net/iavf: support flow mark in normal data path
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "iavf.h"
28 #include "iavf_rxtx.h"
29
30 static inline int
31 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
32 {
33         /* The following constraints must be satisfied:
34          *   thresh < rxq->nb_rx_desc
35          */
36         if (thresh >= nb_desc) {
37                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
38                              thresh, nb_desc);
39                 return -EINVAL;
40         }
41         return 0;
42 }
43
44 static inline int
45 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
46                 uint16_t tx_free_thresh)
47 {
48         /* TX descriptors will have their RS bit set after tx_rs_thresh
49          * descriptors have been used. The TX descriptor ring will be cleaned
50          * after tx_free_thresh descriptors are used or if the number of
51          * descriptors required to transmit a packet is greater than the
52          * number of free TX descriptors.
53          *
54          * The following constraints must be satisfied:
55          *  - tx_rs_thresh must be less than the size of the ring minus 2.
56          *  - tx_free_thresh must be less than the size of the ring minus 3.
57          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
58          *  - tx_rs_thresh must be a divisor of the ring size.
59          *
60          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
61          * race condition, hence the maximum threshold constraints. When set
62          * to zero use default values.
63          */
64         if (tx_rs_thresh >= (nb_desc - 2)) {
65                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
66                              "number of TX descriptors (%u) minus 2",
67                              tx_rs_thresh, nb_desc);
68                 return -EINVAL;
69         }
70         if (tx_free_thresh >= (nb_desc - 3)) {
71                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
72                              "number of TX descriptors (%u) minus 3.",
73                              tx_free_thresh, nb_desc);
74                 return -EINVAL;
75         }
76         if (tx_rs_thresh > tx_free_thresh) {
77                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
78                              "equal to tx_free_thresh (%u).",
79                              tx_rs_thresh, tx_free_thresh);
80                 return -EINVAL;
81         }
82         if ((nb_desc % tx_rs_thresh) != 0) {
83                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
84                              "number of TX descriptors (%u).",
85                              tx_rs_thresh, nb_desc);
86                 return -EINVAL;
87         }
88
89         return 0;
90 }
91
92 static inline bool
93 check_rx_vec_allow(struct iavf_rx_queue *rxq)
94 {
95         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
96             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
97                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
98                 return true;
99         }
100
101         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
102         return false;
103 }
104
105 static inline bool
106 check_tx_vec_allow(struct iavf_tx_queue *txq)
107 {
108         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
109             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
110             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
111                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
112                 return true;
113         }
114         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
115         return false;
116 }
117
118 static inline bool
119 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
120 {
121         int ret = true;
122
123         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
124                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
125                              "rxq->rx_free_thresh=%d, "
126                              "IAVF_RX_MAX_BURST=%d",
127                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
128                 ret = false;
129         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
130                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
131                              "rxq->nb_rx_desc=%d, "
132                              "rxq->rx_free_thresh=%d",
133                              rxq->nb_rx_desc, rxq->rx_free_thresh);
134                 ret = false;
135         }
136         return ret;
137 }
138
139 static inline void
140 reset_rx_queue(struct iavf_rx_queue *rxq)
141 {
142         uint16_t len;
143         uint32_t i;
144
145         if (!rxq)
146                 return;
147
148         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
149
150         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
151                 ((volatile char *)rxq->rx_ring)[i] = 0;
152
153         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
154
155         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
156                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
157
158         /* for rx bulk */
159         rxq->rx_nb_avail = 0;
160         rxq->rx_next_avail = 0;
161         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
162
163         rxq->rx_tail = 0;
164         rxq->nb_rx_hold = 0;
165         rxq->pkt_first_seg = NULL;
166         rxq->pkt_last_seg = NULL;
167 }
168
169 static inline void
170 reset_tx_queue(struct iavf_tx_queue *txq)
171 {
172         struct iavf_tx_entry *txe;
173         uint32_t i, size;
174         uint16_t prev;
175
176         if (!txq) {
177                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
178                 return;
179         }
180
181         txe = txq->sw_ring;
182         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
183         for (i = 0; i < size; i++)
184                 ((volatile char *)txq->tx_ring)[i] = 0;
185
186         prev = (uint16_t)(txq->nb_tx_desc - 1);
187         for (i = 0; i < txq->nb_tx_desc; i++) {
188                 txq->tx_ring[i].cmd_type_offset_bsz =
189                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
190                 txe[i].mbuf =  NULL;
191                 txe[i].last_id = i;
192                 txe[prev].next_id = i;
193                 prev = i;
194         }
195
196         txq->tx_tail = 0;
197         txq->nb_used = 0;
198
199         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
200         txq->nb_free = txq->nb_tx_desc - 1;
201
202         txq->next_dd = txq->rs_thresh - 1;
203         txq->next_rs = txq->rs_thresh - 1;
204 }
205
206 static int
207 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
208 {
209         volatile union iavf_rx_desc *rxd;
210         struct rte_mbuf *mbuf = NULL;
211         uint64_t dma_addr;
212         uint16_t i;
213
214         for (i = 0; i < rxq->nb_rx_desc; i++) {
215                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
216                 if (unlikely(!mbuf)) {
217                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
218                         return -ENOMEM;
219                 }
220
221                 rte_mbuf_refcnt_set(mbuf, 1);
222                 mbuf->next = NULL;
223                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
224                 mbuf->nb_segs = 1;
225                 mbuf->port = rxq->port_id;
226
227                 dma_addr =
228                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
229
230                 rxd = &rxq->rx_ring[i];
231                 rxd->read.pkt_addr = dma_addr;
232                 rxd->read.hdr_addr = 0;
233 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
234                 rxd->read.rsvd1 = 0;
235                 rxd->read.rsvd2 = 0;
236 #endif
237
238                 rxq->sw_ring[i] = mbuf;
239         }
240
241         return 0;
242 }
243
244 static inline void
245 release_rxq_mbufs(struct iavf_rx_queue *rxq)
246 {
247         uint16_t i;
248
249         if (!rxq->sw_ring)
250                 return;
251
252         for (i = 0; i < rxq->nb_rx_desc; i++) {
253                 if (rxq->sw_ring[i]) {
254                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
255                         rxq->sw_ring[i] = NULL;
256                 }
257         }
258
259         /* for rx bulk */
260         if (rxq->rx_nb_avail == 0)
261                 return;
262         for (i = 0; i < rxq->rx_nb_avail; i++) {
263                 struct rte_mbuf *mbuf;
264
265                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
266                 rte_pktmbuf_free_seg(mbuf);
267         }
268         rxq->rx_nb_avail = 0;
269 }
270
271 static inline void
272 release_txq_mbufs(struct iavf_tx_queue *txq)
273 {
274         uint16_t i;
275
276         if (!txq || !txq->sw_ring) {
277                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
278                 return;
279         }
280
281         for (i = 0; i < txq->nb_tx_desc; i++) {
282                 if (txq->sw_ring[i].mbuf) {
283                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
284                         txq->sw_ring[i].mbuf = NULL;
285                 }
286         }
287 }
288
289 static const struct iavf_rxq_ops def_rxq_ops = {
290         .release_mbufs = release_rxq_mbufs,
291 };
292
293 static const struct iavf_txq_ops def_txq_ops = {
294         .release_mbufs = release_txq_mbufs,
295 };
296
297 int
298 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
299                        uint16_t nb_desc, unsigned int socket_id,
300                        const struct rte_eth_rxconf *rx_conf,
301                        struct rte_mempool *mp)
302 {
303         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
304         struct iavf_adapter *ad =
305                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
306         struct iavf_info *vf =
307                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
308         struct iavf_vsi *vsi = &vf->vsi;
309         struct iavf_rx_queue *rxq;
310         const struct rte_memzone *mz;
311         uint32_t ring_size;
312         uint16_t len;
313         uint16_t rx_free_thresh;
314
315         PMD_INIT_FUNC_TRACE();
316
317         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
318             nb_desc > IAVF_MAX_RING_DESC ||
319             nb_desc < IAVF_MIN_RING_DESC) {
320                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
321                              "invalid", nb_desc);
322                 return -EINVAL;
323         }
324
325         /* Check free threshold */
326         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
327                          IAVF_DEFAULT_RX_FREE_THRESH :
328                          rx_conf->rx_free_thresh;
329         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
330                 return -EINVAL;
331
332         /* Free memory if needed */
333         if (dev->data->rx_queues[queue_idx]) {
334                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
335                 dev->data->rx_queues[queue_idx] = NULL;
336         }
337
338         /* Allocate the rx queue data structure */
339         rxq = rte_zmalloc_socket("iavf rxq",
340                                  sizeof(struct iavf_rx_queue),
341                                  RTE_CACHE_LINE_SIZE,
342                                  socket_id);
343         if (!rxq) {
344                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
345                              "rx queue data structure");
346                 return -ENOMEM;
347         }
348
349         if (vf->vf_res->vf_cap_flags &
350             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
351             vf->supported_rxdid & BIT(IAVF_RXDID_COMMS_OVS_1)) {
352                 rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
353         } else {
354                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
355         }
356
357         rxq->mp = mp;
358         rxq->nb_rx_desc = nb_desc;
359         rxq->rx_free_thresh = rx_free_thresh;
360         rxq->queue_id = queue_idx;
361         rxq->port_id = dev->data->port_id;
362         rxq->crc_len = 0; /* crc stripping by default */
363         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
364         rxq->rx_hdr_len = 0;
365         rxq->vsi = vsi;
366
367         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
368         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
369
370         /* Allocate the software ring. */
371         len = nb_desc + IAVF_RX_MAX_BURST;
372         rxq->sw_ring =
373                 rte_zmalloc_socket("iavf rx sw ring",
374                                    sizeof(struct rte_mbuf *) * len,
375                                    RTE_CACHE_LINE_SIZE,
376                                    socket_id);
377         if (!rxq->sw_ring) {
378                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
379                 rte_free(rxq);
380                 return -ENOMEM;
381         }
382
383         /* Allocate the maximun number of RX ring hardware descriptor with
384          * a liitle more to support bulk allocate.
385          */
386         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
387         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
388                               IAVF_DMA_MEM_ALIGN);
389         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
390                                       ring_size, IAVF_RING_BASE_ALIGN,
391                                       socket_id);
392         if (!mz) {
393                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
394                 rte_free(rxq->sw_ring);
395                 rte_free(rxq);
396                 return -ENOMEM;
397         }
398         /* Zero all the descriptors in the ring. */
399         memset(mz->addr, 0, ring_size);
400         rxq->rx_ring_phys_addr = mz->iova;
401         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
402
403         rxq->mz = mz;
404         reset_rx_queue(rxq);
405         rxq->q_set = true;
406         dev->data->rx_queues[queue_idx] = rxq;
407         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
408         rxq->ops = &def_rxq_ops;
409
410         if (check_rx_bulk_allow(rxq) == true) {
411                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
412                              "satisfied. Rx Burst Bulk Alloc function will be "
413                              "used on port=%d, queue=%d.",
414                              rxq->port_id, rxq->queue_id);
415         } else {
416                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
417                              "not satisfied, Scattered Rx is requested "
418                              "on port=%d, queue=%d.",
419                              rxq->port_id, rxq->queue_id);
420                 ad->rx_bulk_alloc_allowed = false;
421         }
422
423         if (check_rx_vec_allow(rxq) == false)
424                 ad->rx_vec_allowed = false;
425
426         return 0;
427 }
428
429 int
430 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
431                        uint16_t queue_idx,
432                        uint16_t nb_desc,
433                        unsigned int socket_id,
434                        const struct rte_eth_txconf *tx_conf)
435 {
436         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
437         struct iavf_tx_queue *txq;
438         const struct rte_memzone *mz;
439         uint32_t ring_size;
440         uint16_t tx_rs_thresh, tx_free_thresh;
441         uint64_t offloads;
442
443         PMD_INIT_FUNC_TRACE();
444
445         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
446
447         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
448             nb_desc > IAVF_MAX_RING_DESC ||
449             nb_desc < IAVF_MIN_RING_DESC) {
450                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
451                             "invalid", nb_desc);
452                 return -EINVAL;
453         }
454
455         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
456                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
457         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
458                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
459         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
460
461         /* Free memory if needed. */
462         if (dev->data->tx_queues[queue_idx]) {
463                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
464                 dev->data->tx_queues[queue_idx] = NULL;
465         }
466
467         /* Allocate the TX queue data structure. */
468         txq = rte_zmalloc_socket("iavf txq",
469                                  sizeof(struct iavf_tx_queue),
470                                  RTE_CACHE_LINE_SIZE,
471                                  socket_id);
472         if (!txq) {
473                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
474                              "tx queue structure");
475                 return -ENOMEM;
476         }
477
478         txq->nb_tx_desc = nb_desc;
479         txq->rs_thresh = tx_rs_thresh;
480         txq->free_thresh = tx_free_thresh;
481         txq->queue_id = queue_idx;
482         txq->port_id = dev->data->port_id;
483         txq->offloads = offloads;
484         txq->tx_deferred_start = tx_conf->tx_deferred_start;
485
486         /* Allocate software ring */
487         txq->sw_ring =
488                 rte_zmalloc_socket("iavf tx sw ring",
489                                    sizeof(struct iavf_tx_entry) * nb_desc,
490                                    RTE_CACHE_LINE_SIZE,
491                                    socket_id);
492         if (!txq->sw_ring) {
493                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
494                 rte_free(txq);
495                 return -ENOMEM;
496         }
497
498         /* Allocate TX hardware ring descriptors. */
499         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
500         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
501         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
502                                       ring_size, IAVF_RING_BASE_ALIGN,
503                                       socket_id);
504         if (!mz) {
505                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
506                 rte_free(txq->sw_ring);
507                 rte_free(txq);
508                 return -ENOMEM;
509         }
510         txq->tx_ring_phys_addr = mz->iova;
511         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
512
513         txq->mz = mz;
514         reset_tx_queue(txq);
515         txq->q_set = true;
516         dev->data->tx_queues[queue_idx] = txq;
517         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
518         txq->ops = &def_txq_ops;
519
520         if (check_tx_vec_allow(txq) == false) {
521                 struct iavf_adapter *ad =
522                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
523                 ad->tx_vec_allowed = false;
524         }
525
526         return 0;
527 }
528
529 int
530 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
531 {
532         struct iavf_adapter *adapter =
533                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
534         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
535         struct iavf_rx_queue *rxq;
536         int err = 0;
537
538         PMD_DRV_FUNC_TRACE();
539
540         if (rx_queue_id >= dev->data->nb_rx_queues)
541                 return -EINVAL;
542
543         rxq = dev->data->rx_queues[rx_queue_id];
544
545         err = alloc_rxq_mbufs(rxq);
546         if (err) {
547                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
548                 return err;
549         }
550
551         rte_wmb();
552
553         /* Init the RX tail register. */
554         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
555         IAVF_WRITE_FLUSH(hw);
556
557         /* Ready to switch the queue on */
558         err = iavf_switch_queue(adapter, rx_queue_id, true, true);
559         if (err)
560                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
561                             rx_queue_id);
562         else
563                 dev->data->rx_queue_state[rx_queue_id] =
564                         RTE_ETH_QUEUE_STATE_STARTED;
565
566         return err;
567 }
568
569 int
570 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
571 {
572         struct iavf_adapter *adapter =
573                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
574         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
575         struct iavf_tx_queue *txq;
576         int err = 0;
577
578         PMD_DRV_FUNC_TRACE();
579
580         if (tx_queue_id >= dev->data->nb_tx_queues)
581                 return -EINVAL;
582
583         txq = dev->data->tx_queues[tx_queue_id];
584
585         /* Init the RX tail register. */
586         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
587         IAVF_WRITE_FLUSH(hw);
588
589         /* Ready to switch the queue on */
590         err = iavf_switch_queue(adapter, tx_queue_id, false, true);
591
592         if (err)
593                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
594                             tx_queue_id);
595         else
596                 dev->data->tx_queue_state[tx_queue_id] =
597                         RTE_ETH_QUEUE_STATE_STARTED;
598
599         return err;
600 }
601
602 int
603 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
604 {
605         struct iavf_adapter *adapter =
606                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
607         struct iavf_rx_queue *rxq;
608         int err;
609
610         PMD_DRV_FUNC_TRACE();
611
612         if (rx_queue_id >= dev->data->nb_rx_queues)
613                 return -EINVAL;
614
615         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
616         if (err) {
617                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
618                             rx_queue_id);
619                 return err;
620         }
621
622         rxq = dev->data->rx_queues[rx_queue_id];
623         rxq->ops->release_mbufs(rxq);
624         reset_rx_queue(rxq);
625         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
626
627         return 0;
628 }
629
630 int
631 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
632 {
633         struct iavf_adapter *adapter =
634                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
635         struct iavf_tx_queue *txq;
636         int err;
637
638         PMD_DRV_FUNC_TRACE();
639
640         if (tx_queue_id >= dev->data->nb_tx_queues)
641                 return -EINVAL;
642
643         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
644         if (err) {
645                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
646                             tx_queue_id);
647                 return err;
648         }
649
650         txq = dev->data->tx_queues[tx_queue_id];
651         txq->ops->release_mbufs(txq);
652         reset_tx_queue(txq);
653         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
654
655         return 0;
656 }
657
658 void
659 iavf_dev_rx_queue_release(void *rxq)
660 {
661         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
662
663         if (!q)
664                 return;
665
666         q->ops->release_mbufs(q);
667         rte_free(q->sw_ring);
668         rte_memzone_free(q->mz);
669         rte_free(q);
670 }
671
672 void
673 iavf_dev_tx_queue_release(void *txq)
674 {
675         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
676
677         if (!q)
678                 return;
679
680         q->ops->release_mbufs(q);
681         rte_free(q->sw_ring);
682         rte_memzone_free(q->mz);
683         rte_free(q);
684 }
685
686 void
687 iavf_stop_queues(struct rte_eth_dev *dev)
688 {
689         struct iavf_adapter *adapter =
690                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
691         struct iavf_rx_queue *rxq;
692         struct iavf_tx_queue *txq;
693         int ret, i;
694
695         /* Stop All queues */
696         ret = iavf_disable_queues(adapter);
697         if (ret)
698                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
699
700         for (i = 0; i < dev->data->nb_tx_queues; i++) {
701                 txq = dev->data->tx_queues[i];
702                 if (!txq)
703                         continue;
704                 txq->ops->release_mbufs(txq);
705                 reset_tx_queue(txq);
706                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
707         }
708         for (i = 0; i < dev->data->nb_rx_queues; i++) {
709                 rxq = dev->data->rx_queues[i];
710                 if (!rxq)
711                         continue;
712                 rxq->ops->release_mbufs(rxq);
713                 reset_rx_queue(rxq);
714                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
715         }
716 }
717
718 static inline void
719 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
720 {
721         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
722                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
723                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
724                 mb->vlan_tci =
725                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
726         } else {
727                 mb->vlan_tci = 0;
728         }
729 }
730
731 static inline void
732 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
733                           volatile union iavf_rx_flex_desc *rxdp)
734 {
735         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
736                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
737                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
738                 mb->vlan_tci =
739                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
740         } else {
741                 mb->vlan_tci = 0;
742         }
743 }
744
745 /* Translate the rx descriptor status and error fields to pkt flags */
746 static inline uint64_t
747 iavf_rxd_to_pkt_flags(uint64_t qword)
748 {
749         uint64_t flags;
750         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
751
752 #define IAVF_RX_ERR_BITS 0x3f
753
754         /* Check if RSS_HASH */
755         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
756                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
757                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
758
759         /* Check if FDIR Match */
760         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
761                                 PKT_RX_FDIR : 0);
762
763         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
764                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
765                 return flags;
766         }
767
768         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
769                 flags |= PKT_RX_IP_CKSUM_BAD;
770         else
771                 flags |= PKT_RX_IP_CKSUM_GOOD;
772
773         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
774                 flags |= PKT_RX_L4_CKSUM_BAD;
775         else
776                 flags |= PKT_RX_L4_CKSUM_GOOD;
777
778         /* TODO: Oversize error bit is not processed here */
779
780         return flags;
781 }
782
783 static inline uint64_t
784 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
785 {
786         uint64_t flags = 0;
787 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
788         uint16_t flexbh;
789
790         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
791                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
792                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
793
794         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
795                 mb->hash.fdir.hi =
796                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
797                 flags |= PKT_RX_FDIR_ID;
798         }
799 #else
800         mb->hash.fdir.hi =
801                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
802         flags |= PKT_RX_FDIR_ID;
803 #endif
804         return flags;
805 }
806
807
808 /* Translate the rx flex descriptor status to pkt flags */
809 static inline void
810 iavf_rxd_to_pkt_fields(struct rte_mbuf *mb,
811                        volatile union iavf_rx_flex_desc *rxdp)
812 {
813         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
814                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
815 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
816         uint16_t stat_err;
817
818         stat_err = rte_le_to_cpu_16(desc->status_error0);
819         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
820                 mb->ol_flags |= PKT_RX_RSS_HASH;
821                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
822         }
823 #endif
824
825         if (desc->flow_id != 0xFFFFFFFF) {
826                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
827                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
828         }
829 }
830
831 #define IAVF_RX_FLEX_ERR0_BITS  \
832         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
833          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
834          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
835          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
836          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
837          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
838
839 /* Rx L3/L4 checksum */
840 static inline uint64_t
841 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
842 {
843         uint64_t flags = 0;
844
845         /* check if HW has decoded the packet and checksum */
846         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
847                 return 0;
848
849         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
850                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
851                 return flags;
852         }
853
854         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
855                 flags |= PKT_RX_IP_CKSUM_BAD;
856         else
857                 flags |= PKT_RX_IP_CKSUM_GOOD;
858
859         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
860                 flags |= PKT_RX_L4_CKSUM_BAD;
861         else
862                 flags |= PKT_RX_L4_CKSUM_GOOD;
863
864         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
865                 flags |= PKT_RX_EIP_CKSUM_BAD;
866
867         return flags;
868 }
869
870 /* If the number of free RX descriptors is greater than the RX free
871  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
872  * register. Update the RDT with the value of the last processed RX
873  * descriptor minus 1, to guarantee that the RDT register is never
874  * equal to the RDH register, which creates a "full" ring situation
875  * from the hardware point of view.
876  */
877 static inline void
878 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
879 {
880         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
881
882         if (nb_hold > rxq->rx_free_thresh) {
883                 PMD_RX_LOG(DEBUG,
884                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
885                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
886                 rx_id = (uint16_t)((rx_id == 0) ?
887                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
888                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
889                 nb_hold = 0;
890         }
891         rxq->nb_rx_hold = nb_hold;
892 }
893
894 /* implement recv_pkts */
895 uint16_t
896 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
897 {
898         volatile union iavf_rx_desc *rx_ring;
899         volatile union iavf_rx_desc *rxdp;
900         struct iavf_rx_queue *rxq;
901         union iavf_rx_desc rxd;
902         struct rte_mbuf *rxe;
903         struct rte_eth_dev *dev;
904         struct rte_mbuf *rxm;
905         struct rte_mbuf *nmb;
906         uint16_t nb_rx;
907         uint32_t rx_status;
908         uint64_t qword1;
909         uint16_t rx_packet_len;
910         uint16_t rx_id, nb_hold;
911         uint64_t dma_addr;
912         uint64_t pkt_flags;
913         const uint32_t *ptype_tbl;
914
915         nb_rx = 0;
916         nb_hold = 0;
917         rxq = rx_queue;
918         rx_id = rxq->rx_tail;
919         rx_ring = rxq->rx_ring;
920         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
921
922         while (nb_rx < nb_pkts) {
923                 rxdp = &rx_ring[rx_id];
924                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
925                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
926                             IAVF_RXD_QW1_STATUS_SHIFT;
927
928                 /* Check the DD bit first */
929                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
930                         break;
931                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
932
933                 nmb = rte_mbuf_raw_alloc(rxq->mp);
934                 if (unlikely(!nmb)) {
935                         dev = &rte_eth_devices[rxq->port_id];
936                         dev->data->rx_mbuf_alloc_failed++;
937                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
938                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
939                         break;
940                 }
941
942                 rxd = *rxdp;
943                 nb_hold++;
944                 rxe = rxq->sw_ring[rx_id];
945                 rx_id++;
946                 if (unlikely(rx_id == rxq->nb_rx_desc))
947                         rx_id = 0;
948
949                 /* Prefetch next mbuf */
950                 rte_prefetch0(rxq->sw_ring[rx_id]);
951
952                 /* When next RX descriptor is on a cache line boundary,
953                  * prefetch the next 4 RX descriptors and next 8 pointers
954                  * to mbufs.
955                  */
956                 if ((rx_id & 0x3) == 0) {
957                         rte_prefetch0(&rx_ring[rx_id]);
958                         rte_prefetch0(rxq->sw_ring[rx_id]);
959                 }
960                 rxm = rxe;
961                 rxe = nmb;
962                 dma_addr =
963                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
964                 rxdp->read.hdr_addr = 0;
965                 rxdp->read.pkt_addr = dma_addr;
966
967                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
968                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
969
970                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
971                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
972                 rxm->nb_segs = 1;
973                 rxm->next = NULL;
974                 rxm->pkt_len = rx_packet_len;
975                 rxm->data_len = rx_packet_len;
976                 rxm->port = rxq->port_id;
977                 rxm->ol_flags = 0;
978                 iavf_rxd_to_vlan_tci(rxm, &rxd);
979                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
980                 rxm->packet_type =
981                         ptype_tbl[(uint8_t)((qword1 &
982                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
983
984                 if (pkt_flags & PKT_RX_RSS_HASH)
985                         rxm->hash.rss =
986                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
987
988                 if (pkt_flags & PKT_RX_FDIR)
989                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
990
991                 rxm->ol_flags |= pkt_flags;
992
993                 rx_pkts[nb_rx++] = rxm;
994         }
995         rxq->rx_tail = rx_id;
996
997         iavf_update_rx_tail(rxq, nb_hold, rx_id);
998
999         return nb_rx;
1000 }
1001
1002 /* implement recv_pkts for flexible Rx descriptor */
1003 uint16_t
1004 iavf_recv_pkts_flex_rxd(void *rx_queue,
1005                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1006 {
1007         volatile union iavf_rx_desc *rx_ring;
1008         volatile union iavf_rx_flex_desc *rxdp;
1009         struct iavf_rx_queue *rxq;
1010         union iavf_rx_flex_desc rxd;
1011         struct rte_mbuf *rxe;
1012         struct rte_eth_dev *dev;
1013         struct rte_mbuf *rxm;
1014         struct rte_mbuf *nmb;
1015         uint16_t nb_rx;
1016         uint16_t rx_stat_err0;
1017         uint16_t rx_packet_len;
1018         uint16_t rx_id, nb_hold;
1019         uint64_t dma_addr;
1020         uint64_t pkt_flags;
1021         const uint32_t *ptype_tbl;
1022
1023         nb_rx = 0;
1024         nb_hold = 0;
1025         rxq = rx_queue;
1026         rx_id = rxq->rx_tail;
1027         rx_ring = rxq->rx_ring;
1028         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1029
1030         while (nb_rx < nb_pkts) {
1031                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1032                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1033
1034                 /* Check the DD bit first */
1035                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1036                         break;
1037                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1038
1039                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1040                 if (unlikely(!nmb)) {
1041                         dev = &rte_eth_devices[rxq->port_id];
1042                         dev->data->rx_mbuf_alloc_failed++;
1043                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1044                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1045                         break;
1046                 }
1047
1048                 rxd = *rxdp;
1049                 nb_hold++;
1050                 rxe = rxq->sw_ring[rx_id];
1051                 rx_id++;
1052                 if (unlikely(rx_id == rxq->nb_rx_desc))
1053                         rx_id = 0;
1054
1055                 /* Prefetch next mbuf */
1056                 rte_prefetch0(rxq->sw_ring[rx_id]);
1057
1058                 /* When next RX descriptor is on a cache line boundary,
1059                  * prefetch the next 4 RX descriptors and next 8 pointers
1060                  * to mbufs.
1061                  */
1062                 if ((rx_id & 0x3) == 0) {
1063                         rte_prefetch0(&rx_ring[rx_id]);
1064                         rte_prefetch0(rxq->sw_ring[rx_id]);
1065                 }
1066                 rxm = rxe;
1067                 rxe = nmb;
1068                 dma_addr =
1069                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1070                 rxdp->read.hdr_addr = 0;
1071                 rxdp->read.pkt_addr = dma_addr;
1072
1073                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1074                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1075
1076                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1077                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1078                 rxm->nb_segs = 1;
1079                 rxm->next = NULL;
1080                 rxm->pkt_len = rx_packet_len;
1081                 rxm->data_len = rx_packet_len;
1082                 rxm->port = rxq->port_id;
1083                 rxm->ol_flags = 0;
1084                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1085                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1086                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1087                 iavf_rxd_to_pkt_fields(rxm, &rxd);
1088                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1089                 rxm->ol_flags |= pkt_flags;
1090
1091                 rx_pkts[nb_rx++] = rxm;
1092         }
1093         rxq->rx_tail = rx_id;
1094
1095         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1096
1097         return nb_rx;
1098 }
1099
1100 /* implement recv_scattered_pkts for flexible Rx descriptor */
1101 uint16_t
1102 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1103                                   uint16_t nb_pkts)
1104 {
1105         struct iavf_rx_queue *rxq = rx_queue;
1106         union iavf_rx_flex_desc rxd;
1107         struct rte_mbuf *rxe;
1108         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1109         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1110         struct rte_mbuf *nmb, *rxm;
1111         uint16_t rx_id = rxq->rx_tail;
1112         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1113         struct rte_eth_dev *dev;
1114         uint16_t rx_stat_err0;
1115         uint64_t dma_addr;
1116         uint64_t pkt_flags;
1117
1118         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1119         volatile union iavf_rx_flex_desc *rxdp;
1120         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1121
1122         while (nb_rx < nb_pkts) {
1123                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1124                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1125
1126                 /* Check the DD bit */
1127                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1128                         break;
1129                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1130
1131                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1132                 if (unlikely(!nmb)) {
1133                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1134                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1135                         dev = &rte_eth_devices[rxq->port_id];
1136                         dev->data->rx_mbuf_alloc_failed++;
1137                         break;
1138                 }
1139
1140                 rxd = *rxdp;
1141                 nb_hold++;
1142                 rxe = rxq->sw_ring[rx_id];
1143                 rx_id++;
1144                 if (rx_id == rxq->nb_rx_desc)
1145                         rx_id = 0;
1146
1147                 /* Prefetch next mbuf */
1148                 rte_prefetch0(rxq->sw_ring[rx_id]);
1149
1150                 /* When next RX descriptor is on a cache line boundary,
1151                  * prefetch the next 4 RX descriptors and next 8 pointers
1152                  * to mbufs.
1153                  */
1154                 if ((rx_id & 0x3) == 0) {
1155                         rte_prefetch0(&rx_ring[rx_id]);
1156                         rte_prefetch0(rxq->sw_ring[rx_id]);
1157                 }
1158
1159                 rxm = rxe;
1160                 rxe = nmb;
1161                 dma_addr =
1162                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1163
1164                 /* Set data buffer address and data length of the mbuf */
1165                 rxdp->read.hdr_addr = 0;
1166                 rxdp->read.pkt_addr = dma_addr;
1167                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1168                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1169                 rxm->data_len = rx_packet_len;
1170                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1171
1172                 /* If this is the first buffer of the received packet, set the
1173                  * pointer to the first mbuf of the packet and initialize its
1174                  * context. Otherwise, update the total length and the number
1175                  * of segments of the current scattered packet, and update the
1176                  * pointer to the last mbuf of the current packet.
1177                  */
1178                 if (!first_seg) {
1179                         first_seg = rxm;
1180                         first_seg->nb_segs = 1;
1181                         first_seg->pkt_len = rx_packet_len;
1182                 } else {
1183                         first_seg->pkt_len =
1184                                 (uint16_t)(first_seg->pkt_len +
1185                                                 rx_packet_len);
1186                         first_seg->nb_segs++;
1187                         last_seg->next = rxm;
1188                 }
1189
1190                 /* If this is not the last buffer of the received packet,
1191                  * update the pointer to the last mbuf of the current scattered
1192                  * packet and continue to parse the RX ring.
1193                  */
1194                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1195                         last_seg = rxm;
1196                         continue;
1197                 }
1198
1199                 /* This is the last buffer of the received packet. If the CRC
1200                  * is not stripped by the hardware:
1201                  *  - Subtract the CRC length from the total packet length.
1202                  *  - If the last buffer only contains the whole CRC or a part
1203                  *  of it, free the mbuf associated to the last buffer. If part
1204                  *  of the CRC is also contained in the previous mbuf, subtract
1205                  *  the length of that CRC part from the data length of the
1206                  *  previous mbuf.
1207                  */
1208                 rxm->next = NULL;
1209                 if (unlikely(rxq->crc_len > 0)) {
1210                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1211                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1212                                 rte_pktmbuf_free_seg(rxm);
1213                                 first_seg->nb_segs--;
1214                                 last_seg->data_len =
1215                                         (uint16_t)(last_seg->data_len -
1216                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1217                                 last_seg->next = NULL;
1218                         } else {
1219                                 rxm->data_len = (uint16_t)(rx_packet_len -
1220                                                         RTE_ETHER_CRC_LEN);
1221                         }
1222                 }
1223
1224                 first_seg->port = rxq->port_id;
1225                 first_seg->ol_flags = 0;
1226                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1227                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1228                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1229                 iavf_rxd_to_pkt_fields(first_seg, &rxd);
1230                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1231
1232                 first_seg->ol_flags |= pkt_flags;
1233
1234                 /* Prefetch data of first segment, if configured to do so. */
1235                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1236                                           first_seg->data_off));
1237                 rx_pkts[nb_rx++] = first_seg;
1238                 first_seg = NULL;
1239         }
1240
1241         /* Record index of the next RX descriptor to probe. */
1242         rxq->rx_tail = rx_id;
1243         rxq->pkt_first_seg = first_seg;
1244         rxq->pkt_last_seg = last_seg;
1245
1246         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1247
1248         return nb_rx;
1249 }
1250
1251 /* implement recv_scattered_pkts  */
1252 uint16_t
1253 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1254                         uint16_t nb_pkts)
1255 {
1256         struct iavf_rx_queue *rxq = rx_queue;
1257         union iavf_rx_desc rxd;
1258         struct rte_mbuf *rxe;
1259         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1260         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1261         struct rte_mbuf *nmb, *rxm;
1262         uint16_t rx_id = rxq->rx_tail;
1263         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1264         struct rte_eth_dev *dev;
1265         uint32_t rx_status;
1266         uint64_t qword1;
1267         uint64_t dma_addr;
1268         uint64_t pkt_flags;
1269
1270         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1271         volatile union iavf_rx_desc *rxdp;
1272         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1273
1274         while (nb_rx < nb_pkts) {
1275                 rxdp = &rx_ring[rx_id];
1276                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1277                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1278                             IAVF_RXD_QW1_STATUS_SHIFT;
1279
1280                 /* Check the DD bit */
1281                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1282                         break;
1283                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1284
1285                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1286                 if (unlikely(!nmb)) {
1287                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1288                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1289                         dev = &rte_eth_devices[rxq->port_id];
1290                         dev->data->rx_mbuf_alloc_failed++;
1291                         break;
1292                 }
1293
1294                 rxd = *rxdp;
1295                 nb_hold++;
1296                 rxe = rxq->sw_ring[rx_id];
1297                 rx_id++;
1298                 if (rx_id == rxq->nb_rx_desc)
1299                         rx_id = 0;
1300
1301                 /* Prefetch next mbuf */
1302                 rte_prefetch0(rxq->sw_ring[rx_id]);
1303
1304                 /* When next RX descriptor is on a cache line boundary,
1305                  * prefetch the next 4 RX descriptors and next 8 pointers
1306                  * to mbufs.
1307                  */
1308                 if ((rx_id & 0x3) == 0) {
1309                         rte_prefetch0(&rx_ring[rx_id]);
1310                         rte_prefetch0(rxq->sw_ring[rx_id]);
1311                 }
1312
1313                 rxm = rxe;
1314                 rxe = nmb;
1315                 dma_addr =
1316                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1317
1318                 /* Set data buffer address and data length of the mbuf */
1319                 rxdp->read.hdr_addr = 0;
1320                 rxdp->read.pkt_addr = dma_addr;
1321                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1322                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1323                 rxm->data_len = rx_packet_len;
1324                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1325
1326                 /* If this is the first buffer of the received packet, set the
1327                  * pointer to the first mbuf of the packet and initialize its
1328                  * context. Otherwise, update the total length and the number
1329                  * of segments of the current scattered packet, and update the
1330                  * pointer to the last mbuf of the current packet.
1331                  */
1332                 if (!first_seg) {
1333                         first_seg = rxm;
1334                         first_seg->nb_segs = 1;
1335                         first_seg->pkt_len = rx_packet_len;
1336                 } else {
1337                         first_seg->pkt_len =
1338                                 (uint16_t)(first_seg->pkt_len +
1339                                                 rx_packet_len);
1340                         first_seg->nb_segs++;
1341                         last_seg->next = rxm;
1342                 }
1343
1344                 /* If this is not the last buffer of the received packet,
1345                  * update the pointer to the last mbuf of the current scattered
1346                  * packet and continue to parse the RX ring.
1347                  */
1348                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1349                         last_seg = rxm;
1350                         continue;
1351                 }
1352
1353                 /* This is the last buffer of the received packet. If the CRC
1354                  * is not stripped by the hardware:
1355                  *  - Subtract the CRC length from the total packet length.
1356                  *  - If the last buffer only contains the whole CRC or a part
1357                  *  of it, free the mbuf associated to the last buffer. If part
1358                  *  of the CRC is also contained in the previous mbuf, subtract
1359                  *  the length of that CRC part from the data length of the
1360                  *  previous mbuf.
1361                  */
1362                 rxm->next = NULL;
1363                 if (unlikely(rxq->crc_len > 0)) {
1364                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1365                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1366                                 rte_pktmbuf_free_seg(rxm);
1367                                 first_seg->nb_segs--;
1368                                 last_seg->data_len =
1369                                         (uint16_t)(last_seg->data_len -
1370                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1371                                 last_seg->next = NULL;
1372                         } else
1373                                 rxm->data_len = (uint16_t)(rx_packet_len -
1374                                                         RTE_ETHER_CRC_LEN);
1375                 }
1376
1377                 first_seg->port = rxq->port_id;
1378                 first_seg->ol_flags = 0;
1379                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1380                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1381                 first_seg->packet_type =
1382                         ptype_tbl[(uint8_t)((qword1 &
1383                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1384
1385                 if (pkt_flags & PKT_RX_RSS_HASH)
1386                         first_seg->hash.rss =
1387                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1388
1389                 if (pkt_flags & PKT_RX_FDIR)
1390                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1391
1392                 first_seg->ol_flags |= pkt_flags;
1393
1394                 /* Prefetch data of first segment, if configured to do so. */
1395                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1396                                           first_seg->data_off));
1397                 rx_pkts[nb_rx++] = first_seg;
1398                 first_seg = NULL;
1399         }
1400
1401         /* Record index of the next RX descriptor to probe. */
1402         rxq->rx_tail = rx_id;
1403         rxq->pkt_first_seg = first_seg;
1404         rxq->pkt_last_seg = last_seg;
1405
1406         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1407
1408         return nb_rx;
1409 }
1410
1411 #define IAVF_LOOK_AHEAD 8
1412 static inline int
1413 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1414 {
1415         volatile union iavf_rx_flex_desc *rxdp;
1416         struct rte_mbuf **rxep;
1417         struct rte_mbuf *mb;
1418         uint16_t stat_err0;
1419         uint16_t pkt_len;
1420         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1421         int32_t i, j, nb_rx = 0;
1422         uint64_t pkt_flags;
1423         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1424
1425         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1426         rxep = &rxq->sw_ring[rxq->rx_tail];
1427
1428         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1429
1430         /* Make sure there is at least 1 packet to receive */
1431         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1432                 return 0;
1433
1434         /* Scan LOOK_AHEAD descriptors at a time to determine which
1435          * descriptors reference packets that are ready to be received.
1436          */
1437         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1438              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1439                 /* Read desc statuses backwards to avoid race condition */
1440                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1441                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1442
1443                 rte_smp_rmb();
1444
1445                 /* Compute how many status bits were set */
1446                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1447                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1448
1449                 nb_rx += nb_dd;
1450
1451                 /* Translate descriptor info to mbuf parameters */
1452                 for (j = 0; j < nb_dd; j++) {
1453                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1454                                           rxq->rx_tail +
1455                                           i * IAVF_LOOK_AHEAD + j);
1456
1457                         mb = rxep[j];
1458                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1459                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1460                         mb->data_len = pkt_len;
1461                         mb->pkt_len = pkt_len;
1462                         mb->ol_flags = 0;
1463
1464                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1465                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1466                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1467                         iavf_rxd_to_pkt_fields(mb, &rxdp[j]);
1468                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1469                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1470
1471                         mb->ol_flags |= pkt_flags;
1472                 }
1473
1474                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1475                         rxq->rx_stage[i + j] = rxep[j];
1476
1477                 if (nb_dd != IAVF_LOOK_AHEAD)
1478                         break;
1479         }
1480
1481         /* Clear software ring entries */
1482         for (i = 0; i < nb_rx; i++)
1483                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1484
1485         return nb_rx;
1486 }
1487
1488 static inline int
1489 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1490 {
1491         volatile union iavf_rx_desc *rxdp;
1492         struct rte_mbuf **rxep;
1493         struct rte_mbuf *mb;
1494         uint16_t pkt_len;
1495         uint64_t qword1;
1496         uint32_t rx_status;
1497         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1498         int32_t i, j, nb_rx = 0;
1499         uint64_t pkt_flags;
1500         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1501
1502         rxdp = &rxq->rx_ring[rxq->rx_tail];
1503         rxep = &rxq->sw_ring[rxq->rx_tail];
1504
1505         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1506         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1507                     IAVF_RXD_QW1_STATUS_SHIFT;
1508
1509         /* Make sure there is at least 1 packet to receive */
1510         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1511                 return 0;
1512
1513         /* Scan LOOK_AHEAD descriptors at a time to determine which
1514          * descriptors reference packets that are ready to be received.
1515          */
1516         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1517              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1518                 /* Read desc statuses backwards to avoid race condition */
1519                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1520                         qword1 = rte_le_to_cpu_64(
1521                                 rxdp[j].wb.qword1.status_error_len);
1522                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1523                                IAVF_RXD_QW1_STATUS_SHIFT;
1524                 }
1525
1526                 rte_smp_rmb();
1527
1528                 /* Compute how many status bits were set */
1529                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1530                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1531
1532                 nb_rx += nb_dd;
1533
1534                 /* Translate descriptor info to mbuf parameters */
1535                 for (j = 0; j < nb_dd; j++) {
1536                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1537                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1538
1539                         mb = rxep[j];
1540                         qword1 = rte_le_to_cpu_64
1541                                         (rxdp[j].wb.qword1.status_error_len);
1542                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1543                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1544                         mb->data_len = pkt_len;
1545                         mb->pkt_len = pkt_len;
1546                         mb->ol_flags = 0;
1547                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1548                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1549                         mb->packet_type =
1550                                 ptype_tbl[(uint8_t)((qword1 &
1551                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1552                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1553
1554                         if (pkt_flags & PKT_RX_RSS_HASH)
1555                                 mb->hash.rss = rte_le_to_cpu_32(
1556                                         rxdp[j].wb.qword0.hi_dword.rss);
1557
1558                         if (pkt_flags & PKT_RX_FDIR)
1559                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1560
1561                         mb->ol_flags |= pkt_flags;
1562                 }
1563
1564                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1565                         rxq->rx_stage[i + j] = rxep[j];
1566
1567                 if (nb_dd != IAVF_LOOK_AHEAD)
1568                         break;
1569         }
1570
1571         /* Clear software ring entries */
1572         for (i = 0; i < nb_rx; i++)
1573                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1574
1575         return nb_rx;
1576 }
1577
1578 static inline uint16_t
1579 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1580                        struct rte_mbuf **rx_pkts,
1581                        uint16_t nb_pkts)
1582 {
1583         uint16_t i;
1584         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1585
1586         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1587
1588         for (i = 0; i < nb_pkts; i++)
1589                 rx_pkts[i] = stage[i];
1590
1591         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1592         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1593
1594         return nb_pkts;
1595 }
1596
1597 static inline int
1598 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1599 {
1600         volatile union iavf_rx_desc *rxdp;
1601         struct rte_mbuf **rxep;
1602         struct rte_mbuf *mb;
1603         uint16_t alloc_idx, i;
1604         uint64_t dma_addr;
1605         int diag;
1606
1607         /* Allocate buffers in bulk */
1608         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1609                                 (rxq->rx_free_thresh - 1));
1610         rxep = &rxq->sw_ring[alloc_idx];
1611         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1612                                     rxq->rx_free_thresh);
1613         if (unlikely(diag != 0)) {
1614                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1615                 return -ENOMEM;
1616         }
1617
1618         rxdp = &rxq->rx_ring[alloc_idx];
1619         for (i = 0; i < rxq->rx_free_thresh; i++) {
1620                 if (likely(i < (rxq->rx_free_thresh - 1)))
1621                         /* Prefetch next mbuf */
1622                         rte_prefetch0(rxep[i + 1]);
1623
1624                 mb = rxep[i];
1625                 rte_mbuf_refcnt_set(mb, 1);
1626                 mb->next = NULL;
1627                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1628                 mb->nb_segs = 1;
1629                 mb->port = rxq->port_id;
1630                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1631                 rxdp[i].read.hdr_addr = 0;
1632                 rxdp[i].read.pkt_addr = dma_addr;
1633         }
1634
1635         /* Update rx tail register */
1636         rte_wmb();
1637         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1638
1639         rxq->rx_free_trigger =
1640                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1641         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1642                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1643
1644         return 0;
1645 }
1646
1647 static inline uint16_t
1648 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1649 {
1650         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1651         uint16_t nb_rx = 0;
1652
1653         if (!nb_pkts)
1654                 return 0;
1655
1656         if (rxq->rx_nb_avail)
1657                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1658
1659         if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1)
1660                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1661         else
1662                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1663         rxq->rx_next_avail = 0;
1664         rxq->rx_nb_avail = nb_rx;
1665         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1666
1667         if (rxq->rx_tail > rxq->rx_free_trigger) {
1668                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1669                         uint16_t i, j;
1670
1671                         /* TODO: count rx_mbuf_alloc_failed here */
1672
1673                         rxq->rx_nb_avail = 0;
1674                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1675                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1676                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1677
1678                         return 0;
1679                 }
1680         }
1681
1682         if (rxq->rx_tail >= rxq->nb_rx_desc)
1683                 rxq->rx_tail = 0;
1684
1685         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1686                    rxq->port_id, rxq->queue_id,
1687                    rxq->rx_tail, nb_rx);
1688
1689         if (rxq->rx_nb_avail)
1690                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1691
1692         return 0;
1693 }
1694
1695 static uint16_t
1696 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1697                          struct rte_mbuf **rx_pkts,
1698                          uint16_t nb_pkts)
1699 {
1700         uint16_t nb_rx = 0, n, count;
1701
1702         if (unlikely(nb_pkts == 0))
1703                 return 0;
1704
1705         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1706                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1707
1708         while (nb_pkts) {
1709                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1710                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1711                 nb_rx = (uint16_t)(nb_rx + count);
1712                 nb_pkts = (uint16_t)(nb_pkts - count);
1713                 if (count < n)
1714                         break;
1715         }
1716
1717         return nb_rx;
1718 }
1719
1720 static inline int
1721 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1722 {
1723         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1724         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1725         uint16_t nb_tx_desc = txq->nb_tx_desc;
1726         uint16_t desc_to_clean_to;
1727         uint16_t nb_tx_to_clean;
1728
1729         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1730
1731         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1732         if (desc_to_clean_to >= nb_tx_desc)
1733                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1734
1735         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1736         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1737                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1738                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1739                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1740                                 "(port=%d queue=%d)", desc_to_clean_to,
1741                                 txq->port_id, txq->queue_id);
1742                 return -1;
1743         }
1744
1745         if (last_desc_cleaned > desc_to_clean_to)
1746                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1747                                                         desc_to_clean_to);
1748         else
1749                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1750                                         last_desc_cleaned);
1751
1752         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1753
1754         txq->last_desc_cleaned = desc_to_clean_to;
1755         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1756
1757         return 0;
1758 }
1759
1760 /* Check if the context descriptor is needed for TX offloading */
1761 static inline uint16_t
1762 iavf_calc_context_desc(uint64_t flags)
1763 {
1764         static uint64_t mask = PKT_TX_TCP_SEG;
1765
1766         return (flags & mask) ? 1 : 0;
1767 }
1768
1769 static inline void
1770 iavf_txd_enable_checksum(uint64_t ol_flags,
1771                         uint32_t *td_cmd,
1772                         uint32_t *td_offset,
1773                         union iavf_tx_offload tx_offload)
1774 {
1775         /* Set MACLEN */
1776         *td_offset |= (tx_offload.l2_len >> 1) <<
1777                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1778
1779         /* Enable L3 checksum offloads */
1780         if (ol_flags & PKT_TX_IP_CKSUM) {
1781                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1782                 *td_offset |= (tx_offload.l3_len >> 2) <<
1783                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1784         } else if (ol_flags & PKT_TX_IPV4) {
1785                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1786                 *td_offset |= (tx_offload.l3_len >> 2) <<
1787                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1788         } else if (ol_flags & PKT_TX_IPV6) {
1789                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1790                 *td_offset |= (tx_offload.l3_len >> 2) <<
1791                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1792         }
1793
1794         if (ol_flags & PKT_TX_TCP_SEG) {
1795                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1796                 *td_offset |= (tx_offload.l4_len >> 2) <<
1797                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1798                 return;
1799         }
1800
1801         /* Enable L4 checksum offloads */
1802         switch (ol_flags & PKT_TX_L4_MASK) {
1803         case PKT_TX_TCP_CKSUM:
1804                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1805                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1806                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1807                 break;
1808         case PKT_TX_SCTP_CKSUM:
1809                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1810                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1811                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1812                 break;
1813         case PKT_TX_UDP_CKSUM:
1814                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1815                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1816                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1817                 break;
1818         default:
1819                 break;
1820         }
1821 }
1822
1823 /* set TSO context descriptor
1824  * support IP -> L4 and IP -> IP -> L4
1825  */
1826 static inline uint64_t
1827 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1828 {
1829         uint64_t ctx_desc = 0;
1830         uint32_t cd_cmd, hdr_len, cd_tso_len;
1831
1832         if (!tx_offload.l4_len) {
1833                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1834                 return ctx_desc;
1835         }
1836
1837         hdr_len = tx_offload.l2_len +
1838                   tx_offload.l3_len +
1839                   tx_offload.l4_len;
1840
1841         cd_cmd = IAVF_TX_CTX_DESC_TSO;
1842         cd_tso_len = mbuf->pkt_len - hdr_len;
1843         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1844                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1845                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1846
1847         return ctx_desc;
1848 }
1849
1850 /* Construct the tx flags */
1851 static inline uint64_t
1852 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1853                uint32_t td_tag)
1854 {
1855         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1856                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
1857                                 ((uint64_t)td_offset <<
1858                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
1859                                 ((uint64_t)size  <<
1860                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1861                                 ((uint64_t)td_tag  <<
1862                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
1863 }
1864
1865 /* TX function */
1866 uint16_t
1867 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1868 {
1869         volatile struct iavf_tx_desc *txd;
1870         volatile struct iavf_tx_desc *txr;
1871         struct iavf_tx_queue *txq;
1872         struct iavf_tx_entry *sw_ring;
1873         struct iavf_tx_entry *txe, *txn;
1874         struct rte_mbuf *tx_pkt;
1875         struct rte_mbuf *m_seg;
1876         uint16_t tx_id;
1877         uint16_t nb_tx;
1878         uint32_t td_cmd;
1879         uint32_t td_offset;
1880         uint32_t td_tag;
1881         uint64_t ol_flags;
1882         uint16_t nb_used;
1883         uint16_t nb_ctx;
1884         uint16_t tx_last;
1885         uint16_t slen;
1886         uint64_t buf_dma_addr;
1887         union iavf_tx_offload tx_offload = {0};
1888
1889         txq = tx_queue;
1890         sw_ring = txq->sw_ring;
1891         txr = txq->tx_ring;
1892         tx_id = txq->tx_tail;
1893         txe = &sw_ring[tx_id];
1894
1895         /* Check if the descriptor ring needs to be cleaned. */
1896         if (txq->nb_free < txq->free_thresh)
1897                 iavf_xmit_cleanup(txq);
1898
1899         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1900                 td_cmd = 0;
1901                 td_tag = 0;
1902                 td_offset = 0;
1903
1904                 tx_pkt = *tx_pkts++;
1905                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1906
1907                 ol_flags = tx_pkt->ol_flags;
1908                 tx_offload.l2_len = tx_pkt->l2_len;
1909                 tx_offload.l3_len = tx_pkt->l3_len;
1910                 tx_offload.l4_len = tx_pkt->l4_len;
1911                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1912
1913                 /* Calculate the number of context descriptors needed. */
1914                 nb_ctx = iavf_calc_context_desc(ol_flags);
1915
1916                 /* The number of descriptors that must be allocated for
1917                  * a packet equals to the number of the segments of that
1918                  * packet plus 1 context descriptor if needed.
1919                  */
1920                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1921                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1922
1923                 /* Circular ring */
1924                 if (tx_last >= txq->nb_tx_desc)
1925                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1926
1927                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1928                            " tx_first=%u tx_last=%u",
1929                            txq->port_id, txq->queue_id, tx_id, tx_last);
1930
1931                 if (nb_used > txq->nb_free) {
1932                         if (iavf_xmit_cleanup(txq)) {
1933                                 if (nb_tx == 0)
1934                                         return 0;
1935                                 goto end_of_tx;
1936                         }
1937                         if (unlikely(nb_used > txq->rs_thresh)) {
1938                                 while (nb_used > txq->nb_free) {
1939                                         if (iavf_xmit_cleanup(txq)) {
1940                                                 if (nb_tx == 0)
1941                                                         return 0;
1942                                                 goto end_of_tx;
1943                                         }
1944                                 }
1945                         }
1946                 }
1947
1948                 /* Descriptor based VLAN insertion */
1949                 if (ol_flags & PKT_TX_VLAN_PKT) {
1950                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1951                         td_tag = tx_pkt->vlan_tci;
1952                 }
1953
1954                 /* According to datasheet, the bit2 is reserved and must be
1955                  * set to 1.
1956                  */
1957                 td_cmd |= 0x04;
1958
1959                 /* Enable checksum offloading */
1960                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1961                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
1962                                                 &td_offset, tx_offload);
1963
1964                 if (nb_ctx) {
1965                         /* Setup TX context descriptor if required */
1966                         uint64_t cd_type_cmd_tso_mss =
1967                                 IAVF_TX_DESC_DTYPE_CONTEXT;
1968                         volatile struct iavf_tx_context_desc *ctx_txd =
1969                                 (volatile struct iavf_tx_context_desc *)
1970                                                         &txr[tx_id];
1971
1972                         txn = &sw_ring[txe->next_id];
1973                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1974                         if (txe->mbuf) {
1975                                 rte_pktmbuf_free_seg(txe->mbuf);
1976                                 txe->mbuf = NULL;
1977                         }
1978
1979                         /* TSO enabled */
1980                         if (ol_flags & PKT_TX_TCP_SEG)
1981                                 cd_type_cmd_tso_mss |=
1982                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
1983
1984                         ctx_txd->type_cmd_tso_mss =
1985                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1986
1987                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
1988                         txe->last_id = tx_last;
1989                         tx_id = txe->next_id;
1990                         txe = txn;
1991                 }
1992
1993                 m_seg = tx_pkt;
1994                 do {
1995                         txd = &txr[tx_id];
1996                         txn = &sw_ring[txe->next_id];
1997
1998                         if (txe->mbuf)
1999                                 rte_pktmbuf_free_seg(txe->mbuf);
2000                         txe->mbuf = m_seg;
2001
2002                         /* Setup TX Descriptor */
2003                         slen = m_seg->data_len;
2004                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2005                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2006                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2007                                                                   td_offset,
2008                                                                   slen,
2009                                                                   td_tag);
2010
2011                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2012                         txe->last_id = tx_last;
2013                         tx_id = txe->next_id;
2014                         txe = txn;
2015                         m_seg = m_seg->next;
2016                 } while (m_seg);
2017
2018                 /* The last packet data descriptor needs End Of Packet (EOP) */
2019                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2020                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2021                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2022
2023                 if (txq->nb_used >= txq->rs_thresh) {
2024                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2025                                    "%4u (port=%d queue=%d)",
2026                                    tx_last, txq->port_id, txq->queue_id);
2027
2028                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2029
2030                         /* Update txq RS bit counters */
2031                         txq->nb_used = 0;
2032                 }
2033
2034                 txd->cmd_type_offset_bsz |=
2035                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2036                                          IAVF_TXD_QW1_CMD_SHIFT);
2037                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2038         }
2039
2040 end_of_tx:
2041         rte_wmb();
2042
2043         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2044                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2045
2046         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
2047         txq->tx_tail = tx_id;
2048
2049         return nb_tx;
2050 }
2051
2052 /* TX prep functions */
2053 uint16_t
2054 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2055               uint16_t nb_pkts)
2056 {
2057         int i, ret;
2058         uint64_t ol_flags;
2059         struct rte_mbuf *m;
2060
2061         for (i = 0; i < nb_pkts; i++) {
2062                 m = tx_pkts[i];
2063                 ol_flags = m->ol_flags;
2064
2065                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2066                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2067                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2068                                 rte_errno = EINVAL;
2069                                 return i;
2070                         }
2071                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2072                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2073                         /* MSS outside the range are considered malicious */
2074                         rte_errno = EINVAL;
2075                         return i;
2076                 }
2077
2078                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2079                         rte_errno = ENOTSUP;
2080                         return i;
2081                 }
2082
2083 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2084                 ret = rte_validate_tx_offload(m);
2085                 if (ret != 0) {
2086                         rte_errno = -ret;
2087                         return i;
2088                 }
2089 #endif
2090                 ret = rte_net_intel_cksum_prepare(m);
2091                 if (ret != 0) {
2092                         rte_errno = -ret;
2093                         return i;
2094                 }
2095         }
2096
2097         return i;
2098 }
2099
2100 /* choose rx function*/
2101 void
2102 iavf_set_rx_function(struct rte_eth_dev *dev)
2103 {
2104         struct iavf_adapter *adapter =
2105                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2106         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2107 #ifdef RTE_ARCH_X86
2108         struct iavf_rx_queue *rxq;
2109         int i;
2110         bool use_avx2 = false;
2111
2112         if (!iavf_rx_vec_dev_check(dev)) {
2113                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2114                         rxq = dev->data->rx_queues[i];
2115                         (void)iavf_rxq_vec_setup(rxq);
2116                 }
2117
2118                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2119                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2120                         use_avx2 = true;
2121
2122                 if (dev->data->scattered_rx) {
2123                         PMD_DRV_LOG(DEBUG,
2124                                     "Using %sVector Scattered Rx (port %d).",
2125                                     use_avx2 ? "avx2 " : "",
2126                                     dev->data->port_id);
2127                         if (vf->vf_res->vf_cap_flags &
2128                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2129                                 dev->rx_pkt_burst = use_avx2 ?
2130                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2131                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2132                         else
2133                                 dev->rx_pkt_burst = use_avx2 ?
2134                                         iavf_recv_scattered_pkts_vec_avx2 :
2135                                         iavf_recv_scattered_pkts_vec;
2136                 } else {
2137                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2138                                     use_avx2 ? "avx2 " : "",
2139                                     dev->data->port_id);
2140                         if (vf->vf_res->vf_cap_flags &
2141                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2142                                 dev->rx_pkt_burst = use_avx2 ?
2143                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2144                                         iavf_recv_pkts_vec_flex_rxd;
2145                         else
2146                                 dev->rx_pkt_burst = use_avx2 ?
2147                                         iavf_recv_pkts_vec_avx2 :
2148                                         iavf_recv_pkts_vec;
2149                 }
2150
2151                 return;
2152         }
2153 #endif
2154
2155         if (dev->data->scattered_rx) {
2156                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2157                             dev->data->port_id);
2158                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2159                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2160                 else
2161                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2162         } else if (adapter->rx_bulk_alloc_allowed) {
2163                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2164                             dev->data->port_id);
2165                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2166         } else {
2167                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2168                             dev->data->port_id);
2169                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2170                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2171                 else
2172                         dev->rx_pkt_burst = iavf_recv_pkts;
2173         }
2174 }
2175
2176 /* choose tx function*/
2177 void
2178 iavf_set_tx_function(struct rte_eth_dev *dev)
2179 {
2180 #ifdef RTE_ARCH_X86
2181         struct iavf_tx_queue *txq;
2182         int i;
2183         bool use_avx2 = false;
2184
2185         if (!iavf_tx_vec_dev_check(dev)) {
2186                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2187                         txq = dev->data->tx_queues[i];
2188                         if (!txq)
2189                                 continue;
2190                         iavf_txq_vec_setup(txq);
2191                 }
2192
2193                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2194                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2195                         use_avx2 = true;
2196
2197                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2198                             use_avx2 ? "avx2 " : "",
2199                             dev->data->port_id);
2200                 dev->tx_pkt_burst = use_avx2 ?
2201                                     iavf_xmit_pkts_vec_avx2 :
2202                                     iavf_xmit_pkts_vec;
2203                 dev->tx_pkt_prepare = NULL;
2204
2205                 return;
2206         }
2207 #endif
2208
2209         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2210                     dev->data->port_id);
2211         dev->tx_pkt_burst = iavf_xmit_pkts;
2212         dev->tx_pkt_prepare = iavf_prep_pkts;
2213 }
2214
2215 void
2216 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2217                      struct rte_eth_rxq_info *qinfo)
2218 {
2219         struct iavf_rx_queue *rxq;
2220
2221         rxq = dev->data->rx_queues[queue_id];
2222
2223         qinfo->mp = rxq->mp;
2224         qinfo->scattered_rx = dev->data->scattered_rx;
2225         qinfo->nb_desc = rxq->nb_rx_desc;
2226
2227         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2228         qinfo->conf.rx_drop_en = true;
2229         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2230 }
2231
2232 void
2233 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2234                      struct rte_eth_txq_info *qinfo)
2235 {
2236         struct iavf_tx_queue *txq;
2237
2238         txq = dev->data->tx_queues[queue_id];
2239
2240         qinfo->nb_desc = txq->nb_tx_desc;
2241
2242         qinfo->conf.tx_free_thresh = txq->free_thresh;
2243         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2244         qinfo->conf.offloads = txq->offloads;
2245         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2246 }
2247
2248 /* Get the number of used descriptors of a rx queue */
2249 uint32_t
2250 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2251 {
2252 #define IAVF_RXQ_SCAN_INTERVAL 4
2253         volatile union iavf_rx_desc *rxdp;
2254         struct iavf_rx_queue *rxq;
2255         uint16_t desc = 0;
2256
2257         rxq = dev->data->rx_queues[queue_id];
2258         rxdp = &rxq->rx_ring[rxq->rx_tail];
2259
2260         while ((desc < rxq->nb_rx_desc) &&
2261                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2262                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2263                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2264                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2265                  * to avoid checking too frequently and downgrading performance
2266                  * too much.
2267                  */
2268                 desc += IAVF_RXQ_SCAN_INTERVAL;
2269                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2270                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2271                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2272                                         desc - rxq->nb_rx_desc]);
2273         }
2274
2275         return desc;
2276 }
2277
2278 int
2279 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2280 {
2281         struct iavf_rx_queue *rxq = rx_queue;
2282         volatile uint64_t *status;
2283         uint64_t mask;
2284         uint32_t desc;
2285
2286         if (unlikely(offset >= rxq->nb_rx_desc))
2287                 return -EINVAL;
2288
2289         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2290                 return RTE_ETH_RX_DESC_UNAVAIL;
2291
2292         desc = rxq->rx_tail + offset;
2293         if (desc >= rxq->nb_rx_desc)
2294                 desc -= rxq->nb_rx_desc;
2295
2296         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2297         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2298                 << IAVF_RXD_QW1_STATUS_SHIFT);
2299         if (*status & mask)
2300                 return RTE_ETH_RX_DESC_DONE;
2301
2302         return RTE_ETH_RX_DESC_AVAIL;
2303 }
2304
2305 int
2306 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2307 {
2308         struct iavf_tx_queue *txq = tx_queue;
2309         volatile uint64_t *status;
2310         uint64_t mask, expect;
2311         uint32_t desc;
2312
2313         if (unlikely(offset >= txq->nb_tx_desc))
2314                 return -EINVAL;
2315
2316         desc = txq->tx_tail + offset;
2317         /* go to next desc that has the RS bit */
2318         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2319                 txq->rs_thresh;
2320         if (desc >= txq->nb_tx_desc) {
2321                 desc -= txq->nb_tx_desc;
2322                 if (desc >= txq->nb_tx_desc)
2323                         desc -= txq->nb_tx_desc;
2324         }
2325
2326         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2327         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2328         expect = rte_cpu_to_le_64(
2329                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2330         if ((*status & mask) == expect)
2331                 return RTE_ETH_TX_DESC_DONE;
2332
2333         return RTE_ETH_TX_DESC_FULL;
2334 }
2335
2336 const uint32_t *
2337 iavf_get_default_ptype_table(void)
2338 {
2339         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2340                 __rte_cache_aligned = {
2341                 /* L2 types */
2342                 /* [0] reserved */
2343                 [1] = RTE_PTYPE_L2_ETHER,
2344                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2345                 /* [3] - [5] reserved */
2346                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2347                 /* [7] - [10] reserved */
2348                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2349                 /* [12] - [21] reserved */
2350
2351                 /* Non tunneled IPv4 */
2352                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2353                        RTE_PTYPE_L4_FRAG,
2354                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2355                        RTE_PTYPE_L4_NONFRAG,
2356                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2357                        RTE_PTYPE_L4_UDP,
2358                 /* [25] reserved */
2359                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2360                        RTE_PTYPE_L4_TCP,
2361                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2362                        RTE_PTYPE_L4_SCTP,
2363                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2364                        RTE_PTYPE_L4_ICMP,
2365
2366                 /* IPv4 --> IPv4 */
2367                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2368                        RTE_PTYPE_TUNNEL_IP |
2369                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2370                        RTE_PTYPE_INNER_L4_FRAG,
2371                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2372                        RTE_PTYPE_TUNNEL_IP |
2373                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2374                        RTE_PTYPE_INNER_L4_NONFRAG,
2375                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2376                        RTE_PTYPE_TUNNEL_IP |
2377                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2378                        RTE_PTYPE_INNER_L4_UDP,
2379                 /* [32] reserved */
2380                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2381                        RTE_PTYPE_TUNNEL_IP |
2382                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2383                        RTE_PTYPE_INNER_L4_TCP,
2384                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2385                        RTE_PTYPE_TUNNEL_IP |
2386                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2387                        RTE_PTYPE_INNER_L4_SCTP,
2388                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2389                        RTE_PTYPE_TUNNEL_IP |
2390                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2391                        RTE_PTYPE_INNER_L4_ICMP,
2392
2393                 /* IPv4 --> IPv6 */
2394                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2395                        RTE_PTYPE_TUNNEL_IP |
2396                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2397                        RTE_PTYPE_INNER_L4_FRAG,
2398                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2399                        RTE_PTYPE_TUNNEL_IP |
2400                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2401                        RTE_PTYPE_INNER_L4_NONFRAG,
2402                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2403                        RTE_PTYPE_TUNNEL_IP |
2404                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2405                        RTE_PTYPE_INNER_L4_UDP,
2406                 /* [39] reserved */
2407                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2408                        RTE_PTYPE_TUNNEL_IP |
2409                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2410                        RTE_PTYPE_INNER_L4_TCP,
2411                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2412                        RTE_PTYPE_TUNNEL_IP |
2413                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2414                        RTE_PTYPE_INNER_L4_SCTP,
2415                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2416                        RTE_PTYPE_TUNNEL_IP |
2417                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2418                        RTE_PTYPE_INNER_L4_ICMP,
2419
2420                 /* IPv4 --> GRE/Teredo/VXLAN */
2421                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2422                        RTE_PTYPE_TUNNEL_GRENAT,
2423
2424                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2425                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2426                        RTE_PTYPE_TUNNEL_GRENAT |
2427                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2428                        RTE_PTYPE_INNER_L4_FRAG,
2429                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2430                        RTE_PTYPE_TUNNEL_GRENAT |
2431                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2432                        RTE_PTYPE_INNER_L4_NONFRAG,
2433                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2434                        RTE_PTYPE_TUNNEL_GRENAT |
2435                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2436                        RTE_PTYPE_INNER_L4_UDP,
2437                 /* [47] reserved */
2438                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2439                        RTE_PTYPE_TUNNEL_GRENAT |
2440                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2441                        RTE_PTYPE_INNER_L4_TCP,
2442                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2443                        RTE_PTYPE_TUNNEL_GRENAT |
2444                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2445                        RTE_PTYPE_INNER_L4_SCTP,
2446                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2447                        RTE_PTYPE_TUNNEL_GRENAT |
2448                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2449                        RTE_PTYPE_INNER_L4_ICMP,
2450
2451                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2452                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2453                        RTE_PTYPE_TUNNEL_GRENAT |
2454                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2455                        RTE_PTYPE_INNER_L4_FRAG,
2456                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2457                        RTE_PTYPE_TUNNEL_GRENAT |
2458                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2459                        RTE_PTYPE_INNER_L4_NONFRAG,
2460                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2461                        RTE_PTYPE_TUNNEL_GRENAT |
2462                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2463                        RTE_PTYPE_INNER_L4_UDP,
2464                 /* [54] reserved */
2465                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2466                        RTE_PTYPE_TUNNEL_GRENAT |
2467                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2468                        RTE_PTYPE_INNER_L4_TCP,
2469                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2470                        RTE_PTYPE_TUNNEL_GRENAT |
2471                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2472                        RTE_PTYPE_INNER_L4_SCTP,
2473                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2474                        RTE_PTYPE_TUNNEL_GRENAT |
2475                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2476                        RTE_PTYPE_INNER_L4_ICMP,
2477
2478                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2479                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2480                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2481
2482                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2483                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2484                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2485                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2486                        RTE_PTYPE_INNER_L4_FRAG,
2487                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2488                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2489                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2490                        RTE_PTYPE_INNER_L4_NONFRAG,
2491                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2492                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2493                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2494                        RTE_PTYPE_INNER_L4_UDP,
2495                 /* [62] reserved */
2496                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2497                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2498                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2499                        RTE_PTYPE_INNER_L4_TCP,
2500                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2501                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2502                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2503                        RTE_PTYPE_INNER_L4_SCTP,
2504                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2505                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2506                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2507                        RTE_PTYPE_INNER_L4_ICMP,
2508
2509                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2510                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2511                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2512                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2513                        RTE_PTYPE_INNER_L4_FRAG,
2514                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2515                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2516                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2517                        RTE_PTYPE_INNER_L4_NONFRAG,
2518                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2519                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2520                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2521                        RTE_PTYPE_INNER_L4_UDP,
2522                 /* [69] reserved */
2523                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2524                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2525                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2526                        RTE_PTYPE_INNER_L4_TCP,
2527                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2528                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2529                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2530                        RTE_PTYPE_INNER_L4_SCTP,
2531                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2532                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2533                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2534                        RTE_PTYPE_INNER_L4_ICMP,
2535                 /* [73] - [87] reserved */
2536
2537                 /* Non tunneled IPv6 */
2538                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2539                        RTE_PTYPE_L4_FRAG,
2540                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2541                        RTE_PTYPE_L4_NONFRAG,
2542                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2543                        RTE_PTYPE_L4_UDP,
2544                 /* [91] reserved */
2545                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2546                        RTE_PTYPE_L4_TCP,
2547                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2548                        RTE_PTYPE_L4_SCTP,
2549                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2550                        RTE_PTYPE_L4_ICMP,
2551
2552                 /* IPv6 --> IPv4 */
2553                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2554                        RTE_PTYPE_TUNNEL_IP |
2555                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2556                        RTE_PTYPE_INNER_L4_FRAG,
2557                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2558                        RTE_PTYPE_TUNNEL_IP |
2559                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2560                        RTE_PTYPE_INNER_L4_NONFRAG,
2561                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2562                        RTE_PTYPE_TUNNEL_IP |
2563                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2564                        RTE_PTYPE_INNER_L4_UDP,
2565                 /* [98] reserved */
2566                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2567                        RTE_PTYPE_TUNNEL_IP |
2568                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2569                        RTE_PTYPE_INNER_L4_TCP,
2570                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2571                         RTE_PTYPE_TUNNEL_IP |
2572                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2573                         RTE_PTYPE_INNER_L4_SCTP,
2574                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2575                         RTE_PTYPE_TUNNEL_IP |
2576                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2577                         RTE_PTYPE_INNER_L4_ICMP,
2578
2579                 /* IPv6 --> IPv6 */
2580                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2581                         RTE_PTYPE_TUNNEL_IP |
2582                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2583                         RTE_PTYPE_INNER_L4_FRAG,
2584                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2585                         RTE_PTYPE_TUNNEL_IP |
2586                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2587                         RTE_PTYPE_INNER_L4_NONFRAG,
2588                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2589                         RTE_PTYPE_TUNNEL_IP |
2590                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2591                         RTE_PTYPE_INNER_L4_UDP,
2592                 /* [105] reserved */
2593                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2594                         RTE_PTYPE_TUNNEL_IP |
2595                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2596                         RTE_PTYPE_INNER_L4_TCP,
2597                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2598                         RTE_PTYPE_TUNNEL_IP |
2599                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2600                         RTE_PTYPE_INNER_L4_SCTP,
2601                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2602                         RTE_PTYPE_TUNNEL_IP |
2603                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2604                         RTE_PTYPE_INNER_L4_ICMP,
2605
2606                 /* IPv6 --> GRE/Teredo/VXLAN */
2607                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2608                         RTE_PTYPE_TUNNEL_GRENAT,
2609
2610                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2611                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2612                         RTE_PTYPE_TUNNEL_GRENAT |
2613                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2614                         RTE_PTYPE_INNER_L4_FRAG,
2615                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2616                         RTE_PTYPE_TUNNEL_GRENAT |
2617                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2618                         RTE_PTYPE_INNER_L4_NONFRAG,
2619                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2620                         RTE_PTYPE_TUNNEL_GRENAT |
2621                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2622                         RTE_PTYPE_INNER_L4_UDP,
2623                 /* [113] reserved */
2624                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2625                         RTE_PTYPE_TUNNEL_GRENAT |
2626                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2627                         RTE_PTYPE_INNER_L4_TCP,
2628                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2629                         RTE_PTYPE_TUNNEL_GRENAT |
2630                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2631                         RTE_PTYPE_INNER_L4_SCTP,
2632                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2633                         RTE_PTYPE_TUNNEL_GRENAT |
2634                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2635                         RTE_PTYPE_INNER_L4_ICMP,
2636
2637                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2638                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2639                         RTE_PTYPE_TUNNEL_GRENAT |
2640                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2641                         RTE_PTYPE_INNER_L4_FRAG,
2642                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2643                         RTE_PTYPE_TUNNEL_GRENAT |
2644                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2645                         RTE_PTYPE_INNER_L4_NONFRAG,
2646                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2647                         RTE_PTYPE_TUNNEL_GRENAT |
2648                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2649                         RTE_PTYPE_INNER_L4_UDP,
2650                 /* [120] reserved */
2651                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2652                         RTE_PTYPE_TUNNEL_GRENAT |
2653                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2654                         RTE_PTYPE_INNER_L4_TCP,
2655                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2656                         RTE_PTYPE_TUNNEL_GRENAT |
2657                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2658                         RTE_PTYPE_INNER_L4_SCTP,
2659                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2660                         RTE_PTYPE_TUNNEL_GRENAT |
2661                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2662                         RTE_PTYPE_INNER_L4_ICMP,
2663
2664                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2665                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2666                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2667
2668                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2669                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2670                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2671                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2672                         RTE_PTYPE_INNER_L4_FRAG,
2673                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2674                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2675                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2676                         RTE_PTYPE_INNER_L4_NONFRAG,
2677                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2678                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2679                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2680                         RTE_PTYPE_INNER_L4_UDP,
2681                 /* [128] reserved */
2682                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2683                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2684                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2685                         RTE_PTYPE_INNER_L4_TCP,
2686                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2687                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2688                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2689                         RTE_PTYPE_INNER_L4_SCTP,
2690                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2691                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2692                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2693                         RTE_PTYPE_INNER_L4_ICMP,
2694
2695                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2696                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2697                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2698                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2699                         RTE_PTYPE_INNER_L4_FRAG,
2700                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2701                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2702                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2703                         RTE_PTYPE_INNER_L4_NONFRAG,
2704                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2705                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2706                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2707                         RTE_PTYPE_INNER_L4_UDP,
2708                 /* [135] reserved */
2709                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2710                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2711                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2712                         RTE_PTYPE_INNER_L4_TCP,
2713                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2714                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2715                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2716                         RTE_PTYPE_INNER_L4_SCTP,
2717                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2718                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2719                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2720                         RTE_PTYPE_INNER_L4_ICMP,
2721                 /* [139] - [299] reserved */
2722
2723                 /* PPPoE */
2724                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
2725                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
2726
2727                 /* PPPoE --> IPv4 */
2728                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
2729                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2730                         RTE_PTYPE_L4_FRAG,
2731                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
2732                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2733                         RTE_PTYPE_L4_NONFRAG,
2734                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
2735                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2736                         RTE_PTYPE_L4_UDP,
2737                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
2738                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2739                         RTE_PTYPE_L4_TCP,
2740                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
2741                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2742                         RTE_PTYPE_L4_SCTP,
2743                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
2744                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2745                         RTE_PTYPE_L4_ICMP,
2746
2747                 /* PPPoE --> IPv6 */
2748                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
2749                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2750                         RTE_PTYPE_L4_FRAG,
2751                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
2752                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2753                         RTE_PTYPE_L4_NONFRAG,
2754                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
2755                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2756                         RTE_PTYPE_L4_UDP,
2757                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
2758                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2759                         RTE_PTYPE_L4_TCP,
2760                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
2761                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2762                         RTE_PTYPE_L4_SCTP,
2763                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
2764                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2765                         RTE_PTYPE_L4_ICMP,
2766                 /* [314] - [324] reserved */
2767
2768                 /* IPv4/IPv6 --> GTPC/GTPU */
2769                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2770                         RTE_PTYPE_TUNNEL_GTPC,
2771                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2772                         RTE_PTYPE_TUNNEL_GTPC,
2773                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2774                         RTE_PTYPE_TUNNEL_GTPC,
2775                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2776                         RTE_PTYPE_TUNNEL_GTPC,
2777                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2778                         RTE_PTYPE_TUNNEL_GTPU,
2779                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2780                         RTE_PTYPE_TUNNEL_GTPU,
2781
2782                 /* IPv4 --> GTPU --> IPv4 */
2783                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2784                         RTE_PTYPE_TUNNEL_GTPU |
2785                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2786                         RTE_PTYPE_INNER_L4_FRAG,
2787                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2788                         RTE_PTYPE_TUNNEL_GTPU |
2789                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2790                         RTE_PTYPE_INNER_L4_NONFRAG,
2791                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2792                         RTE_PTYPE_TUNNEL_GTPU |
2793                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2794                         RTE_PTYPE_INNER_L4_UDP,
2795                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2796                         RTE_PTYPE_TUNNEL_GTPU |
2797                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2798                         RTE_PTYPE_INNER_L4_TCP,
2799                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2800                         RTE_PTYPE_TUNNEL_GTPU |
2801                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2802                         RTE_PTYPE_INNER_L4_ICMP,
2803
2804                 /* IPv6 --> GTPU --> IPv4 */
2805                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2806                         RTE_PTYPE_TUNNEL_GTPU |
2807                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2808                         RTE_PTYPE_INNER_L4_FRAG,
2809                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2810                         RTE_PTYPE_TUNNEL_GTPU |
2811                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2812                         RTE_PTYPE_INNER_L4_NONFRAG,
2813                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2814                         RTE_PTYPE_TUNNEL_GTPU |
2815                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2816                         RTE_PTYPE_INNER_L4_UDP,
2817                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2818                         RTE_PTYPE_TUNNEL_GTPU |
2819                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2820                         RTE_PTYPE_INNER_L4_TCP,
2821                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2822                         RTE_PTYPE_TUNNEL_GTPU |
2823                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2824                         RTE_PTYPE_INNER_L4_ICMP,
2825
2826                 /* IPv4 --> GTPU --> IPv6 */
2827                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2828                         RTE_PTYPE_TUNNEL_GTPU |
2829                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2830                         RTE_PTYPE_INNER_L4_FRAG,
2831                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2832                         RTE_PTYPE_TUNNEL_GTPU |
2833                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2834                         RTE_PTYPE_INNER_L4_NONFRAG,
2835                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2836                         RTE_PTYPE_TUNNEL_GTPU |
2837                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2838                         RTE_PTYPE_INNER_L4_UDP,
2839                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2840                         RTE_PTYPE_TUNNEL_GTPU |
2841                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2842                         RTE_PTYPE_INNER_L4_TCP,
2843                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2844                         RTE_PTYPE_TUNNEL_GTPU |
2845                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2846                         RTE_PTYPE_INNER_L4_ICMP,
2847
2848                 /* IPv6 --> GTPU --> IPv6 */
2849                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2850                         RTE_PTYPE_TUNNEL_GTPU |
2851                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2852                         RTE_PTYPE_INNER_L4_FRAG,
2853                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2854                         RTE_PTYPE_TUNNEL_GTPU |
2855                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2856                         RTE_PTYPE_INNER_L4_NONFRAG,
2857                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2858                         RTE_PTYPE_TUNNEL_GTPU |
2859                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2860                         RTE_PTYPE_INNER_L4_UDP,
2861                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2862                         RTE_PTYPE_TUNNEL_GTPU |
2863                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2864                         RTE_PTYPE_INNER_L4_TCP,
2865                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2866                         RTE_PTYPE_TUNNEL_GTPU |
2867                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2868                         RTE_PTYPE_INNER_L4_ICMP,
2869                 /* All others reserved */
2870         };
2871
2872         return ptype_tbl;
2873 }