2587083d87f3519c511f9de3d60b033d94c4ae1f
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "iavf_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union iavf_rx_desc *rxdp;
19         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxp,
26                                  IAVF_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
33                                 rxp[i] = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         IAVF_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxp[0];
53                 mb1 = rxp[1];
54
55                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < IAVF_RXQ_REARM_THRESH;
79                         i += 4, rxp += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxp[0];
84                 mb1 = rxp[1];
85                 mb2 = rxp[2];
86                 mb3 = rxp[3];
87
88                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 #define PKTLEN_SHIFT     10
136
137 static inline uint16_t
138 _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
139                              struct rte_mbuf **rx_pkts,
140                              uint16_t nb_pkts, uint8_t *split_packet)
141 {
142 #define IAVF_DESCS_PER_LOOP_AVX 8
143
144         /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
145         const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
146
147         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
148                         0, rxq->mbuf_initializer);
149         /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
150         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
151         volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
152         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
153
154         rte_prefetch0(rxdp);
155
156         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
157         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
158
159         /* See if we need to rearm the RX queue - gives the prefetch a bit
160          * of time to act
161          */
162         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
163                 iavf_rxq_rearm(rxq);
164
165         /* Before we start moving massive data around, check to see if
166          * there is actually a packet available
167          */
168         if (!(rxdp->wb.qword1.status_error_len &
169                         rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
170                 return 0;
171
172         /* constants used in processing loop */
173         const __m256i crc_adjust =
174                 _mm256_set_epi16
175                         (/* first descriptor */
176                          0, 0, 0,       /* ignore non-length fields */
177                          -rxq->crc_len, /* sub crc on data_len */
178                          0,             /* ignore high-16bits of pkt_len */
179                          -rxq->crc_len, /* sub crc on pkt_len */
180                          0, 0,          /* ignore pkt_type field */
181                          /* second descriptor */
182                          0, 0, 0,       /* ignore non-length fields */
183                          -rxq->crc_len, /* sub crc on data_len */
184                          0,             /* ignore high-16bits of pkt_len */
185                          -rxq->crc_len, /* sub crc on pkt_len */
186                          0, 0           /* ignore pkt_type field */
187                         );
188
189         /* 8 packets DD mask, LSB in each 32-bit value */
190         const __m256i dd_check = _mm256_set1_epi32(1);
191
192         /* 8 packets EOP mask, second-LSB in each 32-bit value */
193         const __m256i eop_check = _mm256_slli_epi32(dd_check,
194                         IAVF_RX_DESC_STATUS_EOF_SHIFT);
195
196         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
197         const __m256i shuf_msk =
198                 _mm256_set_epi8
199                         (/* first descriptor */
200                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
201                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
202                          15, 14,      /* octet 15~14, 16 bits data_len */
203                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
204                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
205                          0xFF, 0xFF,  /* pkt_type set as unknown */
206                          0xFF, 0xFF,  /*pkt_type set as unknown */
207                          /* second descriptor */
208                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
209                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
210                          15, 14,      /* octet 15~14, 16 bits data_len */
211                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
212                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
213                          0xFF, 0xFF,  /* pkt_type set as unknown */
214                          0xFF, 0xFF   /*pkt_type set as unknown */
215                         );
216         /**
217          * compile-time check the above crc and shuffle layout is correct.
218          * NOTE: the first field (lowest address) is given last in set_epi
219          * calls above.
220          */
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
223         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
224                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
225         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
226                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
227         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
228                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
229
230         /* Status/Error flag masks */
231         /**
232          * mask everything except RSS, flow director and VLAN flags
233          * bit2 is for VLAN tag, bit11 for flow director indication
234          * bit13:12 for RSS indication. Bits 3-5 of error
235          * field (bits 22-24) are for IP/L4 checksum errors
236          */
237         const __m256i flags_mask =
238                  _mm256_set1_epi32((1 << 2) | (1 << 11) |
239                                    (3 << 12) | (7 << 22));
240         /**
241          * data to be shuffled by result of flag mask. If VLAN bit is set,
242          * (bit 2), then position 4 in this array will be used in the
243          * destination
244          */
245         const __m256i vlan_flags_shuf =
246                 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
247                                  0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
248         /**
249          * data to be shuffled by result of flag mask, shifted down 11.
250          * If RSS/FDIR bits are set, shuffle moves appropriate flags in
251          * place.
252          */
253         const __m256i rss_flags_shuf =
254                 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
255                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
256                                 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
257                                 0, 0, 0, 0, 0, 0, 0, 0,
258                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
259                                 0, 0, 0, 0, PKT_RX_FDIR, 0);
260
261         /**
262          * data to be shuffled by the result of the flags mask shifted by 22
263          * bits.  This gives use the l3_l4 flags.
264          */
265         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
266                         /* shift right 1 bit to make sure it not exceed 255 */
267                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
268                          PKT_RX_IP_CKSUM_BAD) >> 1,
269                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
270                          PKT_RX_L4_CKSUM_BAD) >> 1,
271                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
272                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
273                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
274                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
275                         PKT_RX_IP_CKSUM_BAD >> 1,
276                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
277                         /* second 128-bits */
278                         0, 0, 0, 0, 0, 0, 0, 0,
279                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
280                          PKT_RX_IP_CKSUM_BAD) >> 1,
281                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
282                          PKT_RX_L4_CKSUM_BAD) >> 1,
283                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
284                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
285                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
286                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
287                         PKT_RX_IP_CKSUM_BAD >> 1,
288                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
289
290         const __m256i cksum_mask =
291                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
292                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
293                                    PKT_RX_EIP_CKSUM_BAD);
294
295         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
296
297         uint16_t i, received;
298
299         for (i = 0, received = 0; i < nb_pkts;
300              i += IAVF_DESCS_PER_LOOP_AVX,
301              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
302                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
303                 _mm256_storeu_si256((void *)&rx_pkts[i],
304                                     _mm256_loadu_si256((void *)&sw_ring[i]));
305 #ifdef RTE_ARCH_X86_64
306                 _mm256_storeu_si256
307                         ((void *)&rx_pkts[i + 4],
308                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
309 #endif
310
311                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
312 #ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
313                 /* for AVX we need alignment otherwise loads are not atomic */
314                 if (avx_aligned) {
315                         /* load in descriptors, 2 at a time, in reverse order */
316                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
317                         rte_compiler_barrier();
318                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
319                         rte_compiler_barrier();
320                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
321                         rte_compiler_barrier();
322                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
323                 } else
324 #endif
325                 {
326                         const __m128i raw_desc7 =
327                                 _mm_load_si128((void *)(rxdp + 7));
328                         rte_compiler_barrier();
329                         const __m128i raw_desc6 =
330                                 _mm_load_si128((void *)(rxdp + 6));
331                         rte_compiler_barrier();
332                         const __m128i raw_desc5 =
333                                 _mm_load_si128((void *)(rxdp + 5));
334                         rte_compiler_barrier();
335                         const __m128i raw_desc4 =
336                                 _mm_load_si128((void *)(rxdp + 4));
337                         rte_compiler_barrier();
338                         const __m128i raw_desc3 =
339                                 _mm_load_si128((void *)(rxdp + 3));
340                         rte_compiler_barrier();
341                         const __m128i raw_desc2 =
342                                 _mm_load_si128((void *)(rxdp + 2));
343                         rte_compiler_barrier();
344                         const __m128i raw_desc1 =
345                                 _mm_load_si128((void *)(rxdp + 1));
346                         rte_compiler_barrier();
347                         const __m128i raw_desc0 =
348                                 _mm_load_si128((void *)(rxdp + 0));
349
350                         raw_desc6_7 =
351                                 _mm256_inserti128_si256
352                                         (_mm256_castsi128_si256(raw_desc6),
353                                          raw_desc7, 1);
354                         raw_desc4_5 =
355                                 _mm256_inserti128_si256
356                                         (_mm256_castsi128_si256(raw_desc4),
357                                          raw_desc5, 1);
358                         raw_desc2_3 =
359                                 _mm256_inserti128_si256
360                                         (_mm256_castsi128_si256(raw_desc2),
361                                          raw_desc3, 1);
362                         raw_desc0_1 =
363                                 _mm256_inserti128_si256
364                                         (_mm256_castsi128_si256(raw_desc0),
365                                          raw_desc1, 1);
366                 }
367
368                 if (split_packet) {
369                         int j;
370
371                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
372                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
373                 }
374
375                 /**
376                  * convert descriptors 4-7 into mbufs, adjusting length and
377                  * re-arranging fields. Then write into the mbuf
378                  */
379                 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
380                                                          PKTLEN_SHIFT);
381                 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
382                                                          PKTLEN_SHIFT);
383                 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
384                                                            len6_7, 0x80);
385                 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
386                                                            len4_5, 0x80);
387                 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
388                 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
389
390                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
391                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
392                 /**
393                  * to get packet types, shift 64-bit values down 30 bits
394                  * and so ptype is in lower 8-bits in each
395                  */
396                 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
397                 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
398                 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
399                 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
400                 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
401                 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
402
403                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
404                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
405                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
406                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
407                 /* merge the status bits into one register */
408                 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
409                                 desc4_5);
410
411                 /**
412                  * convert descriptors 0-3 into mbufs, adjusting length and
413                  * re-arranging fields. Then write into the mbuf
414                  */
415                 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
416                                                          PKTLEN_SHIFT);
417                 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
418                                                          PKTLEN_SHIFT);
419                 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
420                                                            len2_3, 0x80);
421                 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
422                                                            len0_1, 0x80);
423                 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
424                 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
425
426                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
427                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
428                 /* get the packet types */
429                 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
430                 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
431                 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
432                 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
433                 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
434                 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
435
436                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
437                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
438                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
439                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
440                 /* merge the status bits into one register */
441                 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
442                                                                 desc0_1);
443
444                 /**
445                  * take the two sets of status bits and merge to one
446                  * After merge, the packets status flags are in the
447                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
448                  */
449                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
450                                                           status0_3);
451
452                 /* now do flag manipulation */
453
454                 /* get only flag/error bits we want */
455                 const __m256i flag_bits =
456                         _mm256_and_si256(status0_7, flags_mask);
457                 /* set vlan and rss flags */
458                 const __m256i vlan_flags =
459                         _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
460                 const __m256i rss_flags =
461                         _mm256_shuffle_epi8(rss_flags_shuf,
462                                             _mm256_srli_epi32(flag_bits, 11));
463                 /**
464                  * l3_l4_error flags, shuffle, then shift to correct adjustment
465                  * of flags in flags_shuf, and finally mask out extra bits
466                  */
467                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
468                                 _mm256_srli_epi32(flag_bits, 22));
469                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
470                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
471
472                 /* merge flags */
473                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
474                                 _mm256_or_si256(rss_flags, vlan_flags));
475                 /**
476                  * At this point, we have the 8 sets of flags in the low 16-bits
477                  * of each 32-bit value in vlan0.
478                  * We want to extract these, and merge them with the mbuf init
479                  * data so we can do a single write to the mbuf to set the flags
480                  * and all the other initialization fields. Extracting the
481                  * appropriate flags means that we have to do a shift and blend
482                  * for each mbuf before we do the write. However, we can also
483                  * add in the previously computed rx_descriptor fields to
484                  * make a single 256-bit write per mbuf
485                  */
486                 /* check the structure matches expectations */
487                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
488                                  offsetof(struct rte_mbuf, rearm_data) + 8);
489                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
490                                  RTE_ALIGN(offsetof(struct rte_mbuf,
491                                                     rearm_data),
492                                            16));
493                 /* build up data and do writes */
494                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
495                         rearm6, rearm7;
496                 rearm6 = _mm256_blend_epi32(mbuf_init,
497                                             _mm256_slli_si256(mbuf_flags, 8),
498                                             0x04);
499                 rearm4 = _mm256_blend_epi32(mbuf_init,
500                                             _mm256_slli_si256(mbuf_flags, 4),
501                                             0x04);
502                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
503                 rearm0 = _mm256_blend_epi32(mbuf_init,
504                                             _mm256_srli_si256(mbuf_flags, 4),
505                                             0x04);
506                 /* permute to add in the rx_descriptor e.g. rss fields */
507                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
508                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
509                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
510                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
511                 /* write to mbuf */
512                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
513                                     rearm6);
514                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
515                                     rearm4);
516                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
517                                     rearm2);
518                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
519                                     rearm0);
520
521                 /* repeat for the odd mbufs */
522                 const __m256i odd_flags =
523                         _mm256_castsi128_si256
524                                 (_mm256_extracti128_si256(mbuf_flags, 1));
525                 rearm7 = _mm256_blend_epi32(mbuf_init,
526                                             _mm256_slli_si256(odd_flags, 8),
527                                             0x04);
528                 rearm5 = _mm256_blend_epi32(mbuf_init,
529                                             _mm256_slli_si256(odd_flags, 4),
530                                             0x04);
531                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
532                 rearm1 = _mm256_blend_epi32(mbuf_init,
533                                             _mm256_srli_si256(odd_flags, 4),
534                                             0x04);
535                 /* since odd mbufs are already in hi 128-bits use blend */
536                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
537                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
538                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
539                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
540                 /* again write to mbufs */
541                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
542                                     rearm7);
543                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
544                                     rearm5);
545                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
546                                     rearm3);
547                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
548                                     rearm1);
549
550                 /* extract and record EOP bit */
551                 if (split_packet) {
552                         const __m128i eop_mask =
553                                 _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
554                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
555                                                                      eop_check);
556                         /* pack status bits into a single 128-bit register */
557                         const __m128i eop_bits =
558                                 _mm_packus_epi32
559                                         (_mm256_castsi256_si128(eop_bits256),
560                                          _mm256_extractf128_si256(eop_bits256,
561                                                                   1));
562                         /**
563                          * flip bits, and mask out the EOP bit, which is now
564                          * a split-packet bit i.e. !EOP, rather than EOP one.
565                          */
566                         __m128i split_bits = _mm_andnot_si128(eop_bits,
567                                         eop_mask);
568                         /**
569                          * eop bits are out of order, so we need to shuffle them
570                          * back into order again. In doing so, only use low 8
571                          * bits, which acts like another pack instruction
572                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
573                          * [Since we use epi8, the 16-bit positions are
574                          * multiplied by 2 in the eop_shuffle value.]
575                          */
576                         __m128i eop_shuffle =
577                                 _mm_set_epi8(/* zero hi 64b */
578                                              0xFF, 0xFF, 0xFF, 0xFF,
579                                              0xFF, 0xFF, 0xFF, 0xFF,
580                                              /* move values to lo 64b */
581                                              8, 0, 10, 2,
582                                              12, 4, 14, 6);
583                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
584                         *(uint64_t *)split_packet =
585                                 _mm_cvtsi128_si64(split_bits);
586                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
587                 }
588
589                 /* perform dd_check */
590                 status0_7 = _mm256_and_si256(status0_7, dd_check);
591                 status0_7 = _mm256_packs_epi32(status0_7,
592                                                _mm256_setzero_si256());
593
594                 uint64_t burst = __builtin_popcountll
595                                         (_mm_cvtsi128_si64
596                                                 (_mm256_extracti128_si256
597                                                         (status0_7, 1)));
598                 burst += __builtin_popcountll
599                                 (_mm_cvtsi128_si64
600                                         (_mm256_castsi256_si128(status0_7)));
601                 received += burst;
602                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
603                         break;
604         }
605
606         /* update tail pointers */
607         rxq->rx_tail += received;
608         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
609         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
610                 rxq->rx_tail--;
611                 received--;
612         }
613         rxq->rxrearm_nb += received;
614         return received;
615 }
616
617 /**
618  * Notice:
619  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
620  */
621 uint16_t
622 iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
623                         uint16_t nb_pkts)
624 {
625         return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
626 }
627
628 /**
629  * vPMD receive routine that reassembles single burst of 32 scattered packets
630  * Notice:
631  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
632  */
633 static uint16_t
634 iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
635                                    uint16_t nb_pkts)
636 {
637         struct iavf_rx_queue *rxq = rx_queue;
638         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
639
640         /* get some new buffers */
641         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
642                                                        split_flags);
643         if (nb_bufs == 0)
644                 return 0;
645
646         /* happy day case, full burst + no packets to be joined */
647         const uint64_t *split_fl64 = (uint64_t *)split_flags;
648
649         if (!rxq->pkt_first_seg &&
650             split_fl64[0] == 0 && split_fl64[1] == 0 &&
651             split_fl64[2] == 0 && split_fl64[3] == 0)
652                 return nb_bufs;
653
654         /* reassemble any packets that need reassembly*/
655         unsigned int i = 0;
656
657         if (!rxq->pkt_first_seg) {
658                 /* find the first split flag, and only reassemble then*/
659                 while (i < nb_bufs && !split_flags[i])
660                         i++;
661                 if (i == nb_bufs)
662                         return nb_bufs;
663                 rxq->pkt_first_seg = rx_pkts[i];
664         }
665         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
666                                              &split_flags[i]);
667 }
668
669 /**
670  * vPMD receive routine that reassembles scattered packets.
671  * Main receive routine that can handle arbitrary burst sizes
672  * Notice:
673  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
674  */
675 uint16_t
676 iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
677                                   uint16_t nb_pkts)
678 {
679         uint16_t retval = 0;
680
681         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
682                 uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
683                                 rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
684                 retval += burst;
685                 nb_pkts -= burst;
686                 if (burst < IAVF_VPMD_RX_MAX_BURST)
687                         return retval;
688         }
689         return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
690                                 rx_pkts + retval, nb_pkts);
691 }
692
693 static inline void
694 iavf_vtx1(volatile struct iavf_tx_desc *txdp,
695           struct rte_mbuf *pkt, uint64_t flags)
696 {
697         uint64_t high_qw =
698                 (IAVF_TX_DESC_DTYPE_DATA |
699                  ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
700                  ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
701
702         __m128i descriptor = _mm_set_epi64x(high_qw,
703                                 pkt->buf_physaddr + pkt->data_off);
704         _mm_store_si128((__m128i *)txdp, descriptor);
705 }
706
707 static inline void
708 iavf_vtx(volatile struct iavf_tx_desc *txdp,
709          struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
710 {
711         const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
712                         ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));
713
714         /* if unaligned on 32-bit boundary, do one to align */
715         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
716                 iavf_vtx1(txdp, *pkt, flags);
717                 nb_pkts--, txdp++, pkt++;
718         }
719
720         /* do two at a time while possible, in bursts */
721         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
722                 uint64_t hi_qw3 =
723                         hi_qw_tmpl |
724                         ((uint64_t)pkt[3]->data_len <<
725                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
726                 uint64_t hi_qw2 =
727                         hi_qw_tmpl |
728                         ((uint64_t)pkt[2]->data_len <<
729                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
730                 uint64_t hi_qw1 =
731                         hi_qw_tmpl |
732                         ((uint64_t)pkt[1]->data_len <<
733                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
734                 uint64_t hi_qw0 =
735                         hi_qw_tmpl |
736                         ((uint64_t)pkt[0]->data_len <<
737                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
738
739                 __m256i desc2_3 =
740                         _mm256_set_epi64x
741                                 (hi_qw3,
742                                  pkt[3]->buf_physaddr + pkt[3]->data_off,
743                                  hi_qw2,
744                                  pkt[2]->buf_physaddr + pkt[2]->data_off);
745                 __m256i desc0_1 =
746                         _mm256_set_epi64x
747                                 (hi_qw1,
748                                  pkt[1]->buf_physaddr + pkt[1]->data_off,
749                                  hi_qw0,
750                                  pkt[0]->buf_physaddr + pkt[0]->data_off);
751                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
752                 _mm256_store_si256((void *)txdp, desc0_1);
753         }
754
755         /* do any last ones */
756         while (nb_pkts) {
757                 iavf_vtx1(txdp, *pkt, flags);
758                 txdp++, pkt++, nb_pkts--;
759         }
760 }
761
762 static inline uint16_t
763 iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
764                                uint16_t nb_pkts)
765 {
766         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
767         volatile struct iavf_tx_desc *txdp;
768         struct iavf_tx_entry *txep;
769         uint16_t n, nb_commit, tx_id;
770         /* bit2 is reserved and must be set to 1 according to Spec */
771         uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC;
772         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
773
774         /* cross rx_thresh boundary is not allowed */
775         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
776
777         if (txq->nb_free < txq->free_thresh)
778                 iavf_tx_free_bufs(txq);
779
780         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
781         if (unlikely(nb_pkts == 0))
782                 return 0;
783
784         tx_id = txq->tx_tail;
785         txdp = &txq->tx_ring[tx_id];
786         txep = &txq->sw_ring[tx_id];
787
788         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
789
790         n = (uint16_t)(txq->nb_tx_desc - tx_id);
791         if (nb_commit >= n) {
792                 tx_backlog_entry(txep, tx_pkts, n);
793
794                 iavf_vtx(txdp, tx_pkts, n - 1, flags);
795                 tx_pkts += (n - 1);
796                 txdp += (n - 1);
797
798                 iavf_vtx1(txdp, *tx_pkts++, rs);
799
800                 nb_commit = (uint16_t)(nb_commit - n);
801
802                 tx_id = 0;
803                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
804
805                 /* avoid reach the end of ring */
806                 txdp = &txq->tx_ring[tx_id];
807                 txep = &txq->sw_ring[tx_id];
808         }
809
810         tx_backlog_entry(txep, tx_pkts, nb_commit);
811
812         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
813
814         tx_id = (uint16_t)(tx_id + nb_commit);
815         if (tx_id > txq->next_rs) {
816                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
817                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
818                                          IAVF_TXD_QW1_CMD_SHIFT);
819                 txq->next_rs =
820                         (uint16_t)(txq->next_rs + txq->rs_thresh);
821         }
822
823         txq->tx_tail = tx_id;
824
825         IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
826
827         return nb_pkts;
828 }
829
830 uint16_t
831 iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
832                         uint16_t nb_pkts)
833 {
834         uint16_t nb_tx = 0;
835         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
836
837         while (nb_pkts) {
838                 uint16_t ret, num;
839
840                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
841                 ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
842                                                      num);
843                 nb_tx += ret;
844                 nb_pkts -= ret;
845                 if (ret < num)
846                         break;
847         }
848
849         return nb_tx;
850 }