net/iavf: support flexible Rx descriptor in AVX path
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "iavf_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union iavf_rx_desc *rxdp;
19         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxp,
26                                  IAVF_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
33                                 rxp[i] = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         IAVF_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxp[0];
53                 mb1 = rxp[1];
54
55                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < IAVF_RXQ_REARM_THRESH;
79                         i += 4, rxp += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxp[0];
84                 mb1 = rxp[1];
85                 mb2 = rxp[2];
86                 mb3 = rxp[3];
87
88                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 #define PKTLEN_SHIFT     10
136
137 static inline uint16_t
138 _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
139                              struct rte_mbuf **rx_pkts,
140                              uint16_t nb_pkts, uint8_t *split_packet)
141 {
142 #define IAVF_DESCS_PER_LOOP_AVX 8
143
144         /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
145         const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
146
147         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
148                         0, rxq->mbuf_initializer);
149         /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
150         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
151         volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
152         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
153
154         rte_prefetch0(rxdp);
155
156         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
157         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
158
159         /* See if we need to rearm the RX queue - gives the prefetch a bit
160          * of time to act
161          */
162         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
163                 iavf_rxq_rearm(rxq);
164
165         /* Before we start moving massive data around, check to see if
166          * there is actually a packet available
167          */
168         if (!(rxdp->wb.qword1.status_error_len &
169                         rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
170                 return 0;
171
172         /* constants used in processing loop */
173         const __m256i crc_adjust =
174                 _mm256_set_epi16
175                         (/* first descriptor */
176                          0, 0, 0,       /* ignore non-length fields */
177                          -rxq->crc_len, /* sub crc on data_len */
178                          0,             /* ignore high-16bits of pkt_len */
179                          -rxq->crc_len, /* sub crc on pkt_len */
180                          0, 0,          /* ignore pkt_type field */
181                          /* second descriptor */
182                          0, 0, 0,       /* ignore non-length fields */
183                          -rxq->crc_len, /* sub crc on data_len */
184                          0,             /* ignore high-16bits of pkt_len */
185                          -rxq->crc_len, /* sub crc on pkt_len */
186                          0, 0           /* ignore pkt_type field */
187                         );
188
189         /* 8 packets DD mask, LSB in each 32-bit value */
190         const __m256i dd_check = _mm256_set1_epi32(1);
191
192         /* 8 packets EOP mask, second-LSB in each 32-bit value */
193         const __m256i eop_check = _mm256_slli_epi32(dd_check,
194                         IAVF_RX_DESC_STATUS_EOF_SHIFT);
195
196         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
197         const __m256i shuf_msk =
198                 _mm256_set_epi8
199                         (/* first descriptor */
200                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
201                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
202                          15, 14,      /* octet 15~14, 16 bits data_len */
203                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
204                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
205                          0xFF, 0xFF,  /* pkt_type set as unknown */
206                          0xFF, 0xFF,  /*pkt_type set as unknown */
207                          /* second descriptor */
208                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
209                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
210                          15, 14,      /* octet 15~14, 16 bits data_len */
211                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
212                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
213                          0xFF, 0xFF,  /* pkt_type set as unknown */
214                          0xFF, 0xFF   /*pkt_type set as unknown */
215                         );
216         /**
217          * compile-time check the above crc and shuffle layout is correct.
218          * NOTE: the first field (lowest address) is given last in set_epi
219          * calls above.
220          */
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
223         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
224                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
225         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
226                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
227         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
228                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
229
230         /* Status/Error flag masks */
231         /**
232          * mask everything except RSS, flow director and VLAN flags
233          * bit2 is for VLAN tag, bit11 for flow director indication
234          * bit13:12 for RSS indication. Bits 3-5 of error
235          * field (bits 22-24) are for IP/L4 checksum errors
236          */
237         const __m256i flags_mask =
238                  _mm256_set1_epi32((1 << 2) | (1 << 11) |
239                                    (3 << 12) | (7 << 22));
240         /**
241          * data to be shuffled by result of flag mask. If VLAN bit is set,
242          * (bit 2), then position 4 in this array will be used in the
243          * destination
244          */
245         const __m256i vlan_flags_shuf =
246                 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
247                                  0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
248         /**
249          * data to be shuffled by result of flag mask, shifted down 11.
250          * If RSS/FDIR bits are set, shuffle moves appropriate flags in
251          * place.
252          */
253         const __m256i rss_flags_shuf =
254                 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
255                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
256                                 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
257                                 0, 0, 0, 0, 0, 0, 0, 0,
258                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
259                                 0, 0, 0, 0, PKT_RX_FDIR, 0);
260
261         /**
262          * data to be shuffled by the result of the flags mask shifted by 22
263          * bits.  This gives use the l3_l4 flags.
264          */
265         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
266                         /* shift right 1 bit to make sure it not exceed 255 */
267                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
268                          PKT_RX_IP_CKSUM_BAD) >> 1,
269                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
270                          PKT_RX_L4_CKSUM_BAD) >> 1,
271                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
272                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
273                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
274                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
275                         PKT_RX_IP_CKSUM_BAD >> 1,
276                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
277                         /* second 128-bits */
278                         0, 0, 0, 0, 0, 0, 0, 0,
279                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
280                          PKT_RX_IP_CKSUM_BAD) >> 1,
281                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
282                          PKT_RX_L4_CKSUM_BAD) >> 1,
283                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
284                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
285                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
286                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
287                         PKT_RX_IP_CKSUM_BAD >> 1,
288                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
289
290         const __m256i cksum_mask =
291                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
292                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
293                                    PKT_RX_EIP_CKSUM_BAD);
294
295         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
296
297         uint16_t i, received;
298
299         for (i = 0, received = 0; i < nb_pkts;
300              i += IAVF_DESCS_PER_LOOP_AVX,
301              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
302                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
303                 _mm256_storeu_si256((void *)&rx_pkts[i],
304                                     _mm256_loadu_si256((void *)&sw_ring[i]));
305 #ifdef RTE_ARCH_X86_64
306                 _mm256_storeu_si256
307                         ((void *)&rx_pkts[i + 4],
308                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
309 #endif
310
311                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
312 #ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
313                 /* for AVX we need alignment otherwise loads are not atomic */
314                 if (avx_aligned) {
315                         /* load in descriptors, 2 at a time, in reverse order */
316                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
317                         rte_compiler_barrier();
318                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
319                         rte_compiler_barrier();
320                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
321                         rte_compiler_barrier();
322                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
323                 } else
324 #endif
325                 {
326                         const __m128i raw_desc7 =
327                                 _mm_load_si128((void *)(rxdp + 7));
328                         rte_compiler_barrier();
329                         const __m128i raw_desc6 =
330                                 _mm_load_si128((void *)(rxdp + 6));
331                         rte_compiler_barrier();
332                         const __m128i raw_desc5 =
333                                 _mm_load_si128((void *)(rxdp + 5));
334                         rte_compiler_barrier();
335                         const __m128i raw_desc4 =
336                                 _mm_load_si128((void *)(rxdp + 4));
337                         rte_compiler_barrier();
338                         const __m128i raw_desc3 =
339                                 _mm_load_si128((void *)(rxdp + 3));
340                         rte_compiler_barrier();
341                         const __m128i raw_desc2 =
342                                 _mm_load_si128((void *)(rxdp + 2));
343                         rte_compiler_barrier();
344                         const __m128i raw_desc1 =
345                                 _mm_load_si128((void *)(rxdp + 1));
346                         rte_compiler_barrier();
347                         const __m128i raw_desc0 =
348                                 _mm_load_si128((void *)(rxdp + 0));
349
350                         raw_desc6_7 =
351                                 _mm256_inserti128_si256
352                                         (_mm256_castsi128_si256(raw_desc6),
353                                          raw_desc7, 1);
354                         raw_desc4_5 =
355                                 _mm256_inserti128_si256
356                                         (_mm256_castsi128_si256(raw_desc4),
357                                          raw_desc5, 1);
358                         raw_desc2_3 =
359                                 _mm256_inserti128_si256
360                                         (_mm256_castsi128_si256(raw_desc2),
361                                          raw_desc3, 1);
362                         raw_desc0_1 =
363                                 _mm256_inserti128_si256
364                                         (_mm256_castsi128_si256(raw_desc0),
365                                          raw_desc1, 1);
366                 }
367
368                 if (split_packet) {
369                         int j;
370
371                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
372                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
373                 }
374
375                 /**
376                  * convert descriptors 4-7 into mbufs, adjusting length and
377                  * re-arranging fields. Then write into the mbuf
378                  */
379                 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
380                                                          PKTLEN_SHIFT);
381                 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
382                                                          PKTLEN_SHIFT);
383                 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
384                                                            len6_7, 0x80);
385                 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
386                                                            len4_5, 0x80);
387                 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
388                 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
389
390                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
391                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
392                 /**
393                  * to get packet types, shift 64-bit values down 30 bits
394                  * and so ptype is in lower 8-bits in each
395                  */
396                 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
397                 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
398                 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
399                 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
400                 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
401                 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
402
403                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
404                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
405                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
406                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
407                 /* merge the status bits into one register */
408                 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
409                                 desc4_5);
410
411                 /**
412                  * convert descriptors 0-3 into mbufs, adjusting length and
413                  * re-arranging fields. Then write into the mbuf
414                  */
415                 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
416                                                          PKTLEN_SHIFT);
417                 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
418                                                          PKTLEN_SHIFT);
419                 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
420                                                            len2_3, 0x80);
421                 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
422                                                            len0_1, 0x80);
423                 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
424                 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
425
426                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
427                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
428                 /* get the packet types */
429                 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
430                 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
431                 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
432                 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
433                 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
434                 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
435
436                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
437                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
438                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
439                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
440                 /* merge the status bits into one register */
441                 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
442                                                                 desc0_1);
443
444                 /**
445                  * take the two sets of status bits and merge to one
446                  * After merge, the packets status flags are in the
447                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
448                  */
449                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
450                                                           status0_3);
451
452                 /* now do flag manipulation */
453
454                 /* get only flag/error bits we want */
455                 const __m256i flag_bits =
456                         _mm256_and_si256(status0_7, flags_mask);
457                 /* set vlan and rss flags */
458                 const __m256i vlan_flags =
459                         _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
460                 const __m256i rss_flags =
461                         _mm256_shuffle_epi8(rss_flags_shuf,
462                                             _mm256_srli_epi32(flag_bits, 11));
463                 /**
464                  * l3_l4_error flags, shuffle, then shift to correct adjustment
465                  * of flags in flags_shuf, and finally mask out extra bits
466                  */
467                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
468                                 _mm256_srli_epi32(flag_bits, 22));
469                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
470                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
471
472                 /* merge flags */
473                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
474                                 _mm256_or_si256(rss_flags, vlan_flags));
475                 /**
476                  * At this point, we have the 8 sets of flags in the low 16-bits
477                  * of each 32-bit value in vlan0.
478                  * We want to extract these, and merge them with the mbuf init
479                  * data so we can do a single write to the mbuf to set the flags
480                  * and all the other initialization fields. Extracting the
481                  * appropriate flags means that we have to do a shift and blend
482                  * for each mbuf before we do the write. However, we can also
483                  * add in the previously computed rx_descriptor fields to
484                  * make a single 256-bit write per mbuf
485                  */
486                 /* check the structure matches expectations */
487                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
488                                  offsetof(struct rte_mbuf, rearm_data) + 8);
489                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
490                                  RTE_ALIGN(offsetof(struct rte_mbuf,
491                                                     rearm_data),
492                                            16));
493                 /* build up data and do writes */
494                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
495                         rearm6, rearm7;
496                 rearm6 = _mm256_blend_epi32(mbuf_init,
497                                             _mm256_slli_si256(mbuf_flags, 8),
498                                             0x04);
499                 rearm4 = _mm256_blend_epi32(mbuf_init,
500                                             _mm256_slli_si256(mbuf_flags, 4),
501                                             0x04);
502                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
503                 rearm0 = _mm256_blend_epi32(mbuf_init,
504                                             _mm256_srli_si256(mbuf_flags, 4),
505                                             0x04);
506                 /* permute to add in the rx_descriptor e.g. rss fields */
507                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
508                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
509                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
510                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
511                 /* write to mbuf */
512                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
513                                     rearm6);
514                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
515                                     rearm4);
516                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
517                                     rearm2);
518                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
519                                     rearm0);
520
521                 /* repeat for the odd mbufs */
522                 const __m256i odd_flags =
523                         _mm256_castsi128_si256
524                                 (_mm256_extracti128_si256(mbuf_flags, 1));
525                 rearm7 = _mm256_blend_epi32(mbuf_init,
526                                             _mm256_slli_si256(odd_flags, 8),
527                                             0x04);
528                 rearm5 = _mm256_blend_epi32(mbuf_init,
529                                             _mm256_slli_si256(odd_flags, 4),
530                                             0x04);
531                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
532                 rearm1 = _mm256_blend_epi32(mbuf_init,
533                                             _mm256_srli_si256(odd_flags, 4),
534                                             0x04);
535                 /* since odd mbufs are already in hi 128-bits use blend */
536                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
537                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
538                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
539                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
540                 /* again write to mbufs */
541                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
542                                     rearm7);
543                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
544                                     rearm5);
545                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
546                                     rearm3);
547                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
548                                     rearm1);
549
550                 /* extract and record EOP bit */
551                 if (split_packet) {
552                         const __m128i eop_mask =
553                                 _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
554                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
555                                                                      eop_check);
556                         /* pack status bits into a single 128-bit register */
557                         const __m128i eop_bits =
558                                 _mm_packus_epi32
559                                         (_mm256_castsi256_si128(eop_bits256),
560                                          _mm256_extractf128_si256(eop_bits256,
561                                                                   1));
562                         /**
563                          * flip bits, and mask out the EOP bit, which is now
564                          * a split-packet bit i.e. !EOP, rather than EOP one.
565                          */
566                         __m128i split_bits = _mm_andnot_si128(eop_bits,
567                                         eop_mask);
568                         /**
569                          * eop bits are out of order, so we need to shuffle them
570                          * back into order again. In doing so, only use low 8
571                          * bits, which acts like another pack instruction
572                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
573                          * [Since we use epi8, the 16-bit positions are
574                          * multiplied by 2 in the eop_shuffle value.]
575                          */
576                         __m128i eop_shuffle =
577                                 _mm_set_epi8(/* zero hi 64b */
578                                              0xFF, 0xFF, 0xFF, 0xFF,
579                                              0xFF, 0xFF, 0xFF, 0xFF,
580                                              /* move values to lo 64b */
581                                              8, 0, 10, 2,
582                                              12, 4, 14, 6);
583                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
584                         *(uint64_t *)split_packet =
585                                 _mm_cvtsi128_si64(split_bits);
586                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
587                 }
588
589                 /* perform dd_check */
590                 status0_7 = _mm256_and_si256(status0_7, dd_check);
591                 status0_7 = _mm256_packs_epi32(status0_7,
592                                                _mm256_setzero_si256());
593
594                 uint64_t burst = __builtin_popcountll
595                                         (_mm_cvtsi128_si64
596                                                 (_mm256_extracti128_si256
597                                                         (status0_7, 1)));
598                 burst += __builtin_popcountll
599                                 (_mm_cvtsi128_si64
600                                         (_mm256_castsi256_si128(status0_7)));
601                 received += burst;
602                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
603                         break;
604         }
605
606         /* update tail pointers */
607         rxq->rx_tail += received;
608         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
609         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
610                 rxq->rx_tail--;
611                 received--;
612         }
613         rxq->rxrearm_nb += received;
614         return received;
615 }
616
617 static inline uint16_t
618 _iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq,
619                                       struct rte_mbuf **rx_pkts,
620                                       uint16_t nb_pkts, uint8_t *split_packet)
621 {
622 #define IAVF_DESCS_PER_LOOP_AVX 8
623
624         const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
625
626         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
627                         0, rxq->mbuf_initializer);
628         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
629         volatile union iavf_rx_flex_desc *rxdp =
630                 (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
631
632         rte_prefetch0(rxdp);
633
634         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
635         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
636
637         /* See if we need to rearm the RX queue - gives the prefetch a bit
638          * of time to act
639          */
640         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
641                 iavf_rxq_rearm(rxq);
642
643         /* Before we start moving massive data around, check to see if
644          * there is actually a packet available
645          */
646         if (!(rxdp->wb.status_error0 &
647                         rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
648                 return 0;
649
650         /* constants used in processing loop */
651         const __m256i crc_adjust =
652                 _mm256_set_epi16
653                         (/* first descriptor */
654                          0, 0, 0,       /* ignore non-length fields */
655                          -rxq->crc_len, /* sub crc on data_len */
656                          0,             /* ignore high-16bits of pkt_len */
657                          -rxq->crc_len, /* sub crc on pkt_len */
658                          0, 0,          /* ignore pkt_type field */
659                          /* second descriptor */
660                          0, 0, 0,       /* ignore non-length fields */
661                          -rxq->crc_len, /* sub crc on data_len */
662                          0,             /* ignore high-16bits of pkt_len */
663                          -rxq->crc_len, /* sub crc on pkt_len */
664                          0, 0           /* ignore pkt_type field */
665                         );
666
667         /* 8 packets DD mask, LSB in each 32-bit value */
668         const __m256i dd_check = _mm256_set1_epi32(1);
669
670         /* 8 packets EOP mask, second-LSB in each 32-bit value */
671         const __m256i eop_check = _mm256_slli_epi32(dd_check,
672                         IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
673
674         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
675         const __m256i shuf_msk =
676                 _mm256_set_epi8
677                         (/* first descriptor */
678                          15, 14,
679                          13, 12,        /* octet 12~15, 32 bits rss */
680                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
681                          5, 4,          /* octet 4~5, 16 bits data_len */
682                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
683                          5, 4,          /* octet 4~5, 16 bits pkt_len */
684                          0xFF, 0xFF,    /* pkt_type set as unknown */
685                          0xFF, 0xFF,    /*pkt_type set as unknown */
686                          /* second descriptor */
687                          15, 14,
688                          13, 12,        /* octet 12~15, 32 bits rss */
689                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
690                          5, 4,          /* octet 4~5, 16 bits data_len */
691                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
692                          5, 4,          /* octet 4~5, 16 bits pkt_len */
693                          0xFF, 0xFF,    /* pkt_type set as unknown */
694                          0xFF, 0xFF     /*pkt_type set as unknown */
695                         );
696         /**
697          * compile-time check the above crc and shuffle layout is correct.
698          * NOTE: the first field (lowest address) is given last in set_epi
699          * calls above.
700          */
701         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
702                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
703         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
704                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
705         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
706                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
707         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
708                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
709
710         /* Status/Error flag masks */
711         /**
712          * mask everything except Checksum Reports, RSS indication
713          * and VLAN indication.
714          * bit6:4 for IP/L4 checksum errors.
715          * bit12 is for RSS indication.
716          * bit13 is for VLAN indication.
717          */
718         const __m256i flags_mask =
719                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
720         /**
721          * data to be shuffled by the result of the flags mask shifted by 4
722          * bits.  This gives use the l3_l4 flags.
723          */
724         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
725                         /* shift right 1 bit to make sure it not exceed 255 */
726                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
727                          PKT_RX_IP_CKSUM_BAD) >> 1,
728                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
729                          PKT_RX_IP_CKSUM_GOOD) >> 1,
730                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
731                          PKT_RX_IP_CKSUM_BAD) >> 1,
732                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
733                          PKT_RX_IP_CKSUM_GOOD) >> 1,
734                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
735                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
736                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
737                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
738                         /* second 128-bits */
739                         0, 0, 0, 0, 0, 0, 0, 0,
740                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
741                          PKT_RX_IP_CKSUM_BAD) >> 1,
742                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
743                          PKT_RX_IP_CKSUM_GOOD) >> 1,
744                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
745                          PKT_RX_IP_CKSUM_BAD) >> 1,
746                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
747                          PKT_RX_IP_CKSUM_GOOD) >> 1,
748                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
749                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
750                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
751                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
752         const __m256i cksum_mask =
753                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
754                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
755                                    PKT_RX_EIP_CKSUM_BAD);
756         /**
757          * data to be shuffled by result of flag mask, shifted down 12.
758          * If RSS(bit12)/VLAN(bit13) are set,
759          * shuffle moves appropriate flags in place.
760          */
761         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
762                         0, 0, 0, 0,
763                         0, 0, 0, 0,
764                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
765                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
766                         PKT_RX_RSS_HASH, 0,
767                         /* end up 128-bits */
768                         0, 0, 0, 0,
769                         0, 0, 0, 0,
770                         0, 0, 0, 0,
771                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
772                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
773                         PKT_RX_RSS_HASH, 0);
774
775         uint16_t i, received;
776
777         for (i = 0, received = 0; i < nb_pkts;
778              i += IAVF_DESCS_PER_LOOP_AVX,
779              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
780                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
781                 _mm256_storeu_si256((void *)&rx_pkts[i],
782                                     _mm256_loadu_si256((void *)&sw_ring[i]));
783 #ifdef RTE_ARCH_X86_64
784                 _mm256_storeu_si256
785                         ((void *)&rx_pkts[i + 4],
786                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
787 #endif
788
789                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
790
791                 const __m128i raw_desc7 =
792                         _mm_load_si128((void *)(rxdp + 7));
793                 rte_compiler_barrier();
794                 const __m128i raw_desc6 =
795                         _mm_load_si128((void *)(rxdp + 6));
796                 rte_compiler_barrier();
797                 const __m128i raw_desc5 =
798                         _mm_load_si128((void *)(rxdp + 5));
799                 rte_compiler_barrier();
800                 const __m128i raw_desc4 =
801                         _mm_load_si128((void *)(rxdp + 4));
802                 rte_compiler_barrier();
803                 const __m128i raw_desc3 =
804                         _mm_load_si128((void *)(rxdp + 3));
805                 rte_compiler_barrier();
806                 const __m128i raw_desc2 =
807                         _mm_load_si128((void *)(rxdp + 2));
808                 rte_compiler_barrier();
809                 const __m128i raw_desc1 =
810                         _mm_load_si128((void *)(rxdp + 1));
811                 rte_compiler_barrier();
812                 const __m128i raw_desc0 =
813                         _mm_load_si128((void *)(rxdp + 0));
814
815                 raw_desc6_7 =
816                         _mm256_inserti128_si256
817                                 (_mm256_castsi128_si256(raw_desc6),
818                                  raw_desc7, 1);
819                 raw_desc4_5 =
820                         _mm256_inserti128_si256
821                                 (_mm256_castsi128_si256(raw_desc4),
822                                  raw_desc5, 1);
823                 raw_desc2_3 =
824                         _mm256_inserti128_si256
825                                 (_mm256_castsi128_si256(raw_desc2),
826                                  raw_desc3, 1);
827                 raw_desc0_1 =
828                         _mm256_inserti128_si256
829                                 (_mm256_castsi128_si256(raw_desc0),
830                                  raw_desc1, 1);
831
832                 if (split_packet) {
833                         int j;
834
835                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
836                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
837                 }
838
839                 /**
840                  * convert descriptors 4-7 into mbufs, re-arrange fields.
841                  * Then write into the mbuf.
842                  */
843                 __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
844                 __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
845
846                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
847                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
848                 /**
849                  * to get packet types, ptype is located in bit16-25
850                  * of each 128bits
851                  */
852                 const __m256i ptype_mask =
853                         _mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
854                 const __m256i ptypes6_7 =
855                         _mm256_and_si256(raw_desc6_7, ptype_mask);
856                 const __m256i ptypes4_5 =
857                         _mm256_and_si256(raw_desc4_5, ptype_mask);
858                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
859                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
860                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
861                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
862
863                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
864                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
865                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
866                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
867                 /* merge the status bits into one register */
868                 const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
869                                 raw_desc4_5);
870
871                 /**
872                  * convert descriptors 0-3 into mbufs, re-arrange fields.
873                  * Then write into the mbuf.
874                  */
875                 __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
876                 __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
877
878                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
879                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
880                 /**
881                  * to get packet types, ptype is located in bit16-25
882                  * of each 128bits
883                  */
884                 const __m256i ptypes2_3 =
885                         _mm256_and_si256(raw_desc2_3, ptype_mask);
886                 const __m256i ptypes0_1 =
887                         _mm256_and_si256(raw_desc0_1, ptype_mask);
888                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
889                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
890                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
891                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
892
893                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
894                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
895                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
896                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
897                 /* merge the status bits into one register */
898                 const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
899                                                                 raw_desc0_1);
900
901                 /**
902                  * take the two sets of status bits and merge to one
903                  * After merge, the packets status flags are in the
904                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
905                  */
906                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
907                                                           status0_3);
908
909                 /* now do flag manipulation */
910
911                 /* get only flag/error bits we want */
912                 const __m256i flag_bits =
913                         _mm256_and_si256(status0_7, flags_mask);
914                 /**
915                  * l3_l4_error flags, shuffle, then shift to correct adjustment
916                  * of flags in flags_shuf, and finally mask out extra bits
917                  */
918                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
919                                 _mm256_srli_epi32(flag_bits, 4));
920                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
921                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
922                 /* set rss and vlan flags */
923                 const __m256i rss_vlan_flag_bits =
924                         _mm256_srli_epi32(flag_bits, 12);
925                 const __m256i rss_vlan_flags =
926                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
927                                             rss_vlan_flag_bits);
928
929                 /* merge flags */
930                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
931                                 rss_vlan_flags);
932                 /**
933                  * At this point, we have the 8 sets of flags in the low 16-bits
934                  * of each 32-bit value in vlan0.
935                  * We want to extract these, and merge them with the mbuf init
936                  * data so we can do a single write to the mbuf to set the flags
937                  * and all the other initialization fields. Extracting the
938                  * appropriate flags means that we have to do a shift and blend
939                  * for each mbuf before we do the write. However, we can also
940                  * add in the previously computed rx_descriptor fields to
941                  * make a single 256-bit write per mbuf
942                  */
943                 /* check the structure matches expectations */
944                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
945                                  offsetof(struct rte_mbuf, rearm_data) + 8);
946                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
947                                  RTE_ALIGN(offsetof(struct rte_mbuf,
948                                                     rearm_data),
949                                            16));
950                 /* build up data and do writes */
951                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
952                         rearm6, rearm7;
953                 rearm6 = _mm256_blend_epi32(mbuf_init,
954                                             _mm256_slli_si256(mbuf_flags, 8),
955                                             0x04);
956                 rearm4 = _mm256_blend_epi32(mbuf_init,
957                                             _mm256_slli_si256(mbuf_flags, 4),
958                                             0x04);
959                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
960                 rearm0 = _mm256_blend_epi32(mbuf_init,
961                                             _mm256_srli_si256(mbuf_flags, 4),
962                                             0x04);
963                 /* permute to add in the rx_descriptor e.g. rss fields */
964                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
965                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
966                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
967                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
968                 /* write to mbuf */
969                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
970                                     rearm6);
971                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
972                                     rearm4);
973                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
974                                     rearm2);
975                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
976                                     rearm0);
977
978                 /* repeat for the odd mbufs */
979                 const __m256i odd_flags =
980                         _mm256_castsi128_si256
981                                 (_mm256_extracti128_si256(mbuf_flags, 1));
982                 rearm7 = _mm256_blend_epi32(mbuf_init,
983                                             _mm256_slli_si256(odd_flags, 8),
984                                             0x04);
985                 rearm5 = _mm256_blend_epi32(mbuf_init,
986                                             _mm256_slli_si256(odd_flags, 4),
987                                             0x04);
988                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
989                 rearm1 = _mm256_blend_epi32(mbuf_init,
990                                             _mm256_srli_si256(odd_flags, 4),
991                                             0x04);
992                 /* since odd mbufs are already in hi 128-bits use blend */
993                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
994                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
995                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
996                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
997                 /* again write to mbufs */
998                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
999                                     rearm7);
1000                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
1001                                     rearm5);
1002                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
1003                                     rearm3);
1004                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
1005                                     rearm1);
1006
1007                 /* extract and record EOP bit */
1008                 if (split_packet) {
1009                         const __m128i eop_mask =
1010                                 _mm_set1_epi16(1 <<
1011                                                IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
1012                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
1013                                                                      eop_check);
1014                         /* pack status bits into a single 128-bit register */
1015                         const __m128i eop_bits =
1016                                 _mm_packus_epi32
1017                                         (_mm256_castsi256_si128(eop_bits256),
1018                                          _mm256_extractf128_si256(eop_bits256,
1019                                                                   1));
1020                         /**
1021                          * flip bits, and mask out the EOP bit, which is now
1022                          * a split-packet bit i.e. !EOP, rather than EOP one.
1023                          */
1024                         __m128i split_bits = _mm_andnot_si128(eop_bits,
1025                                         eop_mask);
1026                         /**
1027                          * eop bits are out of order, so we need to shuffle them
1028                          * back into order again. In doing so, only use low 8
1029                          * bits, which acts like another pack instruction
1030                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
1031                          * [Since we use epi8, the 16-bit positions are
1032                          * multiplied by 2 in the eop_shuffle value.]
1033                          */
1034                         __m128i eop_shuffle =
1035                                 _mm_set_epi8(/* zero hi 64b */
1036                                              0xFF, 0xFF, 0xFF, 0xFF,
1037                                              0xFF, 0xFF, 0xFF, 0xFF,
1038                                              /* move values to lo 64b */
1039                                              8, 0, 10, 2,
1040                                              12, 4, 14, 6);
1041                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
1042                         *(uint64_t *)split_packet =
1043                                 _mm_cvtsi128_si64(split_bits);
1044                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
1045                 }
1046
1047                 /* perform dd_check */
1048                 status0_7 = _mm256_and_si256(status0_7, dd_check);
1049                 status0_7 = _mm256_packs_epi32(status0_7,
1050                                                _mm256_setzero_si256());
1051
1052                 uint64_t burst = __builtin_popcountll
1053                                         (_mm_cvtsi128_si64
1054                                                 (_mm256_extracti128_si256
1055                                                         (status0_7, 1)));
1056                 burst += __builtin_popcountll
1057                                 (_mm_cvtsi128_si64
1058                                         (_mm256_castsi256_si128(status0_7)));
1059                 received += burst;
1060                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
1061                         break;
1062         }
1063
1064         /* update tail pointers */
1065         rxq->rx_tail += received;
1066         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
1067         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
1068                 rxq->rx_tail--;
1069                 received--;
1070         }
1071         rxq->rxrearm_nb += received;
1072         return received;
1073 }
1074
1075 /**
1076  * Notice:
1077  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1078  */
1079 uint16_t
1080 iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
1081                         uint16_t nb_pkts)
1082 {
1083         return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
1084 }
1085
1086 /**
1087  * Notice:
1088  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1089  */
1090 uint16_t
1091 iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1092                                  uint16_t nb_pkts)
1093 {
1094         return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts,
1095                                                      nb_pkts, NULL);
1096 }
1097
1098 /**
1099  * vPMD receive routine that reassembles single burst of 32 scattered packets
1100  * Notice:
1101  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1102  */
1103 static uint16_t
1104 iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
1105                                    uint16_t nb_pkts)
1106 {
1107         struct iavf_rx_queue *rxq = rx_queue;
1108         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1109
1110         /* get some new buffers */
1111         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
1112                                                        split_flags);
1113         if (nb_bufs == 0)
1114                 return 0;
1115
1116         /* happy day case, full burst + no packets to be joined */
1117         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1118
1119         if (!rxq->pkt_first_seg &&
1120             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1121             split_fl64[2] == 0 && split_fl64[3] == 0)
1122                 return nb_bufs;
1123
1124         /* reassemble any packets that need reassembly*/
1125         unsigned int i = 0;
1126
1127         if (!rxq->pkt_first_seg) {
1128                 /* find the first split flag, and only reassemble then*/
1129                 while (i < nb_bufs && !split_flags[i])
1130                         i++;
1131                 if (i == nb_bufs)
1132                         return nb_bufs;
1133                 rxq->pkt_first_seg = rx_pkts[i];
1134         }
1135         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1136                                              &split_flags[i]);
1137 }
1138
1139 /**
1140  * vPMD receive routine that reassembles scattered packets.
1141  * Main receive routine that can handle arbitrary burst sizes
1142  * Notice:
1143  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1144  */
1145 uint16_t
1146 iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
1147                                   uint16_t nb_pkts)
1148 {
1149         uint16_t retval = 0;
1150
1151         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1152                 uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
1153                                 rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
1154                 retval += burst;
1155                 nb_pkts -= burst;
1156                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1157                         return retval;
1158         }
1159         return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
1160                                 rx_pkts + retval, nb_pkts);
1161 }
1162
1163 /**
1164  * vPMD receive routine that reassembles single burst of
1165  * 32 scattered packets for flex RxD
1166  * Notice:
1167  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1168  */
1169 static uint16_t
1170 iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue,
1171                                             struct rte_mbuf **rx_pkts,
1172                                             uint16_t nb_pkts)
1173 {
1174         struct iavf_rx_queue *rxq = rx_queue;
1175         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1176
1177         /* get some new buffers */
1178         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq,
1179                                         rx_pkts, nb_pkts, split_flags);
1180         if (nb_bufs == 0)
1181                 return 0;
1182
1183         /* happy day case, full burst + no packets to be joined */
1184         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1185
1186         if (!rxq->pkt_first_seg &&
1187             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1188             split_fl64[2] == 0 && split_fl64[3] == 0)
1189                 return nb_bufs;
1190
1191         /* reassemble any packets that need reassembly*/
1192         unsigned int i = 0;
1193
1194         if (!rxq->pkt_first_seg) {
1195                 /* find the first split flag, and only reassemble then*/
1196                 while (i < nb_bufs && !split_flags[i])
1197                         i++;
1198                 if (i == nb_bufs)
1199                         return nb_bufs;
1200                 rxq->pkt_first_seg = rx_pkts[i];
1201         }
1202         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1203                                              &split_flags[i]);
1204 }
1205
1206 /**
1207  * vPMD receive routine that reassembles scattered packets for flex RxD.
1208  * Main receive routine that can handle arbitrary burst sizes
1209  * Notice:
1210  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1211  */
1212 uint16_t
1213 iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
1214                                            struct rte_mbuf **rx_pkts,
1215                                            uint16_t nb_pkts)
1216 {
1217         uint16_t retval = 0;
1218
1219         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1220                 uint16_t burst =
1221                         iavf_recv_scattered_burst_vec_avx2_flex_rxd
1222                         (rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
1223                 retval += burst;
1224                 nb_pkts -= burst;
1225                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1226                         return retval;
1227         }
1228         return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue,
1229                                 rx_pkts + retval, nb_pkts);
1230 }
1231
1232 static inline void
1233 iavf_vtx1(volatile struct iavf_tx_desc *txdp,
1234           struct rte_mbuf *pkt, uint64_t flags)
1235 {
1236         uint64_t high_qw =
1237                 (IAVF_TX_DESC_DTYPE_DATA |
1238                  ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1239                  ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1240
1241         __m128i descriptor = _mm_set_epi64x(high_qw,
1242                                 pkt->buf_physaddr + pkt->data_off);
1243         _mm_store_si128((__m128i *)txdp, descriptor);
1244 }
1245
1246 static inline void
1247 iavf_vtx(volatile struct iavf_tx_desc *txdp,
1248          struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
1249 {
1250         const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
1251                         ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));
1252
1253         /* if unaligned on 32-bit boundary, do one to align */
1254         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
1255                 iavf_vtx1(txdp, *pkt, flags);
1256                 nb_pkts--, txdp++, pkt++;
1257         }
1258
1259         /* do two at a time while possible, in bursts */
1260         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1261                 uint64_t hi_qw3 =
1262                         hi_qw_tmpl |
1263                         ((uint64_t)pkt[3]->data_len <<
1264                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1265                 uint64_t hi_qw2 =
1266                         hi_qw_tmpl |
1267                         ((uint64_t)pkt[2]->data_len <<
1268                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1269                 uint64_t hi_qw1 =
1270                         hi_qw_tmpl |
1271                         ((uint64_t)pkt[1]->data_len <<
1272                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1273                 uint64_t hi_qw0 =
1274                         hi_qw_tmpl |
1275                         ((uint64_t)pkt[0]->data_len <<
1276                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1277
1278                 __m256i desc2_3 =
1279                         _mm256_set_epi64x
1280                                 (hi_qw3,
1281                                  pkt[3]->buf_physaddr + pkt[3]->data_off,
1282                                  hi_qw2,
1283                                  pkt[2]->buf_physaddr + pkt[2]->data_off);
1284                 __m256i desc0_1 =
1285                         _mm256_set_epi64x
1286                                 (hi_qw1,
1287                                  pkt[1]->buf_physaddr + pkt[1]->data_off,
1288                                  hi_qw0,
1289                                  pkt[0]->buf_physaddr + pkt[0]->data_off);
1290                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
1291                 _mm256_store_si256((void *)txdp, desc0_1);
1292         }
1293
1294         /* do any last ones */
1295         while (nb_pkts) {
1296                 iavf_vtx1(txdp, *pkt, flags);
1297                 txdp++, pkt++, nb_pkts--;
1298         }
1299 }
1300
1301 static inline uint16_t
1302 iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
1303                                uint16_t nb_pkts)
1304 {
1305         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1306         volatile struct iavf_tx_desc *txdp;
1307         struct iavf_tx_entry *txep;
1308         uint16_t n, nb_commit, tx_id;
1309         /* bit2 is reserved and must be set to 1 according to Spec */
1310         uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC;
1311         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1312
1313         /* cross rx_thresh boundary is not allowed */
1314         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
1315
1316         if (txq->nb_free < txq->free_thresh)
1317                 iavf_tx_free_bufs(txq);
1318
1319         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1320         if (unlikely(nb_pkts == 0))
1321                 return 0;
1322
1323         tx_id = txq->tx_tail;
1324         txdp = &txq->tx_ring[tx_id];
1325         txep = &txq->sw_ring[tx_id];
1326
1327         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1328
1329         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1330         if (nb_commit >= n) {
1331                 tx_backlog_entry(txep, tx_pkts, n);
1332
1333                 iavf_vtx(txdp, tx_pkts, n - 1, flags);
1334                 tx_pkts += (n - 1);
1335                 txdp += (n - 1);
1336
1337                 iavf_vtx1(txdp, *tx_pkts++, rs);
1338
1339                 nb_commit = (uint16_t)(nb_commit - n);
1340
1341                 tx_id = 0;
1342                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1343
1344                 /* avoid reach the end of ring */
1345                 txdp = &txq->tx_ring[tx_id];
1346                 txep = &txq->sw_ring[tx_id];
1347         }
1348
1349         tx_backlog_entry(txep, tx_pkts, nb_commit);
1350
1351         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1352
1353         tx_id = (uint16_t)(tx_id + nb_commit);
1354         if (tx_id > txq->next_rs) {
1355                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1356                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1357                                          IAVF_TXD_QW1_CMD_SHIFT);
1358                 txq->next_rs =
1359                         (uint16_t)(txq->next_rs + txq->rs_thresh);
1360         }
1361
1362         txq->tx_tail = tx_id;
1363
1364         IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1365
1366         return nb_pkts;
1367 }
1368
1369 uint16_t
1370 iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
1371                         uint16_t nb_pkts)
1372 {
1373         uint16_t nb_tx = 0;
1374         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1375
1376         while (nb_pkts) {
1377                 uint16_t ret, num;
1378
1379                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1380                 ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
1381                                                      num);
1382                 nb_tx += ret;
1383                 nb_pkts -= ret;
1384                 if (ret < num)
1385                         break;
1386         }
1387
1388         return nb_tx;
1389 }