITE_FLUSH(hw);
1672
1673         rte_intr_ack(&pci_dev->intr_handle);
1674
1675         return 0;
1676 }
1677
1678 static int
1679 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1680 {
1681         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1682         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1683         uint16_t msix_intr;
1684
1685         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1686         if (msix_intr == IAVF_MISC_VEC_ID) {
1687                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1688                 return -EIO;
1689         }
1690
1691         IAVF_WRITE_REG(hw,
1692                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1693                       0);
1694
1695         IAVF_WRITE_FLUSH(hw);
1696         return 0;
1697 }
1698
1699 static int
1700 iavf_check_vf_reset_done(struct iavf_hw *hw)
1701 {
1702         int i, reset;
1703
1704         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1705                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1706                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1707                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1708                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1709                     reset == VIRTCHNL_VFR_COMPLETED)
1710                         break;
1711                 rte_delay_ms(20);
1712         }
1713
1714         if (i >= IAVF_RESET_WAIT_CNT)
1715                 return -1;
1716
1717         return 0;
1718 }
1719
1720 static int
1721 iavf_lookup_proto_xtr_type(const char *flex_name)
1722 {
1723         static struct {
1724                 const char *name;
1725                 enum iavf_proto_xtr_type type;
1726         } xtr_type_map[] = {
1727                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1728                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1729                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1730                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1731                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1732                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1733         };
1734         uint32_t i;
1735
1736         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1737                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1738                         return xtr_type_map[i].type;
1739         }
1740
1741         PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1742                     "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1743
1744         return -1;
1745 }
1746
1747 /**
1748  * Parse elem, the elem could be single number/range or '(' ')' group
1749  * 1) A single number elem, it's just a simple digit. e.g. 9
1750  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1751  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1752  *    Within group elem, '-' used for a range separator;
1753  *                       ',' used for a single number.
1754  */
1755 static int
1756 iavf_parse_queue_set(const char *input, int xtr_type,
1757                      struct iavf_devargs *devargs)
1758 {
1759         const char *str = input;
1760         char *end = NULL;
1761         uint32_t min, max;
1762         uint32_t idx;
1763
1764         while (isblank(*str))
1765                 str++;
1766
1767         if (!isdigit(*str) && *str != '(')
1768                 return -1;
1769
1770         /* process single number or single range of number */
1771         if (*str != '(') {
1772                 errno = 0;
1773                 idx = strtoul(str, &end, 10);
1774                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1775                         return -1;
1776
1777                 while (isblank(*end))
1778                         end++;
1779
1780                 min = idx;
1781                 max = idx;
1782
1783                 /* process single <number>-<number> */
1784                 if (*end == '-') {
1785                         end++;
1786                         while (isblank(*end))
1787                                 end++;
1788                         if (!isdigit(*end))
1789                                 return -1;
1790
1791                         errno = 0;
1792                         idx = strtoul(end, &end, 10);
1793                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1794                                 return -1;
1795
1796                         max = idx;
1797                         while (isblank(*end))
1798                                 end++;
1799                 }
1800
1801                 if (*end != ':')
1802                         return -1;
1803
1804                 for (idx = RTE_MIN(min, max);
1805                      idx <= RTE_MAX(min, max); idx++)
1806                         devargs->proto_xtr[idx] = xtr_type;
1807
1808                 return 0;
1809         }
1810
1811         /* process set within bracket */
1812         str++;
1813         while (isblank(*str))
1814                 str++;
1815         if (*str == '\0')
1816                 return -1;
1817
1818         min = IAVF_MAX_QUEUE_NUM;
1819         do {
1820                 /* go ahead to the first digit */
1821                 while (isblank(*str))
1822                         str++;
1823                 if (!isdigit(*str))
1824                         return -1;
1825
1826                 /* get the digit value */
1827                 errno = 0;
1828                 idx = strtoul(str, &end, 10);
1829                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1830                         return -1;
1831
1832                 /* go ahead to separator '-',',' and ')' */
1833                 while (isblank(*end))
1834                         end++;
1835                 if (*end == '-') {
1836                         if (min == IAVF_MAX_QUEUE_NUM)
1837                                 min = idx;
1838                         else /* avoid continuous '-' */
1839                                 return -1;
1840                 } else if (*end == ',' || *end == ')') {
1841                         max = idx;
1842                         if (min == IAVF_MAX_QUEUE_NUM)
1843                                 min = idx;
1844
1845                         for (idx = RTE_MIN(min, max);
1846                              idx <= RTE_MAX(min, max); idx++)
1847                                 devargs->proto_xtr[idx] = xtr_type;
1848
1849                         min = IAVF_MAX_QUEUE_NUM;
1850                 } else {
1851                         return -1;
1852                 }
1853
1854                 str = end + 1;
1855         } while (*end != ')' && *end != '\0');
1856
1857         return 0;
1858 }
1859
1860 static int
1861 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1862 {
1863         const char *queue_start;
1864         uint32_t idx;
1865         int xtr_type;
1866         char flex_name[32];
1867
1868         while (isblank(*queues))
1869                 queues++;
1870
1871         if (*queues != '[') {
1872                 xtr_type = iavf_lookup_proto_xtr_type(queues);
1873                 if (xtr_type < 0)
1874                         return -1;
1875
1876                 devargs->proto_xtr_dflt = xtr_type;
1877
1878                 return 0;
1879         }
1880
1881         queues++;
1882         do {
1883                 while (isblank(*queues))
1884                         queues++;
1885                 if (*queues == '\0')
1886                         return -1;
1887
1888                 queue_start = queues;
1889
1890                 /* go across a complete bracket */
1891                 if (*queue_start == '(') {
1892                         queues += strcspn(queues, ")");
1893                         if (*queues != ')')
1894                                 return -1;
1895                 }
1896
1897                 /* scan the separator ':' */
1898                 queues += strcspn(queues, ":");
1899                 if (*queues++ != ':')
1900                         return -1;
1901                 while (isblank(*queues))
1902                         queues++;
1903
1904                 for (idx = 0; ; idx++) {
1905                         if (isblank(queues[idx]) ||
1906                             queues[idx] == ',' ||
1907                             queues[idx] == ']' ||
1908                             queues[idx] == '\0')
1909                                 break;
1910
1911                         if (idx > sizeof(flex_name) - 2)
1912                                 return -1;
1913
1914                         flex_name[idx] = queues[idx];
1915                 }
1916                 flex_name[idx] = '\0';
1917                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1918                 if (xtr_type < 0)
1919                         return -1;
1920
1921                 queues += idx;
1922
1923                 while (isblank(*queues) || *queues == ',' || *queues == ']')
1924                         queues++;
1925
1926                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1927                         return -1;
1928         } while (*queues != '\0');
1929
1930         return 0;
1931 }
1932
1933 static int
1934 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1935                           void *extra_args)
1936 {
1937         struct iavf_devargs *devargs = extra_args;
1938
1939         if (!value || !extra_args)
1940                 return -EINVAL;
1941
1942         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1943                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1944                             value);
1945                 return -1;
1946         }
1947
1948         return 0;
1949 }
1950
1951 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1952 {
1953         struct iavf_adapter *ad =
1954                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1955         struct rte_devargs *devargs = dev->device->devargs;
1956         struct rte_kvargs *kvlist;
1957         int ret;
1958
1959         if (!devargs)
1960                 return 0;
1961
1962         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1963         if (!kvlist) {
1964                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1965                 return -EINVAL;
1966         }
1967
1968         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1969         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1970                sizeof(ad->devargs.proto_xtr));
1971
1972         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1973                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
1974         if (ret)
1975                 goto bail;
1976
1977 bail:
1978         rte_kvargs_free(kvlist);
1979         return ret;
1980 }
1981
1982 static void
1983 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1984 {
1985         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1986         struct iavf_adapter *ad =
1987                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1988         const struct iavf_proto_xtr_ol *xtr_ol;
1989         bool proto_xtr_enable = false;
1990         int offset;
1991         uint16_t i;
1992
1993         vf->proto_xtr = rte_zmalloc("vf proto xtr",
1994                                     vf->vsi_res->num_queue_pairs, 0);
1995         if (unlikely(!(vf->proto_xtr))) {
1996                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
1997                 return;
1998         }
1999
2000         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2001                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2002                                         IAVF_PROTO_XTR_NONE ?
2003                                         ad->devargs.proto_xtr[i] :
2004                                         ad->devargs.proto_xtr_dflt;
2005
2006                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2007                         uint8_t type = vf->proto_xtr[i];
2008
2009                         iavf_proto_xtr_params[type].required = true;
2010                         proto_xtr_enable = true;
2011                 }
2012         }
2013
2014         if (likely(!proto_xtr_enable))
2015                 return;
2016
2017         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2018         if (unlikely(offset == -1)) {
2019                 PMD_DRV_LOG(ERR,
2020                             "failed to extract protocol metadata, error %d",
2021                             -rte_errno);
2022                 return;
2023         }
2024
2025         PMD_DRV_LOG(DEBUG,
2026                     "proto_xtr metadata offset in mbuf is : %d",
2027                     offset);
2028         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2029
2030         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2031                 xtr_ol = &iavf_proto_xtr_params[i];
2032
2033                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2034
2035                 if (!xtr_ol->required)
2036                         continue;
2037
2038                 if (!(vf->supported_rxdid & BIT(rxdid))) {
2039                         PMD_DRV_LOG(ERR,
2040                                     "rxdid[%u] is not supported in hardware",
2041                                     rxdid);
2042                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2043                         break;
2044                 }
2045
2046                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2047                 if (unlikely(offset == -1)) {
2048                         PMD_DRV_LOG(ERR,
2049                                     "failed to register proto_xtr offload '%s', error %d",
2050                                     xtr_ol->param.name, -rte_errno);
2051
2052                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2053                         break;
2054                 }
2055
2056                 PMD_DRV_LOG(DEBUG,
2057                             "proto_xtr offload '%s' offset in mbuf is : %d",
2058                             xtr_ol->param.name, offset);
2059                 *xtr_ol->ol_flag = 1ULL << offset;
2060         }
2061 }
2062
2063 static int
2064 iavf_init_vf(struct rte_eth_dev *dev)
2065 {
2066         int err, bufsz;
2067         struct iavf_adapter *adapter =
2068                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2069         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2070         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2071
2072         err = iavf_parse_devargs(dev);
2073         if (err) {
2074                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2075                 goto err;
2076         }
2077
2078         err = iavf_set_mac_type(hw);
2079         if (err) {
2080                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2081                 goto err;
2082         }
2083
2084         err = iavf_check_vf_reset_done(hw);
2085         if (err) {
2086                 PMD_INIT_LOG(ERR, "VF is still resetting");
2087                 goto err;
2088         }
2089
2090         iavf_init_adminq_parameter(hw);
2091         err = iavf_init_adminq(hw);
2092         if (err) {
2093                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2094                 goto err;
2095         }
2096
2097         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2098         if (!vf->aq_resp) {
2099                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2100                 goto err_aq;
2101         }
2102         if (iavf_check_api_version(adapter) != 0) {
2103                 PMD_INIT_LOG(ERR, "check_api version failed");
2104                 goto err_api;
2105         }
2106
2107         bufsz = sizeof(struct virtchnl_vf_resource) +
2108                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2109         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2110         if (!vf->vf_res) {
2111                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2112                 goto err_api;
2113         }
2114
2115         if (iavf_get_vf_resource(adapter) != 0) {
2116                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2117                 goto err_alloc;
2118         }
2119         /* Allocate memort for RSS info */
2120         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2121                 vf->rss_key = rte_zmalloc("rss_key",
2122                                           vf->vf_res->rss_key_size, 0);
2123                 if (!vf->rss_key) {
2124                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2125                         goto err_rss;
2126                 }
2127                 vf->rss_lut = rte_zmalloc("rss_lut",
2128                                           vf->vf_res->rss_lut_size, 0);
2129                 if (!vf->rss_lut) {
2130                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2131                         goto err_rss;
2132                 }
2133         }
2134
2135         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2136                 if (iavf_get_supported_rxdid(adapter) != 0) {
2137                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2138                         goto err_rss;
2139                 }
2140         }
2141
2142         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2143                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2144                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2145                         goto err_rss;
2146                 }
2147         }
2148
2149         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2150                 bufsz = sizeof(struct virtchnl_qos_cap_list) +
2151                         IAVF_MAX_TRAFFIC_CLASS *
2152                         sizeof(struct virtchnl_qos_cap_elem);
2153                 vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2154                 if (!vf->qos_cap) {
2155                         PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2156                         goto err_rss;
2157                 }
2158                 iavf_tm_conf_init(dev);
2159         }
2160
2161         iavf_init_proto_xtr(dev);
2162
2163         return 0;
2164 err_rss:
2165         rte_free(vf->rss_key);
2166         rte_free(vf->rss_lut);
2167 err_alloc:
2168         rte_free(vf->qos_cap);
2169         rte_free(vf->vf_res);
2170         vf->vsi_res = NULL;
2171 err_api:
2172         rte_free(vf->aq_resp);
2173 err_aq:
2174         iavf_shutdown_adminq(hw);
2175 err:
2176         return -1;
2177 }
2178
2179 static void
2180 iavf_uninit_vf(struct rte_eth_dev *dev)
2181 {
2182         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2183         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2184
2185         iavf_shutdown_adminq(hw);
2186
2187         rte_free(vf->vf_res);
2188         vf->vsi_res = NULL;
2189         vf->vf_res = NULL;
2190
2191         rte_free(vf->aq_resp);
2192         vf->aq_resp = NULL;
2193
2194         rte_free(vf->qos_cap);
2195         vf->qos_cap = NULL;
2196
2197         rte_free(vf->rss_lut);
2198         vf->rss_lut = NULL;
2199         rte_free(vf->rss_key);
2200         vf->rss_key = NULL;
2201 }
2202
2203 /* Enable default admin queue interrupt setting */
2204 static inline void
2205 iavf_enable_irq0(struct iavf_hw *hw)
2206 {
2207         /* Enable admin queue interrupt trigger */
2208         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2209                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2210
2211         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2212                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2213                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2214                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2215
2216         IAVF_WRITE_FLUSH(hw);
2217 }
2218
2219 static inline void
2220 iavf_disable_irq0(struct iavf_hw *hw)
2221 {
2222         /* Disable all interrupt types */
2223         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2224         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2225                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2226         IAVF_WRITE_FLUSH(hw);
2227 }
2228
2229 static void
2230 iavf_dev_interrupt_handler(void *param)
2231 {
2232         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2233         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2234
2235         iavf_disable_irq0(hw);
2236
2237         iavf_handle_virtchnl_msg(dev);
2238
2239         iavf_enable_irq0(hw);
2240 }
2241
2242 static int
2243 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2244                       const struct rte_flow_ops **ops)
2245 {
2246         if (!dev)
2247                 return -EINVAL;
2248
2249         *ops = &iavf_flow_ops;
2250         return 0;
2251 }
2252
2253 static void
2254 iavf_default_rss_disable(struct iavf_adapter *adapter)
2255 {
2256         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2257         int ret = 0;
2258
2259         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2260                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2261                 ret = iavf_set_hena(adapter, 0);
2262                 if (ret)
2263                         /* It is a workaround, temporarily allow error to be
2264                          * returned due to possible lack of PF handling for
2265                          * hena = 0.
2266                          */
2267                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2268                                     "lack PF support");
2269         }
2270 }
2271
2272 static int
2273 iavf_dev_init(struct rte_eth_dev *eth_dev)
2274 {
2275         struct iavf_adapter *adapter =
2276                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2277         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2278         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2279         int ret = 0;
2280
2281         PMD_INIT_FUNC_TRACE();
2282
2283         /* assign ops func pointer */
2284         eth_dev->dev_ops = &iavf_eth_dev_ops;
2285         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2286         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2287         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2288         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2289         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2290         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2291
2292         /* For secondary processes, we don't initialise any further as primary
2293          * has already done this work. Only check if we need a different RX
2294          * and TX function.
2295          */
2296         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2297                 iavf_set_rx_function(eth_dev);
2298                 iavf_set_tx_function(eth_dev);
2299                 return 0;
2300         }
2301         rte_eth_copy_pci_info(eth_dev, pci_dev);
2302         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2303
2304         hw->vendor_id = pci_dev->id.vendor_id;
2305         hw->device_id = pci_dev->id.device_id;
2306         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2307         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2308         hw->bus.bus_id = pci_dev->addr.bus;
2309         hw->bus.device = pci_dev->addr.devid;
2310         hw->bus.func = pci_dev->addr.function;
2311         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2312         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2313         adapter->eth_dev = eth_dev;
2314         adapter->stopped = 1;
2315
2316         if (iavf_init_vf(eth_dev) != 0) {
2317                 PMD_INIT_LOG(ERR, "Init vf failed");
2318                 return -1;
2319         }
2320
2321         /* set default ptype table */
2322         adapter->ptype_tbl = iavf_get_default_ptype_table();
2323
2324         /* copy mac addr */
2325         eth_dev->data->mac_addrs = rte_zmalloc(
2326                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2327         if (!eth_dev->data->mac_addrs) {
2328                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2329                              " store MAC addresses",
2330                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2331                 ret = -ENOMEM;
2332                 goto init_vf_err;
2333         }
2334         /* If the MAC address is not configured by host,
2335          * generate a random one.
2336          */
2337         if (!rte_is_valid_assigned_ether_addr(
2338                         (struct rte_ether_addr *)hw->mac.addr))
2339                 rte_eth_random_addr(hw->mac.addr);
2340         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2341                         &eth_dev->data->mac_addrs[0]);
2342
2343         /* register callback func to eal lib */
2344         rte_intr_callback_register(&pci_dev->intr_handle,
2345                                    iavf_dev_interrupt_handler,
2346                                    (void *)eth_dev);
2347
2348         /* enable uio intr after callback register */
2349         rte_intr_enable(&pci_dev->intr_handle);
2350
2351         /* configure and enable device interrupt */
2352         iavf_enable_irq0(hw);
2353
2354         ret = iavf_flow_init(adapter);
2355         if (ret) {
2356                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2357                 goto flow_init_err;
2358         }
2359
2360         iavf_default_rss_disable(adapter);
2361
2362         return 0;
2363
2364 flow_init_err:
2365         rte_free(eth_dev->data->mac_addrs);
2366         eth_dev->data->mac_addrs = NULL;
2367
2368 init_vf_err:
2369         iavf_uninit_vf(eth_dev);
2370
2371         return ret;
2372 }
2373
2374 static int
2375 iavf_dev_close(struct rte_eth_dev *dev)
2376 {
2377         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2378         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2379         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2380         struct iavf_adapter *adapter =
2381                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2382         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2383         int ret;
2384
2385         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2386                 return 0;
2387
2388         ret = iavf_dev_stop(dev);
2389
2390         iavf_flow_flush(dev, NULL);
2391         iavf_flow_uninit(adapter);
2392
2393         /*
2394          * disable promiscuous mode before reset vf
2395          * it is a workaround solution when work with kernel driver
2396          * and it is not the normal way
2397          */
2398         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2399                 iavf_config_promisc(adapter, false, false);
2400
2401         iavf_shutdown_adminq(hw);
2402         /* disable uio intr before callback unregister */
2403         rte_intr_disable(intr_handle);
2404
2405         /* unregister callback func from eal lib */
2406         rte_intr_callback_unregister(intr_handle,
2407                                      iavf_dev_interrupt_handler, dev);
2408         iavf_disable_irq0(hw);
2409
2410         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2411                 iavf_tm_conf_uninit(dev);
2412
2413         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2414                 if (vf->rss_lut) {
2415                         rte_free(vf->rss_lut);
2416                         vf->rss_lut = NULL;
2417                 }
2418                 if (vf->rss_key) {
2419                         rte_free(vf->rss_key);
2420                         vf->rss_key = NULL;
2421                 }
2422         }
2423
2424         rte_free(vf->vf_res);
2425         vf->vsi_res = NULL;
2426         vf->vf_res = NULL;
2427
2428         rte_free(vf->aq_resp);
2429         vf->aq_resp = NULL;
2430
2431         /*
2432          * If the VF is reset via VFLR, the device will be knocked out of bus
2433          * master mode, and the driver will fail to recover from the reset. Fix
2434          * this by enabling bus mastering after every reset. In a non-VFLR case,
2435          * the bus master bit will not be disabled, and this call will have no
2436          * effect.
2437          */
2438         if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2439                 vf->vf_reset = false;
2440
2441         return ret;
2442 }
2443
2444 static int
2445 iavf_dev_uninit(struct rte_eth_dev *dev)
2446 {
2447         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2448                 return -EPERM;
2449
2450         iavf_dev_close(dev);
2451
2452         return 0;
2453 }
2454
2455 /*
2456  * Reset VF device only to re-initialize resources in PMD layer
2457  */
2458 static int
2459 iavf_dev_reset(struct rte_eth_dev *dev)
2460 {
2461         int ret;
2462
2463         ret = iavf_dev_uninit(dev);
2464         if (ret)
2465                 return ret;
2466
2467         return iavf_dev_init(dev);
2468 }
2469
2470 static int
2471 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2472                            const char *value, __rte_unused void *opaque)
2473 {
2474         if (strcmp(value, "dcf"))
2475                 return -1;
2476
2477         return 0;
2478 }
2479
2480 static int
2481 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2482 {
2483         struct rte_kvargs *kvlist;
2484         const char *key = "cap";
2485         int ret = 0;
2486
2487         if (devargs == NULL)
2488                 return 0;
2489
2490         kvlist = rte_kvargs_parse(devargs->args, NULL);
2491         if (kvlist == NULL)
2492                 return 0;
2493
2494         if (!rte_kvargs_count(kvlist, key))
2495                 goto exit;
2496
2497         /* dcf capability selected when there's a key-value pair: cap=dcf */
2498         if (rte_kvargs_process(kvlist, key,
2499                                iavf_dcf_cap_check_handler, NULL) < 0)
2500                 goto exit;
2501
2502         ret = 1;
2503
2504 exit:
2505         rte_kvargs_free(kvlist);
2506         return ret;
2507 }
2508
2509 static int
2510 iavf_drv_i40evf_check_handler(__rte_unused const char *key,
2511                               const char *value, __rte_unused void *opaque)
2512 {
2513         if (strcmp(value, "i40evf"))
2514                 return -1;
2515
2516         return 0;
2517 }
2518
2519 static int
2520 iavf_drv_i40evf_selected(struct rte_devargs *devargs, uint16_t device_id)
2521 {
2522         struct rte_kvargs *kvlist;
2523         int ret = 0;
2524
2525         if (device_id != IAVF_DEV_ID_VF &&
2526             device_id != IAVF_DEV_ID_VF_HV &&
2527             device_id != IAVF_DEV_ID_X722_VF &&
2528             device_id != IAVF_DEV_ID_X722_A0_VF)
2529                 return 0;
2530
2531         if (devargs == NULL)
2532                 return 0;
2533
2534         kvlist = rte_kvargs_parse(devargs->args, NULL);
2535         if (kvlist == NULL)
2536                 return 0;
2537
2538         if (!rte_kvargs_count(kvlist, RTE_DEVARGS_KEY_DRIVER))
2539                 goto exit;
2540
2541         /* i40evf driver selected when there's a key-value pair:
2542          * driver=i40evf
2543          */
2544         if (rte_kvargs_process(kvlist, RTE_DEVARGS_KEY_DRIVER,
2545                                iavf_drv_i40evf_check_handler, NULL) < 0)
2546                 goto exit;
2547
2548         ret = 1;
2549
2550 exit:
2551         rte_kvargs_free(kvlist);
2552         return ret;
2553 }
2554
2555 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2556                              struct rte_pci_device *pci_dev)
2557 {
2558         if (iavf_dcf_cap_selected(pci_dev->device.devargs) ||
2559             iavf_drv_i40evf_selected(pci_dev->device.devargs,
2560                                      pci_dev->id.device_id))
2561                 return 1;
2562
2563         return rte_eth_dev_pci_generic_probe(pci_dev,
2564                 sizeof(struct iavf_adapter), iavf_dev_init);
2565 }
2566
2567 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2568 {
2569         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2570 }
2571
2572 /* Adaptive virtual function driver struct */
2573 static struct rte_pci_driver rte_iavf_pmd = {
2574         .id_table = pci_id_iavf_map,
2575         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2576         .probe = eth_iavf_pci_probe,
2577         .remove = eth_iavf_pci_remove,
2578 };
2579
2580 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2581 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2582 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2583 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf driver=i40evf");
2584 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2585 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2586 #ifdef RTE_ETHDEV_DEBUG_RX
2587 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2588 #endif
2589 #ifdef RTE_ETHDEV_DEBUG_TX
2590 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2591 #endif