72a4fcab04a59fc1c28087fa5cdcc470527d2725
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "iavf_rxtx_vec_common.h"
6
7 #include <rte_vect.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static __rte_always_inline void
14 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
15 {
16         return iavf_rxq_rearm_common(rxq, false);
17 }
18
19 #define PKTLEN_SHIFT     10
20
21 static inline uint16_t
22 _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
23                              struct rte_mbuf **rx_pkts,
24                              uint16_t nb_pkts, uint8_t *split_packet)
25 {
26 #define IAVF_DESCS_PER_LOOP_AVX 8
27
28         /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
29         const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
30
31         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
32                         0, rxq->mbuf_initializer);
33         /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
34         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
35         volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
36         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
37
38         rte_prefetch0(rxdp);
39
40         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
41         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
42
43         /* See if we need to rearm the RX queue - gives the prefetch a bit
44          * of time to act
45          */
46         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
47                 iavf_rxq_rearm(rxq);
48
49         /* Before we start moving massive data around, check to see if
50          * there is actually a packet available
51          */
52         if (!(rxdp->wb.qword1.status_error_len &
53                         rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
54                 return 0;
55
56         /* constants used in processing loop */
57         const __m256i crc_adjust =
58                 _mm256_set_epi16
59                         (/* first descriptor */
60                          0, 0, 0,       /* ignore non-length fields */
61                          -rxq->crc_len, /* sub crc on data_len */
62                          0,             /* ignore high-16bits of pkt_len */
63                          -rxq->crc_len, /* sub crc on pkt_len */
64                          0, 0,          /* ignore pkt_type field */
65                          /* second descriptor */
66                          0, 0, 0,       /* ignore non-length fields */
67                          -rxq->crc_len, /* sub crc on data_len */
68                          0,             /* ignore high-16bits of pkt_len */
69                          -rxq->crc_len, /* sub crc on pkt_len */
70                          0, 0           /* ignore pkt_type field */
71                         );
72
73         /* 8 packets DD mask, LSB in each 32-bit value */
74         const __m256i dd_check = _mm256_set1_epi32(1);
75
76         /* 8 packets EOP mask, second-LSB in each 32-bit value */
77         const __m256i eop_check = _mm256_slli_epi32(dd_check,
78                         IAVF_RX_DESC_STATUS_EOF_SHIFT);
79
80         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
81         const __m256i shuf_msk =
82                 _mm256_set_epi8
83                         (/* first descriptor */
84                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
85                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
86                          15, 14,      /* octet 15~14, 16 bits data_len */
87                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
88                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
89                          0xFF, 0xFF,  /* pkt_type set as unknown */
90                          0xFF, 0xFF,  /*pkt_type set as unknown */
91                          /* second descriptor */
92                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
93                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
94                          15, 14,      /* octet 15~14, 16 bits data_len */
95                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
96                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
97                          0xFF, 0xFF,  /* pkt_type set as unknown */
98                          0xFF, 0xFF   /*pkt_type set as unknown */
99                         );
100         /**
101          * compile-time check the above crc and shuffle layout is correct.
102          * NOTE: the first field (lowest address) is given last in set_epi
103          * calls above.
104          */
105         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
106                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
107         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
108                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
109         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
110                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
111         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
112                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
113
114         /* Status/Error flag masks */
115         /**
116          * mask everything except RSS, flow director and VLAN flags
117          * bit2 is for VLAN tag, bit11 for flow director indication
118          * bit13:12 for RSS indication. Bits 3-5 of error
119          * field (bits 22-24) are for IP/L4 checksum errors
120          */
121         const __m256i flags_mask =
122                  _mm256_set1_epi32((1 << 2) | (1 << 11) |
123                                    (3 << 12) | (7 << 22));
124         /**
125          * data to be shuffled by result of flag mask. If VLAN bit is set,
126          * (bit 2), then position 4 in this array will be used in the
127          * destination
128          */
129         const __m256i vlan_flags_shuf =
130                 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
131                                  0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
132         /**
133          * data to be shuffled by result of flag mask, shifted down 11.
134          * If RSS/FDIR bits are set, shuffle moves appropriate flags in
135          * place.
136          */
137         const __m256i rss_flags_shuf =
138                 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
139                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
140                                 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
141                                 0, 0, 0, 0, 0, 0, 0, 0,
142                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
143                                 0, 0, 0, 0, PKT_RX_FDIR, 0);
144
145         /**
146          * data to be shuffled by the result of the flags mask shifted by 22
147          * bits.  This gives use the l3_l4 flags.
148          */
149         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
150                         /* shift right 1 bit to make sure it not exceed 255 */
151                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
152                          PKT_RX_IP_CKSUM_BAD) >> 1,
153                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
154                          PKT_RX_L4_CKSUM_BAD) >> 1,
155                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
156                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
157                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
158                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
159                         PKT_RX_IP_CKSUM_BAD >> 1,
160                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
161                         /* second 128-bits */
162                         0, 0, 0, 0, 0, 0, 0, 0,
163                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
164                          PKT_RX_IP_CKSUM_BAD) >> 1,
165                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
166                          PKT_RX_L4_CKSUM_BAD) >> 1,
167                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
168                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
169                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
170                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
171                         PKT_RX_IP_CKSUM_BAD >> 1,
172                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
173
174         const __m256i cksum_mask =
175                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
176                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
177                                    PKT_RX_OUTER_IP_CKSUM_BAD);
178
179         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
180
181         uint16_t i, received;
182
183         for (i = 0, received = 0; i < nb_pkts;
184              i += IAVF_DESCS_PER_LOOP_AVX,
185              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
186                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
187                 _mm256_storeu_si256((void *)&rx_pkts[i],
188                                     _mm256_loadu_si256((void *)&sw_ring[i]));
189 #ifdef RTE_ARCH_X86_64
190                 _mm256_storeu_si256
191                         ((void *)&rx_pkts[i + 4],
192                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
193 #endif
194
195                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
196 #ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
197                 /* for AVX we need alignment otherwise loads are not atomic */
198                 if (avx_aligned) {
199                         /* load in descriptors, 2 at a time, in reverse order */
200                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
201                         rte_compiler_barrier();
202                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
203                         rte_compiler_barrier();
204                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
205                         rte_compiler_barrier();
206                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
207                 } else
208 #endif
209                 {
210                         const __m128i raw_desc7 =
211                                 _mm_load_si128((void *)(rxdp + 7));
212                         rte_compiler_barrier();
213                         const __m128i raw_desc6 =
214                                 _mm_load_si128((void *)(rxdp + 6));
215                         rte_compiler_barrier();
216                         const __m128i raw_desc5 =
217                                 _mm_load_si128((void *)(rxdp + 5));
218                         rte_compiler_barrier();
219                         const __m128i raw_desc4 =
220                                 _mm_load_si128((void *)(rxdp + 4));
221                         rte_compiler_barrier();
222                         const __m128i raw_desc3 =
223                                 _mm_load_si128((void *)(rxdp + 3));
224                         rte_compiler_barrier();
225                         const __m128i raw_desc2 =
226                                 _mm_load_si128((void *)(rxdp + 2));
227                         rte_compiler_barrier();
228                         const __m128i raw_desc1 =
229                                 _mm_load_si128((void *)(rxdp + 1));
230                         rte_compiler_barrier();
231                         const __m128i raw_desc0 =
232                                 _mm_load_si128((void *)(rxdp + 0));
233
234                         raw_desc6_7 =
235                                 _mm256_inserti128_si256
236                                         (_mm256_castsi128_si256(raw_desc6),
237                                          raw_desc7, 1);
238                         raw_desc4_5 =
239                                 _mm256_inserti128_si256
240                                         (_mm256_castsi128_si256(raw_desc4),
241                                          raw_desc5, 1);
242                         raw_desc2_3 =
243                                 _mm256_inserti128_si256
244                                         (_mm256_castsi128_si256(raw_desc2),
245                                          raw_desc3, 1);
246                         raw_desc0_1 =
247                                 _mm256_inserti128_si256
248                                         (_mm256_castsi128_si256(raw_desc0),
249                                          raw_desc1, 1);
250                 }
251
252                 if (split_packet) {
253                         int j;
254
255                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
256                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
257                 }
258
259                 /**
260                  * convert descriptors 4-7 into mbufs, adjusting length and
261                  * re-arranging fields. Then write into the mbuf
262                  */
263                 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
264                                                          PKTLEN_SHIFT);
265                 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
266                                                          PKTLEN_SHIFT);
267                 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
268                                                            len6_7, 0x80);
269                 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
270                                                            len4_5, 0x80);
271                 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
272                 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
273
274                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
275                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
276                 /**
277                  * to get packet types, shift 64-bit values down 30 bits
278                  * and so ptype is in lower 8-bits in each
279                  */
280                 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
281                 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
282                 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
283                 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
284                 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
285                 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
286
287                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
288                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
289                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
290                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
291                 /* merge the status bits into one register */
292                 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
293                                 desc4_5);
294
295                 /**
296                  * convert descriptors 0-3 into mbufs, adjusting length and
297                  * re-arranging fields. Then write into the mbuf
298                  */
299                 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
300                                                          PKTLEN_SHIFT);
301                 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
302                                                          PKTLEN_SHIFT);
303                 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
304                                                            len2_3, 0x80);
305                 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
306                                                            len0_1, 0x80);
307                 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
308                 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
309
310                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
311                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
312                 /* get the packet types */
313                 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
314                 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
315                 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
316                 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
317                 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
318                 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
319
320                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
321                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
322                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
323                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
324                 /* merge the status bits into one register */
325                 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
326                                                                 desc0_1);
327
328                 /**
329                  * take the two sets of status bits and merge to one
330                  * After merge, the packets status flags are in the
331                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
332                  */
333                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
334                                                           status0_3);
335
336                 /* now do flag manipulation */
337
338                 /* get only flag/error bits we want */
339                 const __m256i flag_bits =
340                         _mm256_and_si256(status0_7, flags_mask);
341                 /* set vlan and rss flags */
342                 const __m256i vlan_flags =
343                         _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
344                 const __m256i rss_flags =
345                         _mm256_shuffle_epi8(rss_flags_shuf,
346                                             _mm256_srli_epi32(flag_bits, 11));
347                 /**
348                  * l3_l4_error flags, shuffle, then shift to correct adjustment
349                  * of flags in flags_shuf, and finally mask out extra bits
350                  */
351                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
352                                 _mm256_srli_epi32(flag_bits, 22));
353                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
354                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
355
356                 /* merge flags */
357                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
358                                 _mm256_or_si256(rss_flags, vlan_flags));
359                 /**
360                  * At this point, we have the 8 sets of flags in the low 16-bits
361                  * of each 32-bit value in vlan0.
362                  * We want to extract these, and merge them with the mbuf init
363                  * data so we can do a single write to the mbuf to set the flags
364                  * and all the other initialization fields. Extracting the
365                  * appropriate flags means that we have to do a shift and blend
366                  * for each mbuf before we do the write. However, we can also
367                  * add in the previously computed rx_descriptor fields to
368                  * make a single 256-bit write per mbuf
369                  */
370                 /* check the structure matches expectations */
371                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
372                                  offsetof(struct rte_mbuf, rearm_data) + 8);
373                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
374                                  RTE_ALIGN(offsetof(struct rte_mbuf,
375                                                     rearm_data),
376                                            16));
377                 /* build up data and do writes */
378                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
379                         rearm6, rearm7;
380                 rearm6 = _mm256_blend_epi32(mbuf_init,
381                                             _mm256_slli_si256(mbuf_flags, 8),
382                                             0x04);
383                 rearm4 = _mm256_blend_epi32(mbuf_init,
384                                             _mm256_slli_si256(mbuf_flags, 4),
385                                             0x04);
386                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
387                 rearm0 = _mm256_blend_epi32(mbuf_init,
388                                             _mm256_srli_si256(mbuf_flags, 4),
389                                             0x04);
390                 /* permute to add in the rx_descriptor e.g. rss fields */
391                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
392                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
393                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
394                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
395                 /* write to mbuf */
396                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
397                                     rearm6);
398                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
399                                     rearm4);
400                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
401                                     rearm2);
402                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
403                                     rearm0);
404
405                 /* repeat for the odd mbufs */
406                 const __m256i odd_flags =
407                         _mm256_castsi128_si256
408                                 (_mm256_extracti128_si256(mbuf_flags, 1));
409                 rearm7 = _mm256_blend_epi32(mbuf_init,
410                                             _mm256_slli_si256(odd_flags, 8),
411                                             0x04);
412                 rearm5 = _mm256_blend_epi32(mbuf_init,
413                                             _mm256_slli_si256(odd_flags, 4),
414                                             0x04);
415                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
416                 rearm1 = _mm256_blend_epi32(mbuf_init,
417                                             _mm256_srli_si256(odd_flags, 4),
418                                             0x04);
419                 /* since odd mbufs are already in hi 128-bits use blend */
420                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
421                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
422                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
423                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
424                 /* again write to mbufs */
425                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
426                                     rearm7);
427                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
428                                     rearm5);
429                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
430                                     rearm3);
431                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
432                                     rearm1);
433
434                 /* extract and record EOP bit */
435                 if (split_packet) {
436                         const __m128i eop_mask =
437                                 _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
438                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
439                                                                      eop_check);
440                         /* pack status bits into a single 128-bit register */
441                         const __m128i eop_bits =
442                                 _mm_packus_epi32
443                                         (_mm256_castsi256_si128(eop_bits256),
444                                          _mm256_extractf128_si256(eop_bits256,
445                                                                   1));
446                         /**
447                          * flip bits, and mask out the EOP bit, which is now
448                          * a split-packet bit i.e. !EOP, rather than EOP one.
449                          */
450                         __m128i split_bits = _mm_andnot_si128(eop_bits,
451                                         eop_mask);
452                         /**
453                          * eop bits are out of order, so we need to shuffle them
454                          * back into order again. In doing so, only use low 8
455                          * bits, which acts like another pack instruction
456                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
457                          * [Since we use epi8, the 16-bit positions are
458                          * multiplied by 2 in the eop_shuffle value.]
459                          */
460                         __m128i eop_shuffle =
461                                 _mm_set_epi8(/* zero hi 64b */
462                                              0xFF, 0xFF, 0xFF, 0xFF,
463                                              0xFF, 0xFF, 0xFF, 0xFF,
464                                              /* move values to lo 64b */
465                                              8, 0, 10, 2,
466                                              12, 4, 14, 6);
467                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
468                         *(uint64_t *)split_packet =
469                                 _mm_cvtsi128_si64(split_bits);
470                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
471                 }
472
473                 /* perform dd_check */
474                 status0_7 = _mm256_and_si256(status0_7, dd_check);
475                 status0_7 = _mm256_packs_epi32(status0_7,
476                                                _mm256_setzero_si256());
477
478                 uint64_t burst = __builtin_popcountll
479                                         (_mm_cvtsi128_si64
480                                                 (_mm256_extracti128_si256
481                                                         (status0_7, 1)));
482                 burst += __builtin_popcountll
483                                 (_mm_cvtsi128_si64
484                                         (_mm256_castsi256_si128(status0_7)));
485                 received += burst;
486                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
487                         break;
488         }
489
490         /* update tail pointers */
491         rxq->rx_tail += received;
492         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
493         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
494                 rxq->rx_tail--;
495                 received--;
496         }
497         rxq->rxrearm_nb += received;
498         return received;
499 }
500
501 static inline __m256i
502 flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
503 {
504 #define FDID_MIS_MAGIC 0xFFFFFFFF
505         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
506         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
507         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
508                         PKT_RX_FDIR_ID);
509         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
510         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
511         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
512                         fdir_mis_mask);
513         /* this XOR op results to bit-reverse the fdir_mask */
514         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
515         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
516
517         return fdir_flags;
518 }
519
520 static inline uint16_t
521 _iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq,
522                                       struct rte_mbuf **rx_pkts,
523                                       uint16_t nb_pkts, uint8_t *split_packet)
524 {
525 #define IAVF_DESCS_PER_LOOP_AVX 8
526
527         struct iavf_adapter *adapter = rxq->vsi->adapter;
528
529         uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
530         const uint32_t *type_table = adapter->ptype_tbl;
531
532         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
533                         0, rxq->mbuf_initializer);
534         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
535         volatile union iavf_rx_flex_desc *rxdp =
536                 (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
537
538         rte_prefetch0(rxdp);
539
540         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
541         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
542
543         /* See if we need to rearm the RX queue - gives the prefetch a bit
544          * of time to act
545          */
546         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
547                 iavf_rxq_rearm(rxq);
548
549         /* Before we start moving massive data around, check to see if
550          * there is actually a packet available
551          */
552         if (!(rxdp->wb.status_error0 &
553                         rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
554                 return 0;
555
556         /* constants used in processing loop */
557         const __m256i crc_adjust =
558                 _mm256_set_epi16
559                         (/* first descriptor */
560                          0, 0, 0,       /* ignore non-length fields */
561                          -rxq->crc_len, /* sub crc on data_len */
562                          0,             /* ignore high-16bits of pkt_len */
563                          -rxq->crc_len, /* sub crc on pkt_len */
564                          0, 0,          /* ignore pkt_type field */
565                          /* second descriptor */
566                          0, 0, 0,       /* ignore non-length fields */
567                          -rxq->crc_len, /* sub crc on data_len */
568                          0,             /* ignore high-16bits of pkt_len */
569                          -rxq->crc_len, /* sub crc on pkt_len */
570                          0, 0           /* ignore pkt_type field */
571                         );
572
573         /* 8 packets DD mask, LSB in each 32-bit value */
574         const __m256i dd_check = _mm256_set1_epi32(1);
575
576         /* 8 packets EOP mask, second-LSB in each 32-bit value */
577         const __m256i eop_check = _mm256_slli_epi32(dd_check,
578                         IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
579
580         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
581         const __m256i shuf_msk =
582                 _mm256_set_epi8
583                         (/* first descriptor */
584                          0xFF, 0xFF,
585                          0xFF, 0xFF,    /* rss hash parsed separately */
586                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
587                          5, 4,          /* octet 4~5, 16 bits data_len */
588                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
589                          5, 4,          /* octet 4~5, 16 bits pkt_len */
590                          0xFF, 0xFF,    /* pkt_type set as unknown */
591                          0xFF, 0xFF,    /*pkt_type set as unknown */
592                          /* second descriptor */
593                          0xFF, 0xFF,
594                          0xFF, 0xFF,    /* rss hash parsed separately */
595                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
596                          5, 4,          /* octet 4~5, 16 bits data_len */
597                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
598                          5, 4,          /* octet 4~5, 16 bits pkt_len */
599                          0xFF, 0xFF,    /* pkt_type set as unknown */
600                          0xFF, 0xFF     /*pkt_type set as unknown */
601                         );
602         /**
603          * compile-time check the above crc and shuffle layout is correct.
604          * NOTE: the first field (lowest address) is given last in set_epi
605          * calls above.
606          */
607         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
608                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
609         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
610                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
611         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
612                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
613         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
614                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
615
616         /* Status/Error flag masks */
617         /**
618          * mask everything except Checksum Reports, RSS indication
619          * and VLAN indication.
620          * bit6:4 for IP/L4 checksum errors.
621          * bit12 is for RSS indication.
622          * bit13 is for VLAN indication.
623          */
624         const __m256i flags_mask =
625                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
626         /**
627          * data to be shuffled by the result of the flags mask shifted by 4
628          * bits.  This gives use the l3_l4 flags.
629          */
630         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
631                         /* shift right 1 bit to make sure it not exceed 255 */
632                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
633                          PKT_RX_IP_CKSUM_BAD) >> 1,
634                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
635                          PKT_RX_IP_CKSUM_GOOD) >> 1,
636                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
637                          PKT_RX_IP_CKSUM_BAD) >> 1,
638                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
639                          PKT_RX_IP_CKSUM_GOOD) >> 1,
640                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
641                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
642                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
643                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
644                         /* second 128-bits */
645                         0, 0, 0, 0, 0, 0, 0, 0,
646                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
647                          PKT_RX_IP_CKSUM_BAD) >> 1,
648                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
649                          PKT_RX_IP_CKSUM_GOOD) >> 1,
650                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
651                          PKT_RX_IP_CKSUM_BAD) >> 1,
652                         (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
653                          PKT_RX_IP_CKSUM_GOOD) >> 1,
654                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
655                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
656                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
657                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
658         const __m256i cksum_mask =
659                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
660                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
661                                    PKT_RX_OUTER_IP_CKSUM_BAD);
662         /**
663          * data to be shuffled by result of flag mask, shifted down 12.
664          * If RSS(bit12)/VLAN(bit13) are set,
665          * shuffle moves appropriate flags in place.
666          */
667         const __m256i rss_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
668                         0, 0, 0, 0,
669                         0, 0, 0, 0,
670                         PKT_RX_RSS_HASH, 0,
671                         PKT_RX_RSS_HASH, 0,
672                         /* end up 128-bits */
673                         0, 0, 0, 0,
674                         0, 0, 0, 0,
675                         0, 0, 0, 0,
676                         PKT_RX_RSS_HASH, 0,
677                         PKT_RX_RSS_HASH, 0);
678
679         const __m256i vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
680                         0, 0, 0, 0,
681                         0, 0, 0, 0,
682                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
683                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
684                         0, 0,
685                         /* end up 128-bits */
686                         0, 0, 0, 0,
687                         0, 0, 0, 0,
688                         0, 0, 0, 0,
689                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
690                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
691                         0, 0);
692
693         uint16_t i, received;
694
695         for (i = 0, received = 0; i < nb_pkts;
696              i += IAVF_DESCS_PER_LOOP_AVX,
697              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
698                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
699                 _mm256_storeu_si256((void *)&rx_pkts[i],
700                                     _mm256_loadu_si256((void *)&sw_ring[i]));
701 #ifdef RTE_ARCH_X86_64
702                 _mm256_storeu_si256
703                         ((void *)&rx_pkts[i + 4],
704                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
705 #endif
706
707                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
708
709                 const __m128i raw_desc7 =
710                         _mm_load_si128((void *)(rxdp + 7));
711                 rte_compiler_barrier();
712                 const __m128i raw_desc6 =
713                         _mm_load_si128((void *)(rxdp + 6));
714                 rte_compiler_barrier();
715                 const __m128i raw_desc5 =
716                         _mm_load_si128((void *)(rxdp + 5));
717                 rte_compiler_barrier();
718                 const __m128i raw_desc4 =
719                         _mm_load_si128((void *)(rxdp + 4));
720                 rte_compiler_barrier();
721                 const __m128i raw_desc3 =
722                         _mm_load_si128((void *)(rxdp + 3));
723                 rte_compiler_barrier();
724                 const __m128i raw_desc2 =
725                         _mm_load_si128((void *)(rxdp + 2));
726                 rte_compiler_barrier();
727                 const __m128i raw_desc1 =
728                         _mm_load_si128((void *)(rxdp + 1));
729                 rte_compiler_barrier();
730                 const __m128i raw_desc0 =
731                         _mm_load_si128((void *)(rxdp + 0));
732
733                 raw_desc6_7 =
734                         _mm256_inserti128_si256
735                                 (_mm256_castsi128_si256(raw_desc6),
736                                  raw_desc7, 1);
737                 raw_desc4_5 =
738                         _mm256_inserti128_si256
739                                 (_mm256_castsi128_si256(raw_desc4),
740                                  raw_desc5, 1);
741                 raw_desc2_3 =
742                         _mm256_inserti128_si256
743                                 (_mm256_castsi128_si256(raw_desc2),
744                                  raw_desc3, 1);
745                 raw_desc0_1 =
746                         _mm256_inserti128_si256
747                                 (_mm256_castsi128_si256(raw_desc0),
748                                  raw_desc1, 1);
749
750                 if (split_packet) {
751                         int j;
752
753                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
754                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
755                 }
756
757                 /**
758                  * convert descriptors 4-7 into mbufs, re-arrange fields.
759                  * Then write into the mbuf.
760                  */
761                 __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
762                 __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
763
764                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
765                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
766                 /**
767                  * to get packet types, ptype is located in bit16-25
768                  * of each 128bits
769                  */
770                 const __m256i ptype_mask =
771                         _mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
772                 const __m256i ptypes6_7 =
773                         _mm256_and_si256(raw_desc6_7, ptype_mask);
774                 const __m256i ptypes4_5 =
775                         _mm256_and_si256(raw_desc4_5, ptype_mask);
776                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
777                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
778                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
779                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
780
781                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
782                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
783                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
784                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
785                 /* merge the status bits into one register */
786                 const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
787                                 raw_desc4_5);
788
789                 /**
790                  * convert descriptors 0-3 into mbufs, re-arrange fields.
791                  * Then write into the mbuf.
792                  */
793                 __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
794                 __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
795
796                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
797                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
798                 /**
799                  * to get packet types, ptype is located in bit16-25
800                  * of each 128bits
801                  */
802                 const __m256i ptypes2_3 =
803                         _mm256_and_si256(raw_desc2_3, ptype_mask);
804                 const __m256i ptypes0_1 =
805                         _mm256_and_si256(raw_desc0_1, ptype_mask);
806                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
807                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
808                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
809                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
810
811                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
812                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
813                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
814                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
815                 /* merge the status bits into one register */
816                 const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
817                                                                 raw_desc0_1);
818
819                 /**
820                  * take the two sets of status bits and merge to one
821                  * After merge, the packets status flags are in the
822                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
823                  */
824                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
825                                                           status0_3);
826
827                 /* now do flag manipulation */
828
829                 /* get only flag/error bits we want */
830                 const __m256i flag_bits =
831                         _mm256_and_si256(status0_7, flags_mask);
832                 /**
833                  * l3_l4_error flags, shuffle, then shift to correct adjustment
834                  * of flags in flags_shuf, and finally mask out extra bits
835                  */
836                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
837                                 _mm256_srli_epi32(flag_bits, 4));
838                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
839                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
840
841                 /* set rss and vlan flags */
842                 const __m256i rss_vlan_flag_bits =
843                         _mm256_srli_epi32(flag_bits, 12);
844                 const __m256i rss_flags =
845                         _mm256_shuffle_epi8(rss_flags_shuf,
846                                             rss_vlan_flag_bits);
847
848                 __m256i vlan_flags = _mm256_setzero_si256();
849
850                 if (rxq->rx_flags == IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1)
851                         vlan_flags =
852                                 _mm256_shuffle_epi8(vlan_flags_shuf,
853                                                     rss_vlan_flag_bits);
854
855                 const __m256i rss_vlan_flags =
856                         _mm256_or_si256(rss_flags, vlan_flags);
857
858                 /* merge flags */
859                 __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
860                                 rss_vlan_flags);
861
862                 if (rxq->fdir_enabled) {
863                         const __m256i fdir_id4_7 =
864                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
865
866                         const __m256i fdir_id0_3 =
867                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
868
869                         const __m256i fdir_id0_7 =
870                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
871
872                         const __m256i fdir_flags =
873                                 flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7);
874
875                         /* merge with fdir_flags */
876                         mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
877
878                         /* write to mbuf: have to use scalar store here */
879                         rx_pkts[i + 0]->hash.fdir.hi =
880                                 _mm256_extract_epi32(fdir_id0_7, 3);
881
882                         rx_pkts[i + 1]->hash.fdir.hi =
883                                 _mm256_extract_epi32(fdir_id0_7, 7);
884
885                         rx_pkts[i + 2]->hash.fdir.hi =
886                                 _mm256_extract_epi32(fdir_id0_7, 2);
887
888                         rx_pkts[i + 3]->hash.fdir.hi =
889                                 _mm256_extract_epi32(fdir_id0_7, 6);
890
891                         rx_pkts[i + 4]->hash.fdir.hi =
892                                 _mm256_extract_epi32(fdir_id0_7, 1);
893
894                         rx_pkts[i + 5]->hash.fdir.hi =
895                                 _mm256_extract_epi32(fdir_id0_7, 5);
896
897                         rx_pkts[i + 6]->hash.fdir.hi =
898                                 _mm256_extract_epi32(fdir_id0_7, 0);
899
900                         rx_pkts[i + 7]->hash.fdir.hi =
901                                 _mm256_extract_epi32(fdir_id0_7, 4);
902                 } /* if() on fdir_enabled */
903
904 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
905                 /**
906                  * needs to load 2nd 16B of each desc for RSS hash parsing,
907                  * will cause performance drop to get into this context.
908                  */
909                 if (offloads & DEV_RX_OFFLOAD_RSS_HASH ||
910                     rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
911                         /* load bottom half of every 32B desc */
912                         const __m128i raw_desc_bh7 =
913                                 _mm_load_si128
914                                         ((void *)(&rxdp[7].wb.status_error1));
915                         rte_compiler_barrier();
916                         const __m128i raw_desc_bh6 =
917                                 _mm_load_si128
918                                         ((void *)(&rxdp[6].wb.status_error1));
919                         rte_compiler_barrier();
920                         const __m128i raw_desc_bh5 =
921                                 _mm_load_si128
922                                         ((void *)(&rxdp[5].wb.status_error1));
923                         rte_compiler_barrier();
924                         const __m128i raw_desc_bh4 =
925                                 _mm_load_si128
926                                         ((void *)(&rxdp[4].wb.status_error1));
927                         rte_compiler_barrier();
928                         const __m128i raw_desc_bh3 =
929                                 _mm_load_si128
930                                         ((void *)(&rxdp[3].wb.status_error1));
931                         rte_compiler_barrier();
932                         const __m128i raw_desc_bh2 =
933                                 _mm_load_si128
934                                         ((void *)(&rxdp[2].wb.status_error1));
935                         rte_compiler_barrier();
936                         const __m128i raw_desc_bh1 =
937                                 _mm_load_si128
938                                         ((void *)(&rxdp[1].wb.status_error1));
939                         rte_compiler_barrier();
940                         const __m128i raw_desc_bh0 =
941                                 _mm_load_si128
942                                         ((void *)(&rxdp[0].wb.status_error1));
943
944                         __m256i raw_desc_bh6_7 =
945                                 _mm256_inserti128_si256
946                                         (_mm256_castsi128_si256(raw_desc_bh6),
947                                         raw_desc_bh7, 1);
948                         __m256i raw_desc_bh4_5 =
949                                 _mm256_inserti128_si256
950                                         (_mm256_castsi128_si256(raw_desc_bh4),
951                                         raw_desc_bh5, 1);
952                         __m256i raw_desc_bh2_3 =
953                                 _mm256_inserti128_si256
954                                         (_mm256_castsi128_si256(raw_desc_bh2),
955                                         raw_desc_bh3, 1);
956                         __m256i raw_desc_bh0_1 =
957                                 _mm256_inserti128_si256
958                                         (_mm256_castsi128_si256(raw_desc_bh0),
959                                         raw_desc_bh1, 1);
960
961                         if (offloads & DEV_RX_OFFLOAD_RSS_HASH) {
962                                 /**
963                                  * to shift the 32b RSS hash value to the
964                                  * highest 32b of each 128b before mask
965                                  */
966                                 __m256i rss_hash6_7 =
967                                         _mm256_slli_epi64(raw_desc_bh6_7, 32);
968                                 __m256i rss_hash4_5 =
969                                         _mm256_slli_epi64(raw_desc_bh4_5, 32);
970                                 __m256i rss_hash2_3 =
971                                         _mm256_slli_epi64(raw_desc_bh2_3, 32);
972                                 __m256i rss_hash0_1 =
973                                         _mm256_slli_epi64(raw_desc_bh0_1, 32);
974
975                                 const __m256i rss_hash_msk =
976                                         _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
977                                                          0xFFFFFFFF, 0, 0, 0);
978
979                                 rss_hash6_7 = _mm256_and_si256
980                                                 (rss_hash6_7, rss_hash_msk);
981                                 rss_hash4_5 = _mm256_and_si256
982                                                 (rss_hash4_5, rss_hash_msk);
983                                 rss_hash2_3 = _mm256_and_si256
984                                                 (rss_hash2_3, rss_hash_msk);
985                                 rss_hash0_1 = _mm256_and_si256
986                                                 (rss_hash0_1, rss_hash_msk);
987
988                                 mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
989                                 mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
990                                 mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
991                                 mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
992                         }
993
994                         if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) {
995                                 /* merge the status/error-1 bits into one register */
996                                 const __m256i status1_4_7 =
997                                         _mm256_unpacklo_epi32(raw_desc_bh6_7,
998                                                               raw_desc_bh4_5);
999                                 const __m256i status1_0_3 =
1000                                         _mm256_unpacklo_epi32(raw_desc_bh2_3,
1001                                                               raw_desc_bh0_1);
1002
1003                                 const __m256i status1_0_7 =
1004                                         _mm256_unpacklo_epi64(status1_4_7,
1005                                                               status1_0_3);
1006
1007                                 const __m256i l2tag2p_flag_mask =
1008                                         _mm256_set1_epi32
1009                                         (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
1010
1011                                 __m256i l2tag2p_flag_bits =
1012                                         _mm256_and_si256
1013                                         (status1_0_7, l2tag2p_flag_mask);
1014
1015                                 l2tag2p_flag_bits =
1016                                         _mm256_srli_epi32(l2tag2p_flag_bits,
1017                                                 IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S);
1018
1019                                 const __m256i l2tag2_flags_shuf =
1020                                         _mm256_set_epi8(0, 0, 0, 0,
1021                                                         0, 0, 0, 0,
1022                                                         0, 0, 0, 0,
1023                                                         0, 0, 0, 0,
1024                                                         /* end up 128-bits */
1025                                                         0, 0, 0, 0,
1026                                                         0, 0, 0, 0,
1027                                                         0, 0, 0, 0,
1028                                                         0, 0,
1029                                                         PKT_RX_VLAN |
1030                                                         PKT_RX_VLAN_STRIPPED,
1031                                                         0);
1032
1033                                 vlan_flags =
1034                                         _mm256_shuffle_epi8(l2tag2_flags_shuf,
1035                                                             l2tag2p_flag_bits);
1036
1037                                 /* merge with vlan_flags */
1038                                 mbuf_flags = _mm256_or_si256
1039                                                 (mbuf_flags, vlan_flags);
1040
1041                                 /* L2TAG2_2 */
1042                                 __m256i vlan_tci6_7 =
1043                                         _mm256_slli_si256(raw_desc_bh6_7, 4);
1044                                 __m256i vlan_tci4_5 =
1045                                         _mm256_slli_si256(raw_desc_bh4_5, 4);
1046                                 __m256i vlan_tci2_3 =
1047                                         _mm256_slli_si256(raw_desc_bh2_3, 4);
1048                                 __m256i vlan_tci0_1 =
1049                                         _mm256_slli_si256(raw_desc_bh0_1, 4);
1050
1051                                 const __m256i vlan_tci_msk =
1052                                         _mm256_set_epi32(0, 0xFFFF0000, 0, 0,
1053                                                          0, 0xFFFF0000, 0, 0);
1054
1055                                 vlan_tci6_7 = _mm256_and_si256
1056                                                 (vlan_tci6_7, vlan_tci_msk);
1057                                 vlan_tci4_5 = _mm256_and_si256
1058                                                 (vlan_tci4_5, vlan_tci_msk);
1059                                 vlan_tci2_3 = _mm256_and_si256
1060                                                 (vlan_tci2_3, vlan_tci_msk);
1061                                 vlan_tci0_1 = _mm256_and_si256
1062                                                 (vlan_tci0_1, vlan_tci_msk);
1063
1064                                 mb6_7 = _mm256_or_si256(mb6_7, vlan_tci6_7);
1065                                 mb4_5 = _mm256_or_si256(mb4_5, vlan_tci4_5);
1066                                 mb2_3 = _mm256_or_si256(mb2_3, vlan_tci2_3);
1067                                 mb0_1 = _mm256_or_si256(mb0_1, vlan_tci0_1);
1068                         }
1069                 } /* if() on RSS hash parsing */
1070 #endif
1071
1072                 /**
1073                  * At this point, we have the 8 sets of flags in the low 16-bits
1074                  * of each 32-bit value in vlan0.
1075                  * We want to extract these, and merge them with the mbuf init
1076                  * data so we can do a single write to the mbuf to set the flags
1077                  * and all the other initialization fields. Extracting the
1078                  * appropriate flags means that we have to do a shift and blend
1079                  * for each mbuf before we do the write. However, we can also
1080                  * add in the previously computed rx_descriptor fields to
1081                  * make a single 256-bit write per mbuf
1082                  */
1083                 /* check the structure matches expectations */
1084                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
1085                                  offsetof(struct rte_mbuf, rearm_data) + 8);
1086                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
1087                                  RTE_ALIGN(offsetof(struct rte_mbuf,
1088                                                     rearm_data),
1089                                            16));
1090                 /* build up data and do writes */
1091                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
1092                         rearm6, rearm7;
1093                 rearm6 = _mm256_blend_epi32(mbuf_init,
1094                                             _mm256_slli_si256(mbuf_flags, 8),
1095                                             0x04);
1096                 rearm4 = _mm256_blend_epi32(mbuf_init,
1097                                             _mm256_slli_si256(mbuf_flags, 4),
1098                                             0x04);
1099                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
1100                 rearm0 = _mm256_blend_epi32(mbuf_init,
1101                                             _mm256_srli_si256(mbuf_flags, 4),
1102                                             0x04);
1103                 /* permute to add in the rx_descriptor e.g. rss fields */
1104                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
1105                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
1106                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
1107                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
1108                 /* write to mbuf */
1109                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
1110                                     rearm6);
1111                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
1112                                     rearm4);
1113                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
1114                                     rearm2);
1115                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
1116                                     rearm0);
1117
1118                 /* repeat for the odd mbufs */
1119                 const __m256i odd_flags =
1120                         _mm256_castsi128_si256
1121                                 (_mm256_extracti128_si256(mbuf_flags, 1));
1122                 rearm7 = _mm256_blend_epi32(mbuf_init,
1123                                             _mm256_slli_si256(odd_flags, 8),
1124                                             0x04);
1125                 rearm5 = _mm256_blend_epi32(mbuf_init,
1126                                             _mm256_slli_si256(odd_flags, 4),
1127                                             0x04);
1128                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
1129                 rearm1 = _mm256_blend_epi32(mbuf_init,
1130                                             _mm256_srli_si256(odd_flags, 4),
1131                                             0x04);
1132                 /* since odd mbufs are already in hi 128-bits use blend */
1133                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
1134                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
1135                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
1136                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
1137                 /* again write to mbufs */
1138                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
1139                                     rearm7);
1140                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
1141                                     rearm5);
1142                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
1143                                     rearm3);
1144                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
1145                                     rearm1);
1146
1147                 /* extract and record EOP bit */
1148                 if (split_packet) {
1149                         const __m128i eop_mask =
1150                                 _mm_set1_epi16(1 <<
1151                                                IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
1152                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
1153                                                                      eop_check);
1154                         /* pack status bits into a single 128-bit register */
1155                         const __m128i eop_bits =
1156                                 _mm_packus_epi32
1157                                         (_mm256_castsi256_si128(eop_bits256),
1158                                          _mm256_extractf128_si256(eop_bits256,
1159                                                                   1));
1160                         /**
1161                          * flip bits, and mask out the EOP bit, which is now
1162                          * a split-packet bit i.e. !EOP, rather than EOP one.
1163                          */
1164                         __m128i split_bits = _mm_andnot_si128(eop_bits,
1165                                         eop_mask);
1166                         /**
1167                          * eop bits are out of order, so we need to shuffle them
1168                          * back into order again. In doing so, only use low 8
1169                          * bits, which acts like another pack instruction
1170                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
1171                          * [Since we use epi8, the 16-bit positions are
1172                          * multiplied by 2 in the eop_shuffle value.]
1173                          */
1174                         __m128i eop_shuffle =
1175                                 _mm_set_epi8(/* zero hi 64b */
1176                                              0xFF, 0xFF, 0xFF, 0xFF,
1177                                              0xFF, 0xFF, 0xFF, 0xFF,
1178                                              /* move values to lo 64b */
1179                                              8, 0, 10, 2,
1180                                              12, 4, 14, 6);
1181                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
1182                         *(uint64_t *)split_packet =
1183                                 _mm_cvtsi128_si64(split_bits);
1184                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
1185                 }
1186
1187                 /* perform dd_check */
1188                 status0_7 = _mm256_and_si256(status0_7, dd_check);
1189                 status0_7 = _mm256_packs_epi32(status0_7,
1190                                                _mm256_setzero_si256());
1191
1192                 uint64_t burst = __builtin_popcountll
1193                                         (_mm_cvtsi128_si64
1194                                                 (_mm256_extracti128_si256
1195                                                         (status0_7, 1)));
1196                 burst += __builtin_popcountll
1197                                 (_mm_cvtsi128_si64
1198                                         (_mm256_castsi256_si128(status0_7)));
1199                 received += burst;
1200                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
1201                         break;
1202         }
1203
1204         /* update tail pointers */
1205         rxq->rx_tail += received;
1206         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
1207         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
1208                 rxq->rx_tail--;
1209                 received--;
1210         }
1211         rxq->rxrearm_nb += received;
1212         return received;
1213 }
1214
1215 /**
1216  * Notice:
1217  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1218  */
1219 uint16_t
1220 iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
1221                         uint16_t nb_pkts)
1222 {
1223         return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
1224 }
1225
1226 /**
1227  * Notice:
1228  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1229  */
1230 uint16_t
1231 iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1232                                  uint16_t nb_pkts)
1233 {
1234         return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts,
1235                                                      nb_pkts, NULL);
1236 }
1237
1238 /**
1239  * vPMD receive routine that reassembles single burst of 32 scattered packets
1240  * Notice:
1241  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1242  */
1243 static uint16_t
1244 iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
1245                                    uint16_t nb_pkts)
1246 {
1247         struct iavf_rx_queue *rxq = rx_queue;
1248         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1249
1250         /* get some new buffers */
1251         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
1252                                                        split_flags);
1253         if (nb_bufs == 0)
1254                 return 0;
1255
1256         /* happy day case, full burst + no packets to be joined */
1257         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1258
1259         if (!rxq->pkt_first_seg &&
1260             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1261             split_fl64[2] == 0 && split_fl64[3] == 0)
1262                 return nb_bufs;
1263
1264         /* reassemble any packets that need reassembly*/
1265         unsigned int i = 0;
1266
1267         if (!rxq->pkt_first_seg) {
1268                 /* find the first split flag, and only reassemble then*/
1269                 while (i < nb_bufs && !split_flags[i])
1270                         i++;
1271                 if (i == nb_bufs)
1272                         return nb_bufs;
1273                 rxq->pkt_first_seg = rx_pkts[i];
1274         }
1275         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1276                                              &split_flags[i]);
1277 }
1278
1279 /**
1280  * vPMD receive routine that reassembles scattered packets.
1281  * Main receive routine that can handle arbitrary burst sizes
1282  * Notice:
1283  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1284  */
1285 uint16_t
1286 iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
1287                                   uint16_t nb_pkts)
1288 {
1289         uint16_t retval = 0;
1290
1291         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1292                 uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
1293                                 rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
1294                 retval += burst;
1295                 nb_pkts -= burst;
1296                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1297                         return retval;
1298         }
1299         return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
1300                                 rx_pkts + retval, nb_pkts);
1301 }
1302
1303 /**
1304  * vPMD receive routine that reassembles single burst of
1305  * 32 scattered packets for flex RxD
1306  * Notice:
1307  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1308  */
1309 static uint16_t
1310 iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue,
1311                                             struct rte_mbuf **rx_pkts,
1312                                             uint16_t nb_pkts)
1313 {
1314         struct iavf_rx_queue *rxq = rx_queue;
1315         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1316
1317         /* get some new buffers */
1318         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq,
1319                                         rx_pkts, nb_pkts, split_flags);
1320         if (nb_bufs == 0)
1321                 return 0;
1322
1323         /* happy day case, full burst + no packets to be joined */
1324         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1325
1326         if (!rxq->pkt_first_seg &&
1327             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1328             split_fl64[2] == 0 && split_fl64[3] == 0)
1329                 return nb_bufs;
1330
1331         /* reassemble any packets that need reassembly*/
1332         unsigned int i = 0;
1333
1334         if (!rxq->pkt_first_seg) {
1335                 /* find the first split flag, and only reassemble then*/
1336                 while (i < nb_bufs && !split_flags[i])
1337                         i++;
1338                 if (i == nb_bufs)
1339                         return nb_bufs;
1340                 rxq->pkt_first_seg = rx_pkts[i];
1341         }
1342         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1343                                              &split_flags[i]);
1344 }
1345
1346 /**
1347  * vPMD receive routine that reassembles scattered packets for flex RxD.
1348  * Main receive routine that can handle arbitrary burst sizes
1349  * Notice:
1350  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
1351  */
1352 uint16_t
1353 iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
1354                                            struct rte_mbuf **rx_pkts,
1355                                            uint16_t nb_pkts)
1356 {
1357         uint16_t retval = 0;
1358
1359         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1360                 uint16_t burst =
1361                         iavf_recv_scattered_burst_vec_avx2_flex_rxd
1362                         (rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
1363                 retval += burst;
1364                 nb_pkts -= burst;
1365                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1366                         return retval;
1367         }
1368         return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue,
1369                                 rx_pkts + retval, nb_pkts);
1370 }
1371
1372 static inline void
1373 iavf_vtx1(volatile struct iavf_tx_desc *txdp,
1374           struct rte_mbuf *pkt, uint64_t flags)
1375 {
1376         uint64_t high_qw =
1377                 (IAVF_TX_DESC_DTYPE_DATA |
1378                  ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1379                  ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1380
1381         __m128i descriptor = _mm_set_epi64x(high_qw,
1382                                 pkt->buf_iova + pkt->data_off);
1383         _mm_store_si128((__m128i *)txdp, descriptor);
1384 }
1385
1386 static inline void
1387 iavf_vtx(volatile struct iavf_tx_desc *txdp,
1388          struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
1389 {
1390         const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
1391                         ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));
1392
1393         /* if unaligned on 32-bit boundary, do one to align */
1394         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
1395                 iavf_vtx1(txdp, *pkt, flags);
1396                 nb_pkts--, txdp++, pkt++;
1397         }
1398
1399         /* do two at a time while possible, in bursts */
1400         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1401                 uint64_t hi_qw3 =
1402                         hi_qw_tmpl |
1403                         ((uint64_t)pkt[3]->data_len <<
1404                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1405                 uint64_t hi_qw2 =
1406                         hi_qw_tmpl |
1407                         ((uint64_t)pkt[2]->data_len <<
1408                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1409                 uint64_t hi_qw1 =
1410                         hi_qw_tmpl |
1411                         ((uint64_t)pkt[1]->data_len <<
1412                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1413                 uint64_t hi_qw0 =
1414                         hi_qw_tmpl |
1415                         ((uint64_t)pkt[0]->data_len <<
1416                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
1417
1418                 __m256i desc2_3 =
1419                         _mm256_set_epi64x
1420                                 (hi_qw3,
1421                                  pkt[3]->buf_iova + pkt[3]->data_off,
1422                                  hi_qw2,
1423                                  pkt[2]->buf_iova + pkt[2]->data_off);
1424                 __m256i desc0_1 =
1425                         _mm256_set_epi64x
1426                                 (hi_qw1,
1427                                  pkt[1]->buf_iova + pkt[1]->data_off,
1428                                  hi_qw0,
1429                                  pkt[0]->buf_iova + pkt[0]->data_off);
1430                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
1431                 _mm256_store_si256((void *)txdp, desc0_1);
1432         }
1433
1434         /* do any last ones */
1435         while (nb_pkts) {
1436                 iavf_vtx1(txdp, *pkt, flags);
1437                 txdp++, pkt++, nb_pkts--;
1438         }
1439 }
1440
1441 static inline uint16_t
1442 iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
1443                                uint16_t nb_pkts)
1444 {
1445         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1446         volatile struct iavf_tx_desc *txdp;
1447         struct iavf_tx_entry *txep;
1448         uint16_t n, nb_commit, tx_id;
1449         /* bit2 is reserved and must be set to 1 according to Spec */
1450         uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC;
1451         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1452
1453         /* cross rx_thresh boundary is not allowed */
1454         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
1455
1456         if (txq->nb_free < txq->free_thresh)
1457                 iavf_tx_free_bufs(txq);
1458
1459         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1460         if (unlikely(nb_pkts == 0))
1461                 return 0;
1462
1463         tx_id = txq->tx_tail;
1464         txdp = &txq->tx_ring[tx_id];
1465         txep = &txq->sw_ring[tx_id];
1466
1467         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1468
1469         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1470         if (nb_commit >= n) {
1471                 tx_backlog_entry(txep, tx_pkts, n);
1472
1473                 iavf_vtx(txdp, tx_pkts, n - 1, flags);
1474                 tx_pkts += (n - 1);
1475                 txdp += (n - 1);
1476
1477                 iavf_vtx1(txdp, *tx_pkts++, rs);
1478
1479                 nb_commit = (uint16_t)(nb_commit - n);
1480
1481                 tx_id = 0;
1482                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1483
1484                 /* avoid reach the end of ring */
1485                 txdp = &txq->tx_ring[tx_id];
1486                 txep = &txq->sw_ring[tx_id];
1487         }
1488
1489         tx_backlog_entry(txep, tx_pkts, nb_commit);
1490
1491         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1492
1493         tx_id = (uint16_t)(tx_id + nb_commit);
1494         if (tx_id > txq->next_rs) {
1495                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1496                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1497                                          IAVF_TXD_QW1_CMD_SHIFT);
1498                 txq->next_rs =
1499                         (uint16_t)(txq->next_rs + txq->rs_thresh);
1500         }
1501
1502         txq->tx_tail = tx_id;
1503
1504         IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1505
1506         return nb_pkts;
1507 }
1508
1509 uint16_t
1510 iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
1511                         uint16_t nb_pkts)
1512 {
1513         uint16_t nb_tx = 0;
1514         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1515
1516         while (nb_pkts) {
1517                 uint16_t ret, num;
1518
1519                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1520                 ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
1521                                                      num);
1522                 nb_tx += ret;
1523                 nb_pkts -= ret;
1524                 if (ret < num)
1525                         break;
1526         }
1527
1528         return nb_tx;
1529 }