net/iavf: fix Tx threshold check
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "rte_pmd_iavf.h"
31
32 /* Offset of mbuf dynamic field for protocol extraction's metadata */
33 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
34
35 /* Mask of mbuf dynamic flags for protocol extraction's type */
36 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
42
43 uint8_t
44 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
45 {
46         static uint8_t rxdid_map[] = {
47                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
48                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
49                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
50                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
51                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
52                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
53                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
54         };
55
56         return flex_type < RTE_DIM(rxdid_map) ?
57                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
58 }
59
60 static int
61 iavf_monitor_callback(const uint64_t value,
62                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
63 {
64         const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
65         /*
66          * we expect the DD bit to be set to 1 if this descriptor was already
67          * written to.
68          */
69         return (value & m) == m ? -1 : 0;
70 }
71
72 int
73 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
74 {
75         struct iavf_rx_queue *rxq = rx_queue;
76         volatile union iavf_rx_desc *rxdp;
77         uint16_t desc;
78
79         desc = rxq->rx_tail;
80         rxdp = &rxq->rx_ring[desc];
81         /* watch for changes in status bit */
82         pmc->addr = &rxdp->wb.qword1.status_error_len;
83
84         /* comparison callback */
85         pmc->fn = iavf_monitor_callback;
86
87         /* registers are 64-bit */
88         pmc->size = sizeof(uint64_t);
89
90         return 0;
91 }
92
93 static inline int
94 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
95 {
96         /* The following constraints must be satisfied:
97          *   thresh < rxq->nb_rx_desc
98          */
99         if (thresh >= nb_desc) {
100                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
101                              thresh, nb_desc);
102                 return -EINVAL;
103         }
104         return 0;
105 }
106
107 static inline int
108 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
109                 uint16_t tx_free_thresh)
110 {
111         /* TX descriptors will have their RS bit set after tx_rs_thresh
112          * descriptors have been used. The TX descriptor ring will be cleaned
113          * after tx_free_thresh descriptors are used or if the number of
114          * descriptors required to transmit a packet is greater than the
115          * number of free TX descriptors.
116          *
117          * The following constraints must be satisfied:
118          *  - tx_rs_thresh must be less than the size of the ring minus 2.
119          *  - tx_free_thresh must be less than the size of the ring minus 3.
120          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
121          *  - tx_rs_thresh must be a divisor of the ring size.
122          *
123          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
124          * race condition, hence the maximum threshold constraints. When set
125          * to zero use default values.
126          */
127         if (tx_rs_thresh >= (nb_desc - 2)) {
128                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
129                              "number of TX descriptors (%u) minus 2",
130                              tx_rs_thresh, nb_desc);
131                 return -EINVAL;
132         }
133         if (tx_free_thresh >= (nb_desc - 3)) {
134                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
135                              "number of TX descriptors (%u) minus 3.",
136                              tx_free_thresh, nb_desc);
137                 return -EINVAL;
138         }
139         if (tx_rs_thresh > tx_free_thresh) {
140                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
141                              "equal to tx_free_thresh (%u).",
142                              tx_rs_thresh, tx_free_thresh);
143                 return -EINVAL;
144         }
145         if ((nb_desc % tx_rs_thresh) != 0) {
146                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
147                              "number of TX descriptors (%u).",
148                              tx_rs_thresh, nb_desc);
149                 return -EINVAL;
150         }
151
152         return 0;
153 }
154
155 static inline bool
156 check_rx_vec_allow(struct iavf_rx_queue *rxq)
157 {
158         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
159             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
160                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
161                 return true;
162         }
163
164         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
165         return false;
166 }
167
168 static inline bool
169 check_tx_vec_allow(struct iavf_tx_queue *txq)
170 {
171         if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
172             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
173             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
174                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
175                 return true;
176         }
177         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
178         return false;
179 }
180
181 static inline bool
182 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
183 {
184         int ret = true;
185
186         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
187                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
188                              "rxq->rx_free_thresh=%d, "
189                              "IAVF_RX_MAX_BURST=%d",
190                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
191                 ret = false;
192         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
193                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
194                              "rxq->nb_rx_desc=%d, "
195                              "rxq->rx_free_thresh=%d",
196                              rxq->nb_rx_desc, rxq->rx_free_thresh);
197                 ret = false;
198         }
199         return ret;
200 }
201
202 static inline void
203 reset_rx_queue(struct iavf_rx_queue *rxq)
204 {
205         uint16_t len;
206         uint32_t i;
207
208         if (!rxq)
209                 return;
210
211         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
212
213         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
214                 ((volatile char *)rxq->rx_ring)[i] = 0;
215
216         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
217
218         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
219                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
220
221         /* for rx bulk */
222         rxq->rx_nb_avail = 0;
223         rxq->rx_next_avail = 0;
224         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
225
226         rxq->rx_tail = 0;
227         rxq->nb_rx_hold = 0;
228         rxq->pkt_first_seg = NULL;
229         rxq->pkt_last_seg = NULL;
230         rxq->rxrearm_nb = 0;
231         rxq->rxrearm_start = 0;
232 }
233
234 static inline void
235 reset_tx_queue(struct iavf_tx_queue *txq)
236 {
237         struct iavf_tx_entry *txe;
238         uint32_t i, size;
239         uint16_t prev;
240
241         if (!txq) {
242                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
243                 return;
244         }
245
246         txe = txq->sw_ring;
247         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
248         for (i = 0; i < size; i++)
249                 ((volatile char *)txq->tx_ring)[i] = 0;
250
251         prev = (uint16_t)(txq->nb_tx_desc - 1);
252         for (i = 0; i < txq->nb_tx_desc; i++) {
253                 txq->tx_ring[i].cmd_type_offset_bsz =
254                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
255                 txe[i].mbuf =  NULL;
256                 txe[i].last_id = i;
257                 txe[prev].next_id = i;
258                 prev = i;
259         }
260
261         txq->tx_tail = 0;
262         txq->nb_used = 0;
263
264         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
265         txq->nb_free = txq->nb_tx_desc - 1;
266
267         txq->next_dd = txq->rs_thresh - 1;
268         txq->next_rs = txq->rs_thresh - 1;
269 }
270
271 static int
272 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
273 {
274         volatile union iavf_rx_desc *rxd;
275         struct rte_mbuf *mbuf = NULL;
276         uint64_t dma_addr;
277         uint16_t i;
278
279         for (i = 0; i < rxq->nb_rx_desc; i++) {
280                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
281                 if (unlikely(!mbuf)) {
282                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
283                         return -ENOMEM;
284                 }
285
286                 rte_mbuf_refcnt_set(mbuf, 1);
287                 mbuf->next = NULL;
288                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
289                 mbuf->nb_segs = 1;
290                 mbuf->port = rxq->port_id;
291
292                 dma_addr =
293                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
294
295                 rxd = &rxq->rx_ring[i];
296                 rxd->read.pkt_addr = dma_addr;
297                 rxd->read.hdr_addr = 0;
298 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
299                 rxd->read.rsvd1 = 0;
300                 rxd->read.rsvd2 = 0;
301 #endif
302
303                 rxq->sw_ring[i] = mbuf;
304         }
305
306         return 0;
307 }
308
309 static inline void
310 release_rxq_mbufs(struct iavf_rx_queue *rxq)
311 {
312         uint16_t i;
313
314         if (!rxq->sw_ring)
315                 return;
316
317         for (i = 0; i < rxq->nb_rx_desc; i++) {
318                 if (rxq->sw_ring[i]) {
319                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
320                         rxq->sw_ring[i] = NULL;
321                 }
322         }
323
324         /* for rx bulk */
325         if (rxq->rx_nb_avail == 0)
326                 return;
327         for (i = 0; i < rxq->rx_nb_avail; i++) {
328                 struct rte_mbuf *mbuf;
329
330                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
331                 rte_pktmbuf_free_seg(mbuf);
332         }
333         rxq->rx_nb_avail = 0;
334 }
335
336 static inline void
337 release_txq_mbufs(struct iavf_tx_queue *txq)
338 {
339         uint16_t i;
340
341         if (!txq || !txq->sw_ring) {
342                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
343                 return;
344         }
345
346         for (i = 0; i < txq->nb_tx_desc; i++) {
347                 if (txq->sw_ring[i].mbuf) {
348                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
349                         txq->sw_ring[i].mbuf = NULL;
350                 }
351         }
352 }
353
354 static const struct iavf_rxq_ops def_rxq_ops = {
355         .release_mbufs = release_rxq_mbufs,
356 };
357
358 static const struct iavf_txq_ops def_txq_ops = {
359         .release_mbufs = release_txq_mbufs,
360 };
361
362 static inline void
363 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
364                                     struct rte_mbuf *mb,
365                                     volatile union iavf_rx_flex_desc *rxdp)
366 {
367         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
368                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
369 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
370         uint16_t stat_err;
371 #endif
372
373         if (desc->flow_id != 0xFFFFFFFF) {
374                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
375                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
376         }
377
378 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
379         stat_err = rte_le_to_cpu_16(desc->status_error0);
380         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
381                 mb->ol_flags |= PKT_RX_RSS_HASH;
382                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
383         }
384 #endif
385 }
386
387 static inline void
388 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
389                                        struct rte_mbuf *mb,
390                                        volatile union iavf_rx_flex_desc *rxdp)
391 {
392         volatile struct iavf_32b_rx_flex_desc_comms *desc =
393                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
394         uint16_t stat_err;
395
396         stat_err = rte_le_to_cpu_16(desc->status_error0);
397         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
398                 mb->ol_flags |= PKT_RX_RSS_HASH;
399                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
400         }
401
402 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
403         if (desc->flow_id != 0xFFFFFFFF) {
404                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
405                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
406         }
407
408         if (rxq->xtr_ol_flag) {
409                 uint32_t metadata = 0;
410
411                 stat_err = rte_le_to_cpu_16(desc->status_error1);
412
413                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
414                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
415
416                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
417                         metadata |=
418                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
419
420                 if (metadata) {
421                         mb->ol_flags |= rxq->xtr_ol_flag;
422
423                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
424                 }
425         }
426 #endif
427 }
428
429 static inline void
430 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
431                                        struct rte_mbuf *mb,
432                                        volatile union iavf_rx_flex_desc *rxdp)
433 {
434         volatile struct iavf_32b_rx_flex_desc_comms *desc =
435                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
436         uint16_t stat_err;
437
438         stat_err = rte_le_to_cpu_16(desc->status_error0);
439         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
440                 mb->ol_flags |= PKT_RX_RSS_HASH;
441                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
442         }
443
444 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
445         if (desc->flow_id != 0xFFFFFFFF) {
446                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
447                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
448         }
449
450         if (rxq->xtr_ol_flag) {
451                 uint32_t metadata = 0;
452
453                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
454                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
455                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
456                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
457
458                 if (metadata) {
459                         mb->ol_flags |= rxq->xtr_ol_flag;
460
461                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
462                 }
463         }
464 #endif
465 }
466
467 static void
468 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
469 {
470         switch (rxdid) {
471         case IAVF_RXDID_COMMS_AUX_VLAN:
472                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
473                 rxq->rxd_to_pkt_fields =
474                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
475                 break;
476         case IAVF_RXDID_COMMS_AUX_IPV4:
477                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
478                 rxq->rxd_to_pkt_fields =
479                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
480                 break;
481         case IAVF_RXDID_COMMS_AUX_IPV6:
482                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
483                 rxq->rxd_to_pkt_fields =
484                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
485                 break;
486         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
487                 rxq->xtr_ol_flag =
488                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
489                 rxq->rxd_to_pkt_fields =
490                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
491                 break;
492         case IAVF_RXDID_COMMS_AUX_TCP:
493                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
494                 rxq->rxd_to_pkt_fields =
495                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
496                 break;
497         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
498                 rxq->xtr_ol_flag =
499                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
500                 rxq->rxd_to_pkt_fields =
501                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
502                 break;
503         case IAVF_RXDID_COMMS_OVS_1:
504                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
505                 break;
506         default:
507                 /* update this according to the RXDID for FLEX_DESC_NONE */
508                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
509                 break;
510         }
511
512         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
513                 rxq->xtr_ol_flag = 0;
514 }
515
516 int
517 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
518                        uint16_t nb_desc, unsigned int socket_id,
519                        const struct rte_eth_rxconf *rx_conf,
520                        struct rte_mempool *mp)
521 {
522         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
523         struct iavf_adapter *ad =
524                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
525         struct iavf_info *vf =
526                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
527         struct iavf_vsi *vsi = &vf->vsi;
528         struct iavf_rx_queue *rxq;
529         const struct rte_memzone *mz;
530         uint32_t ring_size;
531         uint8_t proto_xtr;
532         uint16_t len;
533         uint16_t rx_free_thresh;
534         uint64_t offloads;
535
536         PMD_INIT_FUNC_TRACE();
537
538         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
539
540         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
541             nb_desc > IAVF_MAX_RING_DESC ||
542             nb_desc < IAVF_MIN_RING_DESC) {
543                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
544                              "invalid", nb_desc);
545                 return -EINVAL;
546         }
547
548         /* Check free threshold */
549         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
550                          IAVF_DEFAULT_RX_FREE_THRESH :
551                          rx_conf->rx_free_thresh;
552         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
553                 return -EINVAL;
554
555         /* Free memory if needed */
556         if (dev->data->rx_queues[queue_idx]) {
557                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
558                 dev->data->rx_queues[queue_idx] = NULL;
559         }
560
561         /* Allocate the rx queue data structure */
562         rxq = rte_zmalloc_socket("iavf rxq",
563                                  sizeof(struct iavf_rx_queue),
564                                  RTE_CACHE_LINE_SIZE,
565                                  socket_id);
566         if (!rxq) {
567                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
568                              "rx queue data structure");
569                 return -ENOMEM;
570         }
571
572         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
573                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
574                                 IAVF_PROTO_XTR_NONE;
575                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
576                 rxq->proto_xtr = proto_xtr;
577         } else {
578                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
579                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
580         }
581
582         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
583                 struct virtchnl_vlan_supported_caps *stripping_support =
584                                 &vf->vlan_v2_caps.offloads.stripping_support;
585                 uint32_t stripping_cap;
586
587                 if (stripping_support->outer)
588                         stripping_cap = stripping_support->outer;
589                 else
590                         stripping_cap = stripping_support->inner;
591
592                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
593                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
594                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
595                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
596         } else {
597                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
598         }
599
600         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
601
602         rxq->mp = mp;
603         rxq->nb_rx_desc = nb_desc;
604         rxq->rx_free_thresh = rx_free_thresh;
605         rxq->queue_id = queue_idx;
606         rxq->port_id = dev->data->port_id;
607         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
608         rxq->rx_hdr_len = 0;
609         rxq->vsi = vsi;
610         rxq->offloads = offloads;
611
612         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
613                 rxq->crc_len = RTE_ETHER_CRC_LEN;
614         else
615                 rxq->crc_len = 0;
616
617         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
618         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
619
620         /* Allocate the software ring. */
621         len = nb_desc + IAVF_RX_MAX_BURST;
622         rxq->sw_ring =
623                 rte_zmalloc_socket("iavf rx sw ring",
624                                    sizeof(struct rte_mbuf *) * len,
625                                    RTE_CACHE_LINE_SIZE,
626                                    socket_id);
627         if (!rxq->sw_ring) {
628                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
629                 rte_free(rxq);
630                 return -ENOMEM;
631         }
632
633         /* Allocate the maximun number of RX ring hardware descriptor with
634          * a liitle more to support bulk allocate.
635          */
636         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
637         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
638                               IAVF_DMA_MEM_ALIGN);
639         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
640                                       ring_size, IAVF_RING_BASE_ALIGN,
641                                       socket_id);
642         if (!mz) {
643                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
644                 rte_free(rxq->sw_ring);
645                 rte_free(rxq);
646                 return -ENOMEM;
647         }
648         /* Zero all the descriptors in the ring. */
649         memset(mz->addr, 0, ring_size);
650         rxq->rx_ring_phys_addr = mz->iova;
651         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
652
653         rxq->mz = mz;
654         reset_rx_queue(rxq);
655         rxq->q_set = true;
656         dev->data->rx_queues[queue_idx] = rxq;
657         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
658         rxq->ops = &def_rxq_ops;
659
660         if (check_rx_bulk_allow(rxq) == true) {
661                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
662                              "satisfied. Rx Burst Bulk Alloc function will be "
663                              "used on port=%d, queue=%d.",
664                              rxq->port_id, rxq->queue_id);
665         } else {
666                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
667                              "not satisfied, Scattered Rx is requested "
668                              "on port=%d, queue=%d.",
669                              rxq->port_id, rxq->queue_id);
670                 ad->rx_bulk_alloc_allowed = false;
671         }
672
673         if (check_rx_vec_allow(rxq) == false)
674                 ad->rx_vec_allowed = false;
675
676         return 0;
677 }
678
679 int
680 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
681                        uint16_t queue_idx,
682                        uint16_t nb_desc,
683                        unsigned int socket_id,
684                        const struct rte_eth_txconf *tx_conf)
685 {
686         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
687         struct iavf_info *vf =
688                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
689         struct iavf_tx_queue *txq;
690         const struct rte_memzone *mz;
691         uint32_t ring_size;
692         uint16_t tx_rs_thresh, tx_free_thresh;
693         uint64_t offloads;
694
695         PMD_INIT_FUNC_TRACE();
696
697         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
698
699         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
700             nb_desc > IAVF_MAX_RING_DESC ||
701             nb_desc < IAVF_MIN_RING_DESC) {
702                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
703                             "invalid", nb_desc);
704                 return -EINVAL;
705         }
706
707         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
708                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
709         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
710                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
711         if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
712                 return -EINVAL;
713
714         /* Free memory if needed. */
715         if (dev->data->tx_queues[queue_idx]) {
716                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
717                 dev->data->tx_queues[queue_idx] = NULL;
718         }
719
720         /* Allocate the TX queue data structure. */
721         txq = rte_zmalloc_socket("iavf txq",
722                                  sizeof(struct iavf_tx_queue),
723                                  RTE_CACHE_LINE_SIZE,
724                                  socket_id);
725         if (!txq) {
726                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
727                              "tx queue structure");
728                 return -ENOMEM;
729         }
730
731         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
732                 struct virtchnl_vlan_supported_caps *insertion_support =
733                         &vf->vlan_v2_caps.offloads.insertion_support;
734                 uint32_t insertion_cap;
735
736                 if (insertion_support->outer)
737                         insertion_cap = insertion_support->outer;
738                 else
739                         insertion_cap = insertion_support->inner;
740
741                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
742                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
743                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
744                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
745         } else {
746                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
747         }
748
749         txq->nb_tx_desc = nb_desc;
750         txq->rs_thresh = tx_rs_thresh;
751         txq->free_thresh = tx_free_thresh;
752         txq->queue_id = queue_idx;
753         txq->port_id = dev->data->port_id;
754         txq->offloads = offloads;
755         txq->tx_deferred_start = tx_conf->tx_deferred_start;
756
757         /* Allocate software ring */
758         txq->sw_ring =
759                 rte_zmalloc_socket("iavf tx sw ring",
760                                    sizeof(struct iavf_tx_entry) * nb_desc,
761                                    RTE_CACHE_LINE_SIZE,
762                                    socket_id);
763         if (!txq->sw_ring) {
764                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
765                 rte_free(txq);
766                 return -ENOMEM;
767         }
768
769         /* Allocate TX hardware ring descriptors. */
770         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
771         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
772         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
773                                       ring_size, IAVF_RING_BASE_ALIGN,
774                                       socket_id);
775         if (!mz) {
776                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
777                 rte_free(txq->sw_ring);
778                 rte_free(txq);
779                 return -ENOMEM;
780         }
781         txq->tx_ring_phys_addr = mz->iova;
782         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
783
784         txq->mz = mz;
785         reset_tx_queue(txq);
786         txq->q_set = true;
787         dev->data->tx_queues[queue_idx] = txq;
788         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
789         txq->ops = &def_txq_ops;
790
791         if (check_tx_vec_allow(txq) == false) {
792                 struct iavf_adapter *ad =
793                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
794                 ad->tx_vec_allowed = false;
795         }
796
797         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
798             vf->tm_conf.committed) {
799                 int tc;
800                 for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
801                         if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
802                             txq->queue_id < (vf->qtc_map[tc].start_queue_id +
803                             vf->qtc_map[tc].queue_count))
804                                 break;
805                 }
806                 if (tc >= vf->qos_cap->num_elem) {
807                         PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
808                         return -EINVAL;
809                 }
810                 txq->tc = tc;
811         }
812
813         return 0;
814 }
815
816 int
817 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
818 {
819         struct iavf_adapter *adapter =
820                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
821         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
822         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
823         struct iavf_rx_queue *rxq;
824         int err = 0;
825
826         PMD_DRV_FUNC_TRACE();
827
828         if (rx_queue_id >= dev->data->nb_rx_queues)
829                 return -EINVAL;
830
831         rxq = dev->data->rx_queues[rx_queue_id];
832
833         err = alloc_rxq_mbufs(rxq);
834         if (err) {
835                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
836                 return err;
837         }
838
839         rte_wmb();
840
841         /* Init the RX tail register. */
842         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
843         IAVF_WRITE_FLUSH(hw);
844
845         /* Ready to switch the queue on */
846         if (!vf->lv_enabled)
847                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
848         else
849                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
850
851         if (err)
852                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
853                             rx_queue_id);
854         else
855                 dev->data->rx_queue_state[rx_queue_id] =
856                         RTE_ETH_QUEUE_STATE_STARTED;
857
858         return err;
859 }
860
861 int
862 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
863 {
864         struct iavf_adapter *adapter =
865                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
866         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
867         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
868         struct iavf_tx_queue *txq;
869         int err = 0;
870
871         PMD_DRV_FUNC_TRACE();
872
873         if (tx_queue_id >= dev->data->nb_tx_queues)
874                 return -EINVAL;
875
876         txq = dev->data->tx_queues[tx_queue_id];
877
878         /* Init the RX tail register. */
879         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
880         IAVF_WRITE_FLUSH(hw);
881
882         /* Ready to switch the queue on */
883         if (!vf->lv_enabled)
884                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
885         else
886                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
887
888         if (err)
889                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
890                             tx_queue_id);
891         else
892                 dev->data->tx_queue_state[tx_queue_id] =
893                         RTE_ETH_QUEUE_STATE_STARTED;
894
895         return err;
896 }
897
898 int
899 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
900 {
901         struct iavf_adapter *adapter =
902                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
903         struct iavf_rx_queue *rxq;
904         int err;
905
906         PMD_DRV_FUNC_TRACE();
907
908         if (rx_queue_id >= dev->data->nb_rx_queues)
909                 return -EINVAL;
910
911         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
912         if (err) {
913                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
914                             rx_queue_id);
915                 return err;
916         }
917
918         rxq = dev->data->rx_queues[rx_queue_id];
919         rxq->ops->release_mbufs(rxq);
920         reset_rx_queue(rxq);
921         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
922
923         return 0;
924 }
925
926 int
927 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
928 {
929         struct iavf_adapter *adapter =
930                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
931         struct iavf_tx_queue *txq;
932         int err;
933
934         PMD_DRV_FUNC_TRACE();
935
936         if (tx_queue_id >= dev->data->nb_tx_queues)
937                 return -EINVAL;
938
939         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
940         if (err) {
941                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
942                             tx_queue_id);
943                 return err;
944         }
945
946         txq = dev->data->tx_queues[tx_queue_id];
947         txq->ops->release_mbufs(txq);
948         reset_tx_queue(txq);
949         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
950
951         return 0;
952 }
953
954 void
955 iavf_dev_rx_queue_release(void *rxq)
956 {
957         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
958
959         if (!q)
960                 return;
961
962         q->ops->release_mbufs(q);
963         rte_free(q->sw_ring);
964         rte_memzone_free(q->mz);
965         rte_free(q);
966 }
967
968 void
969 iavf_dev_tx_queue_release(void *txq)
970 {
971         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
972
973         if (!q)
974                 return;
975
976         q->ops->release_mbufs(q);
977         rte_free(q->sw_ring);
978         rte_memzone_free(q->mz);
979         rte_free(q);
980 }
981
982 void
983 iavf_stop_queues(struct rte_eth_dev *dev)
984 {
985         struct iavf_adapter *adapter =
986                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
987         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
988         struct iavf_rx_queue *rxq;
989         struct iavf_tx_queue *txq;
990         int ret, i;
991
992         /* Stop All queues */
993         if (!vf->lv_enabled) {
994                 ret = iavf_disable_queues(adapter);
995                 if (ret)
996                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
997         } else {
998                 ret = iavf_disable_queues_lv(adapter);
999                 if (ret)
1000                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
1001         }
1002
1003         if (ret)
1004                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
1005
1006         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1007                 txq = dev->data->tx_queues[i];
1008                 if (!txq)
1009                         continue;
1010                 txq->ops->release_mbufs(txq);
1011                 reset_tx_queue(txq);
1012                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1013         }
1014         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1015                 rxq = dev->data->rx_queues[i];
1016                 if (!rxq)
1017                         continue;
1018                 rxq->ops->release_mbufs(rxq);
1019                 reset_rx_queue(rxq);
1020                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1021         }
1022 }
1023
1024 #define IAVF_RX_FLEX_ERR0_BITS  \
1025         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1026          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1027          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1028          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1029          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1030          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1031
1032 static inline void
1033 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1034 {
1035         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1036                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1037                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1038                 mb->vlan_tci =
1039                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1040         } else {
1041                 mb->vlan_tci = 0;
1042         }
1043 }
1044
1045 static inline void
1046 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1047                           volatile union iavf_rx_flex_desc *rxdp,
1048                           uint8_t rx_flags)
1049 {
1050         uint16_t vlan_tci = 0;
1051
1052         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1 &&
1053             rte_le_to_cpu_64(rxdp->wb.status_error0) &
1054             (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S))
1055                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag1);
1056
1057 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1058         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2 &&
1059             rte_le_to_cpu_16(rxdp->wb.status_error1) &
1060             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S))
1061                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1062 #endif
1063
1064         if (vlan_tci) {
1065                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1066                 mb->vlan_tci = vlan_tci;
1067         }
1068 }
1069
1070 /* Translate the rx descriptor status and error fields to pkt flags */
1071 static inline uint64_t
1072 iavf_rxd_to_pkt_flags(uint64_t qword)
1073 {
1074         uint64_t flags;
1075         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1076
1077 #define IAVF_RX_ERR_BITS 0x3f
1078
1079         /* Check if RSS_HASH */
1080         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1081                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1082                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
1083
1084         /* Check if FDIR Match */
1085         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1086                                 PKT_RX_FDIR : 0);
1087
1088         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1089                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1090                 return flags;
1091         }
1092
1093         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1094                 flags |= PKT_RX_IP_CKSUM_BAD;
1095         else
1096                 flags |= PKT_RX_IP_CKSUM_GOOD;
1097
1098         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1099                 flags |= PKT_RX_L4_CKSUM_BAD;
1100         else
1101                 flags |= PKT_RX_L4_CKSUM_GOOD;
1102
1103         /* TODO: Oversize error bit is not processed here */
1104
1105         return flags;
1106 }
1107
1108 static inline uint64_t
1109 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1110 {
1111         uint64_t flags = 0;
1112 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1113         uint16_t flexbh;
1114
1115         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1116                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1117                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1118
1119         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1120                 mb->hash.fdir.hi =
1121                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1122                 flags |= PKT_RX_FDIR_ID;
1123         }
1124 #else
1125         mb->hash.fdir.hi =
1126                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1127         flags |= PKT_RX_FDIR_ID;
1128 #endif
1129         return flags;
1130 }
1131
1132 #define IAVF_RX_FLEX_ERR0_BITS  \
1133         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1134          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1135          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1136          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1137          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1138          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1139
1140 /* Rx L3/L4 checksum */
1141 static inline uint64_t
1142 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1143 {
1144         uint64_t flags = 0;
1145
1146         /* check if HW has decoded the packet and checksum */
1147         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1148                 return 0;
1149
1150         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1151                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1152                 return flags;
1153         }
1154
1155         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1156                 flags |= PKT_RX_IP_CKSUM_BAD;
1157         else
1158                 flags |= PKT_RX_IP_CKSUM_GOOD;
1159
1160         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1161                 flags |= PKT_RX_L4_CKSUM_BAD;
1162         else
1163                 flags |= PKT_RX_L4_CKSUM_GOOD;
1164
1165         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1166                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1167
1168         return flags;
1169 }
1170
1171 /* If the number of free RX descriptors is greater than the RX free
1172  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1173  * register. Update the RDT with the value of the last processed RX
1174  * descriptor minus 1, to guarantee that the RDT register is never
1175  * equal to the RDH register, which creates a "full" ring situation
1176  * from the hardware point of view.
1177  */
1178 static inline void
1179 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1180 {
1181         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1182
1183         if (nb_hold > rxq->rx_free_thresh) {
1184                 PMD_RX_LOG(DEBUG,
1185                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1186                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1187                 rx_id = (uint16_t)((rx_id == 0) ?
1188                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1189                 IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1190                 nb_hold = 0;
1191         }
1192         rxq->nb_rx_hold = nb_hold;
1193 }
1194
1195 /* implement recv_pkts */
1196 uint16_t
1197 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1198 {
1199         volatile union iavf_rx_desc *rx_ring;
1200         volatile union iavf_rx_desc *rxdp;
1201         struct iavf_rx_queue *rxq;
1202         union iavf_rx_desc rxd;
1203         struct rte_mbuf *rxe;
1204         struct rte_eth_dev *dev;
1205         struct rte_mbuf *rxm;
1206         struct rte_mbuf *nmb;
1207         uint16_t nb_rx;
1208         uint32_t rx_status;
1209         uint64_t qword1;
1210         uint16_t rx_packet_len;
1211         uint16_t rx_id, nb_hold;
1212         uint64_t dma_addr;
1213         uint64_t pkt_flags;
1214         const uint32_t *ptype_tbl;
1215
1216         nb_rx = 0;
1217         nb_hold = 0;
1218         rxq = rx_queue;
1219         rx_id = rxq->rx_tail;
1220         rx_ring = rxq->rx_ring;
1221         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1222
1223         while (nb_rx < nb_pkts) {
1224                 rxdp = &rx_ring[rx_id];
1225                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1226                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1227                             IAVF_RXD_QW1_STATUS_SHIFT;
1228
1229                 /* Check the DD bit first */
1230                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1231                         break;
1232                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1233
1234                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1235                 if (unlikely(!nmb)) {
1236                         dev = &rte_eth_devices[rxq->port_id];
1237                         dev->data->rx_mbuf_alloc_failed++;
1238                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1239                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1240                         break;
1241                 }
1242
1243                 rxd = *rxdp;
1244                 nb_hold++;
1245                 rxe = rxq->sw_ring[rx_id];
1246                 rxq->sw_ring[rx_id] = nmb;
1247                 rx_id++;
1248                 if (unlikely(rx_id == rxq->nb_rx_desc))
1249                         rx_id = 0;
1250
1251                 /* Prefetch next mbuf */
1252                 rte_prefetch0(rxq->sw_ring[rx_id]);
1253
1254                 /* When next RX descriptor is on a cache line boundary,
1255                  * prefetch the next 4 RX descriptors and next 8 pointers
1256                  * to mbufs.
1257                  */
1258                 if ((rx_id & 0x3) == 0) {
1259                         rte_prefetch0(&rx_ring[rx_id]);
1260                         rte_prefetch0(rxq->sw_ring[rx_id]);
1261                 }
1262                 rxm = rxe;
1263                 dma_addr =
1264                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1265                 rxdp->read.hdr_addr = 0;
1266                 rxdp->read.pkt_addr = dma_addr;
1267
1268                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1269                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1270
1271                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1272                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1273                 rxm->nb_segs = 1;
1274                 rxm->next = NULL;
1275                 rxm->pkt_len = rx_packet_len;
1276                 rxm->data_len = rx_packet_len;
1277                 rxm->port = rxq->port_id;
1278                 rxm->ol_flags = 0;
1279                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1280                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1281                 rxm->packet_type =
1282                         ptype_tbl[(uint8_t)((qword1 &
1283                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1284
1285                 if (pkt_flags & PKT_RX_RSS_HASH)
1286                         rxm->hash.rss =
1287                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1288
1289                 if (pkt_flags & PKT_RX_FDIR)
1290                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1291
1292                 rxm->ol_flags |= pkt_flags;
1293
1294                 rx_pkts[nb_rx++] = rxm;
1295         }
1296         rxq->rx_tail = rx_id;
1297
1298         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1299
1300         return nb_rx;
1301 }
1302
1303 /* implement recv_pkts for flexible Rx descriptor */
1304 uint16_t
1305 iavf_recv_pkts_flex_rxd(void *rx_queue,
1306                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1307 {
1308         volatile union iavf_rx_desc *rx_ring;
1309         volatile union iavf_rx_flex_desc *rxdp;
1310         struct iavf_rx_queue *rxq;
1311         union iavf_rx_flex_desc rxd;
1312         struct rte_mbuf *rxe;
1313         struct rte_eth_dev *dev;
1314         struct rte_mbuf *rxm;
1315         struct rte_mbuf *nmb;
1316         uint16_t nb_rx;
1317         uint16_t rx_stat_err0;
1318         uint16_t rx_packet_len;
1319         uint16_t rx_id, nb_hold;
1320         uint64_t dma_addr;
1321         uint64_t pkt_flags;
1322         const uint32_t *ptype_tbl;
1323
1324         nb_rx = 0;
1325         nb_hold = 0;
1326         rxq = rx_queue;
1327         rx_id = rxq->rx_tail;
1328         rx_ring = rxq->rx_ring;
1329         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1330
1331         while (nb_rx < nb_pkts) {
1332                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1333                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1334
1335                 /* Check the DD bit first */
1336                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1337                         break;
1338                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1339
1340                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1341                 if (unlikely(!nmb)) {
1342                         dev = &rte_eth_devices[rxq->port_id];
1343                         dev->data->rx_mbuf_alloc_failed++;
1344                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1345                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1346                         break;
1347                 }
1348
1349                 rxd = *rxdp;
1350                 nb_hold++;
1351                 rxe = rxq->sw_ring[rx_id];
1352                 rxq->sw_ring[rx_id] = nmb;
1353                 rx_id++;
1354                 if (unlikely(rx_id == rxq->nb_rx_desc))
1355                         rx_id = 0;
1356
1357                 /* Prefetch next mbuf */
1358                 rte_prefetch0(rxq->sw_ring[rx_id]);
1359
1360                 /* When next RX descriptor is on a cache line boundary,
1361                  * prefetch the next 4 RX descriptors and next 8 pointers
1362                  * to mbufs.
1363                  */
1364                 if ((rx_id & 0x3) == 0) {
1365                         rte_prefetch0(&rx_ring[rx_id]);
1366                         rte_prefetch0(rxq->sw_ring[rx_id]);
1367                 }
1368                 rxm = rxe;
1369                 dma_addr =
1370                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1371                 rxdp->read.hdr_addr = 0;
1372                 rxdp->read.pkt_addr = dma_addr;
1373
1374                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1375                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1376
1377                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1378                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1379                 rxm->nb_segs = 1;
1380                 rxm->next = NULL;
1381                 rxm->pkt_len = rx_packet_len;
1382                 rxm->data_len = rx_packet_len;
1383                 rxm->port = rxq->port_id;
1384                 rxm->ol_flags = 0;
1385                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1386                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1387                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd, rxq->rx_flags);
1388                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
1389                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1390                 rxm->ol_flags |= pkt_flags;
1391
1392                 rx_pkts[nb_rx++] = rxm;
1393         }
1394         rxq->rx_tail = rx_id;
1395
1396         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1397
1398         return nb_rx;
1399 }
1400
1401 /* implement recv_scattered_pkts for flexible Rx descriptor */
1402 uint16_t
1403 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1404                                   uint16_t nb_pkts)
1405 {
1406         struct iavf_rx_queue *rxq = rx_queue;
1407         union iavf_rx_flex_desc rxd;
1408         struct rte_mbuf *rxe;
1409         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1410         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1411         struct rte_mbuf *nmb, *rxm;
1412         uint16_t rx_id = rxq->rx_tail;
1413         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1414         struct rte_eth_dev *dev;
1415         uint16_t rx_stat_err0;
1416         uint64_t dma_addr;
1417         uint64_t pkt_flags;
1418
1419         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1420         volatile union iavf_rx_flex_desc *rxdp;
1421         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1422
1423         while (nb_rx < nb_pkts) {
1424                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1425                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1426
1427                 /* Check the DD bit */
1428                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1429                         break;
1430                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1431
1432                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1433                 if (unlikely(!nmb)) {
1434                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1435                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1436                         dev = &rte_eth_devices[rxq->port_id];
1437                         dev->data->rx_mbuf_alloc_failed++;
1438                         break;
1439                 }
1440
1441                 rxd = *rxdp;
1442                 nb_hold++;
1443                 rxe = rxq->sw_ring[rx_id];
1444                 rxq->sw_ring[rx_id] = nmb;
1445                 rx_id++;
1446                 if (rx_id == rxq->nb_rx_desc)
1447                         rx_id = 0;
1448
1449                 /* Prefetch next mbuf */
1450                 rte_prefetch0(rxq->sw_ring[rx_id]);
1451
1452                 /* When next RX descriptor is on a cache line boundary,
1453                  * prefetch the next 4 RX descriptors and next 8 pointers
1454                  * to mbufs.
1455                  */
1456                 if ((rx_id & 0x3) == 0) {
1457                         rte_prefetch0(&rx_ring[rx_id]);
1458                         rte_prefetch0(rxq->sw_ring[rx_id]);
1459                 }
1460
1461                 rxm = rxe;
1462                 dma_addr =
1463                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1464
1465                 /* Set data buffer address and data length of the mbuf */
1466                 rxdp->read.hdr_addr = 0;
1467                 rxdp->read.pkt_addr = dma_addr;
1468                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1469                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1470                 rxm->data_len = rx_packet_len;
1471                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1472
1473                 /* If this is the first buffer of the received packet, set the
1474                  * pointer to the first mbuf of the packet and initialize its
1475                  * context. Otherwise, update the total length and the number
1476                  * of segments of the current scattered packet, and update the
1477                  * pointer to the last mbuf of the current packet.
1478                  */
1479                 if (!first_seg) {
1480                         first_seg = rxm;
1481                         first_seg->nb_segs = 1;
1482                         first_seg->pkt_len = rx_packet_len;
1483                 } else {
1484                         first_seg->pkt_len =
1485                                 (uint16_t)(first_seg->pkt_len +
1486                                                 rx_packet_len);
1487                         first_seg->nb_segs++;
1488                         last_seg->next = rxm;
1489                 }
1490
1491                 /* If this is not the last buffer of the received packet,
1492                  * update the pointer to the last mbuf of the current scattered
1493                  * packet and continue to parse the RX ring.
1494                  */
1495                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1496                         last_seg = rxm;
1497                         continue;
1498                 }
1499
1500                 /* This is the last buffer of the received packet. If the CRC
1501                  * is not stripped by the hardware:
1502                  *  - Subtract the CRC length from the total packet length.
1503                  *  - If the last buffer only contains the whole CRC or a part
1504                  *  of it, free the mbuf associated to the last buffer. If part
1505                  *  of the CRC is also contained in the previous mbuf, subtract
1506                  *  the length of that CRC part from the data length of the
1507                  *  previous mbuf.
1508                  */
1509                 rxm->next = NULL;
1510                 if (unlikely(rxq->crc_len > 0)) {
1511                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1512                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1513                                 rte_pktmbuf_free_seg(rxm);
1514                                 first_seg->nb_segs--;
1515                                 last_seg->data_len =
1516                                         (uint16_t)(last_seg->data_len -
1517                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1518                                 last_seg->next = NULL;
1519                         } else {
1520                                 rxm->data_len = (uint16_t)(rx_packet_len -
1521                                                         RTE_ETHER_CRC_LEN);
1522                         }
1523                 }
1524
1525                 first_seg->port = rxq->port_id;
1526                 first_seg->ol_flags = 0;
1527                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1528                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1529                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd, rxq->rx_flags);
1530                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1531                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1532
1533                 first_seg->ol_flags |= pkt_flags;
1534
1535                 /* Prefetch data of first segment, if configured to do so. */
1536                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1537                                           first_seg->data_off));
1538                 rx_pkts[nb_rx++] = first_seg;
1539                 first_seg = NULL;
1540         }
1541
1542         /* Record index of the next RX descriptor to probe. */
1543         rxq->rx_tail = rx_id;
1544         rxq->pkt_first_seg = first_seg;
1545         rxq->pkt_last_seg = last_seg;
1546
1547         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1548
1549         return nb_rx;
1550 }
1551
1552 /* implement recv_scattered_pkts  */
1553 uint16_t
1554 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1555                         uint16_t nb_pkts)
1556 {
1557         struct iavf_rx_queue *rxq = rx_queue;
1558         union iavf_rx_desc rxd;
1559         struct rte_mbuf *rxe;
1560         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1561         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1562         struct rte_mbuf *nmb, *rxm;
1563         uint16_t rx_id = rxq->rx_tail;
1564         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1565         struct rte_eth_dev *dev;
1566         uint32_t rx_status;
1567         uint64_t qword1;
1568         uint64_t dma_addr;
1569         uint64_t pkt_flags;
1570
1571         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1572         volatile union iavf_rx_desc *rxdp;
1573         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1574
1575         while (nb_rx < nb_pkts) {
1576                 rxdp = &rx_ring[rx_id];
1577                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1578                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1579                             IAVF_RXD_QW1_STATUS_SHIFT;
1580
1581                 /* Check the DD bit */
1582                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1583                         break;
1584                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1585
1586                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1587                 if (unlikely(!nmb)) {
1588                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1589                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1590                         dev = &rte_eth_devices[rxq->port_id];
1591                         dev->data->rx_mbuf_alloc_failed++;
1592                         break;
1593                 }
1594
1595                 rxd = *rxdp;
1596                 nb_hold++;
1597                 rxe = rxq->sw_ring[rx_id];
1598                 rxq->sw_ring[rx_id] = nmb;
1599                 rx_id++;
1600                 if (rx_id == rxq->nb_rx_desc)
1601                         rx_id = 0;
1602
1603                 /* Prefetch next mbuf */
1604                 rte_prefetch0(rxq->sw_ring[rx_id]);
1605
1606                 /* When next RX descriptor is on a cache line boundary,
1607                  * prefetch the next 4 RX descriptors and next 8 pointers
1608                  * to mbufs.
1609                  */
1610                 if ((rx_id & 0x3) == 0) {
1611                         rte_prefetch0(&rx_ring[rx_id]);
1612                         rte_prefetch0(rxq->sw_ring[rx_id]);
1613                 }
1614
1615                 rxm = rxe;
1616                 dma_addr =
1617                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1618
1619                 /* Set data buffer address and data length of the mbuf */
1620                 rxdp->read.hdr_addr = 0;
1621                 rxdp->read.pkt_addr = dma_addr;
1622                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1623                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1624                 rxm->data_len = rx_packet_len;
1625                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1626
1627                 /* If this is the first buffer of the received packet, set the
1628                  * pointer to the first mbuf of the packet and initialize its
1629                  * context. Otherwise, update the total length and the number
1630                  * of segments of the current scattered packet, and update the
1631                  * pointer to the last mbuf of the current packet.
1632                  */
1633                 if (!first_seg) {
1634                         first_seg = rxm;
1635                         first_seg->nb_segs = 1;
1636                         first_seg->pkt_len = rx_packet_len;
1637                 } else {
1638                         first_seg->pkt_len =
1639                                 (uint16_t)(first_seg->pkt_len +
1640                                                 rx_packet_len);
1641                         first_seg->nb_segs++;
1642                         last_seg->next = rxm;
1643                 }
1644
1645                 /* If this is not the last buffer of the received packet,
1646                  * update the pointer to the last mbuf of the current scattered
1647                  * packet and continue to parse the RX ring.
1648                  */
1649                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1650                         last_seg = rxm;
1651                         continue;
1652                 }
1653
1654                 /* This is the last buffer of the received packet. If the CRC
1655                  * is not stripped by the hardware:
1656                  *  - Subtract the CRC length from the total packet length.
1657                  *  - If the last buffer only contains the whole CRC or a part
1658                  *  of it, free the mbuf associated to the last buffer. If part
1659                  *  of the CRC is also contained in the previous mbuf, subtract
1660                  *  the length of that CRC part from the data length of the
1661                  *  previous mbuf.
1662                  */
1663                 rxm->next = NULL;
1664                 if (unlikely(rxq->crc_len > 0)) {
1665                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1666                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1667                                 rte_pktmbuf_free_seg(rxm);
1668                                 first_seg->nb_segs--;
1669                                 last_seg->data_len =
1670                                         (uint16_t)(last_seg->data_len -
1671                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1672                                 last_seg->next = NULL;
1673                         } else
1674                                 rxm->data_len = (uint16_t)(rx_packet_len -
1675                                                         RTE_ETHER_CRC_LEN);
1676                 }
1677
1678                 first_seg->port = rxq->port_id;
1679                 first_seg->ol_flags = 0;
1680                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1681                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1682                 first_seg->packet_type =
1683                         ptype_tbl[(uint8_t)((qword1 &
1684                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1685
1686                 if (pkt_flags & PKT_RX_RSS_HASH)
1687                         first_seg->hash.rss =
1688                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1689
1690                 if (pkt_flags & PKT_RX_FDIR)
1691                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1692
1693                 first_seg->ol_flags |= pkt_flags;
1694
1695                 /* Prefetch data of first segment, if configured to do so. */
1696                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1697                                           first_seg->data_off));
1698                 rx_pkts[nb_rx++] = first_seg;
1699                 first_seg = NULL;
1700         }
1701
1702         /* Record index of the next RX descriptor to probe. */
1703         rxq->rx_tail = rx_id;
1704         rxq->pkt_first_seg = first_seg;
1705         rxq->pkt_last_seg = last_seg;
1706
1707         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1708
1709         return nb_rx;
1710 }
1711
1712 #define IAVF_LOOK_AHEAD 8
1713 static inline int
1714 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1715 {
1716         volatile union iavf_rx_flex_desc *rxdp;
1717         struct rte_mbuf **rxep;
1718         struct rte_mbuf *mb;
1719         uint16_t stat_err0;
1720         uint16_t pkt_len;
1721         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1722         int32_t i, j, nb_rx = 0;
1723         uint64_t pkt_flags;
1724         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1725
1726         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1727         rxep = &rxq->sw_ring[rxq->rx_tail];
1728
1729         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1730
1731         /* Make sure there is at least 1 packet to receive */
1732         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1733                 return 0;
1734
1735         /* Scan LOOK_AHEAD descriptors at a time to determine which
1736          * descriptors reference packets that are ready to be received.
1737          */
1738         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1739              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1740                 /* Read desc statuses backwards to avoid race condition */
1741                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1742                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1743
1744                 rte_smp_rmb();
1745
1746                 /* Compute how many status bits were set */
1747                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1748                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1749
1750                 nb_rx += nb_dd;
1751
1752                 /* Translate descriptor info to mbuf parameters */
1753                 for (j = 0; j < nb_dd; j++) {
1754                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1755                                           rxq->rx_tail +
1756                                           i * IAVF_LOOK_AHEAD + j);
1757
1758                         mb = rxep[j];
1759                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1760                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1761                         mb->data_len = pkt_len;
1762                         mb->pkt_len = pkt_len;
1763                         mb->ol_flags = 0;
1764
1765                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1766                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1767                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j], rxq->rx_flags);
1768                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1769                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1770                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1771
1772                         mb->ol_flags |= pkt_flags;
1773                 }
1774
1775                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1776                         rxq->rx_stage[i + j] = rxep[j];
1777
1778                 if (nb_dd != IAVF_LOOK_AHEAD)
1779                         break;
1780         }
1781
1782         /* Clear software ring entries */
1783         for (i = 0; i < nb_rx; i++)
1784                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1785
1786         return nb_rx;
1787 }
1788
1789 static inline int
1790 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1791 {
1792         volatile union iavf_rx_desc *rxdp;
1793         struct rte_mbuf **rxep;
1794         struct rte_mbuf *mb;
1795         uint16_t pkt_len;
1796         uint64_t qword1;
1797         uint32_t rx_status;
1798         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1799         int32_t i, j, nb_rx = 0;
1800         uint64_t pkt_flags;
1801         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1802
1803         rxdp = &rxq->rx_ring[rxq->rx_tail];
1804         rxep = &rxq->sw_ring[rxq->rx_tail];
1805
1806         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1807         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1808                     IAVF_RXD_QW1_STATUS_SHIFT;
1809
1810         /* Make sure there is at least 1 packet to receive */
1811         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1812                 return 0;
1813
1814         /* Scan LOOK_AHEAD descriptors at a time to determine which
1815          * descriptors reference packets that are ready to be received.
1816          */
1817         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1818              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1819                 /* Read desc statuses backwards to avoid race condition */
1820                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1821                         qword1 = rte_le_to_cpu_64(
1822                                 rxdp[j].wb.qword1.status_error_len);
1823                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1824                                IAVF_RXD_QW1_STATUS_SHIFT;
1825                 }
1826
1827                 rte_smp_rmb();
1828
1829                 /* Compute how many status bits were set */
1830                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1831                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1832
1833                 nb_rx += nb_dd;
1834
1835                 /* Translate descriptor info to mbuf parameters */
1836                 for (j = 0; j < nb_dd; j++) {
1837                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1838                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1839
1840                         mb = rxep[j];
1841                         qword1 = rte_le_to_cpu_64
1842                                         (rxdp[j].wb.qword1.status_error_len);
1843                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1844                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1845                         mb->data_len = pkt_len;
1846                         mb->pkt_len = pkt_len;
1847                         mb->ol_flags = 0;
1848                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1849                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1850                         mb->packet_type =
1851                                 ptype_tbl[(uint8_t)((qword1 &
1852                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1853                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1854
1855                         if (pkt_flags & PKT_RX_RSS_HASH)
1856                                 mb->hash.rss = rte_le_to_cpu_32(
1857                                         rxdp[j].wb.qword0.hi_dword.rss);
1858
1859                         if (pkt_flags & PKT_RX_FDIR)
1860                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1861
1862                         mb->ol_flags |= pkt_flags;
1863                 }
1864
1865                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1866                         rxq->rx_stage[i + j] = rxep[j];
1867
1868                 if (nb_dd != IAVF_LOOK_AHEAD)
1869                         break;
1870         }
1871
1872         /* Clear software ring entries */
1873         for (i = 0; i < nb_rx; i++)
1874                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1875
1876         return nb_rx;
1877 }
1878
1879 static inline uint16_t
1880 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1881                        struct rte_mbuf **rx_pkts,
1882                        uint16_t nb_pkts)
1883 {
1884         uint16_t i;
1885         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1886
1887         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1888
1889         for (i = 0; i < nb_pkts; i++)
1890                 rx_pkts[i] = stage[i];
1891
1892         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1893         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1894
1895         return nb_pkts;
1896 }
1897
1898 static inline int
1899 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1900 {
1901         volatile union iavf_rx_desc *rxdp;
1902         struct rte_mbuf **rxep;
1903         struct rte_mbuf *mb;
1904         uint16_t alloc_idx, i;
1905         uint64_t dma_addr;
1906         int diag;
1907
1908         /* Allocate buffers in bulk */
1909         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1910                                 (rxq->rx_free_thresh - 1));
1911         rxep = &rxq->sw_ring[alloc_idx];
1912         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1913                                     rxq->rx_free_thresh);
1914         if (unlikely(diag != 0)) {
1915                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1916                 return -ENOMEM;
1917         }
1918
1919         rxdp = &rxq->rx_ring[alloc_idx];
1920         for (i = 0; i < rxq->rx_free_thresh; i++) {
1921                 if (likely(i < (rxq->rx_free_thresh - 1)))
1922                         /* Prefetch next mbuf */
1923                         rte_prefetch0(rxep[i + 1]);
1924
1925                 mb = rxep[i];
1926                 rte_mbuf_refcnt_set(mb, 1);
1927                 mb->next = NULL;
1928                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1929                 mb->nb_segs = 1;
1930                 mb->port = rxq->port_id;
1931                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1932                 rxdp[i].read.hdr_addr = 0;
1933                 rxdp[i].read.pkt_addr = dma_addr;
1934         }
1935
1936         /* Update rx tail register */
1937         rte_wmb();
1938         IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1939
1940         rxq->rx_free_trigger =
1941                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1942         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1943                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1944
1945         return 0;
1946 }
1947
1948 static inline uint16_t
1949 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1950 {
1951         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1952         uint16_t nb_rx = 0;
1953
1954         if (!nb_pkts)
1955                 return 0;
1956
1957         if (rxq->rx_nb_avail)
1958                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1959
1960         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
1961                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1962         else
1963                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1964         rxq->rx_next_avail = 0;
1965         rxq->rx_nb_avail = nb_rx;
1966         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1967
1968         if (rxq->rx_tail > rxq->rx_free_trigger) {
1969                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1970                         uint16_t i, j;
1971
1972                         /* TODO: count rx_mbuf_alloc_failed here */
1973
1974                         rxq->rx_nb_avail = 0;
1975                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1976                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1977                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1978
1979                         return 0;
1980                 }
1981         }
1982
1983         if (rxq->rx_tail >= rxq->nb_rx_desc)
1984                 rxq->rx_tail = 0;
1985
1986         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1987                    rxq->port_id, rxq->queue_id,
1988                    rxq->rx_tail, nb_rx);
1989
1990         if (rxq->rx_nb_avail)
1991                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1992
1993         return 0;
1994 }
1995
1996 static uint16_t
1997 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1998                          struct rte_mbuf **rx_pkts,
1999                          uint16_t nb_pkts)
2000 {
2001         uint16_t nb_rx = 0, n, count;
2002
2003         if (unlikely(nb_pkts == 0))
2004                 return 0;
2005
2006         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
2007                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
2008
2009         while (nb_pkts) {
2010                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
2011                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2012                 nb_rx = (uint16_t)(nb_rx + count);
2013                 nb_pkts = (uint16_t)(nb_pkts - count);
2014                 if (count < n)
2015                         break;
2016         }
2017
2018         return nb_rx;
2019 }
2020
2021 static inline int
2022 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
2023 {
2024         struct iavf_tx_entry *sw_ring = txq->sw_ring;
2025         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2026         uint16_t nb_tx_desc = txq->nb_tx_desc;
2027         uint16_t desc_to_clean_to;
2028         uint16_t nb_tx_to_clean;
2029
2030         volatile struct iavf_tx_desc *txd = txq->tx_ring;
2031
2032         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2033         if (desc_to_clean_to >= nb_tx_desc)
2034                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2035
2036         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2037         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2038                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2039                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2040                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2041                            "(port=%d queue=%d)", desc_to_clean_to,
2042                            txq->port_id, txq->queue_id);
2043                 return -1;
2044         }
2045
2046         if (last_desc_cleaned > desc_to_clean_to)
2047                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2048                                                         desc_to_clean_to);
2049         else
2050                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2051                                         last_desc_cleaned);
2052
2053         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2054
2055         txq->last_desc_cleaned = desc_to_clean_to;
2056         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2057
2058         return 0;
2059 }
2060
2061 /* Check if the context descriptor is needed for TX offloading */
2062 static inline uint16_t
2063 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2064 {
2065         if (flags & PKT_TX_TCP_SEG)
2066                 return 1;
2067         if (flags & PKT_TX_VLAN_PKT &&
2068             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2069                 return 1;
2070         return 0;
2071 }
2072
2073 static inline void
2074 iavf_txd_enable_checksum(uint64_t ol_flags,
2075                         uint32_t *td_cmd,
2076                         uint32_t *td_offset,
2077                         union iavf_tx_offload tx_offload)
2078 {
2079         /* Set MACLEN */
2080         *td_offset |= (tx_offload.l2_len >> 1) <<
2081                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2082
2083         /* Enable L3 checksum offloads */
2084         if (ol_flags & PKT_TX_IP_CKSUM) {
2085                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2086                 *td_offset |= (tx_offload.l3_len >> 2) <<
2087                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2088         } else if (ol_flags & PKT_TX_IPV4) {
2089                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2090                 *td_offset |= (tx_offload.l3_len >> 2) <<
2091                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2092         } else if (ol_flags & PKT_TX_IPV6) {
2093                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2094                 *td_offset |= (tx_offload.l3_len >> 2) <<
2095                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2096         }
2097
2098         if (ol_flags & PKT_TX_TCP_SEG) {
2099                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2100                 *td_offset |= (tx_offload.l4_len >> 2) <<
2101                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2102                 return;
2103         }
2104
2105         /* Enable L4 checksum offloads */
2106         switch (ol_flags & PKT_TX_L4_MASK) {
2107         case PKT_TX_TCP_CKSUM:
2108                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2109                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2110                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2111                 break;
2112         case PKT_TX_SCTP_CKSUM:
2113                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2114                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2115                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2116                 break;
2117         case PKT_TX_UDP_CKSUM:
2118                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2119                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2120                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2121                 break;
2122         default:
2123                 break;
2124         }
2125 }
2126
2127 /* set TSO context descriptor
2128  * support IP -> L4 and IP -> IP -> L4
2129  */
2130 static inline uint64_t
2131 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
2132 {
2133         uint64_t ctx_desc = 0;
2134         uint32_t cd_cmd, hdr_len, cd_tso_len;
2135
2136         if (!tx_offload.l4_len) {
2137                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2138                 return ctx_desc;
2139         }
2140
2141         hdr_len = tx_offload.l2_len +
2142                   tx_offload.l3_len +
2143                   tx_offload.l4_len;
2144
2145         cd_cmd = IAVF_TX_CTX_DESC_TSO;
2146         cd_tso_len = mbuf->pkt_len - hdr_len;
2147         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
2148                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2149                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
2150
2151         return ctx_desc;
2152 }
2153
2154 /* Construct the tx flags */
2155 static inline uint64_t
2156 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
2157                uint32_t td_tag)
2158 {
2159         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
2160                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
2161                                 ((uint64_t)td_offset <<
2162                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
2163                                 ((uint64_t)size  <<
2164                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
2165                                 ((uint64_t)td_tag  <<
2166                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
2167 }
2168
2169 /* TX function */
2170 uint16_t
2171 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2172 {
2173         volatile struct iavf_tx_desc *txd;
2174         volatile struct iavf_tx_desc *txr;
2175         struct iavf_tx_queue *txq;
2176         struct iavf_tx_entry *sw_ring;
2177         struct iavf_tx_entry *txe, *txn;
2178         struct rte_mbuf *tx_pkt;
2179         struct rte_mbuf *m_seg;
2180         uint16_t tx_id;
2181         uint16_t nb_tx;
2182         uint32_t td_cmd;
2183         uint32_t td_offset;
2184         uint32_t td_tag;
2185         uint64_t ol_flags;
2186         uint16_t nb_used;
2187         uint16_t nb_ctx;
2188         uint16_t tx_last;
2189         uint16_t slen;
2190         uint64_t buf_dma_addr;
2191         uint16_t cd_l2tag2 = 0;
2192         union iavf_tx_offload tx_offload = {0};
2193
2194         txq = tx_queue;
2195         sw_ring = txq->sw_ring;
2196         txr = txq->tx_ring;
2197         tx_id = txq->tx_tail;
2198         txe = &sw_ring[tx_id];
2199
2200         /* Check if the descriptor ring needs to be cleaned. */
2201         if (txq->nb_free < txq->free_thresh)
2202                 (void)iavf_xmit_cleanup(txq);
2203
2204         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2205                 td_cmd = 0;
2206                 td_tag = 0;
2207                 td_offset = 0;
2208
2209                 tx_pkt = *tx_pkts++;
2210                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2211
2212                 ol_flags = tx_pkt->ol_flags;
2213                 tx_offload.l2_len = tx_pkt->l2_len;
2214                 tx_offload.l3_len = tx_pkt->l3_len;
2215                 tx_offload.l4_len = tx_pkt->l4_len;
2216                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2217                 /* Calculate the number of context descriptors needed. */
2218                 nb_ctx = iavf_calc_context_desc(ol_flags, txq->vlan_flag);
2219
2220                 /* The number of descriptors that must be allocated for
2221                  * a packet equals to the number of the segments of that
2222                  * packet plus 1 context descriptor if needed.
2223                  */
2224                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2225                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2226
2227                 /* Circular ring */
2228                 if (tx_last >= txq->nb_tx_desc)
2229                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2230
2231                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
2232                            " tx_first=%u tx_last=%u",
2233                            txq->port_id, txq->queue_id, tx_id, tx_last);
2234
2235                 if (nb_used > txq->nb_free) {
2236                         if (iavf_xmit_cleanup(txq)) {
2237                                 if (nb_tx == 0)
2238                                         return 0;
2239                                 goto end_of_tx;
2240                         }
2241                         if (unlikely(nb_used > txq->rs_thresh)) {
2242                                 while (nb_used > txq->nb_free) {
2243                                         if (iavf_xmit_cleanup(txq)) {
2244                                                 if (nb_tx == 0)
2245                                                         return 0;
2246                                                 goto end_of_tx;
2247                                         }
2248                                 }
2249                         }
2250                 }
2251
2252                 /* Descriptor based VLAN insertion */
2253                 if (ol_flags & PKT_TX_VLAN_PKT &&
2254                     txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
2255                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2256                         td_tag = tx_pkt->vlan_tci;
2257                 }
2258
2259                 /* According to datasheet, the bit2 is reserved and must be
2260                  * set to 1.
2261                  */
2262                 td_cmd |= 0x04;
2263
2264                 /* Enable checksum offloading */
2265                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
2266                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
2267                                                 &td_offset, tx_offload);
2268
2269                 if (nb_ctx) {
2270                         /* Setup TX context descriptor if required */
2271                         uint64_t cd_type_cmd_tso_mss =
2272                                 IAVF_TX_DESC_DTYPE_CONTEXT;
2273                         volatile struct iavf_tx_context_desc *ctx_txd =
2274                                 (volatile struct iavf_tx_context_desc *)
2275                                                         &txr[tx_id];
2276
2277                         /* clear QW0 or the previous writeback value
2278                          * may impact next write
2279                          */
2280                         *(volatile uint64_t *)ctx_txd = 0;
2281
2282                         txn = &sw_ring[txe->next_id];
2283                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2284                         if (txe->mbuf) {
2285                                 rte_pktmbuf_free_seg(txe->mbuf);
2286                                 txe->mbuf = NULL;
2287                         }
2288
2289                         /* TSO enabled */
2290                         if (ol_flags & PKT_TX_TCP_SEG)
2291                                 cd_type_cmd_tso_mss |=
2292                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
2293
2294                         if (ol_flags & PKT_TX_VLAN_PKT &&
2295                            txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2296                                 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2
2297                                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2298                                 cd_l2tag2 = tx_pkt->vlan_tci;
2299                         }
2300
2301                         ctx_txd->type_cmd_tso_mss =
2302                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2303                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2304
2305                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
2306                         txe->last_id = tx_last;
2307                         tx_id = txe->next_id;
2308                         txe = txn;
2309                 }
2310
2311                 m_seg = tx_pkt;
2312                 do {
2313                         txd = &txr[tx_id];
2314                         txn = &sw_ring[txe->next_id];
2315
2316                         if (txe->mbuf)
2317                                 rte_pktmbuf_free_seg(txe->mbuf);
2318                         txe->mbuf = m_seg;
2319
2320                         /* Setup TX Descriptor */
2321                         slen = m_seg->data_len;
2322                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2323                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2324                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2325                                                                   td_offset,
2326                                                                   slen,
2327                                                                   td_tag);
2328
2329                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2330                         txe->last_id = tx_last;
2331                         tx_id = txe->next_id;
2332                         txe = txn;
2333                         m_seg = m_seg->next;
2334                 } while (m_seg);
2335
2336                 /* The last packet data descriptor needs End Of Packet (EOP) */
2337                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2338                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2339                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2340
2341                 if (txq->nb_used >= txq->rs_thresh) {
2342                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2343                                    "%4u (port=%d queue=%d)",
2344                                    tx_last, txq->port_id, txq->queue_id);
2345
2346                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2347
2348                         /* Update txq RS bit counters */
2349                         txq->nb_used = 0;
2350                 }
2351
2352                 txd->cmd_type_offset_bsz |=
2353                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2354                                          IAVF_TXD_QW1_CMD_SHIFT);
2355                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2356         }
2357
2358 end_of_tx:
2359         rte_wmb();
2360
2361         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2362                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2363
2364         IAVF_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
2365         txq->tx_tail = tx_id;
2366
2367         return nb_tx;
2368 }
2369
2370 /* Check if the packet with vlan user priority is transmitted in the
2371  * correct queue.
2372  */
2373 static int
2374 iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
2375 {
2376         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2377         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2378         uint16_t up;
2379
2380         up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
2381
2382         if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
2383                 PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
2384                         up, txq->queue_id);
2385                 return -1;
2386         } else {
2387                 return 0;
2388         }
2389 }
2390
2391 /* TX prep functions */
2392 uint16_t
2393 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2394               uint16_t nb_pkts)
2395 {
2396         int i, ret;
2397         uint64_t ol_flags;
2398         struct rte_mbuf *m;
2399         struct iavf_tx_queue *txq = tx_queue;
2400         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2401         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2402
2403         for (i = 0; i < nb_pkts; i++) {
2404                 m = tx_pkts[i];
2405                 ol_flags = m->ol_flags;
2406
2407                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2408                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2409                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2410                                 rte_errno = EINVAL;
2411                                 return i;
2412                         }
2413                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2414                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2415                         /* MSS outside the range are considered malicious */
2416                         rte_errno = EINVAL;
2417                         return i;
2418                 }
2419
2420                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2421                         rte_errno = ENOTSUP;
2422                         return i;
2423                 }
2424
2425 #ifdef RTE_ETHDEV_DEBUG_TX
2426                 ret = rte_validate_tx_offload(m);
2427                 if (ret != 0) {
2428                         rte_errno = -ret;
2429                         return i;
2430                 }
2431 #endif
2432                 ret = rte_net_intel_cksum_prepare(m);
2433                 if (ret != 0) {
2434                         rte_errno = -ret;
2435                         return i;
2436                 }
2437
2438                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
2439                     ol_flags & (PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN)) {
2440                         ret = iavf_check_vlan_up2tc(txq, m);
2441                         if (ret != 0) {
2442                                 rte_errno = -ret;
2443                                 return i;
2444                         }
2445                 }
2446         }
2447
2448         return i;
2449 }
2450
2451 /* choose rx function*/
2452 void
2453 iavf_set_rx_function(struct rte_eth_dev *dev)
2454 {
2455         struct iavf_adapter *adapter =
2456                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2457         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2458
2459 #ifdef RTE_ARCH_X86
2460         struct iavf_rx_queue *rxq;
2461         int i;
2462         int check_ret;
2463         bool use_avx2 = false;
2464         bool use_avx512 = false;
2465         bool use_flex = false;
2466
2467         check_ret = iavf_rx_vec_dev_check(dev);
2468         if (check_ret >= 0 &&
2469             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2470                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2471                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2472                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2473                         use_avx2 = true;
2474
2475 #ifdef CC_AVX512_SUPPORT
2476                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2477                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2478                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2479                         use_avx512 = true;
2480 #endif
2481
2482                 if (vf->vf_res->vf_cap_flags &
2483                         VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2484                         use_flex = true;
2485
2486                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2487                         rxq = dev->data->rx_queues[i];
2488                         (void)iavf_rxq_vec_setup(rxq);
2489                 }
2490
2491                 if (dev->data->scattered_rx) {
2492                         if (!use_avx512) {
2493                                 PMD_DRV_LOG(DEBUG,
2494                                             "Using %sVector Scattered Rx (port %d).",
2495                                             use_avx2 ? "avx2 " : "",
2496                                             dev->data->port_id);
2497                         } else {
2498                                 if (check_ret == IAVF_VECTOR_PATH)
2499                                         PMD_DRV_LOG(DEBUG,
2500                                                     "Using AVX512 Vector Scattered Rx (port %d).",
2501                                                     dev->data->port_id);
2502                                 else
2503                                         PMD_DRV_LOG(DEBUG,
2504                                                     "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2505                                                     dev->data->port_id);
2506                         }
2507                         if (use_flex) {
2508                                 dev->rx_pkt_burst = use_avx2 ?
2509                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2510                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2511 #ifdef CC_AVX512_SUPPORT
2512                                 if (use_avx512) {
2513                                         if (check_ret == IAVF_VECTOR_PATH)
2514                                                 dev->rx_pkt_burst =
2515                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2516                                         else
2517                                                 dev->rx_pkt_burst =
2518                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2519                                 }
2520 #endif
2521                         } else {
2522                                 dev->rx_pkt_burst = use_avx2 ?
2523                                         iavf_recv_scattered_pkts_vec_avx2 :
2524                                         iavf_recv_scattered_pkts_vec;
2525 #ifdef CC_AVX512_SUPPORT
2526                                 if (use_avx512) {
2527                                         if (check_ret == IAVF_VECTOR_PATH)
2528                                                 dev->rx_pkt_burst =
2529                                                         iavf_recv_scattered_pkts_vec_avx512;
2530                                         else
2531                                                 dev->rx_pkt_burst =
2532                                                         iavf_recv_scattered_pkts_vec_avx512_offload;
2533                                 }
2534 #endif
2535                         }
2536                 } else {
2537                         if (!use_avx512) {
2538                                 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2539                                             use_avx2 ? "avx2 " : "",
2540                                             dev->data->port_id);
2541                         } else {
2542                                 if (check_ret == IAVF_VECTOR_PATH)
2543                                         PMD_DRV_LOG(DEBUG,
2544                                                     "Using AVX512 Vector Rx (port %d).",
2545                                                     dev->data->port_id);
2546                                 else
2547                                         PMD_DRV_LOG(DEBUG,
2548                                                     "Using AVX512 OFFLOAD Vector Rx (port %d).",
2549                                                     dev->data->port_id);
2550                         }
2551                         if (use_flex) {
2552                                 dev->rx_pkt_burst = use_avx2 ?
2553                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2554                                         iavf_recv_pkts_vec_flex_rxd;
2555 #ifdef CC_AVX512_SUPPORT
2556                                 if (use_avx512) {
2557                                         if (check_ret == IAVF_VECTOR_PATH)
2558                                                 dev->rx_pkt_burst =
2559                                                         iavf_recv_pkts_vec_avx512_flex_rxd;
2560                                         else
2561                                                 dev->rx_pkt_burst =
2562                                                         iavf_recv_pkts_vec_avx512_flex_rxd_offload;
2563                                 }
2564 #endif
2565                         } else {
2566                                 dev->rx_pkt_burst = use_avx2 ?
2567                                         iavf_recv_pkts_vec_avx2 :
2568                                         iavf_recv_pkts_vec;
2569 #ifdef CC_AVX512_SUPPORT
2570                                 if (use_avx512) {
2571                                         if (check_ret == IAVF_VECTOR_PATH)
2572                                                 dev->rx_pkt_burst =
2573                                                         iavf_recv_pkts_vec_avx512;
2574                                         else
2575                                                 dev->rx_pkt_burst =
2576                                                         iavf_recv_pkts_vec_avx512_offload;
2577                                 }
2578 #endif
2579                         }
2580                 }
2581
2582                 return;
2583         }
2584
2585 #endif
2586         if (dev->data->scattered_rx) {
2587                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2588                             dev->data->port_id);
2589                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2590                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2591                 else
2592                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2593         } else if (adapter->rx_bulk_alloc_allowed) {
2594                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2595                             dev->data->port_id);
2596                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2597         } else {
2598                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2599                             dev->data->port_id);
2600                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2601                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2602                 else
2603                         dev->rx_pkt_burst = iavf_recv_pkts;
2604         }
2605 }
2606
2607 /* choose tx function*/
2608 void
2609 iavf_set_tx_function(struct rte_eth_dev *dev)
2610 {
2611 #ifdef RTE_ARCH_X86
2612         struct iavf_tx_queue *txq;
2613         int i;
2614         int check_ret;
2615         bool use_sse = false;
2616         bool use_avx2 = false;
2617         bool use_avx512 = false;
2618
2619         check_ret = iavf_tx_vec_dev_check(dev);
2620
2621         if (check_ret >= 0 &&
2622             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2623                 /* SSE and AVX2 not support offload path yet. */
2624                 if (check_ret == IAVF_VECTOR_PATH) {
2625                         use_sse = true;
2626                         if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2627                              rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2628                             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2629                                 use_avx2 = true;
2630                 }
2631 #ifdef CC_AVX512_SUPPORT
2632                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2633                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2634                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2635                         use_avx512 = true;
2636 #endif
2637
2638                 if (!use_sse && !use_avx2 && !use_avx512)
2639                         goto normal;
2640
2641                 if (!use_avx512) {
2642                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2643                                     use_avx2 ? "avx2 " : "",
2644                                     dev->data->port_id);
2645                         dev->tx_pkt_burst = use_avx2 ?
2646                                             iavf_xmit_pkts_vec_avx2 :
2647                                             iavf_xmit_pkts_vec;
2648                 }
2649                 dev->tx_pkt_prepare = NULL;
2650 #ifdef CC_AVX512_SUPPORT
2651                 if (use_avx512) {
2652                         if (check_ret == IAVF_VECTOR_PATH) {
2653                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2654                                 PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
2655                                             dev->data->port_id);
2656                         } else {
2657                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
2658                                 dev->tx_pkt_prepare = iavf_prep_pkts;
2659                                 PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
2660                                             dev->data->port_id);
2661                         }
2662                 }
2663 #endif
2664
2665                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2666                         txq = dev->data->tx_queues[i];
2667                         if (!txq)
2668                                 continue;
2669 #ifdef CC_AVX512_SUPPORT
2670                         if (use_avx512)
2671                                 iavf_txq_vec_setup_avx512(txq);
2672                         else
2673                                 iavf_txq_vec_setup(txq);
2674 #else
2675                         iavf_txq_vec_setup(txq);
2676 #endif
2677                 }
2678
2679                 return;
2680         }
2681
2682 normal:
2683 #endif
2684         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2685                     dev->data->port_id);
2686         dev->tx_pkt_burst = iavf_xmit_pkts;
2687         dev->tx_pkt_prepare = iavf_prep_pkts;
2688 }
2689
2690 static int
2691 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2692                         uint32_t free_cnt)
2693 {
2694         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2695         uint16_t i, tx_last, tx_id;
2696         uint16_t nb_tx_free_last;
2697         uint16_t nb_tx_to_clean;
2698         uint32_t pkt_cnt;
2699
2700         /* Start free mbuf from the next of tx_tail */
2701         tx_last = txq->tx_tail;
2702         tx_id  = swr_ring[tx_last].next_id;
2703
2704         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2705                 return 0;
2706
2707         nb_tx_to_clean = txq->nb_free;
2708         nb_tx_free_last = txq->nb_free;
2709         if (!free_cnt)
2710                 free_cnt = txq->nb_tx_desc;
2711
2712         /* Loop through swr_ring to count the amount of
2713          * freeable mubfs and packets.
2714          */
2715         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2716                 for (i = 0; i < nb_tx_to_clean &&
2717                         pkt_cnt < free_cnt &&
2718                         tx_id != tx_last; i++) {
2719                         if (swr_ring[tx_id].mbuf != NULL) {
2720                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2721                                 swr_ring[tx_id].mbuf = NULL;
2722
2723                                 /*
2724                                  * last segment in the packet,
2725                                  * increment packet count
2726                                  */
2727                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2728                         }
2729
2730                         tx_id = swr_ring[tx_id].next_id;
2731                 }
2732
2733                 if (txq->rs_thresh > txq->nb_tx_desc -
2734                         txq->nb_free || tx_id == tx_last)
2735                         break;
2736
2737                 if (pkt_cnt < free_cnt) {
2738                         if (iavf_xmit_cleanup(txq))
2739                                 break;
2740
2741                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2742                         nb_tx_free_last = txq->nb_free;
2743                 }
2744         }
2745
2746         return (int)pkt_cnt;
2747 }
2748
2749 int
2750 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2751 {
2752         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2753
2754         return iavf_tx_done_cleanup_full(q, free_cnt);
2755 }
2756
2757 void
2758 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2759                      struct rte_eth_rxq_info *qinfo)
2760 {
2761         struct iavf_rx_queue *rxq;
2762
2763         rxq = dev->data->rx_queues[queue_id];
2764
2765         qinfo->mp = rxq->mp;
2766         qinfo->scattered_rx = dev->data->scattered_rx;
2767         qinfo->nb_desc = rxq->nb_rx_desc;
2768
2769         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2770         qinfo->conf.rx_drop_en = true;
2771         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2772 }
2773
2774 void
2775 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2776                      struct rte_eth_txq_info *qinfo)
2777 {
2778         struct iavf_tx_queue *txq;
2779
2780         txq = dev->data->tx_queues[queue_id];
2781
2782         qinfo->nb_desc = txq->nb_tx_desc;
2783
2784         qinfo->conf.tx_free_thresh = txq->free_thresh;
2785         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2786         qinfo->conf.offloads = txq->offloads;
2787         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2788 }
2789
2790 /* Get the number of used descriptors of a rx queue */
2791 uint32_t
2792 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2793 {
2794 #define IAVF_RXQ_SCAN_INTERVAL 4
2795         volatile union iavf_rx_desc *rxdp;
2796         struct iavf_rx_queue *rxq;
2797         uint16_t desc = 0;
2798
2799         rxq = dev->data->rx_queues[queue_id];
2800         rxdp = &rxq->rx_ring[rxq->rx_tail];
2801
2802         while ((desc < rxq->nb_rx_desc) &&
2803                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2804                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2805                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2806                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2807                  * to avoid checking too frequently and downgrading performance
2808                  * too much.
2809                  */
2810                 desc += IAVF_RXQ_SCAN_INTERVAL;
2811                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2812                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2813                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2814                                         desc - rxq->nb_rx_desc]);
2815         }
2816
2817         return desc;
2818 }
2819
2820 int
2821 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2822 {
2823         struct iavf_rx_queue *rxq = rx_queue;
2824         volatile uint64_t *status;
2825         uint64_t mask;
2826         uint32_t desc;
2827
2828         if (unlikely(offset >= rxq->nb_rx_desc))
2829                 return -EINVAL;
2830
2831         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2832                 return RTE_ETH_RX_DESC_UNAVAIL;
2833
2834         desc = rxq->rx_tail + offset;
2835         if (desc >= rxq->nb_rx_desc)
2836                 desc -= rxq->nb_rx_desc;
2837
2838         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2839         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2840                 << IAVF_RXD_QW1_STATUS_SHIFT);
2841         if (*status & mask)
2842                 return RTE_ETH_RX_DESC_DONE;
2843
2844         return RTE_ETH_RX_DESC_AVAIL;
2845 }
2846
2847 int
2848 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2849 {
2850         struct iavf_tx_queue *txq = tx_queue;
2851         volatile uint64_t *status;
2852         uint64_t mask, expect;
2853         uint32_t desc;
2854
2855         if (unlikely(offset >= txq->nb_tx_desc))
2856                 return -EINVAL;
2857
2858         desc = txq->tx_tail + offset;
2859         /* go to next desc that has the RS bit */
2860         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2861                 txq->rs_thresh;
2862         if (desc >= txq->nb_tx_desc) {
2863                 desc -= txq->nb_tx_desc;
2864                 if (desc >= txq->nb_tx_desc)
2865                         desc -= txq->nb_tx_desc;
2866         }
2867
2868         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2869         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2870         expect = rte_cpu_to_le_64(
2871                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2872         if ((*status & mask) == expect)
2873                 return RTE_ETH_TX_DESC_DONE;
2874
2875         return RTE_ETH_TX_DESC_FULL;
2876 }
2877
2878 const uint32_t *
2879 iavf_get_default_ptype_table(void)
2880 {
2881         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2882                 __rte_cache_aligned = {
2883                 /* L2 types */
2884                 /* [0] reserved */
2885                 [1] = RTE_PTYPE_L2_ETHER,
2886                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2887                 /* [3] - [5] reserved */
2888                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2889                 /* [7] - [10] reserved */
2890                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2891                 /* [12] - [21] reserved */
2892
2893                 /* Non tunneled IPv4 */
2894                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2895                        RTE_PTYPE_L4_FRAG,
2896                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2897                        RTE_PTYPE_L4_NONFRAG,
2898                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2899                        RTE_PTYPE_L4_UDP,
2900                 /* [25] reserved */
2901                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2902                        RTE_PTYPE_L4_TCP,
2903                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2904                        RTE_PTYPE_L4_SCTP,
2905                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2906                        RTE_PTYPE_L4_ICMP,
2907
2908                 /* IPv4 --> IPv4 */
2909                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2910                        RTE_PTYPE_TUNNEL_IP |
2911                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2912                        RTE_PTYPE_INNER_L4_FRAG,
2913                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2914                        RTE_PTYPE_TUNNEL_IP |
2915                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2916                        RTE_PTYPE_INNER_L4_NONFRAG,
2917                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2918                        RTE_PTYPE_TUNNEL_IP |
2919                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2920                        RTE_PTYPE_INNER_L4_UDP,
2921                 /* [32] reserved */
2922                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2923                        RTE_PTYPE_TUNNEL_IP |
2924                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2925                        RTE_PTYPE_INNER_L4_TCP,
2926                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2927                        RTE_PTYPE_TUNNEL_IP |
2928                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2929                        RTE_PTYPE_INNER_L4_SCTP,
2930                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2931                        RTE_PTYPE_TUNNEL_IP |
2932                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2933                        RTE_PTYPE_INNER_L4_ICMP,
2934
2935                 /* IPv4 --> IPv6 */
2936                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2937                        RTE_PTYPE_TUNNEL_IP |
2938                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2939                        RTE_PTYPE_INNER_L4_FRAG,
2940                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2941                        RTE_PTYPE_TUNNEL_IP |
2942                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2943                        RTE_PTYPE_INNER_L4_NONFRAG,
2944                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2945                        RTE_PTYPE_TUNNEL_IP |
2946                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2947                        RTE_PTYPE_INNER_L4_UDP,
2948                 /* [39] reserved */
2949                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2950                        RTE_PTYPE_TUNNEL_IP |
2951                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2952                        RTE_PTYPE_INNER_L4_TCP,
2953                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2954                        RTE_PTYPE_TUNNEL_IP |
2955                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2956                        RTE_PTYPE_INNER_L4_SCTP,
2957                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2958                        RTE_PTYPE_TUNNEL_IP |
2959                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2960                        RTE_PTYPE_INNER_L4_ICMP,
2961
2962                 /* IPv4 --> GRE/Teredo/VXLAN */
2963                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2964                        RTE_PTYPE_TUNNEL_GRENAT,
2965
2966                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2967                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2968                        RTE_PTYPE_TUNNEL_GRENAT |
2969                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2970                        RTE_PTYPE_INNER_L4_FRAG,
2971                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2972                        RTE_PTYPE_TUNNEL_GRENAT |
2973                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2974                        RTE_PTYPE_INNER_L4_NONFRAG,
2975                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2976                        RTE_PTYPE_TUNNEL_GRENAT |
2977                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2978                        RTE_PTYPE_INNER_L4_UDP,
2979                 /* [47] reserved */
2980                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2981                        RTE_PTYPE_TUNNEL_GRENAT |
2982                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2983                        RTE_PTYPE_INNER_L4_TCP,
2984                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2985                        RTE_PTYPE_TUNNEL_GRENAT |
2986                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2987                        RTE_PTYPE_INNER_L4_SCTP,
2988                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2989                        RTE_PTYPE_TUNNEL_GRENAT |
2990                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2991                        RTE_PTYPE_INNER_L4_ICMP,
2992
2993                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2994                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2995                        RTE_PTYPE_TUNNEL_GRENAT |
2996                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2997                        RTE_PTYPE_INNER_L4_FRAG,
2998                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2999                        RTE_PTYPE_TUNNEL_GRENAT |
3000                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3001                        RTE_PTYPE_INNER_L4_NONFRAG,
3002                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3003                        RTE_PTYPE_TUNNEL_GRENAT |
3004                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3005                        RTE_PTYPE_INNER_L4_UDP,
3006                 /* [54] reserved */
3007                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3008                        RTE_PTYPE_TUNNEL_GRENAT |
3009                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3010                        RTE_PTYPE_INNER_L4_TCP,
3011                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3012                        RTE_PTYPE_TUNNEL_GRENAT |
3013                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3014                        RTE_PTYPE_INNER_L4_SCTP,
3015                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3016                        RTE_PTYPE_TUNNEL_GRENAT |
3017                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3018                        RTE_PTYPE_INNER_L4_ICMP,
3019
3020                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3021                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3022                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3023
3024                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3025                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3026                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3027                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3028                        RTE_PTYPE_INNER_L4_FRAG,
3029                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3030                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3031                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3032                        RTE_PTYPE_INNER_L4_NONFRAG,
3033                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3034                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3035                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3036                        RTE_PTYPE_INNER_L4_UDP,
3037                 /* [62] reserved */
3038                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3039                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3040                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3041                        RTE_PTYPE_INNER_L4_TCP,
3042                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3043                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3044                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3045                        RTE_PTYPE_INNER_L4_SCTP,
3046                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3047                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3048                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3049                        RTE_PTYPE_INNER_L4_ICMP,
3050
3051                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3052                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3053                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3054                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3055                        RTE_PTYPE_INNER_L4_FRAG,
3056                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3057                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3058                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3059                        RTE_PTYPE_INNER_L4_NONFRAG,
3060                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3061                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3062                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3063                        RTE_PTYPE_INNER_L4_UDP,
3064                 /* [69] reserved */
3065                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3066                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3067                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3068                        RTE_PTYPE_INNER_L4_TCP,
3069                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3070                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3071                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3072                        RTE_PTYPE_INNER_L4_SCTP,
3073                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3074                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3075                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3076                        RTE_PTYPE_INNER_L4_ICMP,
3077                 /* [73] - [87] reserved */
3078
3079                 /* Non tunneled IPv6 */
3080                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3081                        RTE_PTYPE_L4_FRAG,
3082                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3083                        RTE_PTYPE_L4_NONFRAG,
3084                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3085                        RTE_PTYPE_L4_UDP,
3086                 /* [91] reserved */
3087                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3088                        RTE_PTYPE_L4_TCP,
3089                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3090                        RTE_PTYPE_L4_SCTP,
3091                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3092                        RTE_PTYPE_L4_ICMP,
3093
3094                 /* IPv6 --> IPv4 */
3095                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3096                        RTE_PTYPE_TUNNEL_IP |
3097                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3098                        RTE_PTYPE_INNER_L4_FRAG,
3099                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3100                        RTE_PTYPE_TUNNEL_IP |
3101                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3102                        RTE_PTYPE_INNER_L4_NONFRAG,
3103                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3104                        RTE_PTYPE_TUNNEL_IP |
3105                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3106                        RTE_PTYPE_INNER_L4_UDP,
3107                 /* [98] reserved */
3108                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3109                        RTE_PTYPE_TUNNEL_IP |
3110                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3111                        RTE_PTYPE_INNER_L4_TCP,
3112                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3113                         RTE_PTYPE_TUNNEL_IP |
3114                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3115                         RTE_PTYPE_INNER_L4_SCTP,
3116                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3117                         RTE_PTYPE_TUNNEL_IP |
3118                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3119                         RTE_PTYPE_INNER_L4_ICMP,
3120
3121                 /* IPv6 --> IPv6 */
3122                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3123                         RTE_PTYPE_TUNNEL_IP |
3124                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3125                         RTE_PTYPE_INNER_L4_FRAG,
3126                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3127                         RTE_PTYPE_TUNNEL_IP |
3128                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3129                         RTE_PTYPE_INNER_L4_NONFRAG,
3130                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3131                         RTE_PTYPE_TUNNEL_IP |
3132                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3133                         RTE_PTYPE_INNER_L4_UDP,
3134                 /* [105] reserved */
3135                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3136                         RTE_PTYPE_TUNNEL_IP |
3137                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3138                         RTE_PTYPE_INNER_L4_TCP,
3139                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3140                         RTE_PTYPE_TUNNEL_IP |
3141                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3142                         RTE_PTYPE_INNER_L4_SCTP,
3143                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3144                         RTE_PTYPE_TUNNEL_IP |
3145                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3146                         RTE_PTYPE_INNER_L4_ICMP,
3147
3148                 /* IPv6 --> GRE/Teredo/VXLAN */
3149                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3150                         RTE_PTYPE_TUNNEL_GRENAT,
3151
3152                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3153                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3154                         RTE_PTYPE_TUNNEL_GRENAT |
3155                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3156                         RTE_PTYPE_INNER_L4_FRAG,
3157                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3158                         RTE_PTYPE_TUNNEL_GRENAT |
3159                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3160                         RTE_PTYPE_INNER_L4_NONFRAG,
3161                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3162                         RTE_PTYPE_TUNNEL_GRENAT |
3163                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3164                         RTE_PTYPE_INNER_L4_UDP,
3165                 /* [113] reserved */
3166                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3167                         RTE_PTYPE_TUNNEL_GRENAT |
3168                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3169                         RTE_PTYPE_INNER_L4_TCP,
3170                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3171                         RTE_PTYPE_TUNNEL_GRENAT |
3172                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3173                         RTE_PTYPE_INNER_L4_SCTP,
3174                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3175                         RTE_PTYPE_TUNNEL_GRENAT |
3176                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3177                         RTE_PTYPE_INNER_L4_ICMP,
3178
3179                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3180                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3181                         RTE_PTYPE_TUNNEL_GRENAT |
3182                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3183                         RTE_PTYPE_INNER_L4_FRAG,
3184                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3185                         RTE_PTYPE_TUNNEL_GRENAT |
3186                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3187                         RTE_PTYPE_INNER_L4_NONFRAG,
3188                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3189                         RTE_PTYPE_TUNNEL_GRENAT |
3190                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3191                         RTE_PTYPE_INNER_L4_UDP,
3192                 /* [120] reserved */
3193                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3194                         RTE_PTYPE_TUNNEL_GRENAT |
3195                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3196                         RTE_PTYPE_INNER_L4_TCP,
3197                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3198                         RTE_PTYPE_TUNNEL_GRENAT |
3199                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3200                         RTE_PTYPE_INNER_L4_SCTP,
3201                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3202                         RTE_PTYPE_TUNNEL_GRENAT |
3203                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3204                         RTE_PTYPE_INNER_L4_ICMP,
3205
3206                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3207                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3208                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3209
3210                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3211                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3212                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3213                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3214                         RTE_PTYPE_INNER_L4_FRAG,
3215                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3216                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3217                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3218                         RTE_PTYPE_INNER_L4_NONFRAG,
3219                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3220                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3221                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3222                         RTE_PTYPE_INNER_L4_UDP,
3223                 /* [128] reserved */
3224                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3225                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3226                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3227                         RTE_PTYPE_INNER_L4_TCP,
3228                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3229                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3230                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3231                         RTE_PTYPE_INNER_L4_SCTP,
3232                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3233                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3234                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3235                         RTE_PTYPE_INNER_L4_ICMP,
3236
3237                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3238                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3239                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3240                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3241                         RTE_PTYPE_INNER_L4_FRAG,
3242                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3243                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3244                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3245                         RTE_PTYPE_INNER_L4_NONFRAG,
3246                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3247                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3248                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3249                         RTE_PTYPE_INNER_L4_UDP,
3250                 /* [135] reserved */
3251                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3252                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3253                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3254                         RTE_PTYPE_INNER_L4_TCP,
3255                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3256                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3257                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3258                         RTE_PTYPE_INNER_L4_SCTP,
3259                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3260                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3261                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3262                         RTE_PTYPE_INNER_L4_ICMP,
3263                 /* [139] - [299] reserved */
3264
3265                 /* PPPoE */
3266                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3267                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3268
3269                 /* PPPoE --> IPv4 */
3270                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3271                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3272                         RTE_PTYPE_L4_FRAG,
3273                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3274                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3275                         RTE_PTYPE_L4_NONFRAG,
3276                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3277                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3278                         RTE_PTYPE_L4_UDP,
3279                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3280                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3281                         RTE_PTYPE_L4_TCP,
3282                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3283                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3284                         RTE_PTYPE_L4_SCTP,
3285                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3286                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3287                         RTE_PTYPE_L4_ICMP,
3288
3289                 /* PPPoE --> IPv6 */
3290                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3291                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3292                         RTE_PTYPE_L4_FRAG,
3293                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3294                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3295                         RTE_PTYPE_L4_NONFRAG,
3296                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3297                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3298                         RTE_PTYPE_L4_UDP,
3299                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3300                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3301                         RTE_PTYPE_L4_TCP,
3302                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3303                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3304                         RTE_PTYPE_L4_SCTP,
3305                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3306                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3307                         RTE_PTYPE_L4_ICMP,
3308                 /* [314] - [324] reserved */
3309
3310                 /* IPv4/IPv6 --> GTPC/GTPU */
3311                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3312                         RTE_PTYPE_TUNNEL_GTPC,
3313                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3314                         RTE_PTYPE_TUNNEL_GTPC,
3315                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3316                         RTE_PTYPE_TUNNEL_GTPC,
3317                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3318                         RTE_PTYPE_TUNNEL_GTPC,
3319                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3320                         RTE_PTYPE_TUNNEL_GTPU,
3321                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3322                         RTE_PTYPE_TUNNEL_GTPU,
3323
3324                 /* IPv4 --> GTPU --> IPv4 */
3325                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3326                         RTE_PTYPE_TUNNEL_GTPU |
3327                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3328                         RTE_PTYPE_INNER_L4_FRAG,
3329                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3330                         RTE_PTYPE_TUNNEL_GTPU |
3331                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3332                         RTE_PTYPE_INNER_L4_NONFRAG,
3333                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3334                         RTE_PTYPE_TUNNEL_GTPU |
3335                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3336                         RTE_PTYPE_INNER_L4_UDP,
3337                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3338                         RTE_PTYPE_TUNNEL_GTPU |
3339                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3340                         RTE_PTYPE_INNER_L4_TCP,
3341                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3342                         RTE_PTYPE_TUNNEL_GTPU |
3343                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3344                         RTE_PTYPE_INNER_L4_ICMP,
3345
3346                 /* IPv6 --> GTPU --> IPv4 */
3347                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3348                         RTE_PTYPE_TUNNEL_GTPU |
3349                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3350                         RTE_PTYPE_INNER_L4_FRAG,
3351                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3352                         RTE_PTYPE_TUNNEL_GTPU |
3353                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3354                         RTE_PTYPE_INNER_L4_NONFRAG,
3355                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3356                         RTE_PTYPE_TUNNEL_GTPU |
3357                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3358                         RTE_PTYPE_INNER_L4_UDP,
3359                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3360                         RTE_PTYPE_TUNNEL_GTPU |
3361                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3362                         RTE_PTYPE_INNER_L4_TCP,
3363                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3364                         RTE_PTYPE_TUNNEL_GTPU |
3365                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3366                         RTE_PTYPE_INNER_L4_ICMP,
3367
3368                 /* IPv4 --> GTPU --> IPv6 */
3369                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3370                         RTE_PTYPE_TUNNEL_GTPU |
3371                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3372                         RTE_PTYPE_INNER_L4_FRAG,
3373                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3374                         RTE_PTYPE_TUNNEL_GTPU |
3375                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3376                         RTE_PTYPE_INNER_L4_NONFRAG,
3377                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3378                         RTE_PTYPE_TUNNEL_GTPU |
3379                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3380                         RTE_PTYPE_INNER_L4_UDP,
3381                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3382                         RTE_PTYPE_TUNNEL_GTPU |
3383                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3384                         RTE_PTYPE_INNER_L4_TCP,
3385                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3386                         RTE_PTYPE_TUNNEL_GTPU |
3387                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3388                         RTE_PTYPE_INNER_L4_ICMP,
3389
3390                 /* IPv6 --> GTPU --> IPv6 */
3391                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3392                         RTE_PTYPE_TUNNEL_GTPU |
3393                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3394                         RTE_PTYPE_INNER_L4_FRAG,
3395                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3396                         RTE_PTYPE_TUNNEL_GTPU |
3397                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3398                         RTE_PTYPE_INNER_L4_NONFRAG,
3399                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3400                         RTE_PTYPE_TUNNEL_GTPU |
3401                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3402                         RTE_PTYPE_INNER_L4_UDP,
3403                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3404                         RTE_PTYPE_TUNNEL_GTPU |
3405                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3406                         RTE_PTYPE_INNER_L4_TCP,
3407                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3408                         RTE_PTYPE_TUNNEL_GTPU |
3409                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3410                         RTE_PTYPE_INNER_L4_ICMP,
3411
3412                 /* IPv4 --> UDP ECPRI */
3413                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3414                         RTE_PTYPE_L4_UDP,
3415                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3416                         RTE_PTYPE_L4_UDP,
3417                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3418                         RTE_PTYPE_L4_UDP,
3419                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3420                         RTE_PTYPE_L4_UDP,
3421                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3422                         RTE_PTYPE_L4_UDP,
3423                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3424                         RTE_PTYPE_L4_UDP,
3425                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3426                         RTE_PTYPE_L4_UDP,
3427                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3428                         RTE_PTYPE_L4_UDP,
3429                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3430                         RTE_PTYPE_L4_UDP,
3431                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3432                         RTE_PTYPE_L4_UDP,
3433
3434                 /* IPV6 --> UDP ECPRI */
3435                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3436                         RTE_PTYPE_L4_UDP,
3437                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3438                         RTE_PTYPE_L4_UDP,
3439                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3440                         RTE_PTYPE_L4_UDP,
3441                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3442                         RTE_PTYPE_L4_UDP,
3443                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3444                         RTE_PTYPE_L4_UDP,
3445                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3446                         RTE_PTYPE_L4_UDP,
3447                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3448                         RTE_PTYPE_L4_UDP,
3449                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3450                         RTE_PTYPE_L4_UDP,
3451                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3452                         RTE_PTYPE_L4_UDP,
3453                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3454                         RTE_PTYPE_L4_UDP,
3455                 /* All others reserved */
3456         };
3457
3458         return ptype_tbl;
3459 }