net/iavf/base: move to drivers common directory
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "iavf_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union iavf_rx_desc *rxdp;
19         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxp,
26                                  IAVF_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
33                                 rxp[i] = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         IAVF_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxp[0];
53                 mb1 = rxp[1];
54
55                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < IAVF_RXQ_REARM_THRESH;
79                         i += 4, rxp += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxp[0];
84                 mb1 = rxp[1];
85                 mb2 = rxp[2];
86                 mb3 = rxp[3];
87
88                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 #define PKTLEN_SHIFT     10
136
137 static inline uint16_t
138 _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
139                              struct rte_mbuf **rx_pkts,
140                              uint16_t nb_pkts, uint8_t *split_packet)
141 {
142 #define IAVF_DESCS_PER_LOOP_AVX 8
143
144         /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
145         static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
146                 /* [0] reserved */
147                 [1] = RTE_PTYPE_L2_ETHER,
148                 /* [2] - [21] reserved */
149                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
150                         RTE_PTYPE_L4_FRAG,
151                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
152                         RTE_PTYPE_L4_NONFRAG,
153                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
154                         RTE_PTYPE_L4_UDP,
155                 /* [25] reserved */
156                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
157                         RTE_PTYPE_L4_TCP,
158                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
159                         RTE_PTYPE_L4_SCTP,
160                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
161                         RTE_PTYPE_L4_ICMP,
162                 /* All others reserved */
163         };
164         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
165                         0, rxq->mbuf_initializer);
166         /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
167         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
168         volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
169         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
170
171         rte_prefetch0(rxdp);
172
173         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
174         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
175
176         /* See if we need to rearm the RX queue - gives the prefetch a bit
177          * of time to act
178          */
179         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
180                 iavf_rxq_rearm(rxq);
181
182         /* Before we start moving massive data around, check to see if
183          * there is actually a packet available
184          */
185         if (!(rxdp->wb.qword1.status_error_len &
186                         rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
187                 return 0;
188
189         /* constants used in processing loop */
190         const __m256i crc_adjust =
191                 _mm256_set_epi16
192                         (/* first descriptor */
193                          0, 0, 0,       /* ignore non-length fields */
194                          -rxq->crc_len, /* sub crc on data_len */
195                          0,             /* ignore high-16bits of pkt_len */
196                          -rxq->crc_len, /* sub crc on pkt_len */
197                          0, 0,          /* ignore pkt_type field */
198                          /* second descriptor */
199                          0, 0, 0,       /* ignore non-length fields */
200                          -rxq->crc_len, /* sub crc on data_len */
201                          0,             /* ignore high-16bits of pkt_len */
202                          -rxq->crc_len, /* sub crc on pkt_len */
203                          0, 0           /* ignore pkt_type field */
204                         );
205
206         /* 8 packets DD mask, LSB in each 32-bit value */
207         const __m256i dd_check = _mm256_set1_epi32(1);
208
209         /* 8 packets EOP mask, second-LSB in each 32-bit value */
210         const __m256i eop_check = _mm256_slli_epi32(dd_check,
211                         IAVF_RX_DESC_STATUS_EOF_SHIFT);
212
213         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
214         const __m256i shuf_msk =
215                 _mm256_set_epi8
216                         (/* first descriptor */
217                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
218                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
219                          15, 14,      /* octet 15~14, 16 bits data_len */
220                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
221                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
222                          0xFF, 0xFF,  /* pkt_type set as unknown */
223                          0xFF, 0xFF,  /*pkt_type set as unknown */
224                          /* second descriptor */
225                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
226                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
227                          15, 14,      /* octet 15~14, 16 bits data_len */
228                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
229                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
230                          0xFF, 0xFF,  /* pkt_type set as unknown */
231                          0xFF, 0xFF   /*pkt_type set as unknown */
232                         );
233         /**
234          * compile-time check the above crc and shuffle layout is correct.
235          * NOTE: the first field (lowest address) is given last in set_epi
236          * calls above.
237          */
238         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
239                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
240         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
241                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
242         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
243                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
244         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
245                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
246
247         /* Status/Error flag masks */
248         /**
249          * mask everything except RSS, flow director and VLAN flags
250          * bit2 is for VLAN tag, bit11 for flow director indication
251          * bit13:12 for RSS indication. Bits 3-5 of error
252          * field (bits 22-24) are for IP/L4 checksum errors
253          */
254         const __m256i flags_mask =
255                  _mm256_set1_epi32((1 << 2) | (1 << 11) |
256                                    (3 << 12) | (7 << 22));
257         /**
258          * data to be shuffled by result of flag mask. If VLAN bit is set,
259          * (bit 2), then position 4 in this array will be used in the
260          * destination
261          */
262         const __m256i vlan_flags_shuf =
263                 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
264                                  0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
265         /**
266          * data to be shuffled by result of flag mask, shifted down 11.
267          * If RSS/FDIR bits are set, shuffle moves appropriate flags in
268          * place.
269          */
270         const __m256i rss_flags_shuf =
271                 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
272                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
273                                 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
274                                 0, 0, 0, 0, 0, 0, 0, 0,
275                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
276                                 0, 0, 0, 0, PKT_RX_FDIR, 0);
277
278         /**
279          * data to be shuffled by the result of the flags mask shifted by 22
280          * bits.  This gives use the l3_l4 flags.
281          */
282         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
283                         /* shift right 1 bit to make sure it not exceed 255 */
284                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
285                          PKT_RX_IP_CKSUM_BAD) >> 1,
286                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
287                          PKT_RX_L4_CKSUM_BAD) >> 1,
288                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
289                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
290                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
291                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
292                         PKT_RX_IP_CKSUM_BAD >> 1,
293                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
294                         /* second 128-bits */
295                         0, 0, 0, 0, 0, 0, 0, 0,
296                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
297                          PKT_RX_IP_CKSUM_BAD) >> 1,
298                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
299                          PKT_RX_L4_CKSUM_BAD) >> 1,
300                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
301                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
302                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
303                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
304                         PKT_RX_IP_CKSUM_BAD >> 1,
305                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
306
307         const __m256i cksum_mask =
308                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
309                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
310                                    PKT_RX_EIP_CKSUM_BAD);
311
312         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
313
314         uint16_t i, received;
315
316         for (i = 0, received = 0; i < nb_pkts;
317              i += IAVF_DESCS_PER_LOOP_AVX,
318              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
319                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
320                 _mm256_storeu_si256((void *)&rx_pkts[i],
321                                     _mm256_loadu_si256((void *)&sw_ring[i]));
322 #ifdef RTE_ARCH_X86_64
323                 _mm256_storeu_si256
324                         ((void *)&rx_pkts[i + 4],
325                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
326 #endif
327
328                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
329 #ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
330                 /* for AVX we need alignment otherwise loads are not atomic */
331                 if (avx_aligned) {
332                         /* load in descriptors, 2 at a time, in reverse order */
333                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
334                         rte_compiler_barrier();
335                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
336                         rte_compiler_barrier();
337                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
338                         rte_compiler_barrier();
339                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
340                 } else
341 #endif
342                 {
343                         const __m128i raw_desc7 =
344                                 _mm_load_si128((void *)(rxdp + 7));
345                         rte_compiler_barrier();
346                         const __m128i raw_desc6 =
347                                 _mm_load_si128((void *)(rxdp + 6));
348                         rte_compiler_barrier();
349                         const __m128i raw_desc5 =
350                                 _mm_load_si128((void *)(rxdp + 5));
351                         rte_compiler_barrier();
352                         const __m128i raw_desc4 =
353                                 _mm_load_si128((void *)(rxdp + 4));
354                         rte_compiler_barrier();
355                         const __m128i raw_desc3 =
356                                 _mm_load_si128((void *)(rxdp + 3));
357                         rte_compiler_barrier();
358                         const __m128i raw_desc2 =
359                                 _mm_load_si128((void *)(rxdp + 2));
360                         rte_compiler_barrier();
361                         const __m128i raw_desc1 =
362                                 _mm_load_si128((void *)(rxdp + 1));
363                         rte_compiler_barrier();
364                         const __m128i raw_desc0 =
365                                 _mm_load_si128((void *)(rxdp + 0));
366
367                         raw_desc6_7 =
368                                 _mm256_inserti128_si256
369                                         (_mm256_castsi128_si256(raw_desc6),
370                                          raw_desc7, 1);
371                         raw_desc4_5 =
372                                 _mm256_inserti128_si256
373                                         (_mm256_castsi128_si256(raw_desc4),
374                                          raw_desc5, 1);
375                         raw_desc2_3 =
376                                 _mm256_inserti128_si256
377                                         (_mm256_castsi128_si256(raw_desc2),
378                                          raw_desc3, 1);
379                         raw_desc0_1 =
380                                 _mm256_inserti128_si256
381                                         (_mm256_castsi128_si256(raw_desc0),
382                                          raw_desc1, 1);
383                 }
384
385                 if (split_packet) {
386                         int j;
387
388                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
389                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
390                 }
391
392                 /**
393                  * convert descriptors 4-7 into mbufs, adjusting length and
394                  * re-arranging fields. Then write into the mbuf
395                  */
396                 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
397                                                          PKTLEN_SHIFT);
398                 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
399                                                          PKTLEN_SHIFT);
400                 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
401                                                            len6_7, 0x80);
402                 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
403                                                            len4_5, 0x80);
404                 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
405                 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
406
407                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
408                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
409                 /**
410                  * to get packet types, shift 64-bit values down 30 bits
411                  * and so ptype is in lower 8-bits in each
412                  */
413                 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
414                 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
415                 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
416                 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
417                 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
418                 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
419
420                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
421                 mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
422                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
423                 mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
424                 /* merge the status bits into one register */
425                 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
426                                 desc4_5);
427
428                 /**
429                  * convert descriptors 0-3 into mbufs, adjusting length and
430                  * re-arranging fields. Then write into the mbuf
431                  */
432                 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
433                                                          PKTLEN_SHIFT);
434                 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
435                                                          PKTLEN_SHIFT);
436                 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
437                                                            len2_3, 0x80);
438                 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
439                                                            len0_1, 0x80);
440                 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
441                 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
442
443                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
444                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
445                 /* get the packet types */
446                 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
447                 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
448                 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
449                 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
450                 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
451                 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
452
453                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
454                 mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
455                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
456                 mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
457                 /* merge the status bits into one register */
458                 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
459                                                                 desc0_1);
460
461                 /**
462                  * take the two sets of status bits and merge to one
463                  * After merge, the packets status flags are in the
464                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
465                  */
466                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
467                                                           status0_3);
468
469                 /* now do flag manipulation */
470
471                 /* get only flag/error bits we want */
472                 const __m256i flag_bits =
473                         _mm256_and_si256(status0_7, flags_mask);
474                 /* set vlan and rss flags */
475                 const __m256i vlan_flags =
476                         _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
477                 const __m256i rss_flags =
478                         _mm256_shuffle_epi8(rss_flags_shuf,
479                                             _mm256_srli_epi32(flag_bits, 11));
480                 /**
481                  * l3_l4_error flags, shuffle, then shift to correct adjustment
482                  * of flags in flags_shuf, and finally mask out extra bits
483                  */
484                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
485                                 _mm256_srli_epi32(flag_bits, 22));
486                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
487                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
488
489                 /* merge flags */
490                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
491                                 _mm256_or_si256(rss_flags, vlan_flags));
492                 /**
493                  * At this point, we have the 8 sets of flags in the low 16-bits
494                  * of each 32-bit value in vlan0.
495                  * We want to extract these, and merge them with the mbuf init
496                  * data so we can do a single write to the mbuf to set the flags
497                  * and all the other initialization fields. Extracting the
498                  * appropriate flags means that we have to do a shift and blend
499                  * for each mbuf before we do the write. However, we can also
500                  * add in the previously computed rx_descriptor fields to
501                  * make a single 256-bit write per mbuf
502                  */
503                 /* check the structure matches expectations */
504                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
505                                  offsetof(struct rte_mbuf, rearm_data) + 8);
506                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
507                                  RTE_ALIGN(offsetof(struct rte_mbuf,
508                                                     rearm_data),
509                                            16));
510                 /* build up data and do writes */
511                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
512                         rearm6, rearm7;
513                 rearm6 = _mm256_blend_epi32(mbuf_init,
514                                             _mm256_slli_si256(mbuf_flags, 8),
515                                             0x04);
516                 rearm4 = _mm256_blend_epi32(mbuf_init,
517                                             _mm256_slli_si256(mbuf_flags, 4),
518                                             0x04);
519                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
520                 rearm0 = _mm256_blend_epi32(mbuf_init,
521                                             _mm256_srli_si256(mbuf_flags, 4),
522                                             0x04);
523                 /* permute to add in the rx_descriptor e.g. rss fields */
524                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
525                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
526                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
527                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
528                 /* write to mbuf */
529                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
530                                     rearm6);
531                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
532                                     rearm4);
533                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
534                                     rearm2);
535                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
536                                     rearm0);
537
538                 /* repeat for the odd mbufs */
539                 const __m256i odd_flags =
540                         _mm256_castsi128_si256
541                                 (_mm256_extracti128_si256(mbuf_flags, 1));
542                 rearm7 = _mm256_blend_epi32(mbuf_init,
543                                             _mm256_slli_si256(odd_flags, 8),
544                                             0x04);
545                 rearm5 = _mm256_blend_epi32(mbuf_init,
546                                             _mm256_slli_si256(odd_flags, 4),
547                                             0x04);
548                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
549                 rearm1 = _mm256_blend_epi32(mbuf_init,
550                                             _mm256_srli_si256(odd_flags, 4),
551                                             0x04);
552                 /* since odd mbufs are already in hi 128-bits use blend */
553                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
554                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
555                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
556                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
557                 /* again write to mbufs */
558                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
559                                     rearm7);
560                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
561                                     rearm5);
562                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
563                                     rearm3);
564                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
565                                     rearm1);
566
567                 /* extract and record EOP bit */
568                 if (split_packet) {
569                         const __m128i eop_mask =
570                                 _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
571                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
572                                                                      eop_check);
573                         /* pack status bits into a single 128-bit register */
574                         const __m128i eop_bits =
575                                 _mm_packus_epi32
576                                         (_mm256_castsi256_si128(eop_bits256),
577                                          _mm256_extractf128_si256(eop_bits256,
578                                                                   1));
579                         /**
580                          * flip bits, and mask out the EOP bit, which is now
581                          * a split-packet bit i.e. !EOP, rather than EOP one.
582                          */
583                         __m128i split_bits = _mm_andnot_si128(eop_bits,
584                                         eop_mask);
585                         /**
586                          * eop bits are out of order, so we need to shuffle them
587                          * back into order again. In doing so, only use low 8
588                          * bits, which acts like another pack instruction
589                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
590                          * [Since we use epi8, the 16-bit positions are
591                          * multiplied by 2 in the eop_shuffle value.]
592                          */
593                         __m128i eop_shuffle =
594                                 _mm_set_epi8(/* zero hi 64b */
595                                              0xFF, 0xFF, 0xFF, 0xFF,
596                                              0xFF, 0xFF, 0xFF, 0xFF,
597                                              /* move values to lo 64b */
598                                              8, 0, 10, 2,
599                                              12, 4, 14, 6);
600                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
601                         *(uint64_t *)split_packet =
602                                 _mm_cvtsi128_si64(split_bits);
603                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
604                 }
605
606                 /* perform dd_check */
607                 status0_7 = _mm256_and_si256(status0_7, dd_check);
608                 status0_7 = _mm256_packs_epi32(status0_7,
609                                                _mm256_setzero_si256());
610
611                 uint64_t burst = __builtin_popcountll
612                                         (_mm_cvtsi128_si64
613                                                 (_mm256_extracti128_si256
614                                                         (status0_7, 1)));
615                 burst += __builtin_popcountll
616                                 (_mm_cvtsi128_si64
617                                         (_mm256_castsi256_si128(status0_7)));
618                 received += burst;
619                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
620                         break;
621         }
622
623         /* update tail pointers */
624         rxq->rx_tail += received;
625         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
626         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
627                 rxq->rx_tail--;
628                 received--;
629         }
630         rxq->rxrearm_nb += received;
631         return received;
632 }
633
634 /**
635  * Notice:
636  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
637  */
638 uint16_t
639 iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
640                         uint16_t nb_pkts)
641 {
642         return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
643 }
644
645 /**
646  * vPMD receive routine that reassembles single burst of 32 scattered packets
647  * Notice:
648  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
649  */
650 static uint16_t
651 iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
652                                    uint16_t nb_pkts)
653 {
654         struct iavf_rx_queue *rxq = rx_queue;
655         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
656
657         /* get some new buffers */
658         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
659                                                        split_flags);
660         if (nb_bufs == 0)
661                 return 0;
662
663         /* happy day case, full burst + no packets to be joined */
664         const uint64_t *split_fl64 = (uint64_t *)split_flags;
665
666         if (!rxq->pkt_first_seg &&
667             split_fl64[0] == 0 && split_fl64[1] == 0 &&
668             split_fl64[2] == 0 && split_fl64[3] == 0)
669                 return nb_bufs;
670
671         /* reassemble any packets that need reassembly*/
672         unsigned int i = 0;
673
674         if (!rxq->pkt_first_seg) {
675                 /* find the first split flag, and only reassemble then*/
676                 while (i < nb_bufs && !split_flags[i])
677                         i++;
678                 if (i == nb_bufs)
679                         return nb_bufs;
680                 rxq->pkt_first_seg = rx_pkts[i];
681         }
682         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
683                                              &split_flags[i]);
684 }
685
686 /**
687  * vPMD receive routine that reassembles scattered packets.
688  * Main receive routine that can handle arbitrary burst sizes
689  * Notice:
690  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
691  */
692 uint16_t
693 iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
694                                   uint16_t nb_pkts)
695 {
696         uint16_t retval = 0;
697
698         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
699                 uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
700                                 rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
701                 retval += burst;
702                 nb_pkts -= burst;
703                 if (burst < IAVF_VPMD_RX_MAX_BURST)
704                         return retval;
705         }
706         return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
707                                 rx_pkts + retval, nb_pkts);
708 }
709
710 static inline void
711 iavf_vtx1(volatile struct iavf_tx_desc *txdp,
712           struct rte_mbuf *pkt, uint64_t flags)
713 {
714         uint64_t high_qw =
715                 (IAVF_TX_DESC_DTYPE_DATA |
716                  ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
717                  ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
718
719         __m128i descriptor = _mm_set_epi64x(high_qw,
720                                 pkt->buf_physaddr + pkt->data_off);
721         _mm_store_si128((__m128i *)txdp, descriptor);
722 }
723
724 static inline void
725 iavf_vtx(volatile struct iavf_tx_desc *txdp,
726          struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
727 {
728         const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
729                         ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT));
730
731         /* if unaligned on 32-bit boundary, do one to align */
732         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
733                 iavf_vtx1(txdp, *pkt, flags);
734                 nb_pkts--, txdp++, pkt++;
735         }
736
737         /* do two at a time while possible, in bursts */
738         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
739                 uint64_t hi_qw3 =
740                         hi_qw_tmpl |
741                         ((uint64_t)pkt[3]->data_len <<
742                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
743                 uint64_t hi_qw2 =
744                         hi_qw_tmpl |
745                         ((uint64_t)pkt[2]->data_len <<
746                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
747                 uint64_t hi_qw1 =
748                         hi_qw_tmpl |
749                         ((uint64_t)pkt[1]->data_len <<
750                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
751                 uint64_t hi_qw0 =
752                         hi_qw_tmpl |
753                         ((uint64_t)pkt[0]->data_len <<
754                          IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
755
756                 __m256i desc2_3 =
757                         _mm256_set_epi64x
758                                 (hi_qw3,
759                                  pkt[3]->buf_physaddr + pkt[3]->data_off,
760                                  hi_qw2,
761                                  pkt[2]->buf_physaddr + pkt[2]->data_off);
762                 __m256i desc0_1 =
763                         _mm256_set_epi64x
764                                 (hi_qw1,
765                                  pkt[1]->buf_physaddr + pkt[1]->data_off,
766                                  hi_qw0,
767                                  pkt[0]->buf_physaddr + pkt[0]->data_off);
768                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
769                 _mm256_store_si256((void *)txdp, desc0_1);
770         }
771
772         /* do any last ones */
773         while (nb_pkts) {
774                 iavf_vtx1(txdp, *pkt, flags);
775                 txdp++, pkt++, nb_pkts--;
776         }
777 }
778
779 static inline uint16_t
780 iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
781                                uint16_t nb_pkts)
782 {
783         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
784         volatile struct iavf_tx_desc *txdp;
785         struct iavf_tx_entry *txep;
786         uint16_t n, nb_commit, tx_id;
787         /* bit2 is reserved and must be set to 1 according to Spec */
788         uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC;
789         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
790
791         /* cross rx_thresh boundary is not allowed */
792         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
793
794         if (txq->nb_free < txq->free_thresh)
795                 iavf_tx_free_bufs(txq);
796
797         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
798         if (unlikely(nb_pkts == 0))
799                 return 0;
800
801         tx_id = txq->tx_tail;
802         txdp = &txq->tx_ring[tx_id];
803         txep = &txq->sw_ring[tx_id];
804
805         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
806
807         n = (uint16_t)(txq->nb_tx_desc - tx_id);
808         if (nb_commit >= n) {
809                 tx_backlog_entry(txep, tx_pkts, n);
810
811                 iavf_vtx(txdp, tx_pkts, n - 1, flags);
812                 tx_pkts += (n - 1);
813                 txdp += (n - 1);
814
815                 iavf_vtx1(txdp, *tx_pkts++, rs);
816
817                 nb_commit = (uint16_t)(nb_commit - n);
818
819                 tx_id = 0;
820                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
821
822                 /* avoid reach the end of ring */
823                 txdp = &txq->tx_ring[tx_id];
824                 txep = &txq->sw_ring[tx_id];
825         }
826
827         tx_backlog_entry(txep, tx_pkts, nb_commit);
828
829         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
830
831         tx_id = (uint16_t)(tx_id + nb_commit);
832         if (tx_id > txq->next_rs) {
833                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
834                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
835                                          IAVF_TXD_QW1_CMD_SHIFT);
836                 txq->next_rs =
837                         (uint16_t)(txq->next_rs + txq->rs_thresh);
838         }
839
840         txq->tx_tail = tx_id;
841
842         IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
843
844         return nb_pkts;
845 }
846
847 uint16_t
848 iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
849                         uint16_t nb_pkts)
850 {
851         uint16_t nb_tx = 0;
852         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
853
854         while (nb_pkts) {
855                 uint16_t ret, num;
856
857                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
858                 ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
859                                                      num);
860                 nb_tx += ret;
861                 nb_pkts -= ret;
862                 if (ret < num)
863                         break;
864         }
865
866         return nb_tx;
867 }